
TANGOS: The Agile Numerical Galaxy Organization System

Andrew Pontzen1 and Michael Tremmel2
1 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

2 Yale Center for Astronomy & Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520, USA
Received 2018 March 2; revised 2018 May 21; accepted 2018 May 25; published 2018 July 26

Abstract

We present TANGOS, a Python framework and web interface for database-driven analysis of numerical structure
formation simulations. To understand the role that such a tool can play, consider constructing a history for the
absolute magnitude of each galaxy within a simulation. The magnitudes must first be calculated for all halos at all
timesteps and then linked using a merger tree; folding the required information into a final analysis can entail
significant effort. TANGOS is a generic solution to this information organization problem, aiming to free users from
the details of data management. At the querying stage, our example of gathering properties over history is reduced
to a few clicks or a simple, single-line Python command. The framework is highly extensible; in particular, users
are expected to define their own properties, which TANGOS will write into the database. A variety of parallelization
options are available and the raw simulation data can be read using existing libraries such as PYNBODY or YT.
Finally, TANGOS-based databases and analysis pipelines can easily be shared with collaborators or the broader
community to ensure reproducibility. User documentation is provided separately.

Key words: methods: data analysis – methods: numerical

1. Introduction

Analyzing simulations of cosmological structure formation
poses a significant computational challenge. Large numbers of
raw data points must typically be reduced into scientifically
relevant properties or observables for each galaxy or halo. The
resulting quantities must then be interpreted, which often
involves further processsing to see, for example, how a
galaxy’s properties vary over time. In this paper, we introduce
TANGOS, a software package that aims to make such processing
painless.

The code has been developed over a decade, with roots in
work described by Pontzen et al. (2008). That research had to
collate information about a large number of halos across a
range of different simulations (to piece together the way that
galaxies are seen in absorption against quasars). Two problems
became apparent. First, our cross sections, column densities,
and other quantities were structured as a series of files with
increasingly obscure names and relationships. Reading the
results and combining different outputs into a coherent analysis
was slow and cumbersome. Second, our large collection of
scripts for performing calculations all included similar
“boilerplate” code. This boilerplate would open a series of
simulations, run through the halos within them, and write out
results. Even the simplest alteration (for example, adding a new
simulation) required copy-and-pasting changes to multiple
source files. The combination of these obstacles became a
major impediment to progress.

Analyses of this sort suffer from simultaneously attempting
to tackle two conceptually separate problems: reducing the raw
output to scientifically relevant quantities and organizing the
results. Reduction and organization can be seen as two layers
within a simulation workflow (Figure 1). By separating the
boilerplate organization layer, we started building a generic
code that would ultimately evolve into TANGOS. The code
takes responsibility for storing and retrieving results, as well as
iterating over simulations and halos to perform the reduction
step on all relevant data. Once this separation was made, we

found we were able to express science goals more clearly,
leading to faster, higher-quality analyses.
We have been continually using and refining TANGOS since

that time. In the last three years it has been heavily streamlined
and refactored to maximize the range of requirements it can
accommodate—from traditional uniform volumes (leading us
to include efficient parallelization, e.g., di Cintio et al. 2017;
Tremmel et al. 2017), to “genetically modified” zooms (driving
development of the linking and tracking facilities; Pontzen
et al. 2017). To enable open working with collaborators, we
also added a web interface that can formulate and process even
complex queries.
In the meantime, codes such as YT (Turk et al. 2011) and

PYNBODY (Pontzen et al. 2013) have been maturing; these
libraries present an abstracted view of raw simulation data,
aiding the reduction layer but largely leaving organization to
users. Both YT and PYNBODY contain some support for
storing quantities such as profiles alongside halo catalogs, but
not for managing the results of arbitrary user analysis. An
add-on package for YT known as YTREE can generate and
traverse merger trees but the user must manually populate the
data for each halo (unless using quantities already calculated
and stored by the halo finder, which are unlikely to be
sufficient for most use cases). HALOTOOLS (Hearin
et al. 2017) is another existing code that addresses aspects
of an organization layer: it includes sub-packages to turn halo
catalogs into queryable merger trees. But its user tools are
focused on constructing semi-analytic models from these
trees rather than populating them with properties calculated
from the original simulation data.
Conversely, the kind of questions that TANGOS currently

lends itself to answering center on hydrodynamic galaxy
formation. How do star formation rates vary over time? What
impact do mergers have on galaxy morphology? Where does a
typical quasar line metal absorber lie relative to its nearest
galaxy? Why does the distribution of dark matter get affected
by some types of feedback but not others? By enabling many
snapshots of multiple simulations to be linked together over

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August https://doi.org/10.3847/1538-4365/aac832
© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://doi.org/10.3847/1538-4365/aac832
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/aac832&domain=pdf&date_stamp=2018-07-26
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/aac832&domain=pdf&date_stamp=2018-07-26

time and efficiently queried, our ability to make progress in
these areas has been enhanced.

One way to conceive of a fully fledged organization layer
such as TANGOS is from the perspective of data compression.
Raw output from the simulation layer can be extremely large (up
to hundreds of terabytes) because it contains snapshots of the full
dynamical state of the virtual universe at tens or hundreds of
points in cosmological time. The goal of analysis is to move

from the multi-terabyte raw output to a final, human-digestible
set of information, nearly always in the form of one or more
scientific publications. To put an upper limit on the information
content of a paper, we can consider the literal file size of the
associated PDF (perhaps a few megabytes). The compression
ratio in moving from the raw output to the scientific results is
therefore 106 or more. Inserting the organization layer (giving
two compression steps with ratios of order 103) offers far greater
clarity and flexibility than attempting to jump six orders of
magnitude at once.
Some major simulation collaborations have made such

intermediate data public. Structured Query Language (SQL)
databases provided by the Millennium (Lemson & Virgo
Consortium 2006), MultiDark (Riebe et al. 2013), Eagle
(McAlpine et al. 2016), and Theoretical Astronomical Observa-
tory (Bernyk et al. 2016) groups provide good examples, as
well as unstructured data releases with querying tools like
those provided by the Illustris collaboration (Nelson et al.
2015). However, these tools are specific to particular runs and
pre-determined properties; they do not offer a mechanism for
adding new information or generating databases from fresh
simulations.
TANGOS instead aims to minimize the human effort required

to generate and collate complex results from new simulations
of any type and scale. By providing a framework that is
modularized, TANGOS is extensible in multiple directions.
Adding new galaxy properties, querying techniques, paralleli-
zation methods, data storage approaches, file formats, and
analysis libraries are all possible (and in some cases, trivial).
The code is freely available from github.com/pynbody/tangos
under an open source (BSD 3-clause) license and compatible
with Python 2.7 and 3.5 or later. The version of the code used
to prepare this paper is 1.0.6, which is permanently available
from Zenodo as Pontzen & Tremmel (2018), although we
would always advise using the latest available version for new
projects.
In this work we will discuss the overall structure of TANGOS

and its modular components. Section 2 offers an overview of
the full system, while sub-components are explored in
Sections 3–10. We conclude in Section 11.

2. Overview

TANGOS is implemented as a pure Python package and
organized into multiple sub-packages. The relationship
between the various sub-packages, user code and external
dependencies is presented in Figure 2. Practical documentation
for using TANGOS can be found at http://tiny.cc/tangos.
At its core, our solution consists of a storage engine

implemented atop SQLALCHEMY,3 which is a SQL toolkit
and object relational mapper. SQLALCHEMY does not
constitute a database in its own right, but rather presents a
unified high-level interface to multiple possible implementa-
tions such as SQLITE, MYSQL, MS-SQL, and more. Our
approach is described in Section 3 and implemented in the
submodule core.
Querying the database can in principle be accomplished with

raw SQL, but it is easier to use our exposed SQLALCHEMY
objects or higher-level functions. To aid with constructing
queries, especially those that traverse merger trees, we have
implemented a domain-specific mini-language that is parsed using

Figure 1. Overview of how cosmological galaxy formation simulations are
constructed and analyzed. First, initial conditions must be generated to start the
simulation. Then, the simulation is executed. After this, some form of data
reduction is normally applied where the raw multi-terabyte outputs are distilled
into scientifically meaningful quantities (for example, observable properties
such as magnitudes and images or physical quantities such as masses and
profiles). The fourth stage involves organizing the data; TANGOS is designed to
take charge of this process, building an intermediate data set that is typically
gigabytes or even smaller. Finally, the results are retrieved in a form suitable
for discussion in a scientific paper, further compressing the information to a
point where it can be fully understood by a human reader; TANGOS presents
Python and web interfaces for this retrieval stage.

3 http://sqlalchemy.org

2

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://github.com/pynbody/tangos
http://tiny.cc/tangos
http://sqlalchemy.org

PYPARSING4 and mapped into a combination of SQL and Python
operations. This is implemented in the live_calculation
module (Section 4). The construction of SQL queries for merger
trees and other interrelationships between objects is delegated to
therelation_finding module that is described in Section 5.

One of the strengths of the system is that users can easily define
new galaxy properties to be calculated at each stored timestep. The
framework allowing this extensibility is contained within the
properties sub-package and described in Section 6. When
calculating properties, TANGOS’ parallel_tasks sub-pack-
age enables parallelization via several strategies that are described
in Section 7. We also allow rapidly time-varying quantities such as
star formation rates to be stored and processed at a resolution finer
than the snapshot steps, via a mechanism described in Section 8.

We factor out all tasks related to file loading and memory
management to theinput_handlersmodule that is covered
by Section 9. By extending this module it is possible to work
with any analysis toolkit for the reduction layer, although the
default is PYNBODY.

The final component of TANGOS is its web server, which
enables databases to be explored from within a browser. The
server, described in Section 10, does not implement any
additional functionality; it simply provides an alternative
interface that is convenient for rapid data exploration.

3. The Core

The core sub-package defines the layout of TANGOS
databases; as we describe below, this structure is not directly
exposed to a typical user. Our databases are relational,
consisting of a number of tables with pointers from one to
another (Figure 3); our use of SQLALCHEMY allows the user to
choose from a wide variety of industry-standard underlying
engines. By default we use SQLITE,5 which is a serverless

system: the database consists of a single file, so that it can be
downloaded from a cluster for offline analysis on a laptop or
other device.6 A number of indexes are created alongside the
tables, greatly enhancing the speed at which relevant queries
may be executed at the cost of slightly increased storage space
for the resulting database.
Each known simulation corresponds to a single entry in a

simulations table, linking to multiple entries in a
timesteps table, each of which in turn link to multiple
entries in a halos table. It is worth noting that the halos
table can, in fact, store multiple classes of object: halos, groups,
tracked Lagrangian regions, or individual black holes. Each of
these objects behaves similarly until the raw data is needed, at
which point TANGOS automatically loads the appropriate
portion. Because of the need to maintain backward compat-
ibility during development, the table is still known as halos
but we refer to a generic entry in the table as an object.
We associate any number of properties with each object.

These might be quantities such as magnitudes and masses or
arrays such as histograms and images. The properties are stored
using a “schemaless” system, meaning that we do not create
additional columns for each property but rather link to entries
in a haloproperties table (with the name again reflecting
a historical choice). Schemaless storage systems are popular
in industrial applications (see, e.g., MongoDB7 and
schemaless).8 For TANGOS, the primary advantage is one
of simplicity in managing the database: there is never any need
to create or drop columns.

Figure 2. Overview of the internal organization of TANGOS and its interaction with external libraries and users. By partitioning responsibilities between various sub-
packages, TANGOS is made robust and flexible. Most modules are designed to be easily extensible. An overview is given in Section 2.

4 http://pyparsing.wikispaces.com
5 https://www.sqlite.org

6 The UNIX tool RSYNC is particularly suitable because SQLITE writes new
entries to the end of existing files—RSYNC is efficient at then updating any
local copies at minimal bandwidth cost. This enables a workflow where
updated or new galaxy properties are remotely computed and a local database
copy is kept up-to-date. For larger simulations and collaborations, however, it
may be more practical to use TANGOS with a client-server database system such
as MYSQL.
7 http://www.mongodb.com
8 https://eng.uber.com/schemaless-part-one/

3

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://pyparsing.wikispaces.com
https://www.sqlite.org
http://www.mongodb.com
https://eng.uber.com/schemaless-part-one/

Our approach effectively attaches key-value pairs to each
object; the keys are stored as a link to a separate dictionary
table. Because querying is carried out through TANGOS itself
(Section 4), the user need not be aware of any of these
implementation details. Properties do not carry explicit units,
although this functionality is likely to be added in the future.

In addition to storing properties, objects can also be linked to
one another. Entries in a halolinks table describe this
relationship between two objects; for example, one halo might
be a progenitor, descendant, or subhalo of the other. We will
discuss links and how they are used to generate informative
science queries in Section 5, but first we consider the more
elementary retrieval of properties from one or more objects.

4. Queries and Calculations

The recommended approach to querying a TANGOS database
is through the provided Python or web interfaces. Basic queries
can be executed through a dictionary-like syntax. For example,

sim tangos get simulation my simulation
timestep sim 42
halo timestep 5
print halo V mag

=
=

=

()
[]

[]
([])

. _ ’ _ ’

’ _ ’

will access the stored V magnitude of halo 5 in the 42nd output
of my_simulation. Each line of Python code is translated
by TANGOS into a SQLALCHEMY query, which in turn emits
the correct dialect of SQL and returns the result.

This approach is acceptable for interactive exploration of
small amounts of data. However, when larger quantities of
data are to be retrieved, issuing a series of multiple small
queries is an inefficient approach since there is substantial
latency associated with each round-trip to the database. It is
more time-effective to retrieve all required data in a single
query. TANGOS offers multiple routes to optimizations of
this sort.

For example, it is possible to retrieve properties from a series
of objects, such as all those in a timestep. It is equally possible
to retrieve multiple properties from each object. Combining
both, the query

B V timestep calculate all B mag V mag= (), . _ " _ ", " _ "

returns two NUMPY arrays with the B- and V-band magnitudes
of every halo in the timestep. To achieve this, TANGOS generates
and executes optimized SQL consisting of a double join from
timesteps to halos and on to haloproperties.

We additionally implemented a mini-language to enable
calculation within queries. The code

color timestep calculate all B mag V mag= -(). _ " _ _ "

results in the SQL join described above, but a post-processing
step in Python takes the column difference before returning the
resulting array to the user. While this simple example could be
fully executed in SQL, the hybrid SQL–Python approach
allows for more complex expressions. Users can even define
functions that may be used within queries (see Section 6); a
built-in example is the at function. The request

rho timestep

calculate all at Rvir 2 dm density profile

= ⧹
(())
.

_ " , _ _ "

returns the value of the dark matter density profile evaluated at
half the virial radius for each halo. Within calculate_all,
the evaluation takes place in stages. First the user’s mini-
language string is parsed and turned into an abstract syntax
tree; by inspecting this tree, we can identify Rvir and
dm density profile_ _ as the underlying properties to be
retrieved.9 Next, the SQL is generated and emitted. Finally, the
appropriate Python functions are called: a NUMPY-implemented

Figure 3. Layout of the relational databases that TANGOS builds. Simulations can be associated with any number of timesteps that in turn can be associated with any
number of objects (halos, black holes, or tracker regions). The objects have properties and links associated with them, forming the basic elements of a scientific
analysis. While users do not have to be aware of this structure, we show it here because its layout is substantially different from that of existing databases (e.g.,
Lemson & Virgo Consortium 2006; Riebe et al. 2013), reflecting the schemaless approach described in the text.

9 User-defined functions can also demand access to properties that are not
explicitly referenced in the query tree; these properties are included in the join.
See Section 6.

4

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

divide operation followed by the interpolation function at,
which generates the final result.

The query system allows access to linked objects’ properties
such as those from a halo’s major progenitor n timesteps
earlier. One might be interested in how much each galaxy’s
magnitude has changed over the last n=5 steps, which
corresponds to the query

dV timestep

calculate all V mag earlier 5 V mag

=
-

⧹
(())

.

_ “ _ . _ ” .

Such calculations involve joins onto the requested properties
from a heterogeneous set of halos that must first be identified
using a merger tree. This is implemented within the
relation_finding sub-package, as we now describe.

5. Merger Trees and Other Relationships

Understanding how galaxies change over time is at the heart
of many science analyses. This requires TANGOS to store and
query merger trees, which express the hierarchical merging of
structures (e.g., Kauffmann & White 1993). We may
additionally be interested in non-temporal relationships such
as whether a particular halo is a subhalo of another, or to which
halo a black hole is associated. As a final example, it can be
useful to provide a map from halos in one simulation to those in
another (given closely related simulations based on the same
initial conditions). TANGOS addresses all these needs by storing
links between objects. Links are unidirectional and come with
an associated weight that determines the strength of the
relationship in a way to be defined shortly. The links are stored
in an underlying table named halolinks. (As a reminder, the
historically chosen name belies that links do not have to
connect halos: they can point from any object to any other.)

Each connection in a merger tree corresponds to two links
pointing respectively forward and backward in time. This
allows us to define independent weights for each direction by
the number of particles in common as a fraction of the number
in the link source. For a halo merging into a larger structure the
forward weight will be close to 100%, whereas the reverse
weight will give the merger ratio. The relation_finding
sub-package is able to use this information to respond to
queries as follows.

The sub-package assigns every halo a previous and next
property such that the Python code

halo prog halo previous=_ .

computes the major progenitor of halo in the previous
timestep. When accessed by a user, previous generates and
processes a suitable joined SQL query between the halos and
halolink tables. If more than one linked halo is available,
the link with the highest weight is selected (since other links
point to smaller merging structures). The next property
operates in a similar way.

While this is the simplest example of using links, there are
considerably more powerful options available when multiple
halos or timesteps are involved. We have implemented a series
of strategies that efficiently find halos in several such
scenarios. One typical use case is to collect properties along
an entire major progenitor branch. To collate the color
discussed in Section 4, we use the request

cols halo calculate for progenitors B mag V mag= -(). _ _ ’ _ _ ’ ,

which will be executed in multiple stages within the database
(Figure 4), followed by final processing in Python. The
approach is to create a temporary table (which in most SQL
implementations is possible without write access to the
database) mirroring the structure of the halolinks table. It
is first populated by inserting the links leading directly away
from the initial objects. However, only links satisfying a
relevance criterion are included; for example, in the major
progenitor search, they must point to an earlier timestep and
have a weight higher than any other link to that timestep. Our
implementation allows the filter to be redefined for different
use cases (see below). The system next evaluates a stopping
criterion against the links in the table; in the case of our
progenitor search, it simply checks whether any new objects
were uncovered in the most recent cycle. If so, the procedure
starts again (now searching for links from the most recently
discovered objects). If not, the recursion is complete.
By design, no data are transferred from SQL to Python during

the recursion, since this would be needlessly slow. Instead, at the
end of the loop, the temporary table is handed to the
live_calculation module. That system prepares a query
against the temporary table joined to haloproperties as
described in Section 4. The resulting columns are then retrieved
and processed; the temporary table is dropped; and the results are
returned.
The basic algorithm has been customized for a wide range of

scenarios by subclassing the base MultiHopStrategy. In
addition to the major progenitor search described so far, we
have implemented subclasses that search for:

(i) all progenitors (rather than major progenitors)—this
required us to remove the highest weight restriction in
the definition of relevant links;

(ii) major descendants—accomplished by reversing the time-
step comparison;

Figure 4. The algorithm used to find relations such as major progenitors in a
specified timestep. The database holds links only between adjacent timesteps,
but by recursively populating a SQL temporary table, TANGOS can follow these
links across multiple timesteps in an efficient way. User-requested data from
the progenitors is acquired by a join onto the temporary table and delivered to
Python at the end of the recursive process.

5

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

(iii) the major progenitor or descendant in a particular
timestep (rather than all timesteps)—achieved by stop-
ping once objects from that timestep are discovered, and
selecting only those objects;

(iv) corresponding halos—defining relevant objects as those
in another simulation at the same physical time, and
stopping once such an object is discovered; and

(v) the most recent merger—similar to the all-progenitor
search, but with a stopping criteria that halts when more
than one progenitor is found in a single timestep.

Users typically access these strategies through the live
calculation mini-language. Consider the query given at the end
of Section 4:

dV timestep

calculate all V mag earlier V mag

=
-

⧹
(())

.

_ “ _ " . _ " ,

which requests, for each halo in timestep, the difference
between the present V magnitude and the major progenitor’s V
magnitude five timesteps earlier. For these purposes, strategy
(iii) in the list above is applied. The use of other strategies is
described in the documentation.

Taken together, the relation_finding and live_
calculation modules allow TANGOS to execute queries that
would be exceptionally hard to express within native SQL and
prohibitively slow to implement in pure Python. Performance of
the resulting system is explored in Figure 5 for a SQLITE-backed
database of a uniform volume simulation. Querying was under-
taken on a 2013 Macbook Pro (Intel Core i7-4850HQ 2.3 GHz
with 16GB RAM) running Python 3.6.1 and SQLITE 3.13.0. We
used a simulation with 100 steps spaced equally in time between
z=1 and z=0. This is unusually fine time spacing, but allows
us to explore the performance implications of tracking large
numbers of objects over many steps.

The panels of Figure 5 plot the same information projected
along different axes. The two variables Nhalo and Nstep represent
the number of halos to trace and number of timesteps to jump.
(We found that the number of properties ultimately retrieved

from each halo is irrelevant, since the time for computing
progenitors is always the limiting factor.) As either Nstep or
Nhalo becomes sufficiently large (exceeding 20 or 100,
respectively) the scaling is approximately linear. The shallow
scaling at smaller N reflects the efficiency savings to be found
in minimizing the number of SQL queries generated. Since the
Nstep=1, Nhalo=1 case takes approximately 0.05 s to
complete, our most ambitious Nstep=100, Nhalo=1000 case
would take well over an hour without optimization (compared
to 4.2 s with the optimizations, over a thousandfold
improvement).
Bearing in mind that TANGOS sees the user’s time and

patience as a limiting resource, this is a major enhancement. It
enables more typical queries—say with 1000 halos and 20
timesteps—to complete in under two seconds. In this case,
320 ms is spent on building the temporary table that follows
1000 halos back through the merger tree; 1200 ms is spent
filtering the completed temporary table and gathering the
requested data; and 110 ms is spent on post-processing. The
first two steps (1520 ms) are carried out within the database
engine, while the last (110 ms) is executed by Python.
For some cosmological applications it may be useful to

address a significantly larger number of halos; we can
extrapolate the performance to query times of 10 minutes for
tracing 106 halos over 20 timesteps, although we did not
explicitly test this. Improving runtimes in this case would most
likely be possible by replacing SQLITE with a server-based
database engine.

6. User-defined Properties

Adapting TANGOS to a given science case requires the user
to develop a set of properties that will be calculated for each
object within the database. A new property is defined by
implementing a subclass of PropertyCalculation. At a
minimum, the property author must override names (which
specifies one or more names of the properties to be stored) and
calculate (which computes the values of those properties).

Figure 5. Performance for querying properties of the major progenitor of Nhalo halos, Nstep steps prior to a selected snapshot. Both panels show the same results,
cutting across the 2D (Nhalo, Nstep) plane in complementary ways. The time shown is the end-to-end TANGOS query runtime on a SQLITE database for a uniform
resolution simulation on a 2013 Macbook Pro (Intel Core i7-4850HQ 2.3 GHz with 16GB RAM). The runtimes are insensitive to the number of properties queried,
since the majority of time is spent in the relation_finding sub-package.

6

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

The framework is responsible for passing raw data to
calculate and for writing the returned value into the
database. Therefore, property classes express only scientific
intent and do not take any responsibility for I/O.

Properties may either be dependent on existing entries in the
database, or on the raw simulation snapshot data, or on both.
For example, a halo virial velocity can be derived from an
existing measurement of the virial mass but the calculation of a
dark matter density profile would likely require access to the
snapshot data. By default, any raw data provided to a
calculation include only the particles or cells within the object
under consideration. However, it is possible to provide a
region_specification method to request access to a
more extended volume; one use we have made of this facility is
to measure inflows and outflows across the virial radius.

TANGOS provides two routes to performing calculations:
through a command-line script (tangos write) that writes
results into the database, and through thelive_calculation
system that calculates on-the-fly during a query and does not store
any output (Section 4). Properties requiring raw simulation data
are only available when using the command-line tool. As we will
discuss in the next section, the tangos write script can be
parallelized at the halo or timestep level. Because the property
class contains no explicit I/O, the implementer does not normally
have to plan for different parallelization scenarios and can instead
focus on science goals.

7. Parallelization Strategies

TANGOS offers a parallelization scheme, implemented by
parallel_tasks, for use when building or updating
databases. It is primarily targeted toward systems with a
Message Passing Interface (MPI) library available, although it
can also make use of Python’s multiprocessing module
in place of MPI if necessary.

Given that analysis typically consumes a small fraction of
the total computing resources of a simulation, our focus in
implementing parallelization is on user convenience rather than
machine efficiency. Nonetheless, reduction of simulation data
to a set of properties is a near-perfectly parallel process since
each halo (or, potentially, timestep) can be considered
independently of all others. This independence allows TANGOS
to offer multiple parallelization options, each with differing
benefits. Users select from these options at tangos write
runtime by specifying a load mode.

In practice, any given load mode is reliant on the input
handler (Section 9), which is responsible for providing data as
the parallel calculation proceeds. Here, we describe the parallel
capabilities of the default PYNBODY input handler, which
implements four modes. The user starts tangos write
through mpirun, which launches multiple processes; all load
modes use the first of these as a server, with differing
responsibilities as follows.

In the default load mode (which is applied if the user
does not specify an alternate), the server assigns entire
timesteps to all other processes. The cores then operate
independently on each snapshot, running through the requested
calculations for relevant halos and other objects. The chief
advantage of this approach is simplicity and lack of commu-
nication overheads. However, it can lead to problematically
large demands on memory: the number of cores used per node
will need to be manually reduced using an appropriate
invocation of mpirun if the size of a snapshot Msnap is too

large (i.e., if >NM Msnap node where Mnode is the total RAM
available per node and N is the number of MPI processes per
node). Reducing N may anyway be desirable if the property
calculations are themselves parallelized using threads (see
below).
When the partial load mode is specified, the server

operates similarly but each individual core activates PYN-
BODYʼs partial loading. This avoids the full simulation
snapshot being retrieved from disk, instead loading the data
for a single halo at a time. Partial loading is a simple solution to
reducing memory usage, but can lead to excessive disk access
(especially for network file systems), as multiple processes may
simultaneously access data spread in near-random patterns
across large files. It is also not advisable to load particle data
from custom regions (Section 6) in this way, since currently
such requests to PYNBODY can only be satisfied by scanning
the properties of all particles in the snapshot.
The server load mode addresses these shortcomings by

taking an entirely different approach. The server process takes
responsibility for loading an entire snapshot, and then instructs
the worker processes to perform calculations for individual halos
or other objects. These cores respond with a request (or possibly
multiple requests) for the raw data required.10 The chief
advantage of this approach compared with partial loading is
that disk access is consolidated into a larger, sequential read. The
peak memory usage of server mode is only slightly greater than
Msnap, and this peak only occurs on the first node. In systems
with heterogeneous hardware, it is possible to assign the server
process to a machine with expanded RAM (e.g., the bigmem
nodes on NASA’s Pleiades) while using regular nodes for the
calculations. If the memory cost of loading an entire snapshot is
still prohibitive, a hybrid server partial- mode loads
only minimal information such as particle positions rather than
the entire snapshot on the server. The individual worker nodes
then load the relevant portions of all other arrays through the
partial-loading approach.
One drawback of server mode is that it can generate

significant MPI traffic to remote nodes, which continually
require new data. A final alternative, multi-server, is
currently being planned, where each node runs its own local
server process. Provided every node has Mmachine>Msnap, this
approach should offer greater efficiency by minimizing network
traffic.
In tandem with all the above, the user can implement their

own per-halo shared-memory parallelization (based on
threads or OPENMP from CYTHON11) and reduce the number
of MPI processes spawned to free up physical processing
cores. This approach to parallelization can be highly efficient
but will typically require effort for the property implementer,
unless the calculation is chiefly carried out by library
routines. Luckily, many PYNBODY built-in routines (such as
smoothing and image rendering) are already parallelized with
threads. The optimal balance of threads and MPI processes
for a particular calculation can be determined empirically if
required.

10 This occurs transparently from the point of view of user analysis code. The
actual requests for data take place through PYNBODYʼs lazy-loading
mechanism.
11 http://cython.org

7

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://cython.org

8. Sub-step Time Resolution

In Section 6, we discussed how new properties can be
associated with objects at each timestep; their variation over
time can then be inspected using the algorithms from Section 5.
However, this ties the time resolution of stored properties to the
simulation’s snapshot interval, whereas many analyses of
galaxy formation benefit from studying more rapid variations.
The star formation or black hole accretion rates can vary by
orders of magnitude over even a small fraction of a galaxy’s
dynamical time. It is infeasible to store and process snapshots
at sufficiently regular intervals to capture such short timescales.

Simulation codes can work around this problem by storing
auxiliary data such as formation times for each star particle or a
black hole accretion log. TANGOS incorporates a general
mechanism to organize this information into time chunks, as
illustrated in Figure 6. In our scheme, the recent history of star
formation or accretion is stored with each halo, black hole, or
other object in each timestep. When the user attempts to access
a time-chunked property, reassembly is automatically initiated:
by default, TANGOS finds all major progenitors of the object
and retrieves a chunk from each. It then constructs a history by
gluing the chunks together (orange line, Figure 6). This
approach allows significant flexibility in the manner of
reassembly. For example, the user can request chunks to be
summed over all progenitors (black line in Figure 6) rather than
following the major progenitor branch.

From the property implementer’s perspective, using
time-chunking is straightforward; instead of deriving
from PropertyCalculation we derive from
TimeChunkedPropertyCalculation, which imple-
ments the reassembly discussed above. From a database user’s

perspective, the mechanism is almost totally transparent
because the reassembly process is triggered by any request
for the property. Switching modes to obtain a summed history
requires use of the mini-language function reassemble,
which is further described in the user documentation.

9. File Handling

We discussed in Section 6 how thetangoswrite tool loads
data from a raw simulation and provides it to users’ property
calculations. In addition, a load method is associated with each
object; this allows raw data to be loaded into a standard Python
session. Both approaches are implemented by the sub-package
input_handlers, which by default uses the PYNBODY library
to load the underlying snapshot. We have been careful to isolate
PYNBODY references to within a single class that is used only if
required (specifically PynbodyInputHandler12) so that the
system can be fully decoupled; for example, an alternative
YtInputHandler is provided to use the YT library in
PYNBODYʼs place. Users can straightforwardly re-implement this
functionality using different libraries if required.
In addition to loading the raw data on demand, input

handlers take responsibility for a diverse range of operations
such as searching the file system for available snapshots and
enumerating the halos and other objects within those snapshots.
All these operations are therefore user-customizable. Handlers
are implemented by deriving a class from HandlerBase and
overriding a few methods to provide the required functionality.
In particular, the data returned from an object’s load method
and passed to PropertyCalculation instances is simply
that returned from the underlying handler’s load_object
method. A custom handler class can be specified when adding
the simulation to a TANGOS database (through the tangos
add script); it is then automatically used for all future
operations requiring data from that particular simulation.
Adapting an existing input handler is also straightforward;

one can derive from an existing class (such as
PynbodyInputHandler) and override only those functions
that need customization. The current version of TANGOS
includes minor adaptations for working with different file
formats; for example, when working with SUBFIND catalogs, it
is helpful to make distinctions between groups and halos that
do not necessarily exist with other halo finders. Further
information can be found in the user documentation.

10. Web Server

To enable rapid exploration of the database by users,
collaborators, and the broader community, TANGOS includes a
web server built with the PYRAMID13 framework. Typically a
user will launch the server application on their own machine
and connect to localhost. As a safe default, our PYRAMID
setup will not accept connections from external machines
(although it can be tunneled through SSH to a remote analysis
node). If desired, PYRAMID can be installed on a server and
made world-accessible through a single change to the
configuration file.
The pages served by TANGOS follow a natural hierarchy: the

front page contains a list of known simulations, with links to
subsequent pages listing timesteps and then objects. In Figure 7

Figure 6. The mechanism for storing and reconstructing time series with finer-
than-timestep resolution, illustrated for a star formation rate history. Each halo
stores a small chunk of history that covers the time back to the previous stored
step. When the star formation rate is retrieved, TANGOS automatically
reassembles the individual chunks into a complete high-resolution history.
The user can control whether to include only the major progenitor branch or,
conversely, sum over all branches.

12 Additionally, parallelization support is provided by the parallel_tasks.
pynbody_server module, which is loaded on demand.
13 http://trypyramid.com

8

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://trypyramid.com

we show the latter two stages using screenshots from a tutorial
video.14 The left panel shows the timestep view. In addition to
basic information about each halo the user may add any
number of columns using the mini-language described in
Section 4; as usual, this is parsed and executed by the
live_calculation module. Here, for example, a query to
determine whether the halo is in the high-resolution portion of a
zoom simulation has been added, as well as a query that
retrieves the dark matter density at 1.0 kpc.

The right panel of Figure 7 shows the object view. It
contains editable rows that correspond to the columns in the
timestep view. Additionally, it can be used to display a variety
of plots; in this instance an interactive graphical representation
of the merger tree has been generated. This is handled by the
relation_finding sub-package, which uses the all-
progenitor strategy (Section 5) to trace the tree (pruned by
user-defined criteria such as minimum mass ratios).

Enabling interactivity requires part of the web module to be
written in JavaScript and executed within the browser. When
the user interacts with a page, the JavaScript code places
asynchronous requests to Python over HTTP. The server calls
the relevant functionality within TANGOS and encodes the
results into JSON (JavaScript Object Notation); once the results
arrive back in the browser, JavaScript places them into the
appropriate elements within the page. Plots are generated using
the MATPLOTLIB15 library and returned as a PNG file, with the
exception of merger trees, which are returned as JSON and
rendered by the JavaScript library d3.16

11. Conclusions

We have outlined the design of TANGOS, a system for
generating and querying databases describing halos and other

objects within cosmological simulations. We argued that the
system forms a natural “organization layer” within the
simulation workflow (Figure 1). Sharpening this division of
responsibilities has allowed us to carry out cleaner, more
focused, and more reproducible science analyses.
TANGOS aims, above all else, to present the simplest

possible interface and thus let users focus on physics.
Computing efficiency is a secondary consideration. This differs
from the simulation layer where the priority is typically to
extract maximum performance from the hardware. There is a
simple reason for this difference: the fraction of CPU resources
spent on the reduction and organization layers is, in our
experience, one to two orders of magnitude smaller than the
cost of the simulation layer. On the other hand, the fraction of
human time devoted to the analysis is by far the largest.
Consequently, TANGOS regards human attention as the most
constrained resource.
An effective organization layer has a much broader range of

responsibilities (Figure 1) than a static database. The
modularity of TANGOS allows these diverse needs—ranging
from analysis parallelization to data organization and query
optimization—to be satisfied by near-independent sub-
packages (Figure 2). Despite this separation, the sub-packages
work together coherently, enabling a range of benefits:

1. Queries are expressed in language that reflects scientific
intent—but are also fast, as they are translated into
carefully optimized joins executed by industry-standard
database libraries (Sections 4 and 5). The resulting
interface is sufficiently simple that we have been able to
use it with undergraduate classes, allowing them to
undertake projects quantifying the relative role of
mergers and smooth accretion in building the halo
population.

2. We have been able to abstract away from halos to a
broader class of objects in the database, including black
holes and tracked Lagrangian regions. Especially in

Figure 7. Two example pages from the web server. (Left) the timestep view, displaying one row per object and customizable columns that can be added, edited, or
removed and accept input in the live calculation mini-language for interactive queries. (Right) the halo view, which also contains a plots panel, here configured to
show the halo merger tree. The rows are again editable, allowing for queries to be constructed and plotted from within a browser.

14 See http://tiny.cc/tangos.
15 https://matplotlib.org
16 https://d3js.org

9

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://tiny.cc/tangos
https://matplotlib.org
https://d3js.org

combination with the links system (Section 5), this
allowed us to perform simultaneous analysis of the
evolution of galaxies and their black holes (e.g., di Cintio
et al. 2017; Tremmel et al. 2017), as well as dynamical
analyses of stellar subpopulations tracked over time
(Pontzen et al. 2015).

3. When building databases, users can implement analysis
that is small, readable, and devoid of any I/O. We have
found this aspect particularly useful when combining
analyses of multiple collaborators into final science
results (e.g., Pontzen et al. 2017), a task that would
previously involve wrangling multiple files in different
formats.

4. Parallelization of the database-building process is simple
to apply (no analysis code needs to be changed;
Section 7). This enabled us to scale from a package
initially focused on zoom simulations to one capable of
ingesting state-of-the-art uniform volume runs (Tremmel
et al. 2017).

5. Queries can be executed from Python or from a web
browser (Section 10). This opens up an agile mode of
working where we perform rapid exploration of our data
within a browser, before generating final versions of
science plots using Python.

TANGOS is an ongoing project and we hope that it will
benefit from broader involvement. While the major develop-
ment focus has been on enabling us to efficiently answer
questions related to galaxy formation, the modular architecture
should enable improvement and growth in multiple directions,
coordinated by Github’s management tools17 and quality-
assured by Travis18 automated testing. We are keen to discover
whether the simulation community finds TANGOS helpful and
we value all forms of feedback.

We thank the anonymous referee for a very helpful report.
We are grateful for discussions with and beta testing by Lauren
Anderson, Tobias Buck, Iryna Butsky, Akaxia Cruz, Arianna

Di Cintio, Ben Keller, Matthew Orkney, Martin Rey, Angelo
Ricarte, and Ray Sharma. Arianna Di Cintio also suggested the
name TANGOS, although AP and MT take the blame for
reverse-engineering it into an acronym. We are grateful to Peter
Pontzen for assistance with the tutorial video. A.P. was funded
by the Royal Society. M.T. was partially supported by NSF
award AST-1514868 and gratefully acknowledges support
from the YCAA Prize Postdoctoral Fellowship. This work used
the DiRAC Complexity system, operated by the University of
Leicester IT Services, which forms part of the STFC DiRAC
HPC Facility (www.dirac.ac.uk). This equipment is funded by
BIS National E-Infrastructure capital grant ST/K000373/1 and
STFC DiRAC Operations grant ST/K0003259/1. DiRAC is
part of the National E-Infrastructure. This work was partially
enabled by funding from the UCL Cosmoparticle Initiative.

ORCID iDs

Andrew Pontzen https://orcid.org/0000-0001-9546-3849
Michael Tremmel https://orcid.org/0000-0002-4353-0306

References

Bernyk, M., Croton, D. J., Tonini, C., et al. 2016, ApJS, 223, 9
di Cintio, A., Tremmel, M., Governato, F., et al. 2017, MNRAS, 469, 2845
Hearin, A. P., Campbell, D., Tollerud, E., et al. 2017, AJ, 154, 190
Kauffmann, G., & White, S. D. M. 1993, MNRAS, 261, 921
Lemson, G. & Virgo Consortium, t. 2006, arXiv:astro-ph/0608019
McAlpine, S., Helly, J. C., Schaller, M., et al. 2016, A&C, 15, 72
Nelson, D., Pillepich, A., Genel, S., et al. 2015, A&C, 13, 12
Pontzen, A., Governato, F., Pettini, M., et al. 2008, MNRAS, 390, 1349
Pontzen, A., Read, J. I., Teyssier, R., et al. 2015, MNRAS, 451, 1366
Pontzen, A., Roškar, R., Stinson, G., & Woods, R. 2013, pynbody: N-Body/

SPH analysis for python, Astrophysics Source Code Library, ascl:1305.002
Pontzen, A., & Tremmel, M. 2018, pynbody/tangos, Zenodo, doi:10.5281/

zenodo.1248829
Pontzen, A., Tremmel, M., Roth, N., et al. 2017, MNRAS, 465, 547
Riebe, K., Partl, A. M., Enke, H., et al. 2013, AN, 334, 691
Tremmel, M., Karcher, M., Governato, F., et al. 2017, MNRAS, 470, 1121
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9

17 http://github.com
18 http://travis-ci.org

10

The Astrophysical Journal Supplement Series, 237:23 (10pp), 2018 August Pontzen & Tremmel

http://www.dirac.ac.uk
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0001-9546-3849
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://orcid.org/0000-0002-4353-0306
https://doi.org/10.3847/0067-0049/223/1/9
http://adsabs.harvard.edu/abs/2016ApJS..223....9B
https://doi.org/10.1093/mnras/stx1043
http://adsabs.harvard.edu/abs/2017MNRAS.469.2845D
https://doi.org/10.3847/1538-3881/aa859f
http://adsabs.harvard.edu/abs/2017AJ....154..190H
https://doi.org/10.1093/mnras/261.4.921
http://adsabs.harvard.edu/abs/1993MNRAS.261..921K
http://arxiv.org/abs/astro-ph/0608019
https://doi.org/10.1016/j.ascom.2016.02.004
http://adsabs.harvard.edu/abs/2016A&C....15...72M
https://doi.org/10.1016/j.ascom.2015.09.003
http://adsabs.harvard.edu/abs/2015A&C....13...12N
https://doi.org/10.1111/j.1365-2966.2008.13782.x
http://adsabs.harvard.edu/abs/2008MNRAS.390.1349P
https://doi.org/10.1093/mnras/stv1032
http://adsabs.harvard.edu/abs/2015MNRAS.451.1366P
http://www.ascl.net/1305.002
https://doi.org/10.5281/zenodo.1248829
https://doi.org/10.5281/zenodo.1248829
https://doi.org/10.1093/mnras/stw2627
http://adsabs.harvard.edu/abs/2017MNRAS.465..547P
https://doi.org/10.1002/asna.201211900
http://adsabs.harvard.edu/abs/2013AN....334..691R
https://doi.org/10.1093/mnras/stx1160
http://adsabs.harvard.edu/abs/2017MNRAS.470.1121T
https://doi.org/10.1088/0067-0049/192/1/9
http://adsabs.harvard.edu/abs/2011ApJS..192....9T
http://github.com
http://travis-ci.org

	1. Introduction
	2. Overview
	3. The Core
	4. Queries and Calculations
	5. Merger Trees and Other Relationships
	6. User-defined Properties
	7. Parallelization Strategies
	8. Sub-step Time Resolution
	9. File Handling
	10. Web Server
	11. Conclusions
	References

