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Mobile	notifications	are	increasingly	used	by	a	variety	of	applications	to	inform	users	
about	 events,	 news	 or	 just	 to	 send	 alerts	 and	 reminders	 to	 them.	 However,	 many	
notifications	are	neither	useful	nor	relevant	to	users’	interests	and,	also	for	this	reason,	
they	 are	 considered	 disruptive	 and	 potentially	 annoying.	 PrefMiner	 is	 a	 novel	
interruptibility	 management	 solution	 that	 learns	 users’	 preferences	 for	 receiving	
notifications	based	on	automatic	extraction	of	rules	by	mining	their	 interaction	with	
mobile	phones.	PrefMiner	aims	at	being	intelligible	and	interpretable	for	users,	i.e.,	not	
just	a	“black-box”	solution,	by	suggesting	rules	to	users	who	might	decide	to	accept	or	
discard	 them	at	 run-time.	 The	 design	 of	 PrefMiner	 is	 based	 on	 a	 large	 scale	mobile	
notification	 dataset	 and	 its	 effectiveness	 is	 evaluated	 by	 means	 of	 an	 in-the-wild	
deployment.	

	

Today’s	 mobile	 phones	 are	 highly	 personal	 devices	 characterized	 by	 always-on	
connectivity	 and	 high-speed	 data	 processing.	 These	 affordances	make	 it	 a	 unique	
platform	 for	 applications	 harnessing	 the	 opportunity	 of	 real-time	 information	
delivery.	A	variety	of	applications	are	available	on	the	app	stores	that	enable	users	
to	 subscribe	 to	 numerous	 information	 channels	 and	 actively	 receive	 information	
through	notifications.	

Past	studies	have	shown	that	users	are	willing	to	tolerate	some	interruptions	from	
notifications,	so	that	they	do	not	miss	any	important	information	[5].	However,	their	
willingness	is,	in	a	sense,	exploited	by	mobile	applications	as	these	trigger	a	plethora	
of	notifications	continuously	[6].	Given	the	potentially	large	number	of	notifications,	
users	do	not	accept	all	of	them	as	their	receptivity	relies	on	the	content	type	and	the	
sender	of	the	messages	[6,	7].	Some	examples	of	such	notifications	are	promotional	
emails,	game	invites	on	social	networks	and	predictive	suggestions	by	applications.	
Users	mostly	 dismiss	 (i.e.,	 swipe	 away	without	 clicking)	 notifications	 that	 are	 not	
useful	or	 relevant	 to	 their	 interests	[4].	On	 receiving	 such	 irrelevant	 or	 unwanted	
notifications	users	get	annoyed.	This	could	result	in	uninstalling	the	corresponding	
application	[3].	

Most	 of	 the	 previous	 studies	 propose	 interruptibility	 management	 systems	 that	
leverage	 the	 concept	of	 anticipatory	 computing	[8]	 to	predict	opportune	moments	



by	 using	 context	[9]	 and	 content	[6].	 However,	 in	 order	 to	 reduce	 the	 level	 of	
disruption,	 an	 interruptibility	 management	 system	 should	 not	 just	 try	 to	 deliver	
notifications	at	opportune	moments	but	also	stop	notifications	that	are	not	useful,	or	
are	uninteresting	or	irrelevant	for	the	user.	

Starting	 from	 this	 consideration,	 we	 designed	 and	 implemented	 PrefMiner	 –	 an	
intelligent	interruptibility	management	solution	that	learns	the	types	of	information	
users	prefer	to	receive	via	notifications	in	different	situations.	Moreover,	in	order	to	
design	 a	 system	 that	 is	 intelligible,	 we	 implement	 a	 mechanism	 for	 mining	
association	 rules	[1]	 and	making	 the	discovered	 rules	 transparent	 to	users	 so	 that	
they	can	check	their	appropriateness.	We	believe	that	PrefMiner	represents	one	of	
the	 first	 attempts	 in	 building	 an	 intelligent	mobile	 system	based	 on	 interpretable	
machine	learning.	

Mining Users’ Preferences 
In	 a	 classic	 study	[2],	 Clark	 suggested	 that	 users’	 negative	 response	 to	 an	
interruption	can	be	of	two	types:	(a)	acknowledge	it	and	agree	to	handle	it	later;	(b)	
decline	it	(explicitly	refusing	to	handle	it).	PrefMiner	is	based	on	the	second	type	of	
reaction:	the	system	learns	the	different	types	of	interruptions	that	users	explicitly	
refuse	 by	 dismissing	 notifications.	 In	 this	 way	 PrefMiner	 can	 identify	 the	
notifications	 that	 are	 not	 useful	 for	 the	 users	 in	 specific	 situations	 and	 stop	 the	
operating	system	from	triggering	alerts	related	to	them.	

	

Figure	1.	The	process	of	learning	user’s	preferences.	

As	shown	in	Figure	1,	the	process	of	mining	user	preferences	consists	of	three	steps	
discussed	as	follows.	

Removing	Reminder	Notifications	

The	 first	 step	 consists	 of	 identifying	 a	 particular	 class	 of	 notifications	 that	 are	
always	 dismissed	 but	 they	 should	 be	 shown	 in	 any	 case	 to	 users.	 As	 discussed	
earlier,	notifications	are	dismissed	if	they	are	not	found	to	be	useful	or	relevant	to	
the	user’s	 interest	[4].	However,	some	notifications	are	dismissed	because	they	do	
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not	 require	 any	 further	 action	 from	 the	 user.	 These	 notifications	 should	 not	 be	
automatically	filtered,	since	they	might	be	relevant	for	users,	even	if	they	are	always	
dismissed.	We	refer	to	such	notifications	as	reminder	notifications.	Alarm,	calendar	
event	 and	 battery	 status	 notifications	 are	 some	 common	 examples	 of	 reminder	
notifications.	

Notification	Classification	

In	 the	 second	 step	 we	 categorize	 each	 notification	 based	 on	 the	 information	
contained	in	it.	Since	a	user	might	be	interested	to	receive	some	but	not	all	types	of	
notification	 triggered	 by	 a	 specific	 application,	 PrefMiner	 performs	 clustering	 by	
considering	their	titles.	A	notification	title	is	a	short	sentence	that	gives	a	glimpse	of	
the	information	contained	in	it.	

Constructing	Association	Rules	

In	 order	 to	 discover	 rules	 about	 the	 user’s	preferences	 for	 receiving	 notifications,	
we	 use	 the	 AIS	 algorithm	[1]	 –	 a	 method	 for	 mining	 data	 to	 discover	 statistical	
relationships	between	variables.	An	association	rule	is	represented	as	𝑋 → 𝑌,	where	
𝑋	 is	defined	as	 the	antecedent	and	𝑌	 as	 the	 consequent.	To	better	understand	 the	
concept	of	association	rules	 let	us	consider	an	example	where	the	user:	(i)	always	
dismisses	 Twitter	 notifications	 for	 who	 to	 follow;	 (ii)	 accepts	 Facebook	 birthday	
reminder	 notifications	 only	 in	 the	 morning	 while	 she	 is	 at	 home;	 (iii)	 does	 not	
accept	WhatsApp	notifications	from	Alice	while	at	work.	Assuming	that	notifications	
about	 the	 Twitter	 suggestion,	 Facebook	 birthday	 reminder	 and	 WhatsApp	 from	
Alice	 are	 classified	 in	 the	 classes	 𝑁%,	 𝑁&	 and	 𝑁'	 respectively,	 the	 following	
association	 rules	 would	 represent	 the	 user’s	 preferences	 in	 this	 case:	
{𝑁%} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁&, 𝐻𝑜𝑚𝑒,𝑀𝑜𝑟𝑛𝑖𝑛𝑔} → {𝐴𝑐𝑐𝑒𝑝𝑡}	
{𝑁&, 𝐻𝑜𝑚𝑒, 𝐴𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁&, 𝐻𝑜𝑚𝑒, 𝐸𝑣𝑒𝑛𝑖𝑛𝑔} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁&, 𝐻𝑜𝑚𝑒,𝑁𝑖𝑔ℎ𝑡} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁&,𝑊𝑜𝑟𝑘} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁&, 𝑂𝑡ℎ𝑒𝑟} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	
{𝑁', 𝐻𝑜𝑚𝑒} → {𝐴𝑐𝑐𝑒𝑝𝑡}	
{𝑁', 𝑂𝑡ℎ𝑒𝑟} → {𝐴𝑐𝑐𝑒𝑝𝑡}	
{𝑁',𝑊𝑜𝑟𝑘} → {𝐷𝑖𝑠𝑚𝑖𝑠𝑠}	

The	rules	are	extracted	by	calculating	the	ratio	between	the	number	of	times	𝑋	and	
𝑌	 co-occur	 and	 the	 number	 of	 data-instances	 present	 in	 the	 given	 data	 (usually	
referred	to	as	support)	and	the	ratio	between	the	number	of	times	𝑌	co-occurs	with	
𝑋	 and	 the	 number	 of	 times	 𝑋	 occurs	 in	 the	 given	 data	 (usually	 referred	 to	 as	
confidence)	[1].	



	

Figure	2.	Performance	of	PrefMiner	for	predicting	user’s	receptivity	to	notifications.	

Evaluation of the Rule-based Mechanism 
Before	assessing	the	proposed	mechanism	in	a	real-world	scenario,	we	first	evaluate	
it	on	an	existing	dataset	 that	we	collected	during	 the	My	Phone	and	Me	study	 (to	
investigate	 the	 affect	 of	 ongoing	 task’s	 characteristics	 on	 the	 perceived	
interruption)	[7].	

For	mining	association	rules	about	the	user’s	preferences	we	rely	on	the	 following	
features:	 notification	 response	 (i.e.,	 the	 user’s	 response	 to	 a	 notification),	
notification	type,	arrival	time,	activity,	and	location	of	the	user	when	the	notification	
arrived.	We	constructed	association	rules	by	using	different	combinations	of	 these	
features.	The	consequent	of	these	rules	is	restricted	to	contain	only	the	notification	
response	and	the	antecedent	is	restricted	to	never	contain	the	notification	response.	
We	 introduce	 this	 constraint	 because	 we	 are	 only	 interested	 to	 predict	 the	
acceptance	of	a	notification,	therefore	other	items	in	the	consequent	would	be	of	no	
use	and	just	add	extra	computational	load.	

We	evaluated	the	discovered	rules	by	using	a	10-fold	cross	validation	approach	for	
different	 values	 of	 confidence	 level.	However,	 the	minimum	 support	 level	 is	 set	 to	
ensure	that	the	notification	interaction	pattern	covered	in	each	rule	has	occurred	at	
least	 once	 in	 two	 days.	 In	 order	 to	 assess	 the	 discovered	 association	 rules,	 we	
compared	the	predicted	response	with	the	actual	response	(i.e.,	 the	ground	truth).	
The	results	show	that	 increasing	the	confidence	of	association	rules	decreases	the	
recall	 but	 improves	 the	 precision.	 This	 implies	 that	 by	 increasing	 the	 confidence	
fewer	 but	 more	 reliable	 rules	 are	 discovered.	 Moreover,	 we	 found	 that	 the	
association	rules	 that	are	constructed	by	using	the	notification	response,	 type	and	
location	perform	better	than	rules	constructed	with	other	combinations.	As	shown	
in	Figure	2,	its	recall	goes	up	to	around	43%	without	dropping	the	precision	below	
79%.	 Even	 by	 combining	 all	 features	 together,	 the	 performance	 of	 rules	 do	 not	
improve.	Consequently,	our	results	provide	evidence	that	 the	user’s	preference	 for	
receiving	notifications	does	not	depend	on	the	activity	and	arrival	time,	but	on	the	
type	of	information	it	contains	and	the	location	of	the	user.	
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Optimizing the System for High Precision 
The	key	requirement	 for	deploying	an	 interruptibility	management	mechanism	 in-
the-wild	 is	 that	 it	 should	 never	 stop/defer	 useful	 notifications.	 Therefore,	 while	
designing	it	we	should	aim	to	have	fewer	false-negatives	(i.e.,	incorrectly	predicting	
a	notification	as	non-interesting	for	the	user)	which	could	be	achieved	by	ensuring	
that	 the	 precision	 remains	 close	 to	 100%.	 At	 the	 same	 time,	 the	 interruptibility	
management	mechanism	should	also	achieve	a	significant	value	for	recall	in	order	to	
demonstrate	 its	 efficacy	 in	 filtering	notifications	 that	 are	not	useful	or	 relevant	 to	
the	user’s	interest.	We	could	not	obtain	a	high	recall	value	because	not	all	dismissed	
notifications	are	non-useful.	Instead,	some	notifications	are	dismissed	because	they	
do	not	require	any	further	actions,	such	as	the	final	message	of	a	chat	conversation	
(e.g.,	“Ok,	bye!”).	

In	general,	 this	 is	a	 fundamental	 trade-off	 in	 the	design	of	 this	class	of	systems.	 In	
our	deployment,	which	we	will	describe	later	in	this	article,	we	set	the	parameters	
of	the	rule	extraction	algorithm	in	order	to	obtain	a	35%	recall	with	a	precision	of	
more	than	90%	at	a	confidence	of	80%.	

MyPref Library 
We	funnel	our	findings	into	the	MyPref	library	that	is	implemented	for	the	Android	
OS	and	released	as	an	open	source	project	1.	The	goal	is	to	provide	developers	with	a	
practical	generic	 tool	 for	 intelligent	rule-based	notifications	that	can	be	 integrated	
in	any	application,	hiding	at	the	same	time	the	complexity	related	to	the	prediction	
mechanisms.	 The	 MyPref	 library	 abstracts	 the	 functionalities	 of	 the	 proposed	
interruptibility	mechanism	through	a	set	of	intuitive	API	primitives.	

Moreover,	 to	 enable	 an	 overlying	 application	 to	 facilitate	 the	 transparency	 of	 the	
prediction	 mechanism	 to	 the	 users,	 the	 library	 makes	 the	 rules	 human	
understandable	by	replacing	each	notification	type	with	the	most	frequent	words	of	
the	relevant	notification	cluster	(we	refer	to	these	words	as	keywords).	For	instance,	
the	keywords	from	the	cluster	of	Facebook’s	birthday	reminder	notifications	(such	
as	 “Today	 is	Alice’s	birthday.”	 and	 “Alice	and	Chris	have	birthdays	 today.	Help	 them	
have	a	great	day!”)	would	be	“today”	and	“birthday”.	

																																																								

1https://github.com/AbhinavMehrotra/PrefMiner	



	

Figure	3.	PrefMiner	application:	(a)	main	screen,	(b)	self-rule	creation,	(c)	active	rules,	
(d)	pending	rules.	

In-the-wild Evaluation 
We	implemented	the	PrefMiner	mobile	application	using	MyPref	(see	Figure	3)	and	
released	it	through	Google	Play	Store	in	order	to	conduct	an	in-the-wild	evaluation.	
The	 application	 continuously	 collects	 the	 notification	 data	 and	 binds	 the	 user’s	
current	location	to	each	data	instance.	The	rules	are	constructed	every	day	when	the	
phone	 is	 in	charging	mode	and	not	 in	use	so	that	 the	application	does	not	directly	
affect	users’	mobile	experience.	

As	 shown	 in	Figure	3.a	 the	newly	discovered	rules	are	presented	 to	 the	users	 in	a	
human-readable	 format	 to	 get	 their	 approval	 before	 adopting	 them.	 To	 convert	 a	
rule	 into	 a	 human-readable	 format,	 we	 use	 the	 application	 name,	 the	 notification	
cluster	identifier	(i.e.,	the	keywords	provided	by	the	library	as	a	replacement	for	the	
notification	 type)	 and	 location.	 An	 example	 of	 such	 rules	 is	 the	 following:	 “Stop	
notifications	from	Facebook	that	contain	‘candy’	and	‘crush’	words	in	the	title”.	

During	 the	15-day	 study,	PrefMiner	 suggested	179	rules	 to	 the	participants	out	of	
which	 102	 rules	 (i.e.,	 56.98%)	 were	 accepted.	 Overall,	 around	 70%	 of	 the	 users	
accepted	 50%	 (and	 above)	 of	 the	 suggested	 rules.	 The	 results	 also	 show	 that	 the	
average	number	of	notifications	that	are	successfully	 filtered	everyday	 is	12	(with	
the	standard	deviation	equal	to	8)	and,	thus,	minimizes	the	perceived	disruption	for	
handling	irrelevant	notifications.	
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Conclusions 
To	 the	 best	 of	 our	 knowledge,	 PrefMiner	 represents	 the	 first	 intelligent	 mobile	
notification	 management	 solution	 with	 the	 goal	 of	 making	 the	 underlying	
mechanisms	intelligible	for	the	users.	More	in	general,	it	also	represents	one	of	the	
first	examples	of	interpretable	machine	learning	applied	to	mobile	systems	design.	
Indeed,	most	of	 the	existing	work	 in	our	community	 is	based	on	machine	 learning	
mechanisms	 that	are	essentially	 implemented	as	 “black-boxes”.	We	believe	 that	 in	
order	to	design	intelligent	systems	that	are	usable	and	acceptable	for	users,	making	
the	algorithmic	decisions	understandable	is	of	paramount	importance.	We	hope	that	
our	 experience	 in	 designing	 PrefMiner	 will	 be	 useful	 for	 other	 researchers	 and	
practitioners	for	the	design	of	the	next-generation	mobile	systems.	
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