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Abstract 

The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion 

channels. Since muscarinic receptors are not themselves ion channels, the acute effects of 

muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors 

on these endogenous neuronal ion channels. This review considers some principles and factors 

determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion 

channels, and summarizes the effects of muscarinic receptor stimulation on a number of different 

channels, the mechanisms of receptor – channel transduction and their direct consequences for 

neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward 

rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride 

channels. 
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Abbreviations 

AHP, IAHP After-hyperpolarization; calcium-dependent afterhyperpolarizing current 

AKAP  A-kinase anchoring protein 

DAG  diacylglycerol 

EAG  Ether-a-gogo (Kv10) potassium channels 

Erg  EAG-related (Kv11) potassium channels 

IP3  inositol-1,4,5-trisphosphate  

IP3R  inositol-1,4,5-trisphosphate receptor 

KLEAK    generic potassium channels carrying a steady outward “leak” current  

KM  M-type potassium channel (usually formed by Kv7.2/7.3 heteromers) 



MR  muscarinic receptor 

M1R, M2R etc M1 muscarinic receptor, M2 muscarinic receptor, etc 

PI  phosphatidylinositol 

PI-4K  phosphatidylinositol-4-kinase 

PI4P-5K  phosphatidylinositol-4-phosphate-5-kinase 

PIP  phosphatidylinositol-4-phosphate 

PIP2  phosphatidylinositol-4,5-bisphosphate 

PKC  protein kinase C 

PLC  phospholipase C 

 

1.Introduction: some principles of muscarinic receptor – ion channel 

coupling. 

In the short term at least, information transfer in the nervous system is effected by 

electrical impulses generated by the opening and closing of plasma membrane ion channels. 

Unlike nicotinic acetylcholine receptors, muscarinic receptors do not themselves constitute 

ion channels; nor do they act as a ligand-sensitive channel subunit. Hence, in order to modify 

information transfer, the activation of muscarinic receptors has to be transduced into a 

change in the activity of one or more endogenous ion channels that regulate neural 

excitability.  While it appears possible to generate an artificial directly-coupled muscarinic 

receptor – ion channel concatemer (Moreau et al., 2008), coupling between native receptors 

and ion channels is more indirect. 

With some possible exceptions (e.g., Rolland et al., 2002; Sun et al., 2007),  transduction 

from receptor to ion channel is mediated by the receptor’s cognate G protein and/or other 

effectors consequential on G protein activation.  This means that, from the ion channel’s 

viewpoint, the receptor is merely the trigger for generating the requisite transducing 

molecule(s). Hence, in an “open system” containing all 5 muscarinic receptors in equal 

density, with all of the cognate G proteins and G protein-responsive enzyme systems 

available, a channel that is regulated by a downstream product of (say) Gq activation has no 

way of distinguishing whether Gq has been activated by M1, M3 or M5 receptors; likewise a 

channel response to Gi or Go G proteins, or subunits thereof, is independent of whether the 

G protein is activated by M2 or M4 receptors. This is pretty much the situation when 

responses to heterologously-expressed receptors are compared in clonal cell lines (see Table 

2 in Hulme et al., 1990; see also Higashida et al., 1990; Robbins et al, 1990).  

However more subtype selectivity frequently occurs in physiological systems as a result of 

anatomical differences in subtype distribution, or from micro-anatomical constraints on 

receptor subtype – ion channel coupling, or from other causes. To give an example of 

subtype-selective ion channel modulation in nerve cells not predicted from experiments on 



reconstituted systems. In the latter, inward rectifier Kir3 potassium channels and CaV2 (“N-

type”) calcium channels are modulated equally well by M2 and M4 receptors (Hulme et al., 

1990; Higashida et al., 1990). However, in cells of the rat sympathetic ganglion, which 

possess both M2 and M4 receptor subtypes, the CaV2 Ca2+ channel is selectively inhibited by 

activating M4 receptors (Bernheim et al., 1992) but not by stimulating M2 receptors 

(Fernandez et al., 1999); instead the endogenous M2 receptors can activate expressed Kir3 

channels, whereas the M4  receptors cannot (Fernandez et al, 1999).   In both cases the 

channels are modulated by the βγ subunits of the G proteins Gi and Go, and in reconstituted 

systems the upstream source of these βγ subunits cannot be distinguished1. The precise 

cause of this remarkably sharp physiological discrimination has not yet been established. 

Most probably it lies in a micro-anatomical segregation of the receptor and its cognate 

channel into a “signalosome” or “microdomain”, perhaps facilitated by ancillary proteins 

such as RGS proteins  (Abramow-Newerly et al., 2006) or other associated proteins (Borroto-

Escuela et al., 2011) and in which the relevant signalling proteins may be partially 

precoupled (Nobles et al., 2005). Further, there may also be species differences in the way 

individual M-receptor subtypes are coupled to ion channels. Thus, in cells from mouse 

sympathetic neurons, CaV2 inhibition is driven by M2 receptors, not by M4, as judged from 

genetic knock-outs (Shapiro et al., 1999).  Hence, although the particular subtype regulating 

an individual ion channel may well be crucially important from a pharmacological or 

therapeutic standpoint, this cannot be deduced from the channel response itself. 

1.2 Some consequences of the indirect link between receptor and ion channel. 

  The connection between M1Rs and the M-type K+ channel as a model system  

The indirect multi-step pathway between muscarinic receptor activation and ion 

channel response has important consequences for both the kinetics and agonist sensitivity 

of the response. This has been analysed most thoroughly for the pathway connecting the 

activation of the M1 receptor to the inhibition of the voltage-gated “M-channel” (KM; Brown 

& Adams, 1980), principally by B. Hille and his colleagues (summarized in Hille et al., 2014). 

The M-channels themselves are composed of Kv7.2 and 7.3 subunits (KCNQ2 and KCNQ3 

gene products) (Wang et al., 1998) and require the membrane phospholipid 

phosphatidylinositol-4,5-bisphosphate (PIP2) to enter and maintain the open state (Suh & 

Hille, 2002; Zhang et al., 2003; Gamper & Shapiro, 2007; Telezhkin et al., 2012). M1R 

activation closes the channels by activating Gq, thence stimulating phospholipase Cβ (PLCβ) 

to hydrolyse PIP2 and reduce membrane PIP2 to levels below those needed to keep the 

channels open (Winks et al., 2005; Delmas & Brown, 2005). The PIP2 hydrolysis products 

inositol-4,5-trisphosphate (IP3) and diacylglycerol (DAG) do not contribute directly to 

muscarinic KM inhibition, at least in neurons (see Clapp et al, 1992 for smooth muscle), 

though DAG can assist closure by activating protein kinase C (PKC) to phosphorylate the 

                                                           
1 Thus, when Kir3 activation by M2Rs was prevented with Pertussis toxin(PTX), inhibition could be resurrected 
by exogenous expression of PTX-insensitive versions of either GαO or GαI proteins with β1γ2 subunits (Fernandez 
et al., 2001). Hence M2Rs were not incapable of activating Kir3 in sympathetic neurons, but failed to do via the 
complement of G protein subunits available to them in their natural environment.  It should also be noted that 
neither the CaV2 channels in these neurons (Jeong & Ikeda, 1999; Ruiz-Velasco & Ikeda, 2000) nor the Kir3 
channels in other cells (Wickman & Clapham, 1995) show any strong selectivity in their response to different 
βγ-subunit combinations. Hence it seems unlikely that receptor Kir / CaV2 selectivity depends on difference in 
βγ contributions (cf. Kleuss et al., 1993).  



channels and reduce their apparent affinity for PIP2 (Hoshi et al., 2003; Kosenko et al., 

2012).   

The pathway may be depicted in very simplified form as follows: 

A+R → AR → AR*+Gαq-GDPβγ → Gαq-GTP → PLCβ → PIP2-KM(open) → KM(closed) +DAG+IP3 → Ca  
(1)      (2)      (3)       (4)           (5)           (6)             (7)                   (8)                 (9a)    (9b)    (10) 
 

where A = agonist and R = receptor.  

 

1.2.1 Dynamics of the response. In sympathetic neurons, the channels close within about 

10s after applying a receptor-saturating concentration of agonist and recover with a time-

constant of 42s following agonist washout (Kruse et al., 2016) (Fig.1). Most of the onset 

time-course is taken up by steps 5→6 and 6→7, and can be accelerated by over-expressing 

PLC(Jensen et al., 2009).  Channel closure is closely time-locked to the hydrolysis of PIP2 

(Fig.1A) and the loss of PIP2 from the membrane (Fig.1B). Recovery requires the resynthesis 

of PIP2 from phosphatidylinositol (PI) and  phosphatidylinositol-4-phosphate (PIP) by the 

enzymes PI-4kinase (PI-4K) and PI4P-5kinase (PI4P-5K) respectively, the former being rate-

limiting.  

Fig.1 near here. 

 

The latency to detectable channel closure following a fast agonist concentration jump 

(delivered via a pulse of synaptically-released acetylcholine) is around 2s at 24oC (Fig.2A, 

upper record). About half of this reflects the time taken from agonist binding to receptors to 

activation of PLC (Falkenburger et al., 2010a); channel closure follows within tens of 

milliseconds when PIP2 is dephosphorylated (Falkenburger et al, 2010b) or hydrolyzed. The 

latency shortens dramatically to around 250 ms on raising the temperature to 340C  (Fig.2A, 

middle record). It is interesting to compare these latencies with the latency to activation of 

the cardiac inward rectifier current by M2Rs; this  does not require an enzymatic step but is 

driven directly by βγ subunits released from the activated Giαβγ-trimer (Wickman & 

Clapham, 1995): 

   

A+R → AR → AR*+Gαiβγ → Gαi-GTP + Gβγ → Kir 

 

In this case (Fig 2B) the latency (about 50 ms) was clearly shorter than the 250 ms required 

for M-current inhibition at a comparable temperature; and the current rise time-constant is 

around 300 ms instead of 3s. Apart from the omission of the enzymatic step, two further 

factors can accelerate Kir activation.  (1). Kinetics are likely to be accelerated by associated 

RGS proteins such as RGS4 which accelerates current offset by acting as a GTPase-activating 

protein (GAP) (Doupnik et al., 1997; Saitoh et al., 1997), or RGS8, which accelerates current 

onset (Jeong & Ikeda, 2001) (2) The RGS proteins may also act as structural proteins enabling 

a degree of precoupling between receptor and G protein and/or G protein and channel 

(Fujita et al., 2000, Zhang et al., 2001; Benions et al, 2005, Nobles et al., 2005; Abramow-

Newerly et al., 2006;Doupnik, 2008), so reducing diffusion times for collision-coupling. [It is 

worth noting that RGS proteins can also modify the apparent efficacy of partial agonists at 

M2Rs as measured by Kir current responses (Chen et al., 2014.] 



 

Fig. 2 near here 

    

 

1.2.2 Sensitivity of the response to agonist stimulation. The nature of the pathway between 

receptor stimulation and ion channel response also has a major influence on the agonist 

sensitivity of the response. Fig.3, adapted from Hille et al (2014), shows the concentration 

dependence for some of the subsequent downstream responses following M1R activation, 

expressed as multiples of the agonist KD. These dose-response curves are based on direct 

experimental measurements of the intermediate events in Tsa-201 fibroblast cells 

transfected with M1Rs, coupled with quantitative modelling for an M1 receptor density of 

500 / µm2. A notable feature is the progressively increasing sensitivity to an M1 agonist the 

further downstream the target – i.e., the greater the amplification, the more “spare 

receptors” there are for the muscarinic response. To put this into a physiological context, if 

KM potassium channel closure resulted solely from loss of PIP2, half of the KM potassium 

channels would be closed when about 10% of the receptors are occupied. However, if some 

other event (e.g., exocrine secretion or smooth muscle contraction) was being measured 

that resulted from the release of calcium by the IP3 formed as a result of PIP2 hydrolysis, 

then a substantial response might be expected when less than 1% of the receptors were 

occupied. Thus, in some neuronal cell lines such as NG108-15 neuroblastoma-glioma hybrid 

cells, activation of Gq-coupled muscarinic receptors produces a large rise in intracellular 

calcium, sufficient to activate a Ca2+-dependent K+-current (Fukuda et al., 1988; Neher et al., 

1988). This response is very rapid: the outward KCa current precedes the subsequent inward 

current (due to inhibition of the M-like K+ current also present in these cells), according with 

a greater sensitivity of this downstream response to receptor activation.  In accord with this, 

further experiments on NG108-15 cells (Robbins et al., 1993) indicated that at least 10 times 

less acetylcholine was necessary to release calcium and activate the KCa current than to 

inhibit the KM current. However, with rare exceptions (see section 3.1.1), primary neurons 

do not display this form of downstream signalling  in response to Gq-coupled muscarinic 

receptor stimulation, because of insufficient release of intracellular calcium by the receptor 

(Delmas et al., 2002); this has been ascribed to strong intracellular calcium buffering 

(Wanaverbecq et al., 2003) plus partial protection of the efficient coupling of the IP3R 

against IP3 by an IRBIT3-like IP3-binding protein (Zaika et al., 2011; Kruse et al., 2016). 

Notwithstanding, some other neurons show sufficient Ca2+ release to open Ca2+-sensitive K+ 

channels (see section 3.1.1 below). 

 There appears to be no such constraint against the generation of diacylglycerol 

(DAG) and consequent activation of protein kinase C (PKC), and several examples of ion 

channel responses to this downstream consequence of muscarinic receptor-induced PIP2 

hydrolysis are documented in section 2 below (e.g., 2.1.1.1, 2.1.1.2(4), 2.1.1.4, 2.1.2.6) 

                                                           
2 “Real” cells such as sympathetic neurons have a lower density of M1Rs (probably 30-fold less: Kruse et al., 
2016) but the principle of downstream amplification remains the same. 
3 IRBIT = IP3R-binding protein released with inositol 1,4,5-trisphosphate 



Fig 3 near here. 

 

 I should emphasize that this review is restricted to short-term effects on ion channel 

function. For simplicity’s sake, it does not consider distant downstream effects of muscarinic 

receptor stimulation on ion channels such as those mediated by various kinases activated in 

consequence of G protein activation,  nor long-term receptor-induced effects on ion channel 

transcription.  

 

2.Some muscarinic receptor-modulated neural ion channels. 

As pointed out in section 1, the channel responds to the message generated by the receptor, 

not to the receptor itself, so in principle cannot distinguish between different receptors that 

generate the same message. Hence, I shall group the channels into those responding to Gq-

coupled receptors (M1,M3,M5) and Gi/Go-coupled receptors (M2,M4), while noting any more 

specific receptor coupling if known.  

2.1 Gq-coupled muscarinic receptors. 

The physiological effects of activating these receptors at the individual neuron level is 

usually excitatory (though could well be inhibitory to the integrated neuraxis). This 

commonly arises through: (1) inhibition of potassium channels; (2) inhibition of chloride 

channels;  or (3) activation of cation channels. Inhibition may occur through activation of Ca-

dependent K-channels. 

2.1.1. K+-channel inhibition.  

Why should this be excitatory? If K+ channels were the only ion channels in the cell 

membrane, the membrane potential would be at the K+ equilibrium potential as set by the 

Nernst equation Vm = EK = RT/F ln ([K+]out/[K+]in)4 and closing the channel would not lead to 

any current flow or have any effect on the membrane potential (though it would increase 

the membrane resistance). In practice Vm is normally positive to EK  because there are other 

channels in the cell membrane carrying a steady inward (depolarizing)  current due to their 

permeability to ions with a more positive equilibrium potential such as Na+, Ca2+ or 

(sometimes) Cl-.  When the K+ channels are closed, this inward current causes a further 

depolarization. This  increases excitability by bringing the membrane potential nearer to the 

threshold for action potential generation (and may sometimes itself suffice to induce an 

action potential discharge); this may be assisted by the increased membrane resistance 

which allows other excitatory currents such as synaptic potentials to produce larger voltage 

changes. 

                                                           
4 Vm = membrane potential; VK = potassium equilibrium potential; [K]out = extracellularl K+ ion concentration;  
[K]in = intracellular K+ ion concentration; R = gas constant  = 8.3 x 107 ergs/oK/mole; K =  F = Faraday (electrical 
charge) = 96,500 coulombs/mole; K= temperature, degrees Kelvin; RT/F = 25 mV at 25o C. 



2.1.1.1. Inhibition of potassium “leak” channels. A K+ “leak” current may be defined as one 

carried by K+ channels the open probability of which does not vary with membrane potential 

(i.e., they are voltage-independent). Although the current-voltage curve may show outward 

rectification (i.e, channels carry outward current more easily than inward current), this is 

due to the asymmetric K+ concentrations inside and outside the cell as expressed by the 

Goldman-Hodgkin-Katz  equation (see Hodgkin & Katz, 1949). Leak currents of this type that 

were inhibited by stimulating M1Rs were described some time back in myenteric neurons by 

Galligan et al (1989) and in hippocampal pyramidal neurons by Madison et al (1987) and 

Benson et al (1988).  The effects of leak channel inhibition are to depolarize the cell and 

either induce action potential firing or favour increased repetitive firing capacity (see, e.g.,  

Fig.4 below).  

One source of MR-sensitive leak currents are members of the K2P (KCNK) family of 

twin-pore potassium channels (Enyedi  & Czirják, 2009; Mathie, 2007; Fig.4)), most notably 

TASK1 and 3 (K2P 3.1, 9.1; KCNK3,9 )and TREK1 and 2(K2P 2.1,10.1;KCNK2,10).  Like Kv7 

(KCNQ) TREK channels are activated by PIP2 and close when PIP2 is hydrolysed or 

sequestered (Lopes et al., 2005; Lindner et al., 2011). Closure of TREK channels by M1Rs is 

most likely the result of Gq/PLC-induced PIP2 hydrolysis and associated depletion, since 

closure was prevented by loading the cell with PIP2 (Bista et al., 2015; Rivas-Ramírez et al., 

2015). The mechanism for M3R-induced TASK channel closure is more uncertain (Mathie, 

2007) since they appear resistant to PIP2 depletion (Lindner et al, 2011). One hypothesis is 

that closure results from a direct interaction of GαqGTP with the channel (Chen et al., 2006). 

More recent work suggests that diacyglycerol (DAG), a product of PIP2 hydrolysis, is 

responsible  (Wilke et al., 2014; Biste et al., 2015), though the effects of DAG on TASK 

channel activity may be complex (Veale et al., 2007). 

Fig 4 near here 

 

2.1.1.2 Inhibition of M-type Kv7 channels (“M-channels”, IK(M)). The principal transduction 

mechanism for M-channel closure (hydrolysis and depletion of PIP2) has been discussed in 

1.2 above. Some physiological functions and pharmacological properties of the channels are 

reviewed in Brown & Passmore (2009). For the present purposes some aspects worth noting 

are as follows: 

(1). Although heteromeric Kv7.2/7.3 subunit combinations appear to form the most usual M-

channel in the mammalian nervous system, comparable “M-type” currents can be generated 

by Kv7.2, 7.3, 7.4 and 7.5 subunits, assembled either homomerically or in certain 

heteromeric combinations. Kv7.4-based M-currents are present in cochlear hair cells and 

other components of the auditory & vestibular system (Jentsch, 2000), in elements of the 

mesencephalic dopaminergic system (Hansen et al., 2008), and in some peripheral 

cutaneous mechanoreceptors (Heidenreich et al, 2011). Kv7.5-based M-currents have been 

identified In large presynaptic terminals within the central auditory system (Huang & 

Trussell, 2011) and in certain hippocampal interneurons (Fidzinski et al, 2015). Kv7.4 and 

Kv7.5 (including Kv7.4/7.5 heteromers) also contribute prominently to an M-current that 



regulates membrane potential and contractility in some peripheral smooth muscles, 

especially vascular smooth muscle (Greenwood & Ohya, 2009).  

Subunit composition is relevant to muscarinic regulation because the subunits vary 

in their sensitivities to PIP2 and PIP2 depletion (Gamper & Shapiro, 2007). Thus, KV7.3 

subunits have about 100-fold greater apparent “affinity” for PIP2 that the other subunits, so 

M-channels that contain KV7.3 subunits will be appreciably more resistant to closure by PIP2 

depletion (i.e, will need a higher level of muscarinic receptor occupancy) that those that do 

not (Hernandez et al., 2009), such as smooth muscle cells.  

(2). MR-induced M-channel closure in neurons enhances their excitability and facilitates 

repetitive firing by producing  membrane depolarization, increasing input resistance and 

reducing action potential threshold.  However, in central neurons, the channels are notably 

concentrated in axons, at the axon initial segment and/or nodes of Ranvier. These are the 

sites of action potential initiation and propagation. Here, the co-localization of the Kv7 

channels with the Na+ channels allows the former to exert a fine control over the action 

potential threshold (Schwarz et al, 2006; Shah et al., 2008). In hippocampal mossy fibres 

these axonal Kv7 channels are co-localized with muscarinic M1Rs, allowing control of axonal 

M-currents by cholinergic afferents (Martinello et al., 2015).  

(3). The muscarinic receptor responsible for M channel inhibition in sympathetic neurons is 

the M1R in both rat (Marrion et al., 1989; Bernheim et al., 1992) and mouse (Hamilton et al., 

1997). Available evidence suggests that muscarinic inhibition of M-channels in rat central 

neurons is also mediated primarily by M1Rs (striatal neurons: Shen et al., 2005) though not 

in mouse hippocampal neurons (Rouse et al., 2000) (but see Dasari & Gulledge, 2011, for 

some contrary inferences).  

(4). As pointed out in 2.1 above, KM inhibition in sympathetic neurons results from hydrolysis 

and depletion of PIP2 (section 2.1). This also applies to some central neurons (e.g., Shen et 

al., 2005). Direct evidence for such depletion using the PIP2 binding probe Tubby (see Fig.1B) 

has been obtained in isolated hippocampal neurons  (Nelson et al., 2008). However, other 

(additional or alternative) mechanisms of M1R inhibition have been described, including the 

following:  

 (a). Activation of PKC by diacylglycerol (generated by PIP2 hydrolysis) and consequent 

channel phosphorylation (Kosenko et al., 2012). This is facilitated by the binding of PKC to 

scaffold protein A-kinase Anchoring Protein AKAP79/150, which interacts with KV7.2 protein 

and forms a structural bridge to the M1R (Kosenko et al., 2012). Genetic knockdown  of 

AKAP150 in mice reduced MR suppression of M-current in sympathetic neurons and 

modified the nature of pilocarpine-induced seizures (Tunquist et al., 2008). AKAP150 also 

couples KCNQ channels and M1Rs to the transcriptional upregulation of Kv7 channel 

expression (Zhang & Shapiro, 2012). PKC-mediated M-current inhibition may be especially 

important in smooth muscle cells (Clapp et al., 1992) where it appears to be specifically 

directed at channels containing Kv7.5 subunits (Bruggemann et al., 2014).  

(b). M-channels are also very sensitive to inhibition by intracellular Ca2+ (IC50 ~100 nM: 

Selyanko & Brown, 1996), acting via channel-attached calmodulin (Gamper & Shapiro,  

2003). However, although Gq-coupled MRs are very effective in releasing Ca2+ from IP3-



sensitive intracellular stores in non-neural cells (Caulfield, 1994; see also Fig.3), intracellular 

Ca2+-release does not appear to contribute to M1R-mediated inhibition of M-channels in 

neurons (Delmas & Brown, 2005; Kruse et al., 2016). [Ca2+ release from intracellular stores 

does contribute to neuronal KM inhibition by some other Gq-coupled receptor (Gamper & 

Shapiro, 2007), partly through a close association between the receptor and the Ca2+ stores 

(Delmas et al., 2002); this does not seem to normally apply to muscarinic receptors.]   

Notwithstanding,  a special role for Ca2+ in an unusually long-lasting M1R-induced 

inhibition of M-channels in the axons of dentate gyrus granule cells has recently been 

detected (Martinello et al., 2015) (see Fig. 5). This was secondary to an enhanced Ca2+ influx 

arising from a sustained enhancement of axonal CaV3.2 channel activity, leading to a rise in 

resting intra-axonal Ca2+ concentration. Thus, both the rise in Ca2+ and M-current inhibition 

could be reversed by blocking CaV3 channels. The overall effect is to produce a persistent 

increase in excitability through a sustained reduction in axonal action potential threshold 

(Fig.5B). 

Fig 5 near here 

2.1.1.3. Inhibition of EAG and related voltage-gated potassium channels. 

EAG (Ether-a-GoGo, Kv10) (Whicher & MacKinnon, 2016) is a voltage-gated channel that is 

widely expressed in brain, particularly in presynaptic terminals where it modulates Ca2+ 

influx and transmitter release (Mortensen et al., 2015). When expressed in HEK cells the 

channels are strongly inhibited by stimulating M1Rs, probably by releasing Ca2+ from internal 

stores: EAG channels are inhibited by intracellular Ca2+ with an IC50 ~67 nM (Stansfeld et al., 

1996), probably via binding to calmodulin (CAM) and an interaction of Ca-CAM with the 

channel (Schönherr et al, 2000; Whicher & MacKinnon, 2016).   

Erg (EAG-related) channels (Kv11) form a component of the cardiac delayed rectifier current, 

but are also widely present in the brain where they help to regulate neuronal excitability 

(e.g. Hirdes et al., 2009). They can be inhibited by M1Rs, with a consequent increase in 

evoked action potential discharge and frequency (Selyanko et al., 1999). The mechanism is 

unclear: unlike EAG, erg inhibition does not appear to involve Ca2+ (Hirdes et al., 2004) and 

the channels are not very sensitive to PIP2 depletion (Kruse & Hille, 2013; but see Bian et al., 

2001).  In interstitial cells of Cajal in the myenteric plexus, modulation of erg currents is 

suggested to involve protein kinase C (McKay and Huizinga , 2006); this has been shown to 

directly phosphorylate Erg (Cockerill et al., 2007). 

 

2.1.1.4. Inhibition of Kir inward rectifier K+ channels. 

Members of all families of the Kir inward rectifier potassium channels require 

phosphoinositides such as PIP2 for their activity and hence, like M-channels, are sensitive to 

PIP2 hydrolysis and depletion (Logothetis et al.,2015a).  

Kir2 channels have a high apparent affinity for PIP2 and are constitutively active at resting 

levels of membrane PIP2 (Stanfield et al., 2002). Hence they contribute to the resting 

membrane currents and resting potential of a number of neurons. They are essentially 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Whicher%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=27516594
http://www.ncbi.nlm.nih.gov/pubmed/?term=MacKinnon%20R%5BAuthor%5D&cauthor=true&cauthor_uid=27516594
http://www.ncbi.nlm.nih.gov/pubmed/?term=Whicher%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=27516594
http://www.ncbi.nlm.nih.gov/pubmed/?term=MacKinnon%20R%5BAuthor%5D&cauthor=true&cauthor_uid=27516594


complementary in function to the M-current: thus, whereas the M-current produces an 

increasing outward current as the membrane depolarises, stabilizing the resting potential 

against inward depolarizing currents such as excitatory synaptic currents, Kir channels 

contribute an inward current as the cell is hyperpolarized, stabilizing the membrane 

potential against hyperpolarizing currents such as those carried by inhibitory synaptic 

potentials.  In some neurons such as striatal neurons (Shen et al. 2007) KM and Kir2 co-exist; 

in others, such as sympathetic neurons, they appear largely confined to different neurons 

and thence help determine their differential firing properties (Wang & McKinnon, 1995).  In 

common with KM channels, Kir2 channels are strongly inhibited by stimulating M1Rs (Wang & 

McKinnon, 1996). This is probably mediated by PIP2 depletion, and, in cortical neurons,  

leads to membrane depolarization, spontaneous action potential discharges and enhanced 

synaptic potential summation (Carr & Surmeier, 2007). On the other hand, Kir inhibition by 

M1Rs in myenteric neurons may involve PKC-mediated phosphorylation (Uchimura & North, 

1990). Endogenous muscarinic inhibition of dendritic Kir2 channels in striatopallidal neurons 

may contribute to synaptic pruning in Parkinson’s disease (Shen et al., 2007).  

Kir3 channels. These are subunits that form G protein-gated inward rectifier K+ channels 

(GIRK channels). They also requires PIP2 for their activation (Huang et al., 1998; Logothetis 

et al., 2015a), and hence can be inhibited by Gq-coupled receptors such as M1,M3 or M5 

receptors. In partial accord with this, GABABR-activated GIRK currents in hippocampal 

neurons are inhibitable by activating endogenous M1/M3 receptors, but probably through a 

PIP2→DAG→PKC-mediated change in GIRK-PIP2 “affinity” rather than PIP2 depletion (Sohn 

et al., 2007); a PKC-mediated inhibition of expressed GIRK1/GIRK4 (Kir3.1/3.4) channels in 

frog oocytes by M1Rs was earlier shown by Hill & Peralta (2001). This GIRK inhibition allows 

the possibility of cross-talk between GIRK-activating M2 or M4Rs and Gq-coupled MRs when 

both are expressed in the same cell. Thus, Kobrinsky et al (2000) found that co-activation of 

M3Rs in cardiac atrial cells caused a slow inhibition (“desensitization”) of the GIRK current 

activated by M2Rs and that this required PLC-mediated PIP2 hydrolysis. (see Logothetis et al., 

2015b, for further discussion).  

  

 2.1.1.5. Inhibition of calcium-activated potassium currents (KCa currents).  

There are several types of KCa currents in neurons (Faber & Sah, 2003). These are activated 

by a rise in intracellular Ca2+, usually by entry through voltage-gated Ca2+ channels, 

sometimes through Ca2+-permeable NMDA or nicotinic acetylcholine channels, or sometimes 

by release from intracellular stores. The different channels have different characteristic 

effects on the electrical activity and excitability of the cells. One of these, the so-called “slow 

after-hyperpolarizing current” or “sAHP” current (IsAHP) is especially sensitive to inhibition by 

Gq-coupled MRs (Nicoll, 1988).  This current is generated by Ca2+ entry through voltage-

gated calcium channels opened during an action potential, increases slowly over hundreds of 

milliseconds and then declines over seconds (Fig.6). The slow onset probably reflects an 

indirect effect of Ca2+ mediated by one or more Ca2+-binding proteins (Andrade et al., 2012).  

The AHP-current exerts a strong inhibitory action on succeeding action potentials and so 

abbreviates the duration of a spike train induced by repetitive or prolonged stimuli (Fig. 6A). 



Stimulation of Gq-coupled MRs suppresses IsAHP without affecting the preceding Ca2+ current 

(Fig.6B), and thereby facilitates repetitive firing (complementary to, though qualitatively 

different from, M-current inhibition). The molecular nature of the channels is unknown; a 

partial contribution by subunits of the KV7 family has been suggested (Andrade et al, 2012) 

but requires further substantiation. There is also some uncertainty from experiments on MR-

subtype knock-out mice whether the inhibitory subtype is (Dasari & Gulledge, 2011) or is not 

(Rouse et al, 2000) the M1 subtype. The mechanism of inhibition is also unclear but there is 

some evidence to suggest that the activation process is sensitive to PIP2, and that Gq-

coupled receptor inhibition might result from PIP2 depletion (Andrade et al, 2012).  

 

Fig 6 A,B near here 

 Selective pharmacological or synaptic M1R activation has also been reported to 

inhibit SK (small-conductance) KCa channels KCa2 in CA1 hippocampal pyramidal neuron 

through a mechanism involving PKC activation (Buchanan et al., 2010). This has the 

functional effect of amplifying and prolonging the NMDAR-mediated component of the 

glutamatergic epsps, by reducing opposing SK voltage-shunting, and thereby enhancing 

Schaffer collateral-induced LTP.  This accords with previous work showing that the SK 

channel blocker apamin can facilitate LTP induction (e.g., Stackman et al., 2002). 

2.1.1.6. Summary statement on K+ channel inhibition.  

 In essence, K+ channels serve to stabilize the neuronal membrane potential and to 

reduce neuronal excitability. K+ currents therefore act as repressor currents and their 

inhibition by muscarinic stimulation is a form of de-repression. The variety of K+ channels 

reflects their subtle influence in setting the neuron’s individual profile of excitable activity – 

action potential threshold, duration, frequency and discharge pattern, The effects of 

muscarinic stimulation will therefore differ from one neuron to another, depending on the 

mix of K+ channels present in the neuron, and their density and subcellular location.  For this 

reason, it is not possible to provide trans-neuronal rules about the precise nature of 

muscarinic excitation or of its consequences. Likewise, the responsive K+ channels vary in 

structure so no universal mechanism for muscarinic inhibition can be advanced. Many are 

indeed regulated by PIP2 (Gamper & Shapiro, 2007) so may be susceptible to PIP2 depletion, 

but equally many are not (e.g., Kruse & Hille, 2012). Other biochemical mechanisms for 

inhibition by Gq-coupled receptors so far suggested include phosphorylation by protein 

kinase C (or by other downstream kinases) or inhibition by Ca2+, but future research may 

yield very different mechanisms as seen with other channels and receptors (e.g, via β-

arrestin rather than Gq/11:  Yang et al,. 2016) 

2.1.2. Inhibition and activation of chloride channels. 

(a). Inhibition. In rat sympathetic neurons M1R inhibition of KM channels is accompanied by 

inhibition of a resting Cl- current (Brown & Selyanko, 1985a). This behaves as an additional 

“leak” current with a reversal potential more positive than that for KM. This is because these 

cells have a high resting intracellular chloride concentration (Galvan et al., 1984), giving a 



chloride equilibrium potential ECl around -42 mV when recorded with microelectrodes filled 

with chloride-free K+ solutions (Adams & Brown, 1974). Suppression of this current by a 

muscarinic agonist (or during synaptic stimulation: Brown & Selyanko, 1985b) causes a 

hyperpolarization at membrane potentials positive to ECl) (i.e., it opposes the effect of KM
 

inhibition) but adds to the effect of KM inhibition negative to ECl. Thus, when KM is inhibited 

and the cell enters spontaneous action potential firing mode,  firing is reduced by muscarinic 

ICl inhibition (Brown & Selyanko, 1985a,b). Neither the molecular identity of the channels nor 

their mechanism of inhibition is known.  

(b). Activation/enhancement.  

 M1R stimulation can also enhance or activate a Ca2+-dependent Cl- current in sympathetic 

neurons (Marsh et al, 1995; Salzer et al., 2014). In the former case, the current appeared as a 

delayed but transient inward (depolarizing) current after a priming Ca2+ charge delivered 

through voltage-gated Ca2+ channels or nicotinic acetylcholine receptors, which was then 

strongly enhanced by M1R stimulation. The effect of the latter was replicated by PKC activation 

and prevented by PKC inhibitors. In the experiments by Salzer et al (2014), the current 

appeared as a more sustained inward current on application of a muscarinic agonist, which 

did not require a priming Ca2+ charge, but responded directly to PKC activation (so might have 

been sensitized to resting Ca2+ levels). It was identified as a Cl(Ca) current, probably carried by 

anoctamine channels,  because it was inhibited by TMEM15A blockers. A muscarinic 

depolarization of interstitial cells of Cajal in the intestine, probably via M3Rs, has also been 

attributed to activation of a Cl- current (Zhu et al., 2011).  

 

2.1.3. Activation of cation channels. 

There are numerous reports that Gq-coupled MRs can also activate a calcium-dependent non-

selective (i..e., multi-ion) cation conductance channels in neurons. Its effects are variously 

manifest in a slow depolarization coupled with long-lasting action potential discharges (e.g., 

Shen & North, 1992; Constanti et al., 1993; Delmas et al., 1996; Rahman & Berger, 2011), a 

post-spike after-depolarization (ADP) and burst discharge (Caeser et al., 1993; Haj-Dahmane 

& Andrade, 1998), or a long spike plateau potential (Fraser & McVicar, 1996). Recent evidence 

suggest that the latter two events are triggered by activation of TRPC-containing  cation 

channels (Struebing et al., 2001; Yan et al., 2009; Zhang et al., 2011), though Dasari et al (2013) 

were unable to detect any effect of TRPC1, TRPC5, TRPC6 or double TRPC5+6 gene deletions 

on prefrontal cortical neuron ADPs. MR activation of the TRPC5-based cation channel requires 

PLC activation and might arise from PIP2 hydrolysis and depletion since PIP2 itself inhibits 

TRPC5 channels (see Rohacs, 2014).  

An alternative to a TRPC channel as a generator of the ADP, in some neurons such as 

hippocampal CA1 pyramidal neurons the inward current has been attributed to the expression 

of a persistent Na+ current (Yue et al., 2005; see also Yamada-Hanff & Bean, 2013). In this case, 

M1R stimulation does not seem to increase the cation current per se but enhances the ADP 

(and thereby facilitates burst-firing) or induces tonic firing (Yamada-Hanff & Bean, 2013) by 

reducing the opposing effect of the M–current in shunting the voltage change produced by 



the inward current. Currents through R-type (CaV2.3) Ca2+ channels also contribute to the ADP 

in hippocampal CA1 neurons (Park & Spruston, 2012).  

Two points relating to other cells and currents: (1). TRP channels (including TRPC5) may well 

contribute to the analogous MR-activated cation current in smooth muscle cells (see Zholos 

et al., 2004). (2). Colino & Halliwell (1993) reported that MR activation by carbachol in  CA1 

hippocampal pyramidal neurons strongly potentiated the hyperpolarization-activated cation 

current IQ, carried by HCN subunits. Neither the receptor identity nor mechanism could be 

established, but M1R stimulation potentiates HCN1 and HCN2 currents when reconstituted in 

oocytes (Pian et al., 2007). This was accompanied by a positive shift in HCN activation voltage, 

suggesting that it resulted from an increase in membrane PIP2 as might arise through 

activation of PI kinases.  

2.1.4. Inhibition of voltage-gated calcium channels.  

In addition to the rapid Gβγ-mediated inhibition of CaV2 voltage-gated Ca2+ channels produced 

by M2 or M4 MRs referred to in 3.2 below, M1R stimulation produces a “slow”, voltage-

insensitive inhibition of certain neuronal CaV1 and CaV2 channels (Bernheim et al., 1992; 

Mathie et al., 1992; Hille, 1994; Bannister et al., 2002). This resembles M1R inhibition of Kv7 

channels in time course and dependence on a “diffusible” messenger (Bernheim et al, 1991; 

cf. Selyanko et al., 1992 for equivalent tests for a diffusible messenger for KM inhibition) 

(compare section 3.1. below). In accordance with this, subsequent work indicates that M1R-

sensitive Ca2+ channels also require PIP2 for full opening and that their muscarinic inhibition 

results primarily from PIP2 hydrolysis and depletion (Wu et al., 2002; Gamper et al., 2004; 

Michailidis et al., 2007; Suh et al., 2010; Vivas et al., 2013), although effects of lipids derived 

from PIP2 metabolism have also been suggested (Roberts-Crowley et al., 2009). Thus, there is 

a strong correlation between the CaV channel species sensitive to a voltage-activated PIP2 5-

phosphatase and those inhibited by M1Rs (sensitive to both: CaV1.2,1.3, CaV2.1,2.2); not 

inhibited by either: CaV1.4, 2.3, 3.1, 3.2, 3.3; Suh et al., 2010). Although most work has been 

done with M1Rs, it is worth noting that, In reconstituted systems, neuronal L-type CaV1.2 

channels are equally sensitive to M1,M3 & M5Rs (Bannister et al.2002). Interestingly, and in 

contrast to the “fast” M4R-mediated inhibition of N-type CaV2.2 channels in sympathetic 

neurons (see 3.2 below), M1R-mediated slow CaV2 inhibition does not appear to contribute to 

cholinergic inhibition of transmitter release from sympathetic neuron processes (Koh & Hille, 

1997). The principal short-term effect of inhibiting neuronal CaV channels may be to enhance 

post-synaptic excitability, by reducing Ca2+ influx and consequent activation of KCa channels.      

3.Ion channel responses to Gi/Go-coupled M2/M4 receptors. 

M2 and M4 receptors couple primarily to the Pertussis toxin (PTx)-sensitive G proteins Gi and 

Go (Hulme et al., 1990; Caulfield, 1993). They produce two main effects in neurons: activation 

of inward rectifier (Kir3) potassium channels (also known as G protein-activated K+ channels 

or GIRK channels), generating a postsynaptic inhibitory hyperpolarization; and inhibition of 

CaV2 family calcium currents, resulting principally in a depression of transmitter release (see 

Brown, 2010). The former is usually (but not invariably) produced by M2 receptors coupling 



through Gi proteins; calcium current inhibition may involve either M2 or M4 receptors, 

coupling primarily through Go. 

3.1.Activation of Kir potassium channels. 

The prototype for this effect is the response of cardiac atrial fibres to the activation of M2Rs 

depicted in Fig. 2B. Here, the M2Rs couple to the trimeric Gi protein (Gαiβγ) and the released 

Gβγ interacts directly with the K+ channel (a tetramer of Kir3.1 and Kir3.4 subunits) to increase 

its open probability (see Wickman & Clapham, 1995; Yamada et al., 1998, Kubo et al., 2005, 

and Glaaser & Schlesinger, 2015, for details). This hyperpolarizes the cell and contributes to 

the bradycardia produced by vagal stimulation.  Because the interaction between G protein 

and channel is direct and does not require a diffusible second messenger, the sequence of 

events can be reproduced within the confines of a membrane patch (cf. 2.1.4 above).  

The equivalent GIRK currents in neurons are usually carried by Kir3.1/3,2 heteromers (Kubo et 

al., 2005). Analogous inhibitory responses to MR activation have been frequently recorded in 

a variety of nerve cells, including: autonomic neurons (Hartzell et al., 1977; Dodd & Horn, 

1982; Fernandez et al., 1999); trigeminal sensory neurons (Kohlmeuer et al., 2006); central 

parabrachial neurons (Egan & North, 1986); hippocampal CA1 interneurons (McQuiston & 

Madison, 1999; Bell et al., 2013) and pyramidal  neurons (Seeger  and Alzheimer, 2001); 

cortical fast-spiking interneurons (Xiang et al., 1998); certain thalamic sensory neurons 

(Mooney et al., 2004; Beatty et al., 2005); and striatal cholinergic interneurons (Calabresi et 

al, 1998). Where characterized, the receptors involved appear to be primarily M2 except in 

CA1 interneurons (M4: Bell et al., 2013) and possibly striatum, where M4 predominates 

(Hersch et al, 1994).  

Interestingly, in rat sympathetic neurons which individually possess both M2 and M4 receptors, 

only the M2R appears capable of activating Kir3.1/3.2 whereas the M4R preferentially inhibited 

the CaV2 calcium current (see 3.2) (Fernandez et al., 1999). It was suggested that this might 

arise through some anatomical segregation of the M2 and M4 receptors with their cognate ion 

channels. Further experiments indicated that this segregation also extended to the cognate G 

proteins, since α-subunit antisense depletion revealed that M2Rs preferentially signalled 

through endogenous Gi (Fernandez et al., 2001) whereas M4Rs signal to Ca2+ channels through 

endogenous Go (Delmas et al., 1998). Notwithstanding, in spite of the preferential coupling of 

M2Rs and M4Rs to different α-subunits (αi versus αo), ion channel responses to both were 

ultimately conveyed by free βγ-subunits, since they could be replicated by over-expressing 

β1γ2 subunits (Fig.7C) and inhibited by βγ-binding peptides (Delmas et al., 1998; Fernandez 

et al., 2001)  

Fug 7 near here 

3.1.1. Other muscarinic hyperpolarizations. Though most common, not all muscarinic 

hyperpolarizing responses are mediated by Kir activation, nor by M2 and/or M4 receptors. 

Thus Gulledge & Stuart (2005) have described a transient cholinergic hyperpolarization of 

cortical pyramidal cells mediated by M1Rs. It was concluded that this resulted from PIP2 

hydrolysis, IP3 formation, consequent release of Ca2+ and activation of SK (KCa2) channels. A 

similar Ca2+-dependent muscarinic (M3R) hyperpolarization has been previously reported in 



cochlear hair cells (Shigemoto and Ohmori, 1991), dissociated hippocampal neurons 

(Wakamori et al., 1993) and midbrain dopaminergic neurons (Fiorillo and Williams, 2000).  A 

muscarinic agonist has also been reported to activate an inwardly-rectifying K+-channel in 

molluscan neurons, but via a diffusible messenger rather than by direct G protein coupling 

(Bolshakov et al., 1993). 

3.2. Inhibition of CaV2 voltage-gated calcium channels. 

Muscarinic inhibition of voltage-gated calcium channels was first detected by Kuba & Koketsu 

(1976) in the form of an atropine-sensitive reduction by acetylcholine of the Ca2+ action 

potential recorded in curarized frog sympathetic neurons bathed in isotonic CaCl2 solution. 

This has since been studied extensively in frog and rat sympathetic neurons, in neuronal cell 

lines and reconstituted systems, and also in some central neurons. The results converge in 

showing it to result from a direct effect of the βγ-subunits of a Pertussis-toxin sensitive G 

protein (usually Go) following its activation by M2 or M4 muscarinic receptors. This follows a 

general mechanism of transmitter modulation of CaV2 channels (Dolphin, 2003; Zamponi & 

Currie, 2013), according to the scheme: 

  A+R → AR → AR*+Gαoβγ → Gαo-GTP + G βγ → CaV2↓ 

(cf. Kir activation, section 1.2.1 above). Key features of the interaction are as follows. 

a). The βγ-subunits interact directly with the CaV α-subunit with no second messenger 

involvement (De Waard et al., 1997). In consequence, inhibition is rapid, with a latency down 

to 10 msec or so after strong receptor activation (Zhou et al, 1997). 

b).  Binding of Gβγ prolongs the time to first opening of the CaV2.2 channel following a 

depolarizing voltage step (Patil et al., 1996) and hence slows current onset (e.g., Bean, 1989). 

The channels are said to enter a “reluctant mode” (cf. Bean. 1989).  

c).  Gβγ-inhibition is voltage-dependent. Thus, increased depolarization (either with time or in 

amplitude) facilitates Gβγ dissociation and relieves block (Ikeda, 1996). On removing 

depolarization, Gβγ re-associates at a concentration-dependent rate (Elmslie & Jones, 1994; 

Zhou et al., 1997; Delmas et al., 1998b). Hence CaV2 block will be relieved by action potential 

activity, to an extent dependent on the duration and frequency of the action potential 

discharge (Kasai,1992; Tosetti et al., 1999).  

 3.2.1. Some particulars of muscarinic CaV2 inhibition. 

(1) In principal, CaV2 channels appear equally susceptible to inhibition by M2 and M4 

receptors. Thus, endogenous CaV2.2 channels in differentiated rodent NG108-15 

neuroblastoma x glioma hybrid cells were equally well inhibited (in a Pertussis toxin-sensitive 

manner) by expressed M2 and M4 receptors but were not affected by expressed M1 and M3Rs 

(Higashida et al., 1990). However in primary adult neurons there is a rather unpredictable 

selectivity for one or other of these receptors that is not necessarily dependent on their 

relative abundance. Thus in rat cervical sympathetic neurons CaV2.2 (N-type) channels are 

selectively inhibited by M4Rs (Bernheim et al., 1992), even though M2Rs are present in these 

neurons and are functionally effective in activating Kir2 channels (Fernandez et al, 1999; see 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Shigemoto%20T%5BAuthor%5D&cauthor=true&cauthor_uid=1798048
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3.1 above). The endogenous receptor responsible for the basal inhibition of the high voltage-

activated Ca2+ current in differentiated NG108-15 mouse neuroblastoma x rat glioma cells is 

also the M4 receptor (Caulfield & Brown, 1994). Curiously, however, CaV2.2 currents in the 

cervical sympathetic neurons in mice are preferentially inhibited by M2Rs and cholinergic 

inhibition is lost in M2R knock-out mice (Shapiro et al., 1999). M2Rs might also mediate 

muscarinic inhibition of Ca2+ channels in rabbit sympathetic neurons (Mochida & Kobayashi, 

1986). M4Rs also appear to be responsible for the Pertussis toxin-sensitive inhibition of high 

voltage-activated Ca2+ currents in rat intracardiac parasympathetic neurons (Cuevas & Adams, 

1997) (but see also Jeong & Wurster 1997) while M2Rs have been identified as the likely 

subtype responsible for voltage-dependent CaV2.2 inhibition in rat stellate sympathetic 

neurons (Yang et al., 2006) and (most likely) for muscarinic inhibition of CaV2 currents in rat 

dorsal root sensory neurons (Haberberger et al., 1999; cf. Wanke et al., 1994). 

Within the mammalian central nervous system, M2Rs are clearly responsible for the Pertussis 

toxin-sensitive muscarinic inhibition of the two high voltage activated CaV2.1 and CaV2.2 

currents (Allen et al., 1993a) in cholinergic basal forebrain neurons (Allen & Brown, 1993b). 

M2Rs (Toselli & Taglietti, 1995) are also likely to mediate the Pertussis toxin-sensitive 

muscarinic inhibition of high voltage-activated Ca2+-currents in hippocampal pyramidal 

neurons previously reported by Gahwiler & Brown (1987) and Toselli & Lux (1989). On the 

other hand, M4Rs are more likely to be responsible for the fast cholinergic inhibition of CaV2.2 

and 2.1 (N- and P-type) currents in principal neurons (Howe & Surmeier, 1995) and cholinergic 

interneurons (Yan & Surmeier, 1996) in the striatum. 

(2). The subsequent events following M-receptor activation and CaV2 inhibition have 

been studied most intensively in cells from the rat superior cervical ganglion.  Marrion et al 

(1987) first briefly reported that muscarine could inhibit a high voltage-activated Ca2+-

current in dissociated adult sympathetic neurons. In a detailed study Wanke et al (1987) 

showed that inhibition involved N-type (CaV2.2) channels; that it involved current slowing; 

that muscarinic inhibition was replicated and occluded by GTPγS [guanosine 5'-[y-

thio]triphosphate], and hence involved a G-protein);  that inhibition was prevented by 

pretreatment with Pertussis toxin; and that inhibition was independent of protein kinases A 

or C.   Members of the Hille lab (Beech et al., 1992; Mathie et al., 1992; Bernheim et al., 

1992) characterized the two forms of muscarinic inhibition of CaV2.2 channels in these 

neurons: M4Rs producing a rapid, voltage-dependent inhibition via a Pertussis-sensitive G-

protein (much as described by Wanke et al., 1987, though then-incorrectly attributed by 

Wanke to M1Rs); and M1Rs producing a slow, voltage-independent, Pertussis-insensitive but 

intracellular Ca2+-dependent inhibition as described in 2.1.4 above; the latter involving a 

diffusible messenger but the former more direct. Subsequently Herlize et al (1996), along 

with Ikeda (1996), showed that the βγ-subunits were responsible for the direct inhibition of 

CaV2 channels by noradrenaline in these neurons. Delmas et al (1998a) subsequently 

showed that Gβγ was also responsible for M4R inhibition of ICaV2.2: inhibition could not only 

be replicated by over-expressing Gβγ-subunits but also prevented by Gβγ-binding peptides 

such as the β-adrenoceptor kinase (βARK) peptide. Delmas et al (1998a) also showed that 

the G-protein Go, rather than Gi, was likely to be responsible for M4R-mediated inhibition in 

these neurons since inhibition was prevented by injecting Gαo antibody or expressing  

antisense Gαo RNA,  but not by Gi antibody or antisense. Similar mechanisms are likely to be 



involved in the fast muscarinic inhibition of CaV2 channels in central neurons (see, e.g., 

Toselli & Lux, 1989; Yan & Surmeier, 1995; Stewart et al., 1999).  

3.2.2 Physiological consequences of muscarinic inhibition of CaV2 channels.  

The principal physiological consequence of the inhibitory effect of M2/M4R 

stimulation on CaV2 channels is to reduce the release of transmitter from the neuronal 

processes. Thus, the M4R-CaV2.2 inhibitory system recorded from sympathetic neuron 

somata is also expressed in the neurites of cultured sympathetic neurons, so that local 

application of a muscarinic agonist prevents the local release of noradrenaline from the 

varicosities of the neurites (measured by amperometry) in a Pertussis toxin-sensitive 

manner (Koh & Hille, 1997).  This is an example of a sympathetic nerve heteroreceptor 

(Fuder & Muscholl, 1995).  

 In some equally innovative experiments, Stephens & Mochida (2005), using ephaptic 

feedback cholinergic connexions of sympathetic neuron axons onto their somata to record 

transmitter release at single efferent synapses, showed that action potential-evoked release 

could be inhibited by presynaptic injection of free βγ-subunits. Mochida and Stephens went 

on to show that presynaptic injection of peptides designed to replicate the Gβγ-binding site 

of the CaV2.2 channel reduced both noradrenaline-induced somatic Ca2+-current inhibition 

and its inhibition of action potential-induced synaptic responses (Bucca et al., 2011).  This is 

important in showing that, at this synapse at least, the effect of the βγ-subunits on 

transmitter release is indeed due to its action on the Ca2+ channels (and hence Ca2+ entry), 

rather than on subsequent steps in the release process as suggested by Blackmer et al 

(2001). Mochida’s view is supported by Kajikawa et al (2001), who showed directly that βγ-

subunits could indeed reduce the terminal Ca2+ current when injected into the large Calyx of 

Held terminals.  

More important physiologically is muscarinic auto-inhibition, whereby acetylcholine 

released from cholinergic nerves feeds back to reduce its own subsequent release (Starke et 

al., 1989). This was first described by Dudar & Szerb (1969) who noted that topical 

application of atropine strikingly increased the spontaneous release of acetylcholine from 

the cat cerebral cortex and also increased the additional release following stimulation of the 

subcortical brainstem reticular formation. This was originally interpreted to suggest the 

involvement of inhibitory cholinergic interneurons but this was discounted when Molenaar 

& Polak (1970) confirmed the effect in K+-depolarized isolated cortical slices, even in the 

presence of tetrodotoxin. Following their observation that M2R stimulation inhibited N and 

P/Q Ca2+ currents in dissociated cholinergic basal forebrain neurons (see (1) above), Allen & 

Brown (1996) studied this auto-inhibition in more detail by using a nicotinic receptor 

acetylcholine detector patch to record the action potential stimulated release of 

acetylcholine in real time from neurites of cholinergic basal forebrain neurons in culture. 

They showed that release could be rapidly and reversibly blocked by a muscarinic agonist, 

and (like the inhibition of the somatic Ca2+-current, resulted from activation of M2Rs. 

Subsequent experiments using knock-out mice (Zhang et al., 2002) confirmed the role of 

M2Rs in cortical cholinergic auto-inhibition, but of M4Rs in the striatum. Allen (1999) went 

on to show that acetylcholine release from varicosities along the neurites was triggered by 

Ca2+ entry through the same Ca2+ channels (CaV2.1 and CaV2.2; P/Q and N) in approximately 

the same proportions as those carrying the muscarinic-sensitive somatic current. Finally, by 



recording from the basal forebrain neuronal soma at the same time as monitoring 

acetylcholine release from its neurites with a nicotinic receptor-rich myoball, Allen et al 

(2006) were able to show that single cultured basal forebrain neurons simultaneously 

released both glutamate (recorded as a feedback glutamatergic epsc in the soma) and 

acetylcholine.  They then showed that activation of neuritic M2Rs reduced both glutamate 

and acetylcholine release, and that glutamate release (like acetylcholine release) was subject 

to inhibition by acetylcholine released from the same axon since the glutamatergic epsc 

recorded during repetitive somatic stimulation was progressively enhanced by atropine and 

reduced by an anticholinesterase. This has obvious implications for the use of 

anticholinesterases or other drugs to enhance cholinergic drive to the cortex from basal 

forebrain neurons.  

 3.2.3. Inward rectifier K+ channels and transmitter release. 

 Apart from a possible difference in the species of Pertussis toxin-sensitive G protein 

α-subunit involved, the pathway leading to M2/M4 fast Ca2+-current inhibition is almost 

identical to that which triggers the opening of Kir3/GIRK K+ channels. In principal, activation 

of K+ channels could also reduce transmitter release, for example by introducing a leak 

conductance that acts as a voltage shunt to shorten the action potential waveform and 

reducing Ca2+ influx (much as vagal stimulation can do in the heart). Does this occur? The 

answer seems to be no. Thus Allen (1999) found no effect of  Ba2+ ions (which blocked 

somatic Kir channels) on either resting acetylcholine release or muscarinic inhibition of such 

release from basal forebrain neurons. In other systems, Luscher et al (1997) found that Kir3.2 

gene deletion eliminated the postsynaptic hyperpolarization of hippocampal pyramidal 

neurons produced by activating Gi/Go-coupled GABAB, 5HT1A or adenosine A1 receptors 

without affecting their presynaptic inhibitory action. Further, Takahashi et al (1996) could 

not detect any outward current in the calyx of Held terminal after stimulating metabotropic 

glutamate receptors with sufficient intensity to annul the terminal Ca2+-current. Thus, it 

seem most likely that the Kir3 channels are not present in sufficient density in the nerve 

terminals so far studied to have any functional effect, or, if present, are unaffected by the 

Gi/Go-coupled receptors present in those terminals (Takahashi et al, 1998) – a situation 

comparable to the differential coupling of muscarinic receptors to CaV and Kir channels in 

sympathetic neurons (Fernandez et al, 1999). 

  

4.Final thoughts. 

While some general guidelines regarding the effects of MR stimulation on ion channels 

may be gleaned from the above, unfortunately it is not possible to predict in detail the 

events that will occur in a given cell type. For example, even for ion channels known to 

be regulated by PIP2 such as the K2P channels, it is not possible without further 

experimentation to be sure whether the modulation of that channel by a Gq-coupled MR 

results simply from the depletion of PIP2 or from an effect of one of the products of PIP2 

hydrolysis. This question is important because, as indicted by Fig.3, one might expect 

very different sensitivities of different ion channels to a muscarinic agonist depending on 



how far downstream the transducer is from the receptor. To my knowledge, this 

question has not yet been systematically investigated.  

It is equally difficult to predict ab initio the consequences of MR stimulation, even at the 

level of the single neuron, let alone at the circuit or systems level. This is because many 

neurons possess multiple MRs, and may also possess multiple MR-sensitive ion channels. 

Thus, some autonomic neurons express at least four MRs (M1,2,3,4) (Hassall et a;., 1993; 

Brown et al., 1995), and in a neuron like the rat sympathetic neuron MR stimulation can 

modify the activity of at least 6 ion channels (TREK-1, KV7, Kir3, CaV1.2, CaV2.2, Cl(Ca)). To 

add complexity, MR-sensitive channels may be located in different subcellular 

compartments. Of those listed above, TREK-1, Kir3, CaV1.2 and probably Cl(Ca) channels 

seem to be somatodendritic in most neurons;  KV7 channels may be somatodendritic in 

some neurons but are strongly concentrated in axons (at nodes of Ranvier in myelinated 

fibres and axon initial segments) in hippocampal and cortical pyramidal neurons and in 

motoneurons; and CaV2 channels, though present in somatic regions, are concentrated 

at presynaptic terminals and subserve evoked transmitter release (e.g., Mochida et al., 

2003).  

This raises the question is there any relation between the distribution of MRs and the 

location of MR-sensitive ion channels.  This is obviously the case for presynaptic M2 and 

M4 receptors (see, e.g.,  Volpicelli & Levey, 2004). Indeed the form of direct G-protein 

mediated coupling between M2Rs or M4Rs and CaV2 channels that leads to muscarinic 

inhibition of transmitter release virtually demands a close proximity between receptor 

and Ca2+ channel (Zhou et al., 1997). Ca2+ channels in chick calyx terminals are closely co-

localized with their cognate G protein Go (Li et al., 2004), and there are suggestions of an 

M2R-G protein-Ca2+ channel complex involving RGS 12 as a scaffolding protein 

(Abramow-Newerly et al., 2006). The likelihood of equivalent receptor-G protein – Kir 

channel complexes has been referred to previously, as has the apparent necessity for 

separate complexes for M2R-Gi-Kir and M4R-Go-CaV2 interaction to explain their 

functional postsynaptic (somatic) segregation.  

On the other hand there would seem to be no a priori reason for any such restrictive 

association between postsynaptic M1Rs and PIP2-gated ion channels such as KV7 

channels to interpret their inhibition receptor-induced PIP2 hydrolysis, in which PIP2 

depletion acts as a remote, diffusible second messenger. Indeed, the dynamics of KV7 

inhibition in neurons can be substantially explained from observations on a 

reconstructed system in kidney cells without the need for any form of receptor-channel 

complex (Kruse et al., 2016). Notwithstanding, it is clear that the M1R does form a 

complex with the Kv7 channel underpinned by AKAP79/150 and that this serves to 

facilitate channel phosphorylation by PKC; this reduces channel affinity for PIP2, so 

sensitizing the channel to the reduction of PIP2 following M1R stimulation (Hoshi et al., 

2003; Zhang et al., 2011; Kosenko et al., 2012). This might be regarded as a device to 

preferentially direct the receptor stimulus to the KV7 channel rather than to other PIP2-

sensitive channels (e.g., Kir, K2P, TRP, CaV) [a possibility that might warrant further 

study]. A molecular association between antibody-tagged AKAP150, M1Rs and KV7.2/7.3 

heteromeric channels in sympathetic neurons has recently been confirmed by super-



resolution microscopy (Zhang et al, 2016).  This approach also revealed AKAP150-based 

functional multi-channel complexes in sensory neurons comprising KV7, TRPV1 and 

CaV1.2 channels; in appropriate cells these complexes might reasonably be expected to 

incorporate AKAP-binding M1Rs, raising the possibility of other MR signalling 

microsystems.      
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Figure legends. 

Fig.1. Time-course of M1R-mediated M-type K+ channel inhibition in rat superior cervical 

sympathetic (SCG) neurons in relation to: A PIP2 hydrolysis; and B loss of PIP2 from the 

plasma membrane.  

Cells were held at a depolarized membrane potential to generate a steady outward 

M-current. 10 µM oxotremorine-M (Oxo-M) was applied to activate the M1 receptors and 

reduce the M-current (shown by the downward deflexions).  

In A, the hydrolysis of PIP2 was monitored simultaneously with the change in 

current from the shift of the fluorescent probe GFP-PLCδ-PH from the membrane (where it 

binds to PIP2) to the cytosol (where it binds to IP3) as shown by the images above. The 

increase in cytosolic fluorescence is superimposed in red on the current trace. Responses to 

two applications of Oxo-M were recorded [Part-published in Delmas & Brown, 2005 (see 

Winks et al, 2005, for technical details)] 

B shows averaged data from SCG neurons (black symbols and lines) and tSA201 

fibroblasts expressing M1Rs and Kv7.2/7.3 channel subunits blue data points). Top trace: 

normalized  KM or KV7.2/7.3 currents Bottom trace: normalized membrane PIP2 levels 

reported using a FRET assay of the PIP2-binding probe Tubby. In all cases current responses 

are closely aligned with changes in PIP2 hydrolysis or depletion.  The faster recovery in SCG 

neurons (time-constant ~42 sec) than in tsA cells (112 sec) was attributed to faster 

phosphorylation of phosphatidylinositol by PI4-kinase.  [Adapted with permission from Kruse 

et al., 2016.] 

Fig. 2. Speed of some MR-induced K+ channel responses following fast receptor activation.  

A. M1R-induced M-current inhibition in a neuron in an isolated rat superior cervical 

sympathetic ganglion induced by synaptically-released acetylcholine recorded at 24oC (upper 

record) and 340C (lower record). The preganglionic cholinergic nerve was stimulated 8 times 

(upper record) or 4 times (lower record) at 40 Hz . The initial downward deflexion of the 

current trace (marked “N”) is a partly curare-blocked inward nicotinic current; this signals 

the postsynaptic delivery of the released acetylcholine. The second inward current marked 

“M” signals the loss of outward current due to M-channel closure.  The time between the 

nicotinic current and the onset of the muscarinic current was about 2 s at 240C and about 

250 ms at 340C (shown in the expanded record at 340C). [Adapted from Fig. 4 in Brown, 

2007.] 

B. M2R-induced outward  K+ current in an isolated rabbit cardiac sino-atrial node cell. 

Receptors were activated by two iontophoretic ejections of acetylcholine from a 

micropipette placed about 2 µm above the cell membrane (each pulse 33ms,  50 nA). 

Temperature 360C. The latency to K+ cuurent onset from the second ejection artefact was 

about 50 msec. [From  Fig.7.14 in Brown, 2011, derived with permission from Trautwein et 

al., 1980.]  

Fig.3. Downstream signalling following M1R stimulation M-channel (KV7.2/7.3) inhibition,  

based on experimental measurements and modelling in tsA-201 cells. [Adapted with 

permission from Hille et al., 2014] 



Ordinates: normalized response. Abscissae: muscarinic ligand concentration (multiples of KD, 

the dissociation equilibrium constant for bind to the sum of all receptor states)  

Abbreviations:  

R occupancy = receptor occupancy for all receptor states = ∑AR / (∑R + ∑AR);  

Gα-PLC = activation of phospholipase Cβ (PLC) by GαGTP formed following AR/GαqGDPβγ 

interaction, measured by CFP-α/YFP-PLC FRET;  

PIP2 = membrane phosphatidylinositol-4,5-bisphosphate, measured from membrane 

fluorescent GFP-PH-PLC∂ binding and translocation.  

IKM = Kv7.2/7.3 current amplitude measured by patch-clamp 

IP3 = inositol-1,4,5 trisphosphate, measured by binding of LIBRAvIII, a FRET reporter based 

on the ligand-binding domain of the rat IP3 receptor type III. 

DAG = diacylglycerol, measured from the membrane binding of the FRET reporter based on 

the C1 domain of PKCγ 

Ca2+ measured from Fura-2 fluorescence 

 

Fig. 4. Muscarinic inhibition of TASK3 (K2P9.1), a standing outward  “leak” potassium currents 

(“IKSO”) in cerebellar granule cells. [From Mathie, 2007, with permission] 

A. The standing outward current (IKSO, black line) is recorded by holding the cell at -20 mV 

and stepping back to -60 mV for 800 ms. The current is inhibited by 1 0 µM muscarine 

via M3Rs (red line). 

B. Application of 10 µM muscarine at the resting potential (-85 mV) produced a 

depolarization and facilitated the generation of action potentials by 1Hz, 100 pA 

depolarizing current injections. Selected responses to current injections are shown on 

expanded timebase below. 

 

Fig.5. Activation of M1Rs in rat hippocampal dentate gyrus granule cells produces a 

persistent inhibition of the M-current in the granule cell mossy fibre axons. This leads to a 

fall in action potential threshold. It is caused by a persistent increase in axonal CaV3.2 activity 

and is prevented or reversed by blocking CaV channels. [Adapted from Martinello et al., 

2015; q.v. for technical details.] 

A. Upper record. Families of axonal membrane currents recorded with a somatic patch 

electrode before (control), 10 min after addition of 1 µM oxotremorine-M, then 10 and 

20 min after oxotremorine–M washout, and finally after adding 3 µM XE991, an M-

channel blocker. The cell membrane potential was held at -20 mV to pre-activate M-

current (IKM) then commanded to -110 mV on 10 mV steps tp deactivate IKM 

Lower record. Same protocol as in upper record except that 500 nM TTA-P2, a CaV3 

calcium channel blocker, was added before adding oxotremorine-M and left in the 

bathing solution thereafter. Note that oxotremorine-M no longer inhibited the 

membrane current whereas XE991 still blocked the current. 

B      Effects of oxotremorine-M on action potential threshold. Under control conditions    

(left- side plot), the reduction in threshold of around 6 mV persisted for at least 20 min 

after washout. When the CaV3 channel blocker TTA-P2 was included in the washout 

solution the threshold substantially recovered during the washout period. 

 



Fig. 6. Muscarinic inhibition of the slow Ca2+-dependent after-hyperpolarization (AHP) and 

its underlying current (IAHP) in hippocampal pyramidal cells.  

A. Microelectrode recordings from a CA1 pyramidal cell in an intact isolated rat 

hippocampal slice.  The upper record shows the slow AHP following a depolarizing 

current injection (at A). On a slower time-base, with hyperpolarizing current injections 

to measure input resistance (at B), acetylcholine (ACH, 200 µM) depolarized the 

neuron increased cell firing and increased its input resistance. The membrane potential 

was restored with current injection (-d.c.) and suppressed the AHP triggered from the 

original resting potential (at C). These effects were reversed by 0.5 µM atropine. (The 

depolarization and increased input were probably due to inhibition of KM and Kleak 

currents). The lower record  shows that the inhibition of the AHP is associated with an 

increase in the number of action potentials produced by a 600 ms depolarizing current 

injection. Other experiments showed that the AHP was activated by the entry of Ca2+ 

during the preceding depolarization. [From Cole & Nicoll, 1983, with authors’ 

permission]. 

B. Simultaneous microelectrode recordings of membrane current (upper records) and  

photodiode recordings of intracellular Ca2+ by Fura-2 fluorescence (middle records) 

from a CA3 pyramidal cell in an organotypic slice of the rat hippocampus. Lower 

records show the voltage commands (100 ms to -5mV) from -55 mV resting 

potential. The voltage step to -5 mV evokes an outward AHP current and a 

simultaneous Ca2+ increase. Muscarine (0.25 µM) suppressed the outward AHP 

current but did not affect the Ca2+ transient. Note that the outward current reversed 

to an inward current in the presence of muscarine. This is the after-depolarizing 

(ADP) current (see section 2.1.3). [From Knoepfel et al., 1990]  
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