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ABSTRACT 

Passive approaches for detecting and localizing people in 

wireless environments have attracted significant attention 

because of its diverse application in healthcare, security and 

robotics in recent years. However, within indoor 

environments multiple people moving in close proximity to 

each other often impedes the utility of such approaches. In 

this paper we present a new method for identifying multiple 

human targets in Wi-Fi passive radar systems using only a 

single receive channel to detect Doppler returns. The 

technique is based on tree-structure sparse underdetermined 

blind source separation and utilizes proximal alternating 

methods in a convex optimization field. Firstly, we show 

proof-of-principle simulation results for two targets moving 

within a typical indoor scenario and compare the results 

with those from the well-known independent component 

analysis (ICA). Secondly, we validate the simulation outputs 

using real-world experimental data. The results demonstrate 

the effectiveness of the proposed technique for device-free 

detection of multiple targets in the indoor wireless 

landscape.   

 

Index Terms— Passive Wi-Fi radar, Multiple target 

detection, Underdetermined Blind Source Separation, 

proximal alternating Linearized minimization 

 

1. INTRODUCTION 

 

Passive radar systems make use of signals of opportunity of 

such as GSM[1], Wi-Fi [2] [3, 4] and DAB/DVB-T [5] to 

detect and track targets of interest. They essentially consist 

of a series of synchronized radio receivers which compare 

the echoes from moving targets to the original unaltered 

transmission signal. The receive-only nature of passive radar 

systems means that they are low-cost, covert, and operate 

license-free. Recently development in [6] shows that passive 

radar system can achieve high frequency (Doppler) 

resolution. Based on the high-resolution characteristic, 

indoor device-free localization using Doppler-only passive 

Wi-Fi radar has been demonstrated to localize and track 

single targets[3]. Also passive Wi-Fi radar has been utilized 

to track multiple targets utilizing the Inverse Synthetic 

Aperture Radar (ISAR) techniques [23]. In addition, human 

motion gesture detection and recognition have i  also been 

shown [7, 8]. However, the multiple targets detection by 

passively using indoor wireless signals like WiFi is still rare 

due to the lack of range resolution. 

For multiple-target detection methods, some active radar 

techniques utilize bespoke waveforms with large 

bandwidths to provide high range resolutions[9, 10]. Other 

techniques utilize Constant False Alarm Rate (CFAR) 

methods to search the range-Doppler surface[11]. The 

resolution of passive Wi-Fi radar itself is limited by its 

16MHz bandwidth which gives a relatively coarse range 

resolution of approximately 12 meters. This makes the 

detection of multiple targets based only on ranging data very 

difficult.   

 
Another approach to tackle the multiple target problem is 

blind source separation (BSS). In the field of BSS, where 

multiple receivers are used to recover a mixture of different 

sources, independent component analysis (ICA) methods are 

used extensively for a range of applications including EEG 

[12], and image separation[13]. With advancements in 

sparse representation, the iterative shrinkage-threshold 

algorithm has proven to be popular in separating mixed 

music with different regularization terms[14]. Recently, the 

sparsity based Generalized Morphological Component 

Analysis (GMCA) method has been the subject of much 

interest in hyperspectral data analysis [15], as the better 

representation under hybrid basis. Underdetermined BSS 

(UBSS) [16] is a more practical extension of the BSS 

problem, as it utilizes fewer receivers to reconstruct the 

original sources. To our knowledge, sparsity based UBSS 

method has not been applied to Doppler signal separation in 

radar.  In this paper, we proposed Tree-structured sparse-

Undetermined Blind Source Separation (TUBSS) method is 

investigated for multiple-target detection in Doppler only 

passive Wi-Fi radar. TUBSS can better separate mixed 

Doppler echoes induced by multiple targets than the one 

which directly performs Doppler estimation. In addition, 

compared with UBSS method, TUBSS is able to better 

separate multiple targets’ Doppler echoes using fewer 

receivers under interference. The results shown in this paper 

is based on the use of only one surveillance receiver. 

However the technique can be extended to multiple 

surveillance receivers. 
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The rest of the paper is organized as following: Section II 

describes the signal model and Doppler detection of passive 

WiFi Radar. UBSS and proposed TUBSS methods are 

introduced in Section III; Section IV outlines and analysis 

simulation and experimental results; Conclusion is given in 

Section V. 

 

 

2. SIGNAL MODEL AND DOPPLER DETECTION IN 

PASSIVE WIFI RADAR 

 

Passive Wi-Fi radar utilizes the existing Wi-Fi access points 

(APs) as transmitters of opportunity. The reference signal 

𝑟𝑒𝑓(𝑡), is regarded as the linear combination of the ‘clean’ 

transmitted Wi-Fi signal 𝑥𝑠𝑜𝑢𝑟𝑐𝑒(𝑡) and the reflections from 

static objects, characterized by pth delay, 𝜏𝑝 and relevant 

magnitude Ap:  

𝑟𝑒𝑓(𝑡) =  ∑ 𝐴𝑝𝑥𝑠𝑜𝑢𝑟𝑐𝑒(𝑡 − 𝜏𝑝)𝑝  .                   (1) 

Similarly, the signal in the surveillance channel 𝑠𝑢𝑟(𝑡), is 

composed of echoes from all moving targets in the 

illuminated area of interest, which can be characterized as 

the pth delay 𝜏𝑝 , its Doppler shift 𝑓𝑑,𝑝  and relevant 

magnitude 𝐴𝑝:   

𝑠𝑢𝑟(𝑡) =  ∑ 𝐴𝑝𝑝 𝑥𝑠𝑜𝑢𝑟𝑐𝑒(𝑡 − 𝜏𝑝)𝑒𝑗2𝜋𝑓𝑑,𝑝𝑡 .         (2) 

In general, a target can be identified by cross correlating the 

reference and surveillance signals and using a Fast Fourier 

Transform (FFT) to find the exact delay 𝜏  and frequency 

shift 𝑓 of the strongest signal.  This can be represented by 

the Cross Ambiguity Function (CAF) as follows[2]: 

𝐶𝐴𝐹(𝜏, 𝑓) =  ∫ 𝑒−𝑗2𝜋𝑓𝑡+∞

−∞
𝑟𝑒𝑓∗(𝑡 − 𝜏)𝑠𝑢𝑟(𝑡)𝑑𝑡.     (3) 

As the limited bandwidth of the Wi-Fi signal, the range 

resolution of the Wi-Fi radar is around 12 meters. We can 

therefore assume the target is in one range bin for each CAF 

operation. The M samples of correlation result x[m],𝑚 ∈
[0, 𝑀 − 1] in the time domain within a specific range bin 

𝑙𝑚𝑎𝑥  is then given by:  

𝑥[𝑚] =  ∑ 𝑟𝑒𝑓∗[𝑖𝑚 + 𝑛 − 𝑙𝑚𝑎𝑥]𝑠𝑢𝑟[𝑖𝑚 + 𝑛]
𝑁𝑚−1
𝑛=0  ,    (4) 

where M is the number of batches[17] we divide the signal 

into, Nm is the number of data samples in mth batch and im is 

the starting sample index of each batch. In contrast to CAF 

processing, the extracted signal x[m] is regarded as the input 

signal for the TUBSS method described in section 3. 

 

3. UNDERDETERMINED SPARSE-BLIND SOURCE 

SEPARATION FOR MULTI-TARGET DETECTION 

 

This section first describes the UBSS model for multi-target 

detection in passive Wi-Fi radar. The Proximal Alternating 

Linearized Minimization (PALM) [18] framework is then 

introduced to estimate unknowns. Finally a TUBSS 

framework is proposed to deal with the problems of real-

time data. 

  

3.1 Undetermined BSS Model for Target Separation 

  

In the UBSS model, targets echoes as independent sources 

since the target’s movements are random and independent, 

thus it needs K receivers to separate N source targets with 

K<N. This makes the separation task impractical in the real-

life scenario since we cannot usually have the same number 

of receivers as the number of targets. For the UBSS model 

in passive radar, after cross-correlation via Eq.(4), the M 

samples of K mixed Doppler signal 𝑋𝑘 ∈ 𝐶1×𝑀 , can be 

described as the linear mixture 𝐴𝑘𝑛 ∈ 𝐶1×𝑁, and N separated 

Doppler source 𝑆𝑛 ∈ 𝐶1×𝑀 , plus additive white Gaussian 

noise, ωk: 

Xk =  ∑ AknSn
N
n=1 + ωk .       (5) 

The separation task is to extract the mixing matrix  𝐴 ∈
𝐶𝐾×𝑁  and the separated sources 𝑆 ∈ 𝐶𝑁×𝑀  given the 

observed signal mixture 𝑋 ∈ 𝐶𝐾×𝑀. Intuitively, the support, 

𝛼𝜖𝐶𝑁×𝑀of the separated source S under an Inverse Discrete 

Fourier Transform (IDFT) basis 𝐷 ∈ 𝐶𝑀𝑥𝑀should be sparser 

than each of the mixed signals X. Accordingly, the UBSS 

problem becomes a convex optimization problem 

represented in the matrix form: 

     min
(𝐴,𝑆)

1

2
∗ ‖X − AS‖2

2 + λ‖α‖1 

𝑠. 𝑡.   S = αDT,                               (6) 

where T is the transpose operator.  As the separated signal 

after correlation is only the Doppler signal, we simply add 

the l1-norm as a constraint to the optimization formula.    

 

3.2 Proximal Alternating Algorithm 

   

In equation (6), as the term ‖𝛼‖1 is the non-linear part, the 

Lipchitz continuity with respect to α cannot be held. This 

limits the usage of proximal projection methods. However, 

the Proximal Alternating Linearized Minimization (PALM) 

method is introduced in recent research [18, 19], because 

only the first term 
1

2
∗ ‖𝑋 − 𝐴𝑆‖2

2 contains all the variables 

and its gradient is Lipchitz continuous. Then ‖𝛼‖1, the non-

smooth term, can be solved by soft-threshold methods when 

the other variables are fixed. The procedures of optimizing 

A and α at the t+1 iteration is summarized as the following. 

 

3.2.1 Compute 𝛼𝑡+1 using  𝛼𝑡 and 𝐴𝑡 

Initially, the first order partial derivative of the first term 

ℎ =  
1

2
∗ ‖𝑋 − 𝐴𝑆‖2

2 and its Lipchitz constant with respect to 

α can be found from:   

∇𝛼𝑡ℎ = −𝐴𝐻(𝑋 − 𝐴𝛼𝑡𝐷𝑇) ∗ (𝐷𝑇)𝐻 ,                  (7) 

and the Lipchitz constant by: 

𝐿𝛼𝑡 = ‖𝐴𝐻𝐴𝐷𝑇(𝐷𝑇)𝐻‖𝐹 ,                           (8) 

where H is the Hermitian transpose and ‖∙‖𝐹  is the 

Frobenius norm. Then according to [4, 5], through the 

proximal mapping step and l1-norm regularization, 𝛼𝑡+1can 

be updated by the following equation:  

𝛼̂𝑡+1  = 𝛼𝑡 −
1

𝐿𝛼𝑡
∗ ∇𝛼𝑡ℎ ,                            (9) 

and the soft-threshold operator to each element in 𝛼̂𝑡+1: 

𝛼𝑓
𝑡+1 = 𝑠𝑖𝑔𝑛(𝛼𝑓̂

𝑡+1) ∗ (|𝛼𝑓̂
𝑡+1|, 𝜆)

+
.             (10)  



 

3.2.2 Compute  𝐴𝑡+1 using  𝐴𝑡 and  𝛼𝑡+1 

The procedure for calculating At+1 is similar to the previous 

steps. The first order partial derivative of h and the Lipchitz 

constant with respect to A is computed as:  

∇𝐴th = −(X − 𝐴𝑡αt+1DT) ∗ (DT)H ∗ (αt+1)𝐻 ,        (11) 

with the Lipchitz constant given by:  

LAt = ‖(α𝑡+1)DT(DT)H(α𝑡+1)H‖𝐹  .               (12) 
Without the non-linear part, the update of At+1 can be 

directly obtained by the following:  

At+1=  At −
1

LAt
∗ ∇Ath .                           (13) 

 
3.3 Tree Structure Based sparse-UBSS (TUBSS) in High-

power Interference Scenarios 

 

In real-world scenarios, due to the different ranges of 

targets, the powers of Doppler echoes vary significantly and 

the required target Doppler may be masked by other targets 

or interference. However, we here propose a tree-structure 

Sparse-UBSS to extract the Doppler sources by estimating a 

sequence of mixing matrices in multiple steps. The details of 

the algorithms are summarized in algorithm 1 and 2. 

 

Take the N targets, TUBSS with one receiver as an example. 

The input root node is the mixed signal from one receiver 

and each leaf node with the sparsest frequency spectrum 

should be chosen as the potential Doppler sources, ready for 

another separation to the next layer. The stopping criterion 

for adding more separation siblings is that N sources are 

collected and for each source difference between the first 

two largest frequency coefficient is larger than 3db [20].   

 

 
 

 

4. RESULTS AND ANALYSIS 

 

In this section, both simulation and real-life experimental 

data based separation results of passive Wi-Fi radar are 

presented. In addition, results based the robust ICA and the 

TUBSS method are compared for the simulation data. 

Finally, the experimental results using the TUBSS method 

are shown.  

 

4.1 Experiment Set Up and Implementation 

 

For the simulation, the Wi-Fi signals from both the 

reference and surveillance channel are simulated using a 

Dell M4700 laptop with Matlab2012b. The Wi-Fi signal is 

based on the 64-quadrature amplitude modulation (QAM) 

modulation and encoded by Orthogonal Frequency-Division 

Multiplexing (OFDM). The length of the simulation signal 

is 0.5 second with 20 MHz bandwidth at the center 

frequency of 2.462 GHz. The experimental set up is shown 

schematically in figure 3. A Wi-Fi AP is used as the 

transmitter and the UCL Software Defined Radio based 

Passive Wi-Fi radar [4] collected the reference and 

surveillance data using two Yagi antennas with 14 dbi gain. 

 

4.2 Simulation Results and Analysis 

 

For the TUBSS, we only use one receiver and one node tree 

to separate the two sources. For comparison, the robust ICA 

method [21] is usually carried out using two receivers with 

the distance between antennas half a wavelength. The 

following two scenarios were simulated: 

Scenario 1: Two people are walking at 1m/s away from the 

receiver and 0.5m/s towards the receiver respectively, with 

Doppler echo signals with SNR of 2, 5, 8 and 10 db.  

Scenario 2: Two people are both walking towards the 

receiver at 1m/s and 0.5m/s respectively with Doppler echo 

signals with SNR of 2, 5, 8 and 10 db.  

TUBSS and the robust-ICA are compared using the Signal 

Distortion Ratio (SDR) and Signal Interference Ratio (SIR) 

from BSS evaluation methods [22], as shown in figure 1 and 



2. In general, with the increasing power of Doppler echoes, 

the SDR and SIR of both scenarios are increasing. When the 

two velocities are in the opposite direction, as the less 

correlated Doppler signals, the SDR and SIR are higher than 

the case when the targets are moving in same direction for 

both methods. In the case of same direction targets, although 

with only one receiver, the TUBSS slightly outperforms the 

robust ICA, as the ICA is not so robust for noisy 

environments and mixtures of target signals with more 

correlations [16]. It is noted that the ICA performs basically 

the same as TUBSS at 10db due to less noise for mixtures. 

The robust ICA performs better than the TUBSS and 

delivers more accurate estimation of the mixing matrix, due 

to more receivers and less correlated Doppler signals. The 

potential reason for the ICA’s outperformance when 

separating velocity of opposite direction may be: it is an 

easier task to separate Doppler signals with opposite 

velocity and not to say ICA can use two channels 

information.    

 

4.3 Experiment Results and Analysis 

 

The experimental scenarios is shown in figure 3 and 

experimental results are shown in figures 4 and 5 

respectively. It is noted that we have not included the raw 

range-Doppler map as in the indoor scenario the target 

always stays in the first range bin. In this way, we think that 

the Doppler information from the first range bin can verify 

and compare with the separation results. Two more 

scenarios are introduced in experiment:  

Scenario 3: two targets are walking in opposite directions, 

close together;  

Scenario 4: the two targets are walking in opposite 

directions farther apart.   

From the CAF results in figure 4(b) and 5(b), the two 

scenarios are difficult to separate, due to the ambiguities 

from interference and the mixed phases of source signals in 

figure 4(a) and 5(a). Furthermore, due to the longer range 

from the receiver in scenario 4 the target SNR is very low.  

 

A significant improvement is shown using the TUBSS 

method.  With a one-depth tree structure for Scenario 3, the 

two targets with 0.5 m/s and -0.5m/s can be identified easily 

from figures 4 (d) and (f). For Scenario 4, although one of 

the echoes has low power, we used a depth-three TUBSS to 

pick up the Doppler returns, as shown in figures 5(d) and 

(f). The high-power interference signals with similar 

frequency are rejected since only the signal whose phase 

variation slope are constant are identified as targets, shown 

in figure (c) (d) of 4 and 5, because the same mixing matrix 

set weights to each sample point. As noise or interference 

signals are not continuous, their slopes of phase variations 

cannot remain constant over the whole integration time.  

 

 

5. CONCLUSIONS  

 

In this paper, a Tree-structure based sparse-UBSS (TUBSS) 

method is proposed and applied to Passive Wi-Fi radar 

multi-target detection. From the simulation results, TUBSS 

is able to help identify two targets moving both in opposite 

and same directions using only one receiver, even if the 

velocity difference is only 0.5 m/s. In addition, robust ICA 

using two receivers provides slightly better performance 

than the TUBSS when the velocities are in the opposite 

direction, however, the TUBSS outperforms the ICA when 

the velocities are in the same direction. The proposed 

method is verified by both simulation and real experiments 

results using two targets moving in opposite directions. It 

has been shown that targets can be identified using a three-

depth TUBSS method even in a high interference indoor 

environement. This is the first application of this method to 

passive wireless detection as far as we are aware and should 

significantly improve target identification in real world 

noisy indoor scenarios. 

 

 
Figure 1 Evaluation of separation of scenario 1 

 

 
Figure 2 Evaluation of separation of scenario 2 
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Figure 3 Experimental Scenarios 3 and 4  

 
Figure 4 TUBSS result of experiment data of scenario 3 with 

similar signal source powers 

 

 
Figure 5 Sparse-UBSS result of experiment data of scenario 4 

with different signal source powers 
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Doppler signal 1 in frequency domain

0 0.1 0.2 0.3 0.4 0.5
-4

-2

0

2

4

Time (s)

P
h

a
s
e
 (

ra
d

)

(e)Phase of the separated

 Doppler signal 2        

-3-2.5-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

Velocity (m/s)

M
a
g

n
it

u
d

e

(f)Magnitude of the separated       

Doppler signal 2 in frequency domain



[23] Colone, F., Pastina, D., Falcone, P., & Lombardo, P. (2014). 

WiFi-based passive ISAR for high-resolution cross-range profiling 

of moving targets. IEEE Transactions on Geoscience and Remote 

Sensing, 52(6), 3486-3501. 

 

 

                                                 
 


