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Abstract: Online model-based redesign of experiments (OMBRE) techniques reduce the experimental 

effort substantially for achieving high model reliability along with the precise estimation of model 

parameters. In dynamic systems, OMBRE techniques allow redesigning an experiment while it is still 

running and information gathered from samples collected at multiple time points is used to update the 

experimental conditions before the completion of the experiment. For processes evolving through a 

sequence of steady state experiments, significant time delays may exist when collecting new information 

from each single run, because measurements can be available only after steady state conditions are 

reached.  In this work an online model-based optimal redesign technique is employed in continuous flow 

reactors for improving the accuracy of estimation of kinetic parameters with great benefit in terms of 

time and analytical resources during the model identification task. The proposed approach is applied to a 

simulated case study and compared with the conventional sequential model-based design of experiments 

(MBDoE) techniques as well as the offline optimal redesign of experiments. 

Keywords: Online model-based redesign of experiments, Continuous flow reactors, identification of 

reaction kinetics. 
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1. INTRODUCTION 

Online identification of deterministic process models in fully 

automated platforms is increasingly attracting the research 

attention as ideal approach for system identification with 

minimum materials, time and effort. One of the key areas of 

application of online model identification is the study of 

chemical reaction kinetics. Model-based design of 

experiments (MBDoE) techniques have been recognised as 

the cutting edge tools for the development and refinement of 

mechanistic process models (Asprey and Macchietto, 2000) 

and have been extensively applied in the study of kinetic 

phenomena. In the conventional MBDoE procedure, the 

model identification process is performed in a pure sequential 

manner involving: (i) design of experiments at the available 

parameter estimates, (ii) execution of all the designed 

experiments and (iii) parameter estimation and evaluation of 

parameter confidence region using the measurements from 

the designed experiments. This process is repeated until the 

parameters are estimated with minimum uncertainty. The 

drawback of the sequential procedure is that the parameter 

estimation and update of parameter estimates is repeated only 

after the completion of all the designed experiments. In other 

words, in the sequential approach parameter estimation is 

carried out only between successive experiment designs and 

creates unnecessarily delays in exploiting the information 

generated during the execution of designed experiments. This 

drawback has been overcome by the so called online model-

based redesign of experiments (OMBRE) methods. The 

OMBRE method is an advanced form of MBDoE methods 

involving intermediate parameter estimations and experiment 

design at each of the updated parameter estimates, such that 

the designed experiments replace some of the previously 

designed conditions, while the experiment is running at some 

conditions based on past design. Currently, OMBRE method 

appears to be the ideal method for online model 

identification. The idea of online model-based redesign of 

experiments is not new, as adaptive input design has been 

applied for linear time-invariant system identification 

(Hjalmarsson, 2005) and nonlinear batch systems (Stigter et 

al., 2006). Galvanin and co-workers (2009) proposed a 

general framework for online model-based redesign of 

experiments (OMBRE) for parameter estimation in dynamic 

systems and extended the formulation to dynamic systems in 

the presence of uncertainty (Galvanin et al., 2012) and 

variable updating policy (De Luca et al., 2016). Yakut et al. 

(2013) applied closed-loop online model-based redesign of 

experiments (CL-OMBRE) techniques to dynamic systems 

with integrating controller in the system to design the optimal 

experimental conditions within the safety constraints. The 

OMBRE method is particularly suitable for the identification 

of dynamic systems where information gathered from 

measurements at multiple time intervals allow to update the 

experimental settings of an experiment while it is still 

running. In steady state experiments, measurements are 

obtained only after attaining steady state conditions. This 

causes significant delays in accessing information from a 

single experiment. However, the benefits of steady state 

systems are the consistent data obtained at steady state 

conditions and the ease of control and operation of the 

process (Hone et al., 2017). In this work, we apply OMBRE 

techniques for designing a sequence of steady state 

experiments in continuous flow reactors to improve the 



 

 

     

 

statistical quality of estimation of kinetic parameters with 

substantial savings of time. 

2. PROCESS MODEL 

We assume a process model described by a set of differential 

and algebraic equations (DAEs) in the form 

       0,,,,,,,,, zttztztz θwuxxf   (1) 

      zttztztz ,,,,,,,,ˆ θwuxhy   (2) 

where   xN
tz Rx , is the time and space dependent vector of 

state variables,   uN
tz Ru , is the vector of time-dependent 

control variables (manipulated inputs) whereas wN
Rw  

represents the vector of time-invariant controls, N
Rθ  is 

the set of unknown model parameters to be estimated within 

a continuous realisable set Θ ,   yN
tz Ry ,  is the set of 

response variables (i.e. state variables that are measured in 

the process) and  tz,ŷ  represents the corresponding values 

of response variables predicted by the model, t is the time and 

z is the axial domain. The model-based experimental design 

procedure seeks the optimal value of experimental design 

vector N
Rφ , which minimises the uncertainty region of 

model parameters. The experimental design vector φ  

consists of all set of conditions that characterise an 

experiment and is generally defined as 

  ,,,,,0
spzt twuyφ   (3) 

where 0y  is the set of initial conditions of the measured 

variables; 
sp

t  is the vector of sampling times and   is the 

duration of an experiment (for example reaction time in batch 

reactors or residence time in flow reactors). 

3. METHODOLOGY 

3.1 Model-based optimal experimental design procedure 

The generic MBDoE procedure described in (Asprey and 

Macchietto, 2000) is given in Figure 1. The model 

identification procedure generally begins with the 

preliminary design of experiments. Usually, the set of 

preliminary experiments are designed by statistical design of 

experiments (DoE) methods without explicitly using the 

model structure. The second step is the execution of designed 

experiments. In the next step, a preliminary parameter 

estimation is carried out where the adequacy of the model to 

represent the experimental observations is tested by a chi-

square goodness of fit test with  NN   degrees of 

freedom (N is the total number of measurements in all the 

performed experiments and N  is the number of model 

parameters) assuming 95 % significance. In case if the model 

fails the goodness of fit test, it is advised to revise the 

assumptions/modelling hypothesis considered while 

developing the model itself. Once the suitable model 

structure is identified (i.e. it passes the goodness of fit test), 

the next set of experiments is designed to improve the 

precision in the estimation of model parameters. In this step, 

the precision in estimated parameter values is analysed by the 

statistical t-test and the new experiments are designed to 

minimise the uncertainty region of the model parameters. The 

procedure is repeated until desired precision on model 

parameters is achieved.   
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Figure 1. A simplified scheme illustrating the sequential 

procedure in optimal design of experiments 

3.2 Parameter estimation 

The parameter estimation problem seeks to find the optimal 

set of model parameters which produces the best fit to the 

experimental data within the prescribed tolerance. The 

parameter estimation (PE) problem is defined based on 

maximum log-likelihood criterion given in Bard (1974): 

 θφθ
θ

,maxargˆ PE


 (4) 
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(5) 

where φ  indicates the experimental design vector for all the 

experiments used for preliminary parameter estimation; 

 φijy  is the measured value of the j-th response variable in 

the i-th experiment carried out at the conditions defined by 

design vector iφ  and  θφ ,ˆ
iijy  is the corresponding value 

predicted by the model; j  is the  standard deviation of 

measurement error associated with the measurement of the j-

th response variable (it is assumed that measurement errors 

are uncorrelated and independent from the experiments). 

3.3 Optimal experimental design 

The result of PE provides the estimate θ̂ , at which the 

experimental design (ED) problem seeks the optimal settings 

φ  of experiment design vector φ  which minimises the 

uncertainty region of model parameters defined by the 

 NN   parameter variance-covariance matrix θV . The 

variance-covariance matrix θV  is well approximated as the 

inverse of  NN  Fisher information matrix θΗ . The 



 

 

     

 

information matrix for the design of j-th experiment is 

defined as given in Galvanin et al. (2009): 

  1
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jj θθ
ΗV  (6) 
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(7) 

where K denotes the constant contribution of Fisher 

information matrix comprising of information gathered from 

all the experiments prior to the design of j-th experiment and 

from the prior variance-covariance matrix of model 

parameters 0
θV ; 

kθ
Η  denotes the information matrix of the 

k-th experiment. In flow reaction systems the information 

matrix for a single experiment is computed from the 

sensitivity coefficients evaluated at steady state conditions. 

The information matrix for a single experiment is 

  i
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where iQ   is the matrix of the sensitivity coefficients ijq  

defined as 
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(9) 

The experiment design problem for improving the accuracy 

of parameter estimation can be formulated as 

  

maxmin

ˆ,minarg

φφφ

θφVφ θ
φ








and(1)Equation

:tosubject

ED

 (10) 

The exact form of the objective function of ED problem 
ED   depends on the choice of that measure of θV  which is 

minimised to obtain the optimal design vector (popular 

choices are the A-optimal, D-optimal and E-optimal designs, 

respectively minimising the trace, determinant and maximum 

eigenvalue of θV  and is equivalent to maximising 

corresponding measures of Fisher information matrix θΗ ) 

(Pukelsheim, 2006). The D-optimal design criterion was used 

in this work. 

3.4  Standard sequential MBDoE vs offline/online redesign of 

steady state experiments 

In this section, we compare a standard MBDoE procedure 

with the offline and online redesign of experiments for 

improving parameter precision in steady state experiments. 

For this, from a priori uncertainty of model parameters 

obtained after preliminary parameter estimation, we consider 

the case of designing three steady state experiments using the 

following approaches: 

 Standard (sequential, offline) MBDoE; 

 Offline redesign; 

 Online redesign. 

In the standard MBDoE approach, the three experiments are 

designed simultaneously by solving a single optimization 

problem in the (10) form. The approaches using offline and 

online redesign strategy in designing three experiments are 

explained using Figure 2a and 2b. 
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Figure 2a shows the offline redesign strategy for designing 

three steady state experiments. In the figure i  represents the 

time required to reach steady state conditions for the i-th 

experiment with corresponding design vector iφ , i  

represents the time required for analysis and computation of 

measurements from the i-th experiment. In the offline 

redesign procedure, only one experiment (experiment 1) is 

designed from the preliminary parameter estimation. The 

information from this experiment is accessed after a time 

delay of ( 11  ). With this information, an intermediate 

parameter estimation is performed to design experiment 2 for 

improving the parameter precision. The information accessed 

from experiment 2 after the time delay of ( 22  ) is used 

to design experiment 3. Thus, although no experiment is 

redesigned in this approach, intermediate parameter 

estimations are carried out offline.  

The online strategy for designing three steady state 

experiments for improving parameter precision is illustrated 

in Figure 2b. As shown in the figure, in the online redesign 

strategy, in order to ensure that the experiment is running 

while the intermediate parameter estimation is carried out, 

from the preliminary parameter estimates, two experiments 

(1a and 1b) are designed simultaneously with respective 



 

 

     

 

design vectors a1φ  and b1φ . These experiments are shown 

by the black and white circles respectively. The 

measurements from the first experiment (experiment 1a) is 

available at the steady state time ss1a and the second 

experiment (experiment 1b) is started at this time (the arrow 

in the figure starts at the point of design of an experiment and 

points to the time at which the designed experiments is 

actually executed). Thus, while the analysis of data from the 

first experiment is carried out, the second experiment is in 

progress. The information from the first experiment obtained 

at time ( a1 + a1 ) is used to design the next single 

experiment (experiment 2) with design vector 2φ . This 

experiment shown in red circle is started at time ss1b; when 

the experiment 1b is completed. The information from 

experiment 1b is used to design the next experiment 

(experiment 3) shown by the green circle. In this way, the 

information from the first experiment (experiment 1a) is used 

to design the third experiment (experiment 2) while the 

second experiment (experiment 1b) is running. In general, in 

the OMBRE approach for designing a sequence of steady 

state experiments, it is important to consider the time delays 

in deciding the optimal online design policy. For example, in 

experiments with analysis time  equal to or greater than the 

time required to reach the steady state time  , the online 

design policy requires the design of at least two experiments 

each time for being able to run the experiments continuously. 

3.4 Implementation of online optimal design 

The standard MBDOE and two redesign approaches (both 

online as well as offline) for the design of steady state 

experiments were implemented as separate modules in 

Python (Van Rossum, 2003). The preliminary parameter 

estimation was performed using the measurements from a set 

of factorial experiments (which we call preliminary 

experiments). The experimental data was generated in-silico 

by adding random Gaussian noise to the true model. The 

parameter estimation was performed with the Nelder-Mead 

unconstrained optimization method. The optimization 

problem of experiment design was solved by minimising the 

determinant of the parameter variance-covariance matrix θV  

and was computed with the constrained optimization method 

SLSQP (Sequential Least Squares Programming). The initial 

guess for the design variables were chosen after trial and 

error approach starting with different random initial guess 

and selecting the best that produced the maximum value of 

trace of Fisher information matrix. The output of experiment 

design was used to generate the next experimental data from 

the true model. The parameter estimation was updated with 

the newly added experiment and the confidence in the 

estimated parameter values was verified using a t- test with 

95 % significance. The parameter estimation and experiment 

design algorithm for offline and online redesign was iterated 

until the predefined experimental budget was reached. 

4. CASE STUDY 

We compare and demonstrate the online model-based 

redesign approach with a standard MBDoE approach in a 

simulated case study of consecutive reactions taking place in 

a plug flow reactor. The reaction system is described by the 

following set of DAEs 
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(12) 

Equation (11) represents the reactor model of the plug flow 

reactor which describes the concentration profiles of reacting 

species along the reactor length; therefore the independent 

variable in Equation (1) is z. In Equation (11), iC  is the 

concentration (mol/L) of the ith component; jr  and ij  are, 

respectively, the j-th reaction rate and the stoichiometric 

coefficient of the i-th component in the j-th reaction; v  is the 

inlet volumetric flowrate of reactant A (ml/min); cA is the 

reactor cross sectional area ( assumed as 1.2 cm
2
); z is the 

axial coordinate along the length of the reactor; l is the length 

of reactor channel (25 cm). In Equation (12), the temperature 

dependency of reaction rate is described using Arrhenius law 

where, jk  denotes the reaction rate for the j-th reaction (min
-

1
), jA  the frequency factor and jE  the activation energy. 

4.1 True model and generation of experimental data 

A power law type kinetic model was assumed as the true 

model for the series reaction with four estimable model 

parameters  2211 ,,, EAEAθ  corresponding to the two 

reaction rate constants 1k and 2k . 

CBA
kk
 21

 

Table 1.  Parameter values assumed for the true kinetic model 

Parameter Description True value Unit 

1A  Frequency factor for first reaction 8.0 min-1 

1E  Activation energy for first reaction 29000 J/mol 

2A  Frequency factor for second reaction 5.0 min-1 

2E  Activation energy for second reaction 35000 J/mol 

 

The four model parameters  2211 ,,, EAEAθ  were 

normalised with respect to the set of true values 

 0 8, 29000, 5, 35000θ  and the normalised values were 

considered to form the true parameter set, 

 0.1,0.1,0.1,0.1* θ . It is assumed that the measurable 

response variables for the reaction are the concentration of 

three components: A, B and C. The experimental data was 

generated in-silico by adding Gaussian noise with standard 

deviation 0.03 mol/L to the true model. The initial 

concentration of reactant A (2 mol/L) was kept constant in all 



 

 

     

 

the experiments. The experimental design vector φ  was 

chosen as the conditions of reaction temperature (T) and feed 

flowrate (v) i.e.  vT ,φ . In the case study, nine preliminary 

experiments were designed using a three level-two-factor 

factorial design method assuming the levels of design 

variables as:  reaction temperature T (333 – 373 K); 

volumetric flowrate v  (0.004 – 0.008 ml/min). The data 

generated using these experiments were used for the 

preliminary parameter estimation. Further, the standard 

MBDoE procedure was compared with the offline and online 

redesign procedure for the design of five additional 

experiments aimed to improve the precision of parameter 

estimation. The online strategy was implemented with the 

assumption that the steady state time for each experiment is 

three times the residence time observed at the lowest flowrate 

and the time for analysis of data from a single experiment is 

equal to twice the residence time of the reaction obtained at 

the lowest flowrate (see Figure 2a and 2b). It is also assumed 

that the analysis time includes the time for data processing 

and computational time and that the control action on 

manipulated inputs is extremely fast. 

5. RESULTS AND DISCUSSION 

From the nine factorial experiments, the values of model 

parameters were estimated and the results from preliminary 

parameter estimation are provided in Table 2. 

Table 2.  Parameter estimation from preliminary factorial 

experiments (Reference t-value: 2.068) 

Weighted residuals 7.6 

Reference 
2  

35.17 

Preliminary estimate  02.1,30.1,05.1,61.1  

t-values [
7 6 9 82.05 10 ,1.48 10 , 8.21 10 , 7.91 10       ] 

 

Since the experimental data was generated from the true 

model and because of no other uncertainties, with the 

factorial experiments, the chi-square test was passed and the 

preliminary values of model parameters were obtained. At the 

preliminary parameter estimate, standard MBDoE procedure 

was carried out to design the set of five experiments for 

improving parameter precision. In the design of experiments, 

the design space was extended from the initial levels 

assumed. The parameter estimates and the statistical quality 

of the estimates in terms of t-values are given in Table 3. 

With this approach, only two of the four parameters were 

estimated within the 95 % confidence region chosen.  

Table 3.  Parameter estimation from standard MBDoE 

approach for designing five steady state experiments 

(Reference t-value: 2.02, Asterisk denotes t-values failing the 

test) 

Estimate t-values 

1θ̂  2θ̂  3θ̂  4θ̂  1θ  2θ  3θ  4θ  

1.43 1.04 1.21 1.02 1.22* 9.35 0.79* 7.07 

The results of parameter estimation and posterior statistics 

from designing five experiments, one at a time (offline 

redesign approach) are shown in Table 4. With this approach, 

the statistical quality of the estimates was greatly improved, 

even if not significantly after the second experiment. The 

estimated values of model parameters were close to the 

known true value (unity for all parameters). 

Table 4.  Parameter estimation from offline optimal redesign 

of steady state experiments (Reference t-value: 2.07, Asterisk 

denotes t-values failing the test) 

Exp. 
No. 

Estimate t-values 

1θ̂  2θ̂  3θ̂  4θ̂  1θ  2θ  3θ  4θ  

1 1.25 1.02 1.29 1.02 1.92* 16.05 0.86* 6.49 

2 1.06 1.01 1.34 1.03 3.45 30.31 1.51* 9.56 

3 0.97 0.99 1.17 1.01 3.16 29.91 1.35* 9.62 

4 1.02 1.00 1.16 1.01 3.25 30.09 1.58* 10.74 

5 0.97 0.99 1.02 1.00 3.29 31.61 1.54* 11.31 

 

The results of parameter estimation in the online redesign 

approach (OMBRE) is provided in Table 5. No significant 

difference was observed in comparison with the offline 

redesign approach with respect to the precision of parameter 

estimation. This is also evident from the value of D-optimal 

objective function achieved at the end of the three 

experimental campaigns given in Table 6. The standard 

MBDoE as well as offline and online redesign of experiments 

implemented in Python were computationally very fast and 

consumed a total CPU time of approximately 20 seconds on 

an Intel


 Xenon


 E5-1650, 3.5 GHz, RAM 32 GB. It shall be 

noted that in a real time implementation, the time required to 

complete the experimental design procedure using the online 

redesign approach will be much smaller compared to that in 

the offline approach. If, for example, the residence time and 

analysis time are assumed as constant and respectively equal 

to thrice and twice the residence time, and assuming an 

analysis time of 15 minutes, the design of five experiments 

by online redesign saves 4 = 3600 seconds compared to the 

time required by a conventional offline redesign approach. 

Based on the online redesign procedure illustrated in Figure 

2b, the general expression for the time savings nt  achieved in 

the online redesign approach compared to offline redesign 

approach for designing n steady state experiments is given 

by  1 ntn . Thus the time savings is extremely large in 

cases of prolonged analysis time  . The overall estimated 

time with the three experiment design approaches is given in 

Table 6 together with the value of the D-optimal design 

criterion. The online redesign approach is more effective on 

reducing the uncertainty region of model parameters, and 

allows at the same time to drastically decrease the required 

experimental time. It is assumed that the computational time 

is very small and negligible if compared to steady state time 

and analysis time and therefore the overall time for standard 

MBDoE and offline redesign becomes approximately the 

same. The experimental settings in terms of design vector for 

the three different experimental design approaches are 

illustrated in Figure 3. In all the three approaches, high 

temperature is identified as the final optimal design 

condition. Interestingly, whilst the redesign policies generate 

very similar trends for the design variables, a conventional 



 

 

     

 

MBDoE pushes towards the use of low flowrates as the 

optimal condition. It shall be also noted that in case of online 

redesign approach, there is an overlap of the designed 

experiments for the last two experiments. 

Table 5.  Parameter estimation from online optimal redesign 

of steady state experiments (Reference t-value: 2.07, Asterisk 

denotes t-values failing the test) 

Exp. 

No. 

Estimate t-values 

1θ̂  2θ̂  3θ̂  4θ̂  1θ  2θ  3θ  4θ  

1 1.44 1.04 0.99 0.99 1.82* 15.24 0.21* 2.83 

2 1.48 1.04 1.06 1.00 4.37 29.97 1.23* 9.46 

3 1.39 1.03 1.12 1.01 4.23 30.25 1.29* 9.54 

4 1.15 1.01 1.13 1.01 3.72 30.74 1.31* 9.61 

5 1.03 1.00 1.04 1.00 3.49 31.79 1.49* 11.23 

 

Table 6.  Value of D-optimal design criterion and overall 

estimated experimental time after designing five steady state 

experiments using the three proposed approaches 

Design type Standard MBDoE Offline redesign Online redesign 

D-optimal 

value 

121024.2   
131038.2   

131015.3   

Total time 55   55   5  
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Figure 3. Profile of experimental design variables for the 

three approaches for designing five steady state experiments. 

Each point in the profile denotes an experiment. 

6. CONCLUSIONS 

An online redesign strategy was implemented for designing 

optimal experimental conditions in a continuous flow reactor. 

The strategy was compared with the conventional MBDoE 

procedure and with the offline redesign of experiments. The 

simulation study demonstrates the advantage of substantial 

savings in time along with the precise estimation of 

parameters in the online model-based redesign of 

experiments techniques applied to steady state experiments. 

Compared to an offline model-based redesign approach, the 

same precision of parameter estimation was achieved with 

the newly proposed online model-based redesign approach, 

but with a substantial time saving, equivalent to four times 

the analysis time. In the real time implementation of online 

model-based redesign of steady state experiments it is 

important to consider the time delays along with the 

information content for the optimal design of steady state 

experiments in order to minimise the time and material use 

for the identification of reliable kinetic models. 
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