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Abstract  33 

Transcriptional profiles are increasingly used to investigate the severity, subtype and pathogenesis 34 

of disease. We now describe whole blood RNA signatures and local and systemic immune mediator 35 

levels in a large cohort of adults hospitalised with influenza from which extensive clinical and 36 

investigational data was obtained. Signatures reflecting interferon-related antiviral pathways were 37 

common up to day 4 of symptoms in cases not requiring mechanical ventilatory support; in those 38 

needing mechanical ventilation, an inflammatory, activated neutrophil and cell stress/death 39 

(‘bacterial’) pattern was seen, even early after disease onset. Identifiable bacterial co-infection was 40 

not necessary for this ‘bacterial’ signature but could enhance its development while attenuating the 41 

early ‘viral’ signature. Our findings emphasise the importance of timing and severity in the 42 

interpretation of transcriptomic profiles and soluble mediator levels, and identify specific patterns of 43 

immune activation that may enable the development of novel diagnostics and therapeutics.  44 

  45 
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Influenza viruses present a continuous threat to global health, mutating and spreading within and 46 

between species. It is estimated that one billion cases of human influenza occur worldwide each 47 

year, causing 3-5 million cases of severe illness and 300,000 to 500,000 deaths1. While most deaths 48 

and illnesses are attributable to seasonal influenza, pandemics caused by novel viruses regularly 49 

pose an unpredictable challenge to public health. 50 

Infection with pandemic 2009 H1N1 influenza A virus (pH1N1) resulted in generally mild disease2, 51 

but still caused an estimated 250,000 – 500,000 additional deaths during the first 12 months of 52 

global circulation3. Whereas seasonal influenza commonly causes severe disease in the old and 53 

infirm, serious pH1N1 disease mostly occurred in infants and younger adults, presenting as viral 54 

pneumonia and sometimes complicated by multi-organ failure4, 5.  It has been suggested that severe 55 

influenza may in part result from an over-exuberant host reaction to infection (sometimes termed 56 

“cytokine storm”), but is also driven by a high viral load in affected persons6, 7, 8. Although analysis of 57 

transcriptional signatures and mediator levels has helped to clarify the pathogenesis of severe 58 

influenza, the relationship between severity, timing and complications of infection remains unclear. 59 

Previous studies of gene expression patterns in influenza have typically involved small numbers of 60 

individuals, healthy subjects undergoing experimental challenge or patients suffering from mild 61 

disease9, 10, 11, 12, 13, 14, 15. Transcriptomic analysis has also been used to study a variety of acute and 62 

chronic infections, including bacterial sepsis, dengue virus infection and tuberculosis16 and to 63 

examine differences and similarities between infectious and non-infectious inflammatory disorders, 64 

such as systemic lupus erythematosus17. 65 

To further elucidate influenza pathogenesis, the Mechanisms of Severe Acute Influenza Consortium 66 

(MOSAIC) recruited 255 hospitalised patients with suspected influenza in England over two 67 

consecutive seasons (2009/10 and 2010/11). By analysing biological samples taken at multiple time-68 

points and correlating this with extensive clinical data, MOSAIC aimed to define the contributions 69 

made by influenza virus sequence variation, co-pathogens (non-influenza viruses and bacteria) and 70 

host factors (genetic and transcriptional differences, soluble mediator responses and cellular 71 

immune responses) to disease pathogenesis. Sample analysis resulted in a cumulative total of 2.1 x 72 

107 data items on this population, a dataset that we now describe in outline and provide as a 73 

resource. To date, MOSAIC has reported enrichment for a host genetic variant, the interferon-74 

inducible transmembrane protein 3 (IFITM3) allele SNP rs12252-C in some hospitalised patients with 75 

influenza18, and that viral sequence changes that accumulate over time may contribute to the 76 

variation in disease severity19, 20, 21, 22. The exceptional size and depth of the MOSAIC study provides a 77 

unique database to allow these complex issues to be resolved.  78 
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In the present study, we used whole blood transcriptional RNA analysis and data from soluble 79 

immune mediator (cytokines and chemokine) measurements from mucosal fluids and serum to 80 

define associations between individual responses to infection and clinical and laboratory findings in 81 

hospitalised adults with influenza. The richness of clinical and ancillary data in the MOSAIC study 82 

allowed us to examine the extent to which specific patterns of inflammation arise from progression 83 

of antiviral and inflammatory responses induced simply by viral infection, or whether they reflect a 84 

response to pathogenic or commensal bacteria. We found that transcriptomic signatures and 85 

mediator levels are strongly associated with both severity and duration of illness, indicating a phased 86 

and graded activation of interferon-related and inflammatory genes. Clinically-evident bacterial co-87 

infection influenced the pattern of gene expression, but effects were superimposed on patterns 88 

governed by the duration and severity of influenza. 89 

 90 

Results 91 

Influenza is characterized by an overabundance of interferon and inflammation-related transcripts 92 

Principal Component Analysis (PCA) of the 18,974 most abundant transcripts from whole blood RNA 93 

at enrolment (T1) showed that influenza patients from the 2010/11 season (n=109) formed a distinct 94 

cluster that was clearly differentiated from matched healthy controls (n=130). PCA indicated no 95 

discernible difference between patients with influenza caused by diverse influenza A or influenza B 96 

viruses (Fig. 1a).  97 

Microarray profiles of whole blood RNA from the first and second acute illness sampling time-points 98 

(T1 vs. T2) were indistinguishable except in that they reflected different times after symptom onset 99 

(see below). Results from samples from the final time-point (T3, at least 4 weeks after T1) were 100 

similar to those from healthy controls in cases that were clinically resolved, but were highly 101 

abnormal in patients who remained unwell and in hospital (data not shown). Since T3 samples were 102 

highly diverse, they are not described further in the present report.   103 

Modular analysis23 of the 2010/11 samples revealed a marked overabundance of transcripts within 104 

the interferon-inducible (M3.1) and neutrophil (M2.2) genes relative to healthy controls (Fig. 1b). 105 

Transcripts representing plasma cells (M1.1), a subset of myeloid lineage genes (M2.6) and two 106 

inflammation modules (M3.2 and M3.3) were also increased. There was a decrease in expression of 107 

T- (M2.8) and B-cell (M1.3) modules (Fig. 1b). The calculated index termed ‘molecular distance to 108 

health’ (MDTH, derived from analysis of 4526 transcripts significantly detected from background 109 

filtered for low expression24) was increased in most cases of influenza compared to healthy controls 110 
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(P < 0.0001; Fig. 1c), although this varied according to the disease stage and severity (see below). In 111 

the 2010/11 cohort, a combination of expression-level and statistical filtering identified 1255 112 

differentially-expressed transcripts compared to healthy controls. Supervised hierarchical clustering 113 

of these transcripts (expressed as a heat-map) revealed transcripts that were relatively over- or 114 

under-expressed in influenza patients, relative to healthy controls (Fig. 1d). When the 1255 115 

transcript signature from the 2010/11 cohort was applied to the 2009/10 cohort (22 influenza 116 

patients and 25 matched healthy controls), the 2009/10 profiles appeared to be the same as the 117 

2010/11 profiles (Supplementary Fig. 1a), indicating that viral variation between the two seasons22 118 

did not appreciably affect transcriptomic patterns. 119 

Ingenuity Pathway Analysis (IPA) identified the top five canonical pathways associated with up-120 

regulated and down-regulated transcripts (P < 0.05, Fisher’s Exact Test; Fig. 1d). Transcripts that 121 

were up-regulated in influenza patients were associated with ‘interferon signalling genes’ (including 122 

IFITM1, IFI35, IFIT1, OAS1, IFIT3 and IFI35; Fig. 1e), ‘activation of pattern recognition receptors by 123 

bacteria and/or viruses’, ‘activation of IRF by cytosolic pattern recognition receptors’, ‘hepatic 124 

fibrosis/hepatic stellate cell activation’, and ‘IL-6 signalling’.  Transcripts that were down-regulated in 125 

influenza patients were those associated with ‘iCOS-ICOSL signalling in T helper cells’, ‘primary 126 

immunodeficiency signalling’, ‘role of NFAT in regulation of the immune response’, ‘OX40 signalling 127 

pathway’, and ‘T cell receptor signalling’ (Fig. 1d).  128 

Heterogeneity in gene expression of the 25 most significant transcripts in hospitalised adults with 129 

influenza 130 

The heat-map generated by hierarchical clustering of the top 25 most significant transcripts in the 131 

2010/11 influenza patients (identified by mean fold-change over healthy controls) showed that the 132 

influenza cases clustered into two major groups, albeit with two further sub-clusters (Fig. 1f). The 133 

transcripts for the IFN-stimulated gene IFI27 were over-expressed in almost all influenza patients, 134 

but most also showed decreased FCER1A transcription. Independent analysis of the same 25 135 

transcripts applied to data from the 2009/10 comparison cohort showed similar clustering effects 136 

(Supplementary Fig. 1b). Patients with type I interferon-induced gene activation typically did not 137 

express neutrophil-associated and bacterial response-associated transcripts, and those samples with 138 

an overabundance of neutrophil-associated and bacterial response-associated transcripts (e.g. 139 

DEFA4, ELANE, MMP-8) did not simultaneously show consistent overabundance of antiviral 140 

response-associated transcripts (e.g. RSAD2, IFI6, IFI44L); these patterns were generally mutually 141 

exclusive (Fig. 1f and Supplementary Fig. 1b). 142 
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Modular transcriptional analysis and disease severity  143 

To investigate whether severity of illness might explain the sub-clustering of the transcriptional 144 

responses seen in influenza patients and the heterogeneity of influenza transcriptional responses 145 

suggested by data presented in Figure 1f, 2010/11 cases were grouped according to their severity of 146 

illness at the first sampling time point (T1) using a three-point severity score based on treatment 147 

decisions in relation to the presence and severity of respiratory failure (severity 1: no supplemental 148 

oxygen requirement; 2: oxygen by mask; 3: mechanical ventilation). Relative to healthy controls, a 149 

similar increase in mean MDTH was seen in patients with severity 1 and 2 illness, but a greater 150 

increase was seen in severity 3 patients (4526 transcripts; Fig. 2a). Using modular analysis23, we 151 

noted an over-abundance of plasma cell (M1.1), neutrophil activation (M2.2), and myeloid lineage 152 

(M2.6) transcripts in influenza-infected patients that was most marked in those with the greatest 153 

severity. Severity 3 cases also showed the greatest abundance of transcripts in the inflammation 154 

modules M3.2 and M3.3. By contrast, increased abundance of interferon-related transcripts (M3.1) 155 

was most clearly evident in cases with severity 1 or 2, but was less evident in patients with severity 3 156 

disease (Fig. 2b).  157 

Relationship between GO Term clusters and severity of illness  158 

Semi-supervised hierarchical clustering of 231 differentially expressed transcripts was performed 159 

and results were expressed as a heat-map (with transcripts retained if there was greater than two-160 

fold change between severity 3 and severity 1 and 2; Fig. 3a). This heat-map suggested that severity 161 

1 and 2 patients had similar over- and under-abundance patterns, and there was marked over-162 

abundance of transcripts associated with ‘response to virus’ identified by GO Terms analysis 163 

(Supplementary Table 1). By contrast, severity 3 patients had less marked abundance of ‘response to 164 

virus’ transcripts, but much more marked over-abundance of ‘response to bacterium’ transcripts 165 

that are often associated with (but not exclusive to) bacterial infection (Supplementary Table 2), as 166 

compared to patients with severity 1 or severity 2 illness. Additionally, patients with severity 3 illness 167 

demonstrated greater under-abundance of transcripts associated with ‘cellular defence response’, 168 

relative to patients with severity 1 or severity 2 illness.  169 

The same 231 transcript list was tested by hierarchical clustering analysis of the 2009/10 comparison 170 

cohort (Supplementary Fig. 1c). Influenza patients within the cluster were characterised again by an 171 

over-abundance of transcripts associated with ‘response to virus’ by GO terms analysis, and these 172 

patients had either severity 1 or severity 2 illness. By contrast, the cluster of patients with over-173 

abundance of transcripts associated with ‘response to bacterium’ by GO terms analysis, but much 174 
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less marked abundance of transcripts associated with ‘response to virus’, included all three patients 175 

with severity 3 illness (Supplementary Fig. 1c). 176 

A molecular score was calculated for each individual for the 51 ‘response to virus’ and the 112 177 

‘response to bacterium’ transcripts identified by GO Terms analysis across the 2010/11 influenza 178 

patients of different severities at the first time of sampling (T1 only; n=109; Fig. 3b; Supplementary 179 

Tables 1 and 2 respectively). Influenza patients with high ‘viral’ molecular scores (> 500) were 180 

exclusively from the severity 1 and severity 2 groups. The majority of patients with high ‘bacterial’ 181 

scores (> 500) had severity 3 illness, and these patients had low ‘viral’ scores, in keeping with the 182 

modular analysis. A small minority of severity 1 and 2 patients had relatively low ‘viral’ molecular 183 

scores with moderately high ‘bacterial’ molecular scores. Six patients with known bacteraemia were 184 

included in the analysis but removal of cases with known bacterial co-infection did not influence the 185 

appearance of the ‘bacterial’ molecular signature (data not shown).  A similar effect was observed in 186 

the influenza patients from 2009/10 (Supplementary Fig. 1d). 187 

 188 

Reciprocal expression of activated and repressed biofunctions of identified genes was observed in 189 

severity 3 patients, compared to severity 1 and 2 patients combined (Fig. 3c, 3d). Nine genes 190 

associated with neutrophil activation were shown to be upregulated, including the genes MPO, 191 

DEFA1, and ELANE. Additionally, three genes associated with activation of leukocyte influx were 192 

upregulated in severity 3 patients: MPO, MMP9 and LCN2 (Fig. 3c). The associated repressed 193 

biofunctions in severity 3 patients were ‘activation of cytotoxic T cells’, ‘adhesion of immune cells’ 194 

and ‘quantity of leukocytes’ (Fig. 3d).  195 

 196 

Effect of illness duration on molecular signatures 197 

Patients with influenza symptoms of up to 4 days’ duration at the time of sampling typically had 198 

elevated ‘viral’ molecular scores, but not if they required mechanical ventilation (Severity 3); in such 199 

cases, the ‘viral’ score was low, even early in the disease (Fig. 4a). ‘Bacterial’ molecular scores were 200 

low in patients with severity 1 and 2 illness regardless of the time of sampling, whereas patients with 201 

severity 3 illness showed higher ‘bacterial’ molecular scores than patients with less severe disease, 202 

irrespective of illness duration (Fig. 4b). 203 

Focussing on influenza patients (2010/11 cohort) with repeat samples (T1 and T2; n=59) separated 204 

by 2-5 days, the ‘viral’ molecular score usually (but not always) decreased between T1 and T2 205 

(Supplementary Fig. 2a). In those cases where T2 samples were obtained 48 hours after T1 (n=41, 206 

2010/11 cohort), the reduction in ‘viral’ molecular score was statistically significant (P = 0.0002; 207 
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Supplementary Fig. 2b).  Changes in ‘bacterial’ molecular scores between T1 and T2 were much 208 

more heterogeneous than changes in ‘viral’ scores, irrespective of the actual timing of T2 sample 209 

collection in relation to T1 (Supplementary Fig. 2c, 2d).  210 

  211 

Effect of confirmed infection and treatment on transcriptomic signatures  212 

We next sought correlations between influenza viral load (estimated from the samples of mucus 213 

obtained from the nasopharyngeal space by suction catheter at T1 and T2, Supplementary Fig 2e) 214 

and the transcriptional ‘viral’ and ‘bacterial’ scores at T1 and T2. No association was found between 215 

viral load and the ‘viral’ transcriptomic score (Supplementary Fig. 2f, and additional data not 216 

depicted).  217 

To investigate whether bacterial infection is necessary for the observed activation of neutrophils and 218 

‘response to bacterium’ by GO terms analysis, we analysed a subgroup of influenza-infected patients 219 

that had been thoroughly investigated for bacterial infection by analysis of five sample types: T1 220 

nasopharyngeal aspirate (NPA) for PCR detection of bacterial pathogens; T1 NPA for culture; T1 221 

throat swab for culture; blood for culture; urine for pneumococcal antigen testing. To account for 222 

incomplete bacteriological sampling in some patients, we excluded 36/109 (33%) patients for whom 223 

two or more sample-types were not available for analysis. Of the remaining 73 patients, 39 (53%) 224 

had potentially pathogenic bacteria detected in at least one sample type, and 34 (47%) patients 225 

provided at least four out of five sample-types and did not have significant bacteria detected by 226 

review of all the data available to the clinical panel. All patients thus categorised as ‘bacteria not 227 

detected’ had provided NPA and throat swab samples; blood cultures were not obtained from 10 228 

patients and urine for pneumococcal antigen testing was not obtained from 11 patients. 229 

Comparing those cases of influenza in which significant bacterial infection was confirmed (Bac+) with 230 

those in whom no bacterial infection was found despite extensive investigation (Bac-), the average 231 

‘viral’ molecular score was lower in those with bacterial infection at all times up to day 12 after 232 

illness onset (Fig. 4c).  The average ‘bacterial’ score was greater in those with bacterial co-infection 233 

between day 3 and 14 (Fig. 4d), but the time-trends in either case showed a similar pattern 234 

regardless of the presence or absence of significant bacteria. Similar trends were observed when 235 

stricter exclusion criteria were applied to the subgroup analysis, excluding patients from the 236 

‘bacteria not detected’ group if they had not provided all five sample-types (data not shown); in this 237 

case, statistical analysis could not be performed due to the low sample size (only 13 patients 238 

provided all five sample types and did not have bacteria detected). 239 
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To investigate further whether bacterial infection drives the transcriptional response, serum (or 240 

plasma) levels of procalcitonin (PCT) were used as a possible discriminant of invasive bacterial 241 

infection25, 26, 27. Serum procalcitonin levels showed no relationship to ‘viral’ molecular score (Fig. 242 

4e), and there was no correlation between ‘viral’ molecular scores at T1 and T2 and PCT levels 243 

measured at respective time-points (data not shown). However, ‘bacterial’ molecular scores tended 244 

to be raised in those cases with the highest PCT levels (Pearson r = 0.44, P <0.001) regardless of the 245 

presence or absence of significant detectable bacteria (Fig. 4f).  246 

Therefore, the ‘viral’ molecular score was greatest early in disease, being lost after about 5 days. 247 

Even early in disease, cases needing mechanical ventilation had low ‘viral’ scores; this was especially 248 

true in those with bacterial co-infection. On the other hand, expression of ‘bacterial’ response genes 249 

is seen only in the most severe cases of influenza; bacterial infection enhances this signal, but the 250 

‘bacterial’ score was increased in those with influenza regardless of measurable bacterial co-251 

infection, especially if the disease had lasted over one week. Taken together, our data show that 252 

viral infection alone can induce the up-regulation of neutrophil-related genes, but induction of these 253 

genes is enhanced in severe disease or by detectable bacterial co-infection. 254 

We further examined the possible influence of treatment of bacterial infection on the observed 255 

‘viral’ and ‘bacterial’ responses, by stratifying T1 and T2 ‘bacterial’ and ‘viral’ scores in 2010/11 256 

influenza patients according to receipt of antibiotics. Almost all patients recruited to the MOSAIC 257 

study (92%; 234/255) were treated with antibiotics on clinical grounds at some time. Antibiotics 258 

prior to first sampling had no demonstrable effect on transcriptomic patterns (Supplementary Fig. 259 

3a). Comparing patients who were not given antibiotics (n=7) with those given sustained antibiotic 260 

treatment following T1 (n=24) or throughout illness (including when T1 and T2; n=27), there was no 261 

statistically significant effect of antibiotic administration on the ‘bacterial’ molecular scores 262 

(Supplementary Fig. 3b). We next examined the levels of the 16S rRNA gene (bacterial load) in the 263 

throat swab and NPA samples from cases that were classified as ‘viral and bacterial co-infection’ or 264 

‘viral infection, no bacterial infection’. The levels of the 16S rRNA gene were no different between 265 

these groups on throat swabs, but the NPA bacterial load was greater in those cases with confirmed 266 

bacterial co-infection (Supplementary Fig. 3c).  267 

Effect of illness duration, severity and bacterial co-infection on soluble mediators 268 

We next sought to validate the ‘bacterial’ and ‘viral’ transcriptional signatures observed in blood 269 

with and protein-level data  of mediators in the blood, NPA and anterior nasal fluid (SAM) at three 270 

time points (35 mediators, data available online).  271 
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 Serum levels of the pro-inflammatory cytokine IL-1β, which has limited anti-viral activity, showed no 272 

trend against severity (Fig. 5a), but was significantly increased in the NPA in those with the most 273 

severe influenza disease (Fig. 5b); nasal-absorption samples similarly showed an increase in IL-1β 274 

only in those with greatest severity (Fig. 5c). Serum IL-6 levels were raised in those with influenza 275 

and especially in those with most severe disease (Fig. 5d); in the NPA, IL-6 was undetectable in most 276 

of the healthy controls but increased in most of the cases of influenza and especially in those with 277 

severe disease (Fig. 5e). The levels of IL-6 in nasal-absorption samples paralleled those in serum and 278 

NPA (Fig. 5f). CXCL8 serum levels tended to be higher in cases of flu than in controls, again increasing 279 

with disease severity (Fig. 5g). CXCL8 levels in NPA samples were highly variable but increased 280 

alongside influenza severity (Fig. 5h); however many NPA and nasabsorption CXCL8 measurements 281 

were so high as to be unquantifiable without dilution, even in a proportion of healthy controls (Fig. 282 

5i). By contrast to these predominantly inflammatory/bacterially-driven mediators, IFNα2a, which 283 

was measurable only in a proportion of individuals, was raised in serum in milder (severity 1 or2) 284 

rather than severe (severity 3) disease (Fig. 5j). IFNα2a levels in NPA and nasal-absorption samples 285 

were similarly higher in some milder influenza cases, relative to severe cases, though such 286 

differences were not significant. (Fig. 5k, 5l). The analysis of inflammatory mediators generally 287 

supports the association in the transcriptomics data between severe disease at T1 and increased 288 

inflammatory/’bacterial’ markers, along with decreased ‘viral’ markers, in keeping with their known 289 

role in infection and disease pathogenesis7. 290 

 

Serum levels of IL-17 were increased with severity at T1 (Supplementary Fig. 4a) and were elevated 291 

in the BAL of eight patients in whom samples were available, relative to healthy controls 292 

(Supplementary Fig. 4b). By inter-relating transcriptomic findings with mediator levels, we found a 293 

significant positive correlation between serum IL-17 (a marker of bacterial inflammation, acting on 294 

stromal cells to drive production of antimicrobial peptides and neutrophil chemoattractants), and 295 

the bacterial MDTH (Supplementary Fig. 4c). A similar trend was seen between TNFα and MDTH 296 

(Supplementary Fig. 4d). Since ‘bacterial load’ (as measured as NPA 16S rRNA copy number) was 297 

raised in cases of significant bacterial infection (Supplementary Fig. 3c), we regressed this parameter 298 

against viral or bacterial MDTH. High levels of viral MDTH only occurred in those with low bacterial 299 

load in the NPA (Supplementary Fig. 4e). By contrast, high bacterial MDTH were seen only in those 300 

with raised 16S bacterial load in the NPA (Supplementary Fig. 4f).  These data supported a strong 301 

‘bacterial’ transcriptomic signature to be associated with a neutrophilic/anti-bacterial inflammatory 302 

response and higher respiratory tract bacterial load. This signature was in turn associated with 303 

severe influenza, or later disease time points. 304 
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Considering the importance of time in the transcriptomics data, we next accounted for symptom 305 

duration in this protein mediator data. CXCL10, IL-6 and CCL2 were elevated in serum from severe 306 

cases of influenza (especially between days 5 and 10: Fig. 6a, 6b and not depicted). Proven bacterial 307 

co-infection had no evident additional effect on CXCL10 (Fig. 6c), but serum IL-6 was more abundant 308 

not only in severe cases (even early in disease, Fig 6b) but especially in cases of bacterial co-infection 309 

(especially between days 5 and 10, Fig. 6d). In the NPA, most mediators (e.g. CXCL10, IL-6, CCL2 and 310 

CXCL8) were markedly increased in severe disease, especially after day 4 (e.g. Figs. 6e and 6f, and 311 

not depicted). NPA CXCL10 was again unaffected by confirmed bacterial disease (Fig. 6g) whereas 312 

levels of IL-6 (and CCL2 and CXCL8, data not shown) were particularly increased in patients with 313 

bacterial co-infection (Fig. 6h). In the anterior nasal fluid (SAM), mediator levels declined slowly with 314 

time even in less severe disease; CXCL10 was depressed by bacterial co-infection but IL-6, CCL2 and 315 

CXCL8 levels at this site were unaffected by severity or bacterial status (not depicted; data online).316 
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Discussion  317 
The MOSAIC study is exceptional in presenting data from a large number of exceptionally well-318 

characterised hospitalised patients with influenza, studied prospectively. We found that whole-319 

blood RNA expression profiles of patients hospitalised with influenza evolve over time and that the 320 

speed and scale of this evolution reflects severity. Patients with mild (or early) disease typically 321 

showed a pattern dominated by interferon-inducible genes and type 1 interferon, but this ‘viral 322 

response’ signature was replaced during severe (or late) disease by a pattern reflecting inflammation 323 

and neutrophil activation, more typically associated with the GO term ‘response to bacteria’. The 324 

‘viral’ response was rarely seen in patients beyond day 4 of symptoms; the inflammation/neutrophil 325 

activation signal dominated during the second week, but resolved during clinical recovery. In 326 

patients providing multiple samples during the first 3 days of illness, the ‘viral’ molecular score 327 

decreased rapidly between the first and subsequent sample, whereas the ‘bacterial’ score showed 328 

less consistent change.  329 

The decline in viral response and the dominance of inflammation and neutrophil activation seen in 330 

severe disease was enhanced by proven bacterial co-infection, but did not depend on it. However, 331 

the bacterial load in the nasopharynx (quantified by 16S copy number) needed to be low for a ‘viral’ 332 

signature to be high, and high for an inflammatory/cell activation response to be evident. This 333 

finding suggests an interaction between viral and bacterial sensing and response mechanisms. In 334 

terms of soluble protein mediators, serum and nasopharyngeal levels were generally highest in cases 335 

of severe disease, even during the early stages. Levels of inflammatory mediators (e.g. IL-1β and IL-6) 336 

were augmented in those with clinically significant bacterial co-infections. Interferon α levels tended 337 

to be low or undetectable in most compartments in those with very severe influenza, but interferon-338 

related mediators (e.g. CXCL10 in serum) were generally most abundant in severe cases.  339 

We were unable to show any qualitative difference in the response to different infecting viruses (e.g. 340 

influenza virus A vs. B). From previous studies, it seems that viral load does, in part, drive disease 341 

severity in patients infected with highly pathogenic strains of influenza6, 7, 8, but we were unable to 342 

show a correlation between the viral load in the nasopharyngeal aspirate and the degree of 343 

abnormality of whole-blood RNA signatures. Measurement of viral load in influenza is technically 344 

difficult and depends on variations in sampling of nasopharyngeal mucus. For ethical and practical 345 

reasons we were unable to obtain routine samples from the lower respiratory tract; our findings 346 

should not be cited as evidence that viral load is irrelevant to disease severity but only that we were 347 

unable to demonstrate a relationship using the methods available to us.  348 



14 
 

The linked nature of MOSAIC cohort data allowed us to adopt an integrated approach to data 349 

exploration. Cases with early or mild influenza showed a transcriptional signature typical of viral 350 

infection (up-regulation of Type I interferon related genes IFIT1, IFIT3, OAS1, IFITM1 and IFI35, and 351 

type II interferon-stimulated genes IFITM1 and IFI35) in the JAK-STAT activation pathways. This was 352 

independently evident in samples collected in 2009/10, but in the larger 2010/11 cohort there was a 353 

distinct subgroup of cases expressing both IFNα-inducible protein 27 (IFI27) transcripts and antiviral 354 

response genes (e.g. RSAD2, IFI6 and IFI44L). IFI27 encodes an IFN-regulated mitochondrial protein 355 

that has antiviral effects via sensitization of cells to pro-apoptotic stimuli28. Although IFI27 356 

expression has been proposed as a potential biomarker for influenza infection11, overexpression of 357 

this transcript is not unique to influenza; it is also strongly upregulated in human airway epithelial 358 

cells and peripheral blood after infection with respiratory syncytial virus9. In our study, its translation 359 

was not associated with the stage, severity, or complications of influenza but persisted in the 360 

absence of up-regulation of other ISGs. 361 

Following the initial interferon-dominated phase, patients with severe or prolonged symptoms 362 

activate a broad range of genes in addition to those classically associated with viral responses 363 

(reviewed elsewhere16). After the first four days of illness, these genes include those that encode 364 

inflammatory cytokines and chemokines, classical ‘antibacterial’ effector molecules (especially from 365 

neutrophils), and regulators of apoptosis and anaerobic metabolism29. We find that this occurs 366 

irrespective of identifiable bacterial co-infection, mirroring studies in macaques in which 367 

administration of recombinant IFNα2a initially up-regulates the expression of antiviral genes and 368 

prevents viral infection, but continued IFNα2a treatment subsequently causes desensitization and a 369 

decrease in antiviral gene expression30. In animal studies, it has been shown that IFNα/β is not only 370 

antiviral but can also promote inflammation and disease. This occurs via immunosuppressive effects 371 

that impede viral control31 or by triggering inflammation and tissue damage32.  In mice, influenza 372 

infection also causes an early influx of neutrophils into the lung followed by a virus specific CD8+ T-373 

cell response33, 34, 35. Neutrophils might facilitate the development of this antigen-specific response 374 

as they may serve as antigen-presenting cells in influenza infection in mice35, 36 and guide influenza-375 

specific CD8+ T cells into sites of infection by laying chemokine trails containing CXCL1237. In animal 376 

models of viral lung disease, dysregulated host immune responses38 and interferon production32 can 377 

lead to complex inflammatory responses which contribute to pathogenesis39, 40. We recognise that 378 

transcriptomic data do not always reflect protein data, although genes down-stream of cytokine 379 

signalling may remain over-expressed41. This is expected, since it is well established that cytokines 380 

are under tight regulatory mechanisms and their expression at the level of mRNA and protein is 381 

short-lived42, limiting such correlations.  382 



15 
 

Given our observed ‘bacterial’ transcriptomic signature, we sought to define the incidence of 383 

clinically significant bacterial infections in our patients. To optimise the characterisation, respiratory 384 

tract sampling was supplemented with blood cultures for significant bacterial species and urinary 385 

pneumococcal antigen, where available. This sampling protocol and analysis went well beyond that 386 

normally used in clinical practice, possibly leading to detection of inconsequential bacterial carriage, 387 

rather than just those contributing to disease. Additionally, clinicians did not request blood cultures 388 

or urinary pneumococcal antigen tests for all patients, restricting the numbers of cases in which we 389 

could definitively determine presence or absence of significant bacterial infection. Clearly, we 390 

cannot exclude the possibility of bacterial co-infection in patients who were categorised as ‘no 391 

significant bacteria detected’; we base our conclusions on the best evidence available to us and 392 

exhaustive case-by-case analysis, selecting only those cases which our expert panel felt could 393 

confidently be classified as ‘bacterially infected’ or ‘uninfected’. The difficulties that we encountered 394 

in confirming or excluding the presence of bacterial infection in patients with respiratory tract 395 

infections have been highlighted by others43, 44. 396 

When measuring total bacterial loads in nasopharyngeal samples, we were surprised to find them of 397 

some predictive value: only in cases with low bacterial loads did we see high levels of ‘viral’ response 398 

gene activation, while low bacterial load was almost never associated with ‘bacterial’ response gene 399 

expression patterns. Indeed this ‘bacterial’ MDTH signature was also associated with serum IL-17 400 

levels; along with higher IL-6 and IL-1β levels (but lower IFN-α2a) at T1, these data were indicative of 401 

an immune response biased toward anti-bacterial immunity early in severe influenza. We also 402 

examined the possible use of serum or plasma procalcitonin as an indicator of invasive bacterial 403 

disease. The strength of the transcriptomic ‘bacterial’ signature showed a significant positive 404 

correlation with procalcitonin levels. If procalcitonin were a true marker of bacterial invasive disease 405 

this would support the contention that the ‘bacterial’ transcriptional pattern indicates bacterial 406 

infection.  However, procalcitonin release is suppressed by high levels of type II interferon (which 407 

can result from viral infection) and elevated levels of procalcitonin are seen in some non-bacterial 408 

inflammatory conditions26, 45. In our study, elevated levels of procalcitonin were indicative of severe 409 

lung inflammation and did not help in deciding the presence or absence of significant bacterial 410 

infection.  411 

To narrow the focus still further, we identified cases with pathogenic bacteria found in blood culture 412 

as a subgroup with definite and unequivocal bacterial sepsis. Three of these six cases had markedly 413 

elevated ‘bacterial’ molecular score without any increase in ‘viral’ molecular score; one patient had 414 

elevated ‘bacterial’ and ‘viral’ scores. All of these patients needed invasive mechanical ventilation. 415 
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The remaining two cases with bacteraemia did not have marked elevations in their ‘bacterial’ scores, 416 

despite detection of relevant bacteria in blood (Streptococcus pneumoniae and Group B 417 

Streptococcus); both had mild (Severity 1) disease. Interestingly, one of these patients had a high 418 

‘viral’ score but the other did not. Early intervention with antibiotics was also considered as a 419 

potential explanation of transcriptomic changes, but in the wider cohort, prior administration of 420 

antibiotics had no effect on transcript abundance or the presence or absence of ‘viral’ or ‘bacterial’ 421 

signatures. From careful analysis of these cases, we conclude that transcriptomic scores are not 422 

invariably a reflection of the presence or absence of bacterial co-infection, as far as it has been 423 

possible for us to determine. 424 

We next used stringent criteria to identify influenza cases that were extensively investigated for 425 

bacterial co-infection and yet found not to be infected, and cases in which pathogenic bacteria were 426 

identified with certainty. Progression of the transcriptomic signatures observed over time was 427 

similar in these two groups, but patients with confirmed bacterial infection had higher ‘bacterial’ 428 

molecular scores overall, compared to those in whom bacteria were not detected, reaching 429 

statistical significance at some day-of-illness time-points. We therefore conclude that influenza virus 430 

infection alone can drive what has been referred to in the literature and by GO terms as the 431 

‘bacterial’ signature relating to neutrophil and inflammation-associated genes in patients with 432 

severe influenza, but that this response is enhanced by bacterial co-infection. The mechanism by 433 

which this occurs is open to speculation but might include alterations of innate sensitivity to resident 434 

microbiota in the gut, activation of Th17 pathways and leakage of endotoxins from the intestinal 435 

lumen46. 436 

Our study has important limitations. Despite its ambition, scope and intensity we had limited 437 

numbers of repeat samples in individual patients. Our description of trends over time since onset of 438 

illness depends in large part on summative data and on subjective reporting of disease onset. Ideally, 439 

the findings need validation in time-series studies simple and complicated acute viral disease with 440 

frequent sampling at multiple sites. For ethical and practical reasons, we were unable to plan more 441 

than 3 sampling points and not all samples were available from all patients. In addition, we were 442 

unable to study the early or preclinical phases but were limited to investigation of symptomatic 443 

cases presenting with disease of sufficient severity to reach hospital. For logistical and practical 444 

reasons we could not recruit mild cases seen in the community. The prodromal early stage of 445 

infection can only be studied with ease in infection challenge of volunteers (in whom severe disease 446 

is not expected), but our ongoing studies of experimental infections with pH1N1 in volunteers will 447 

allow us to resolve some of these limitations in the future.  448 
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We here present only selected results of an extended study of soluble immune mediator data from 449 

the MOSAIC cohort. Our main findings were of decreased IFNα2a and increased IL-1β, IL-6 and CXCL8 450 

levels in the nasal and/or serum compartments in patients with severe disease. This apparent 451 

reciprocity may relate to the known cross-regulatory functions of IL-1 and type I IFNs in experimental 452 

models29, 47. Our results generally fit with the proposal that responses seen in severe influenza are 453 

strongly influenced by bacterial co-infection, which contributes to driving high levels of mediators 454 

such IL-1β, IL-6 and IL-17. However, there are many additional possible analyses to be performed. 455 

We chose only to illustrate those most relevant to the transcriptomic analysis and the question of 456 

bacterial superinfection, and we invite readers to explore additional correlations using our online 457 

data as a resource. We will welcome discussion with respect to additional analyses. 458 

In summary, virus-induced type I interferon-related pathways are activated during the first four days 459 

of symptomatic influenza in hospitalised patients. These ’viral’ pathways are then down-regulated, 460 

to be replaced by inflammatory, activated neutrophil and apoptosis-related pathways associated 461 

with IL-17 abundance, host-mediated tissue damage and ‘response to bacteria’, particularly in cases 462 

with a high 16S bacterial load in the nasopharyngeal secretions. In severe cases of influenza, this 463 

‘viral’ response may be depressed early in disease and is accompanied by an increase in IL-1β and IL-464 

17.  These findings emphasise that the stage and severity of disease need to be taken into account in 465 

interpreting host responses to infection and in the development of potential diagnostic tests to 466 

differentiate between treatable causes.  467 
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Online Methods 468 

Study population and inclusion criteria 469 

Patients ≥ 16 years of age were recruited during two successive winters (01 December 2009 to 03 470 

March 2011). Patients with suspected influenza were identified by medical or nursing staff, or 471 

notified to investigators by hospital diagnostic laboratories. Patients in London were recruited from 472 

four Imperial College Healthcare NHS Trust hospitals, the Chelsea and Westminster Hospital, and the 473 

intensive care unit at the Royal Brompton Hospital (a national referral centre for severe respiratory 474 

failure). In Liverpool, patients were recruited from the Royal Liverpool, Liverpool Women’s and 475 

Arrowe Park Hospitals. Patients were included irrespective of prior or concurrent comorbidity (most 476 

commonly asthma, pregnancy, immunocompromising conditions, or co-infection with other 477 

respiratory pathogens), to reflect the populations known to be at greatest risk of severe influenza. 478 

Adult healthy controls were recruited and matched to the patient cohorts for age, sex and ethnicity 479 

and were screened to exclude known illnesses or current use of medications.  480 

Research Ethics Committees’ Approvals 481 

The study was approved by the NHS National Research Ethics Service, Outer West London REC 482 

(09/H0709/52, 09/MRE00/67). Patients or their legally authorised representatives provided 483 

informed consent. Additional adult healthy controls were recruited as part of a separate study and 484 

consented to their samples being used in additional studies (Central London 3 Research Ethics 485 

Committee, 09/H0716/41). 486 

Biological sampling 487 

Research samples were obtained at three time points: T1 (recruitment); T2 (approximately 48h after 488 

T1); T3 (at least 4 weeks after T1). Only T1 and T2 samples were included in this report. Whole blood 489 

samples for transcriptomics were collected during the two recruitment periods, 2009/10 and 490 

2010/11. Of 85 MOSAIC participants presenting with influenza-like illness in 2009/10, 23 (27%) were 491 

adults with confirmed influenza, and T1 transcriptomic samples were available from 22 adults. Of 492 

171 MOSAIC participants presenting with influenza-like illness in 2010/11, 111 (65%) were adults 493 

with confirmed influenza, and T1 transcriptomics samples were available from 109/111 (98%). RNA 494 

extraction and microarray were successful for all available patient samples from both cohorts. 495 

Microarrays were also performed on samples from adult healthy controls of similar age, sex and 496 

ethnicity to the study patients (Table 1). One healthy control sample for the 2009/10 cohort was not 497 

included in final analysis because it failed quality control assessments. 498 
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Of the 109 adult patients recruited in 2010/11 and included in this analysis, 94 (86%) were infected 499 

with A(H1N1)pdm09 influenza virus, the remainder being infected with influenza A(H3N2) virus, non-500 

subtyped influenza A virus, or influenza B virus. One of 22 adult patients recruited during 2009/10 501 

was infected with A(H3N2) virus; remaining patients were infected with A(H1N1)pdm09 virus. Due to 502 

the natural evolution of influenza activity during the 2009-10 pandemic in the UK, the 2009/10 503 

cohort was smaller than originally anticipated. Therefore, to assess the host response in the blood 504 

transcriptional signature as thoroughly as possible, we focussed our analysis on the larger 2010/11 505 

cohort and then compared findings with the smaller 2009/10 cohort. 506 

Influenza virus infection status 507 

For each participant, influenza virus infection status was determined by reverse transcription 508 

polymerase chain-reaction (RT-PCR) testing of an appropriate respiratory tract sample by local 509 

clinical virology laboratories, as part of routine clinical care. Clinical laboratories followed nationally 510 

agreed and validated PCR protocols, and a panel of experts reviewed all results. 511 

Clinical data collection and severity of illness scoring 512 

Clinical data were extracted from hospital case notes and recorded in the Flu-CIN data collection 513 

tool48 by trained researchers. Prescription charts were examined to determine whether antibiotics 514 

were being administered before, during or after sampling time points.  515 

Severity of illness was graded at T1 and T2 according to the following criteria: (1) no significant 516 

respiratory compromise, with blood oxygen saturation >93% whilst breathing room air; (2) oxygen 517 

saturation ≤ 93% whilst breathing room air, justifying or requiring supplemental oxygen by face mask 518 

or nasal cannulae (with or without continuous positive airway pressure support or non-invasive 519 

mechanical ventilation); (3) respiratory compromise requiring invasive mechanical ventilation with 520 

or without ECMO. All clinical data underwent extensive validation and quality checking by 521 

independent data collection staff.  522 

Detection of bacteria 523 

Nasopharyngeal aspirates and swabs collected at T1 underwent microscopy and culture for bacteria. 524 

Additionally, multiplex PCR was performed to detect the following common respiratory bacteria in 525 

these samples: Staphylococcus aureus, Chlamydia pneumoniae, Haemophilus influenzae, 526 

Streptococcus pneumoniae, Pneumocystis pneumoniae, Legionella species, Klebsiella pneumoniae, 527 

Salmonella species, Moraxella catarrhalis, Mycoplasma pneumoniae, and Bordetella pertussis. 528 

Throat swab samples taken at T1 also underwent culture and microscopy. When available, urine 529 

samples collected between T1 and T2 underwent pneumococcal antigen testing (BinaxNow, Allere, 530 
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Stockport, UK). Clinical microbiology data were obtained from hospital laboratory databases, 531 

including results of blood cultures (when taken 48 hours either side of T1) and urinary pneumococcal 532 

antigen results (for patients who did not have a researcher-requested urinary antigen sample). An 533 

independent microbiologist assessed the significance and validity of positive blood culture results, in 534 

an attempt to exclude cases of pseudobacteraemia caused by commensal contamination.  535 

Soluble immune mediators 536 

Serum, nasopharyngeal aspirate (NPA) and nasal-absorption fluid were collected at recruitment (T1) 537 

from participants with confirmed influenza and from adult healthy controls. Clotted blood was 538 

centrifuged at 1000 x g at 4°C and aliquots of serum supernatant were stored at -80°C. Each NPA was 539 

collected using a 10F Argyle suction catheter, inserted to reach the posterior nasopharyngeal wall; 540 

moderate suction was applied while the catheter was withdrawn over 5 seconds. The catheter was 541 

flushed through with 5 mL of sterile normal saline and the total contents were collected in a 542 

universal container. Aliquots of NPA were stored at -80°C. Nasal-absorption fluid was collected from 543 

the lateral wall of the nasal cavity using a synthetic absorptive matrix (SAM) strips (Leukosorb, Pall, 544 

UK) and stored at -80°C until analysis. On the day of analysis, 500 μl Milliplex assay buffer (Millipore, 545 

UK) was added to each thawed SAM strip before being placed in a Costar Spin-X centrifuge filter of 546 

pore size 0.22 μm held within an Eppendorf tube. Samples were centrifuged at 16,000 x g for 5 547 

minutes at 4°C and eluates were kept on ice.  548 

IL-1β, IL-6 and CXCL8 were quantified in each sample type using a 10-plex inflammatory soluble 549 

immune mediator electrochemiluminescence assay analysed on an MSD SECTOR instrument (Meso 550 

Scale Discovery, USA). For each mediator, a percentage coefficient variation cut-off of 10% was used 551 

to set the lower limit of detection. Sample results below the GM-LLOD were assigned half the value 552 

of the respective GM-LLOD. 553 

Blood procalcitonin assay 554 

Procalcitonin (PCT) in plasma or serum (collected at T1 and T2) was quantified using the Elecsys 555 

BRAHMS PCT assay on a calibrated Cobas e602 platform. Samples with a PCT value at the upper limit 556 

of detection (ULOD) were arbitrarily assigned the value of 100 ng/mL (the ULOD). Results may be 557 

interpreted as follows: <0.5 ng/mL, low probability of significant bacterial infection; 0.5-2.0 ng/mL, 558 

medium probability of significant bacterial infection; >2.0 ng/mL, high probability of significant 559 

bacterial infection. 560 
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16S rRNA gene bacterial load measurement  561 

The 16S rRNA gene was targeted with 0.3 µl each of 10 µM universal primers 520F 5’-AYT GGG YDT 562 

AAA GNG and 802R 5’-TAC NVG GGT ATC TAA TCC added to 7.5 µl of SYBR Fast qPCR Kit Master Mix 563 

(KapaBio) and 5 µl of a 1:5 dilution of sample DNA extract and 1.9 µl of PCR Clean water (Mobio). 564 

Reactions were prepared in triplicate and thermal cycling carried out on a VIIA-7 Real-Time PCR 565 

System. Thermal-cycling conditions were 90°C for 3 mins, then 40 cycles of 95 °C for 20 s, 50 °C for 566 

30 s, 72 °C for 30 s with default melt conditions. A standard curve of cloned (TOPO TA, Invitrogen) 567 

full length Vibrio natriegens DSMZ 749 16S rRNA gene was included in order to be able to calculate 568 

an absolute abundance from CT values together with no template controls. The resulting 16S rRNA 569 

gene copy number (bacterial load) was log transformed prior to using analytically.   570 

Microarray Gene Expression Profiling  571 

At each time point, 3 ml of whole blood were collected into each of two Tempus tubes (Applied 572 

Biosystems/Ambion) by trained research staff following a standard phlebotomy protocol. Blood was 573 

vigorously mixed immediately following collection and stored at -80°C before RNA extraction. For 574 

each patient, the contents of one tube were used for analysis and the other tube was retained in 575 

case of assay failure. RNA was isolated using 1.5 ml whole blood and the MagMAX-96 Blood RNA 576 

Isolation Kit (Applied Biosystems/Ambion), as per the manufacturer’s instructions. 250 μg of isolated 577 

total RNA was globin-reduced using the GLOBINclear 96-well format kit (Applied 578 

Biosystems/Ambion) according to the manufacturer’s instructions. Total and globin-reduced RNA 579 

integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies). RNA yield was 580 

assessed using a NanoDrop8000 spectrophotometer (NanoDrop Products, Thermo Fisher Scientific). 581 

High-quality (>6.5 RIN) whole blood RNA was successfully obtained and processed by microarray in 582 

all cases. Biotinylated, amplified antisense complementary RNA (cRNA) targets were prepared from 583 

200-250 ng of globin-reduced RNA using the Illumina CustomPrep RNA amplification kit (Applied 584 

Biosystems/Ambion). For each sample, seven hundred and fifty nanograms of labelled cRNA were 585 

hybridised overnight to Illumina Human HT12 V4 BeadChip arrays (Illumina), which contained 586 

greater than 47,000 probes. The arrays were washed, blocked, stained and scanned on an Illumina 587 

iScan, as per the manufacturer’s instructions. GenomeStudio (Illumina) was used to perform quality 588 

control and generate signal intensity values.  589 

Microarray Data Processing 590 

Raw microarray data were processed using GeneSpring GX version 12.5 (Agilent Technologies). 591 

Following background subtraction, each probe was attributed a flag to denote its signal intensity 592 

detection P value. Filtering on flags removed probe sets that did not result in a ‘present’ call in at 593 
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least 10% of the samples, where the ‘present’ lower cut-off = 0.99. Signal values were then set to a 594 

threshold level of 10, log2 transformed, and per-chip normalised using a 75th percentile-shift 595 

algorithm. Each gene was normalised by dividing each mRNA transcript by the median intensity of all 596 

samples. Statistical analysis was performed after these steps had been performed. 597 

Microarray Data Analysis 598 

Transcripts significantly detected from background hybridisation were filtered for low expression in 599 

GeneSpring GX 12.5, whereby the only transcripts retained were those with at least two-fold change 600 

from the median normalised intensity value in at least 10% of all samples. Principal component 601 

analysis of all transcripts significantly above background in at least 10% of samples (18974 602 

transcripts) was performed using R 3.3.2 (R Development Core Team). To derive the 1255 transcript 603 

list, non-parametric statistical filters (Mann-Whitney unpaired test with Bonferroni family-wise error 604 

rate multiple testing correction, p < 0.01) were applied, followed by fold-change filtering between 605 

groups (transcripts were retained if greater than two-fold change between any two groups). For 606 

severity analysis, 231 normalised intensity value transcripts were obtained by filtering for low 607 

expression and then applying statistic filters (Kruskal-Wallis test with Bonferroni FWER, P < 0.01), 608 

followed by fold change filtering between groups (transcripts were retained if greater than two-fold 609 

change between those from severity 3 patients and severity 1 and 2 patients). All heat-maps were 610 

generated in GeneSpring GX 12.5 (semi-supervised analysis, clustered by Pearson’s un- centred 611 

method with average linkage rule). 612 

Comparison Ingenuity Pathway Analysis (IPA) (Ingenuity Systems Inc., Redwood, CA) was used to 613 

determine the most significant canonical pathways for up-regulated and down-regulated transcripts 614 

(P <0.05 Fishers Exact test). Additionally, IPA was used to generate graphical representations of 615 

selected canonical pathways, and network diagrams. For the 231 transcript list, significantly 616 

activated (z score >2) and significantly repressed (z score <2) biofunctions were identified in IPA and 617 

expressed in gene network diagrams. GO Term (Gene Ontology Consortium) analysis integrated with 618 

GeneSpring GX12.5 was used to identify biological processes, according to GO annotations49.  619 

The molecular distance to health (MDTH) and molecular scored were calculated using methods 620 

described previously24 and applied to different signatures. Transcriptional modular analysis was 621 

applied as described previously23. Briefly, raw expression levels of all transcripts significantly 622 

detected from background were compared between each sample and all the controls present in a 623 

given data set. The percentage of significantly expressed genes in each module was represented by 624 

the colour intensity, with red indicating over-expression and blue indicating under-expression. 625 

Statistical testing was performed using Student’s t-test (P < 0.05). The mean percentage of 626 
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significant genes and the mean fold change of these genes compared to the controls in specific 627 

modules were shown in graphical form (unpaired t-test, P < 0.00001). MDTH and modular analysis 628 

were calculated in Microsoft Excel 2010 (Microsoft Corp.). GraphPad Prism V5 for Windows 629 

(GraphPad Software Inc., La Jolla, CA, USA) and R 3.3.2 (R Development Core Team) were used to 630 

generate graphs and perform additional statistical analyses.  631 
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Figure 1. Transcriptional signature of influenza compared to healthy controls. (a) Principal 632 

component analysis of all transcripts significantly above background in at least 10% of samples (130 633 

healthy controls (green squares), 97 influenza A (red circles: H1N1; green triangles, H3N2), and 12 634 

influenza B (purple squares); all from 2010/11). (b) Modular analysis of influenza patients relative to 635 

healthy controls. The expression of the modules is shown on the left according to the colour 636 

intensity display; the corresponding modules are identified in the key to the right. (c) Weighted 637 

‘molecular distance to health’ (MDTH24 of Influenza patients compared to healthy controls, 638 

undertaken on 4526 transcripts that were significantly detected above background, filtered for low 639 

expression (transcripts retained if >2 fold-change (FC) from median normalised intensity value in 640 

more than 10% of all samples). Box whisker plot with min/max lines; statistical test: Mann-Whitney 641 

P< 0.0001. (d) Heat-map of 1255 normalised intensity value transcripts, filtered for low expression 642 

then statistically filtered (Mann-Whitney with Bonferroni multiple testing correction P<0.01) 643 

followed by fold change filter between groups (transcripts retained if >2FC between any 2 groups). 644 

Listed next to the heat-map are the top five IPA canonical pathways (by significance P<0.05, Fisher’s 645 

Exact test) for upregulated and downregulated transcripts. (e) IPA canonical pathway for Interferon 646 

Signalling. Red shading represents up-regulated genes, blue represents down-regulated genes. (f) 647 

Heat-map of normalised intensity values of the top 25 significant transcripts by mean fold-change 648 

between healthy controls and influenza groups clustered on entities and by individuals (Pearson’s 649 

uncentered (cosine) with averaged linkage). 650 

Figure 2. Severity of disease is associated with diminished expression of interferon-related 651 

modules and over-expression of inflammation modules. (a) Weighted molecular distance to health 652 

(MDTH) of Influenza patients grouped by severity of illness score (1: normoxic; 2: hypoxia requiring 653 

correction by mask oxygen; 3: mechanical ventilation), compared to healthy controls (HC), based on 654 

4526 transcripts that were significantly expressed above background and filtered for low expression 655 

(transcripts retained if >2FC from median normalised intensity value in more than 10% of all 656 

samples). Box whisker plots are shown with min/max lines. (b) Modular analysis of influenza patients 657 

grouped by severity, relative to healthy controls. The colour intensity correlates with the percentage 658 

of genes in that module that are significantly differentially expressed. 659 

Figure 3. Severe disease is associated with lower expression of “viral” response genes, compared 660 

to early and less severe influenza. (a) Heat-map of 231 normalised intensity value transcripts, 661 

obtained by filtering for low expression followed by statistical filtering (Kruskal-Wallis with 662 

Bonferroni multiple testing correction P<0.01) followed by fold change filter between groups 663 

(restricted to initial T1 samples, transcripts retained if >2FC between severity 3 and severity 1&2). 664 
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Listed next to the heat-map are the top GO terms for the 3 major subdivisions of the dendrogram 665 

(clustered by Pearson’s uncentered (cosine) with average linkage rule). (b) Weighted molecular 666 

score (relative to healthy controls) of the 112 ‘bacterial response’ transcripts plotted against 667 

molecular score of the 51 ‘viral response’ transcripts for the 109 influenza individuals at the T1 time 668 

point. Severity of illness is indicated by different colours of dots: severity 1, black dots; severity 2, 669 

blue dots; severity 3, red dots. Circled dots identify patients with confirmed bacteraemia.  (c) IPA 670 

significantly activated (z score >2) or (d) repressed (z score <2) biofunctions, identified by analysis of 671 

231 transcript list; selected networks of biofunctional genes are shown.  672 

Figure 4. Relationship between severity of illness, bacterial infection, procalcitonin and molecular 673 

scores. ’Viral’ and ‘Bacterial’ response scores (according to GO terms, as described in Fig. 3) 674 

calculated for individual cases of confirmed influenza according to clinical categories at both the first 675 

and second sampling time-points (T1 and T2). Loess fitting was used to interpolate and estimate 676 

mean values non-parametrically from the data (solid lines); dashed lines show the estimated 95% 677 

confidence interval values of the mean; statistical significance of differences were calculated using 678 

Chi-squared tests to compare the deviance of generalized linear models. (a) Separating cases into 679 

grades of clinical severity, cases without need for mechanical ventilatory support (i.e. severity 1 and 680 

2), showing high ‘viral’ molecular score at the early stage of the disease. (b) Those requiring 681 

mechanical ventilatory support (severity 3) had higher ‘bacterial’ molecular scores regardless of time 682 

since onset.  (c) When classified according to the presence of absence of clinically significant 683 

bacterial co-infections, those with proven bacterial co-infection (39 subjects, 63 samples) had lower 684 

‘viral’ molecular scores than those without identifiable co-infection (34 subjects, 52 samples) 685 

regardless of time since disease onset.  (d) Those with proven bacterial co-infection (39 subjects, 63 686 

samples) had higher ‘bacterial’ molecular scores than those without identifiable co-infection (34 687 

subjects, 52 samples) regardless of time since disease onset. (e) The ‘viral’ molecular score was 688 

unrelated to serum procalcitonin; the ‘bacterial’ molecular score (f) tended to be high in those with 689 

raised procalcitonin, but was unaffected by proven bacterial co-infection.  690 

Figure 5. Levels of selected mediators in different compartments according to severity of illness 691 

and clinical designation of probable bacterial co-infection status. Serum, nasopharyngeal aspirate 692 

(NPA) and nasabsorption eluates from participants with confirmed influenza were obtained at 693 

recruitment (T1) and compared with samples from adult healthy controls. Individual values (pg/mL, 694 

log scale) are shown with median and interquarterile ranges. Zero values and values below the lower 695 

limit of detection were assigned half the geometric mean lower limit of detection for display 696 

purposes. The upper limit of detection for all assays shown was 2500 pg/mL.  Kruskal-Wallis test with 697 
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Dunn’s post test was used to assess significance (*** p<0.001; ** p<0.01; * p<0.05; NS = not 698 

significant). Severity of illness at T1 is shown. HC = healthy controls. Serum samples for HCs and 699 

participants with severity 1, 2, and 3 illness (a, d, g, and j): n = 36, 58, 43, and 31, respectively.  NPA 700 

samples for healthy controls and participants with severity 1, 2, and 3 illness (b, e, h and k): n = 35, 701 

50, 32, and 27, respectively. Nasabsorbtion eluate samples for healthy controls and participants with 702 

severity 1, 2, and 3 illness (c, f, i and l): n = 36, 60, 43, and 30, respectively.   703 

Figure 6: Relationships between severity of illness, bacterial infection, and selected mediators.  704 

Levels of CXCL10 and IL-6 in serum (a-d) and NPA (e-h) according to day of illness at both the first 705 

and second sampling time-points (T1 and T2). Loess fitting was used to demonstrate time trends of 706 

mean values interpolated non-parametrically from the data (solid lines); dashed lines show the 707 

estimated 95% confidence interval values of the mean. Statistical significance of differences was 708 

calculated using Chi-squared tests to compare the deviance of generalized linear models. Patients 709 

requiring mechanical ventilation (severity 3 illness) had significantly higher mean levels of CXCL10 710 

and IL-6 in both serum (a, b) and NPA (e, f) than patients with less severe diseases (severity 1 and 2). 711 

Classifying cases according to the presence or absence of clinically significant bacterial co-infections, 712 

those with proven bacterial infection (39 subjects, 63 samples) had higher mean IL-6 levels in both 713 

serum (d) and NPA (h) compared to patients who did not (34 subjects, 52 samples), regardless of 714 

time since disease onset. Bacterial infection had no discernible effect on serum (c) or NPA (g) levels 715 

of CXCL10.  716 

 717 
Supplementary Figure 1. Validation of transcriptional signatures in an independent cohort. (a) 718 

2009/2010 cohort clustered on individuals and transcripts (Pearson’s uncentered with averaged 719 

linkage) using 1255 transcript list (from Figure 1). (b) 2009/2010 cohort clustered on individuals and 720 

transcripts (Pearson’s uncentered with averaged linkage) using 25 transcript list (from Figure 1). (c) 721 

2009/2010 cohort clustered on individuals and transcripts (Pearson’s uncentered with averaged 722 

linkage) using 231 transcript list of severity (from Figure 2, transcripts retained if >2FC between 723 

severity 3 and severity 1&2). GO Terms analysis of 3 major branches of the transcripts dendrogram 724 

was undertaken and listed next to the heat-map. (d) Using 51 and 112 transcripts lists (from Figure 725 

3) ‘viral response’ and ‘bacterial response’ molecular scores were calculated and plotted for each 726 

influenza patient (relative to healthy controls). Cases were coded according to severity of illness, 727 

indicated by the colour of the respective dots (severity 1, black; severity 2, blue; severity 3, red). 728 

Supplementary Figure 2. Change of ‘viral’ and ‘bacterial’ molecular scores over time and 729 

association with viral load.  (a) ‘Viral’ molecular scores plotted for 59 influenza patients (2010/11 730 
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cohort) who provided T1 and T2 samples, plotted against respective day of illness at time of 731 

sampling. (b) Change in ‘viral’ molecular score between first (T1) and precise second time point (48 732 

hours after T1) in 41 patients with appropriate samples available (P = 0.0002, Mann-Whitney test). 733 

(c) ‘Bacterial’ molecular score plotted for 59 influenza patients who had both a T1 and a T2 sample, 734 

shown plotted against respective day of illness. (d) Change in ‘bacterial’ molecular score between T1 735 

and precise T2 (48h post T1), in 41 patients with appropriate samples available (NS, Mann-Whitney 736 

test). (e) Influenza viral load estimation (Pfu/ml) in nasopharyngeal samples obtained at T1 and T2. 737 

(f) Relationship between influenza viral load (Pfu/ml) at T1 or T2 and the simultaneous ‘viral’ 738 

molecular score on whole blood.   739 

Supplementary Figure 3. Administration of antibiotics does not affect ‘bacterial’ or ‘viral’ 740 

molecular scores. (a) 109 Influenza patients (2010/11 cohort) presenting within the first 14 days of 741 

illness grouped by reciept of any antibiotic in the 24 hours prior to T1 sample. There was no 742 

difference (NS, Mann-Whitney test) in either bacterial or viral molecular scores between the two 743 

groups. (b) Prescription of antibiotics after T1 did not significantly influence ‘bacterial’ molecular 744 

score. Fifty-nine influenza patients who had both T1 and T2 samples were grouped by those who did 745 

not receive antibiotics (n=7), those whose antibiotics were stopped at T1 (n=1), those who had 746 

antibiotics prescribed after T1 but before T2 (n=24), and those who were receiving antibiotics at 747 

both T1 and T2 (N=27). (c) Total 16S copies at T1 in throat swabs and NP aspirate in patients 748 

adjudicated to be with or without bacterial co-infection. Those with confirmed bacterial infections 749 

had greater levels of total 16S copies in NP aspirate than those deemed to be without co-infection (P 750 

= 0.036). 751 

Supplementary figure 4. Correlation of serum cytokines and bacterial load in nasophaynx with 752 

‘viral’ and ‘bacterial’ molecular distance to health. Levels of IL-17 in the serum of healthy controls 753 

(HC) and influenza infected patients (severity 1-3) (4a). Concentration of IL-17 in broncoalveolar 754 

lavage (BAL) of HC and from BAL, NPA, SAM and Serum of patients (4b). Serum levels of IL-17 (4c) 755 

and TNFα (4d) correlate with the bacterial MDTH (IL-17, Spearman R =0.39, P value <0.001; TNFα R = 756 

0.4, P < 0.01). The total 16S rRNA gene copies in NP aspirate samples were inversely correlated with 757 

the viral MDTH (Spearman R = -0.28, P value < 0.05) (4e) but positively correlated with bacterial 758 

MDTH (Spearman R = 0.37, P value < 0.05) (4f).   759 
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Table 1. Characteristics of recruited patients and healthy controls  

 2010/11 Cohort 
(n=109) 

2010/11 Healthy 
Controls (n=130) 

2009/10 Cohort 
(n=22) 

2009/10 Healthy 
Controls (n=25) 

Mean age in years 
(range) 

41 (17-71) 35 (20-68) 44 (23-74) 37 (21-54) 

Female (%) 53 (48.6) 75 (57.7) 10 (45.5) 14 (56) 
Ethnicity (%) 
   White 
   Black 
   Asian 
   Other 

 
78 (71.6) 
17 (15.6) 
9   (8.3) 
5   (4.6) 

 
90 (69.2) 
23 (17.7) 
15 (11.5) 
2   (1.5) 

 
10 (45.5) 
5   (22.7) 
0 
7   (31.8) 

 
14 (56) 
5   (20) 
6   (24) 
0 

Comorbidities 
   None 
   1 
   2 
   ≥ 3 

 
28 (25.7) 
31 (28.4) 
28 (25.7) 
22 (20.2) 

 
130 (100) 
0 
0 
0 

 
4   (18.2) 
12 (54.5) 
3   (13.6) 
3   (13.6) 

 
25 (100) 
0 
0 
0 

Women age 15-49y 
who were pregnant 

10/43 (23.3) 1/75 (1.3) 2/8 (25) 0 

Influenza type 
   pH1N1 
   A (H3N2) 
   A (unknown) 
   B 

 
94  (86.2) 
2    (1.8) 
1    (0.9) 
12  (11) 

 
NA 
NA 
NA 
NA 

 
21 (95.5) 
1   (4.5) 
0 
0 

 
NA 
NA 
NA 
NA 

Severity of illness at 
T1 (%) 
   Severity 1 
   Severity 2 
   Severity 3 

 
 
47 (43.1) 
34 (31.2) 
28 (25.7) 

 
NA 
NA 
NA 

 
11 (50) 
8   (36.4) 
3   (13.6) 

 
 
NA 
NA 
NA 

Peak severity for 
illness episode (%) 
   Severity 1 
   Severity 2 
   Severity 3 

 
 
35 (32.1) 
44 (40.4) 
30 (27.5) 

 
 
NA 
NA 
NA 

 
 
6   (27.3) 
12 (54.5) 
4   (18.2) 

 
 
NA 
NA 
NA 

 

Note that percentages may not add up to 100 for all variables due to rounding. NA: not applicable. 
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