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Abstract. Accurate registration of images depicting respiratory mo-
tion, e.g. 4DCT or 4DMR, can be challenging due to sliding motion
that occurs between the chest wall and organs within the pleural sac
(lungs, mediastinum, liver). In this paper we propose a methodology
that (1) segments one of the images to be registered (the source or float-
ing/moving image) into two distinct regions by fitting a statistical motion
mask, and (2) registers the image with a modified B-spline registration
algorithm that can account for sliding motion between the regions. This
registration requires the segmentation of the regions in the source image
domain as a signed distance map. Two underlying transformations al-
low the regions to deform independently, while a constraint term based
on the transformed distance maps penalises gaps and overlaps between
the regions. Although implemented in a B-spline algorithm, the required
modifications are not specific to the transformation type and thus can
be applied to parametric and non-parametric frameworks alike. The reg-
istration accuracy is evaluated using the landmark registration error on
the basis of the publicly available DIR-Lab dataset. The overall average
landmark error after registration is 1.21mm and the average gap and
overlap volumes are 26.4cm3 and 34.5cm3 respectively. The fitted statis-
tical motion masks are compared to previously proposed motion masks
and the corresponding mean Dice coefficient is 0.96.

Keywords: sliding motion, B-Spline registration, statistical shape model,
motion mask

1 Introduction

Registration of images which contain anatomical regions that slide along each
other is an ongoing research topic. The major challenge is that registration is an
ill-posed problem and thus requires some regularisation which usually constrains
the transformation to be smooth. This smoothness assumption however is not
true across a sliding interface where discontinuities in the transformation are
present. A prominent example where sliding occurs is respiratory motion of the
lung along the chest wall, facilitated by the pleural sac that encloses not only the
lungs and heart, but also liver and further lower abdominal organs. As a result,
registration of images of the thorax depicting respiratory motion is challenging.
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Several registration methods for handling sliding motion have been proposed
in the literature [1, 5, 7, 10, 13, 14]. Most of these methods require a segmentation
of the sliding regions either in the target image or in both target and source
image. But for applications such as contour propagation in radiotherapy, it is
preferable to segment the source image where the contours have been defined.
Furthermore, for combined motion modelling and motion compensated image
reconstruction from partial image data [8] it is essential to segment the source
image as the target ‘images’ may be partial image data (e.g. individual slices,
projections) which can be very challenging or impossible to accurately segment.
Some methods do not require a prior segmentation in either image, but use a
regularisation term that permits sliding motion [13]. While such methods are
appealing, there is a possibility they may not correctly represent the sliding
motion in areas of homogeneous intensities, for instance where the liver meets
the chest wall. Furthermore, they do not model a true discontinuous motion,
but approximate the sliding as a shear motion. However, it is acknowledged
that while the discontinuous motion is more realistic, in practice this may not
be important. Therefore, for some applications such as motion modelling from
partial image data or radiotherapy dose accumulation, it may be desirable to
explicitly specify where the sliding motion should occur, especially if parts of
the sliding interface are not easily identifiable in the images. To the best of our
knowledge, none of the published methods that require a segmentation allows
the sliding regions to be specified only in the source image domain.

Identification of the sliding regions in CT images was proposed by Vande-
meulebroucke et al. [12]. Their motion mask includes the lungs and other inferior
organs that slide together and is thus anatomically more plausible than just a
lung segmentation. However, this motion mask generation is designed specifi-
cally for CT images as it utilises features that can be relatively easily segmented
from such images, namely lungs, thorax, and bones. Moreover, application of
our implementation of this method proved to be time consuming because, (1)
level-set evolutions are computationally expensive and (2) we did not find a sin-
gle set of parameters that worked across all patients. Some manual corrections
of the bony structures were also required where pacemakers or high intensity
abdominal regions were present and morphologically connected to the bones.

The purpose of this paper is therefore twofold. In section 2.1 we propose a
motion mask generation on the basis of a statistical shape model [4] being fit
to the source image. A resulting signed distance map where the zero-crossing
identifies the interface of sliding image regions is then utilised by our sliding B-
spline registration. The sliding framework is presented in section 2.2. The results
are quantitatively evaluated on the publicly available DIR-Lab dataset [2, 3].

2 Material and methods

2.1 Statistical motion masks

The motion mask generation by Vandemeulebroucke et al. [12] uses a sequence
of level-set evolutions that are controlled by three CT-based feature images,
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Fig. 1. Flow chart for the generation of the statistical motion mask. (1.) Average 4DCT
images (avg.) are generated by intra-patient group-wise registration of the different
phases (T00-T90). (2.) From these average images features are extracted and motion
masks are calculated for each subject. (3.) Inter-subject group-wise registration of
average 4DCT images and (4.) application of the transformations to the mask to create
a population average motion mask. (5.) A surface mesh is generated from the average
motion mask image. (6./7.) The surface mesh is transformed back to the individual
images. (8.) The deformations are captured in a statistical motion mask.

namely lungs, thorax, and bones. This method produces suitable motion masks
from CT images, but cannot be used with MR images (which we intend to
apply our method to in the future), and can be time consuming. Therefore, we
build a statistical shape model of the motion masks from a large number of
4DCT images, that captures the inter-patient variation in the motion masks.
This statistical shape model can then be used to segment a new image more
rapidly than the original method, and can potentially be used on MR images.
This shape model is fitted to directional intensity gradients which are present
in both CT and MR images, such as the low-to-high intensity contrast between
lung and surrounding tissue or the high-to-low contrast between thorax and air.

The generation of the statistical motion mask comprises of the following steps
and is summarised in figure 1:

1. Calculate intra-subject average 4DCT image by group-wise registration,

2. Generate motion mask based on average 4DCT images according to [12],

3. Inter-patient group-wise registration of average 4DCT images,

4. Use registration results to form the population-average motion mask image,

5. Convert population-average motion mask image into mesh representation,

6. Use registration results to transform motion mask mesh to each subject

7. Refine mesh to better match individual motion mask images [6],

8. Statistical motion mask calculation [4].
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A prerequisite for building a statistical shape model is the point-to-point cor-
respondence between individual motion mask meshes (7.) [4]. This is why one
population-average motion mask mesh is generated (5.) and then transformed
back to each subject (6./7.), rather than simply generating the meshes from
each individual motion mask image. As the transformed mesh does not perfectly
match the individual motion mask images due to registration errors, the mesh is
refined by a surface alignment algorithm [6] where the transformed average mesh
is iteratively deformed towards a target surface, in this case the motion masks
calculated in (2.). The final statistical shape model is formed by applying PCA
on the refined mesh coordinates, and comprises the average shape and eigenvec-
tors/principal components that define the modes of variation of the shape.

Once the statistical motion mask exists, an appearance representation in the
form of intensity gradients is calculated along the mesh normals determining
for each node if positive, negative or mixed intensity gradients dominate. Such
gradients are measured in the direction of the outward facing mesh normals
on the average 4DCT images. Only those nodes that have a clear positive or
negative intensity gradient across all subjects will be used during mask fitting.

To fit the statistical motion mask to an image, i.e. finding the weights for
each mode of variation and a global rigid transformation, we follow the iterative
multi-scale process by Cootes et al. [4], but make the shape model lock onto
either positive or negative image gradients as identified above.

Due to the shape of the motion mask, the positioning and extent in the
inferior part of the mask is not well constrained. To improve the SI-scaling of the
mask, we also include the lung-diaphragm boundary as two additional surfaces
to the statistical motion mask. These surfaces also lock on the directional image
gradients in the diaphragm region. This improves the scaling of the fitted mask
in the SI-direction. For our application we also want the mask to extend below
the image boundaries. Hence during the mask fitting the most inferior nodes
of the statistical model are displaced inferiorly until they are below the image
boundary (c.f. figure 4(b)).

2.2 Sliding registration framework

The proposed sliding framework uses two separate transformations for the two
regions involved, region A and region B. This facilitates independent motion
and thus the desired deformation discontinuity at the regions’ interface. The
corresponding transformations are denoted as TA(x) and TB(x). The method
also requires a signed distance map D(x) which defines the two regions, and can
be pre-calculated based on the fitted statistical motion mask. Let region A be
identified by negative values D < 0 and region B by positive values D ≥ 0.

In order to calculate the deformed image it is necessary to determine which
of the two transformations to use for each voxel in the target image. This is done
by deforming the distance map with both transformations, DA(x) = D(TA(x))
and DB(x) = D(TB(x)), and summing the resulting deformed distance maps,
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Fig. 2. Schematic of transformed distance maps DA and DB , their sum DA+B and
product DAB as they are used in the sliding registration approach. The green overlay
depicts region A after transformation with TA and the yellow overlay shows region B
after TB . The grey line (bottom left) indicates the boundary where the transformation
switches from TA to TB and negative values of DAB indicate gaps and overlaps.

DA+B = DA + DB . Then

T(x) =

{
TA(x) for DA+B(x) < 0

TB(x) otherwise
. (1)

The independent motion of the two regions can result in gaps between or
overlap of the two regions. The above approach for determining which transfor-
mation should be used at each voxel means that the transition between using
TA and TB will occur in the middle of any gaps and overlaps (see figure 2).
However, even with this approach the gaps and overlaps will still lead to a vi-
olation of a one-to-one mapping between the images. Therefore, a gap-overlap
constraint (GOCT) term is introduced, which is based on the product of the
deformed distance maps DAB = DADB , and penalises any gaps and overlaps
that occur (see figure 2). This term is non-zero only at positions where gaps and
overlaps occur.

CGOCT(x) =

{
−DAB(x) for DAB(x) < 0

0 otherwise
(2)

The total value of the constraint term is then calculated as the sum of CGOCT

over all voxels normalised by the number of voxels.
The transformations are both optimised simultaneously by calculating the

gradient of the cost function (i.e. sum of similarity metric(s), CGOCT, and other
constraint terms) with respect to each of the individual transformations. When
calculating the gradient of the similarity metric(s) with respect to TA, only
the voxels that are transformed by TA (i.e. DA+B < 0) contribute towards the
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gradient calculation. And likewise, only voxels transformed by TB contribute
towards the gradient with respect to TB . The gradient of CGOCT with respect
to TA is given by

∂CGOCT(x)

∂TA(x)
=

{
−DB(x)∂DA(x)

∂TA(x) for DA(x)DB(x) < 0

0 otherwise
, (3)

where ∂DA(x)/∂TA(x) is the spatial gradient of the distance map warped by the
deformation field for region A. The gradients of any other constraint terms are
calculated for each transformation separately, in exactly the same way as they
would be for a standard (non-sliding) registration.

The sliding framework was used to modify NiftyReg, an open source B-spline
registration software [9].

2.3 Image and landmark data

To build the statistical motion masks, 4DCT datasets from 32 subjects were used,
each comprising of 10 respiratory phases. The first ten image sets were taken
from the publicly available DIR-Lab dataset [2, 3]. The remaining datasets were
acquired as part of standard clinical practice from patients with either early-
stage (14 cases) or locally-advanced (8 cases) non-small cell lung cancer.

The DIR-Lab dataset also contains 300 manually selected corresponding
landmarks in the end-exhale and end-inhale phases. These were used to quantify
the registration accuracy in terms of a landmark registration error (LME). Note
that most of the LME values given on the DIR-Lab website have been calcu-
lated using the ‘snap-to-voxel’ approach [3], so for comparability reasons we also
follow the same approach here.

3 Results

3.1 Statistical motion mask fitting accuracy

The fitting accuracy of the statistical motion mask with respect to the number
of modes included in the model was evaluated against the level-set based mo-
tion mask in terms of the Dice coefficient and mean contour distance by using
a leave-one-out evaluation strategy. To evaluate the dependency of the fitting
accuracy on the number of modes of variation (i.e. number of eigenvectors of
the statistical shape model), the fitting was performed in a multi-scale fashion
with three resolution levels corresponding to intensity sampling distances along
the mesh normal of 4mm, 2mm, and 1mm and 200 iterations per level. The
results are shown as box-plots in figure 3. The highest mean Dice coefficient
of 0.96 ± 0.02 was achieved with 20 modes, whereas the lowest mean contour
distance of 3.67± 2.00mm was achieved with 25 modes.

Furthermore the variation covered by the shape model as a function of the
number of modes is given in figure 4(a). For a coverage of 95% of the variation
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Fig. 3. Motion mask fitting accuracy in terms of the Dice coefficient (a) and mean
contour distance (b). Red line represents the median value, the box extends from
the first and the third quartile, and the whiskers extend the box by 1.5 times the
interquartile range.
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Fig. 4. (a) Cumulative, relative variation described by statistical shape model as a
function of the number of modes of variation, i, used in the 32 leave-one-out models.
For each model a grey curve is plotted and the average over all models is shown in
black. (b) Level-set based motion mask (red) and statistical motion mask (white line)
fitted to case 1 of the DIR-Lab dataset.
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Fig. 5. Mean landmark errors (LME) over all 10 DIR-lab datasets and all landmarks
after registration with respect to the control point spacing sx. For the sliding registra-
tion results, (b), errors are given for several gap-overlap-constraint weights, wgo. All
values are given in mm.

observed in the dataset 16 modes are required, and for 98% coverage 23 modes.
After considering the Dice coefficient results, the mean contour distance results,
and the percentage of variation covered, it was decided to use 23 modes for all
the following experiments. An example result for this fitting configuration for the
first case of the DIR-Lab dataset is shown in figure 4(b) along with the level-set
based result.

3.2 Registration accuracy

The registration accuracy was quantified using the DIR-Lab datasets as follows:
The source image was selected to be the end-exhale image and the statistical mo-
tion mask (built leaving out the current dataset) was fitted in the same fashion as
described in section 3.1 using 23 modes of variation. A signed distance map was
calculated from that motion mask and used as input into the sliding registration.
In order to keep the number of parameters for the registration to a minimum,
no other constraint terms were used. Different B-spline control point spacings
(sx = [5, 10, . . . , 30]mm) and CGOCT weights (wgo = [0.8, 0.85, 0.9, 0.95]) were
investigated. For comparison, standard, i.e. non-sliding, B-spline registrations
with the same control-point spacings and no additional constraint terms were
performed and evaluated. For all registrations Local Normalised Cross Correla-
tion (LNCC) was used as the similarity measure.

The landmark errors after alignment with the standard B-spline registration
are shown in figure 5(a). Here the lowest average LME is 2.09mm and results
from a control-pont spacing of sx = 5mm. The LME increases for coarser control-
point grids.

The results for the sliding registration are shown in figure 5(b). The lowest
average LME of 1.21mm is achieved for a gap/overlap constraint weight wgo =
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Fig. 6. Gap (a) and overlap (b) volumes in cubic centimetres with respect to the
corresponding constraint weight wgo for several control point spacings sx.

Table 1. Gap (Vgap) and overlap volumes (Voverlap) of segmentation-based methods as
reported in the literature [1, 5, 7, 14]. All values are given in cm3.

Wu 2008, Delmon 2013, Berendsen 2014, Hua 2017, our method

Vgap 88.2 80.0 76.5 94.0 26.4
Voverlap 52.5 55.1 37.4 18.8 34.5

Vgap ∪ Voverlap 130.7 135.1 113.9 112.8 60.9

0.8 and a control-point spacing of sx = 20mm. However, results with this spacing
and wgo = [0.8, 0.85, 0.9] are very close together and below 1.34mm. Compared
with other methods, our resulting average landmark registration error is lower
than those reported for instance by Papiez et al. [10] (1.95mm), Wu et al. [14]
(1.47mm), Delmon et al. [5] (1.66mm), and Berendsen et al. [1] (1.36mm); but
slightly larger the one reported by Hua et al. [7] (1.17mm) or Vishnevskiy et
al. [13] (0.95mm). A comprehensive list of landmark errors achieved by various
algorithms is published on the DIR-Lab website [11].

Figure 6 shows the average gap and overlap volumes given in cubic centime-
tres as a function of the gap/overlap constraint weight for all tested control-point
spacings. Gap and overlap volumes decrease towards higher constraint weights
and smaller control point spacings. For the configuration that produces the low-
est LME, the average gap and overlap volumes are 26.4cm3 and 34.5cm3 respec-
tively. For comparison, gap, overlap and their combined volumes as reported
by [1, 5, 7, 14] for segmentation-based methods on the same DIR-Lab dataset are
shown in table 1.
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4 Discussion and conclusion

In this paper we present a method to register images which contain regions
that slide along each other, and demonstrating this on 4DCTs of the thorax.
To achieve this source images are segmented into sliding regions by fitting a
statistical motion mask which encompasses the lungs, heart and further inferior
organs. This segmentation is used as an additional input for a modified B-spline
registration. The modification implements a sliding framework that allows for
using different transformation types and/or other constraint terms for each re-
gion. Defining the sliding regions in the source image domain can be beneficial
for applications such as contour propagation for radiotherapy, and is required for
motion modelling, and motion compensated image reconstruction from partial
image data [8].

The statistical motion mask fitting is an extension of the work of Vandemeule-
broucke et al. [12] who calculate a motion mask on the basis of image features
that are extracted from CT images and multiple level-set evolution steps. This
procedure is computationally expensive and is only applicable to CT images.
The statistical motion mask can be fitted relatively fast and the method is de-
signed to be applicable to MR as well as CT images. However, a quantitative
evaluation on MR images will be subject of future work.

The sliding registration requires the segmentation of the two regions in the
form of a signed distance map that can be pre-calculated. Each region is associ-
ated with a separate transformation which allows the regions to move indepen-
dently from each other. A new constraint term has been used to help prevent
gaps and overlaps occurring between the two regions, and hence maintain a
one-to-one mapping between the images.

The proposed registration method achieved an average registration accuracy
of 1.21mm. These errors are based on manually identified correspondences and
thus are subject to inter- and intra-observer errors which range between 0.70mm
and 1.13mm [2]. This poses a lower limit on the measurable accuracy. While the
DIR-Lab dataset provides an excellent tool for algorithm comparison, tests of
statistical significance of algorithm performances however are not possible with-
out gaining access to the full landmark error distributions for all algorithms be-
ing compared. Furthermore our method outperformed other segmentation based
methods in terms of combined gap and overlap volumes. The reduction in gap
and overlap volumes could be important for applications such as radiotherapy
dose accumulation, but further work is required to demonstrate this.

One limitation of our method is that currently only two regions can be
handled. Nevertheless, from our experiments this is sufficient for registrations
of the respiratory motion in the thorax.
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