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Summary

We explored associations
between all-cause death rate
(DR), cardiac radiation
doses, and electrocardio-
graphic changes in 78 pa-
tients with locally advanced
non-small cell lung cancer
treated in IDEAL-CRT, a
trial of isotoxically escalated
concurrent CRT. We found
evidence of associations
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Purpose: The heart receives high radiation doses during radiation therapy of
advanced-stage lung cancer. We have explored associations between overall survival,
cardiac radiation doses, and electrocardiographic (ECG) changes in patients treated in
IDEAL-CRT, a trial of isotoxically escalated concurrent chemoradiation delivering
tumor doses of 63 to 73 Gy.
Methods and Materials: Dosimetric and survival data were analyzed for 78 patients.
The whole heart, pericardium, AV node, and walls of left and right atria (LA/RA-Wall)
and ventricles (LV/RV-Wall) were outlined on radiation therapy planning scans, and dif-
ferential dose-volume histograms (dDVHs) were calculated. For each structure, dDVHs
were approximated using the average dDVH and the 10 highest-ranked structure-
specific principal components (PCs). ECGs at baseline and 6 months after radiation ther-
apy were analyzed for 53 patients, dichotomizing patients according to presence or
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between higher DR and

conduction or ischemic/
pericarditis-like changes on
ECG at 6 months, and be-
tween higher DR and higher
heart or left atrial wall vol-
umes receiving 63 to 69 Gy.
absence of “any ECG change” (conduction or ischemic/pericarditis-like change). All-
cause death rate (DR) was analyzed from the start of treatment using Cox regression.
Results: 38% of patients had ECG changes at 6 months. On univariable analysis, higher
scores for LA-Wall-PC6, Heart-PC6, “any ECG change,” and larger planning target vol-
ume (PTV) were significantly associated with higher DR (PZ.003, .009, .029, and .037,
respectively). Heart-PC6 and LA-Wall-PC6 represent larger volumes of whole heart and
left atrial wall receiving 63 to 69 Gy. Cardiac doses �63 Gy were concentrated in the
LA-Wall, and consequently Heart-PC6 was highly correlated with LA-Wall-PC6. “Any
ECG change,” LA-Wall-PC6 scores, and PTV size were retained in the multivariable
model.
Conclusions: We found associations between higher DR and conduction or ischemic/
pericarditis-like changes on ECG at 6 months, and between higher DR and higher
Heart-PC6 or LA-Wall-PC6 scores, which are closely related to heart or left atrial wall
volumes receiving 63 to 69 Gy in this small cohort of patients. Crown Copyright� 2017
Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Introduction

Definitive chemoradiation (CRT) is the standard of care for
locally advanced non-small cell lung cancer (NSCLC) (1).
For more than 30 years the accepted radiation therapy dose
was 60 to 63 Gy in 1.8- to 2.0-Gy fractions, established by
Radiation Therapy Oncology Group trial RTOG-7301 (2, 3).
Overall survival (OS) is poor at these dose levels, with high
local failure rates stimulating interest in dose escalation.
Outcomes modeling suggests a tumor dose response (4), and
results from early-phase studies indicated that concurrent
CRT might be safe up to 74 Gy (5-12). However, the RTOG-
0617 phase 3 trial of dose escalation has reported a signifi-
cantly lower OS for 74 Gy than for 60 Gy in daily 2-Gy
fractions, triggering efforts to identify reasons for the
reduced survival (13). An RTOG-0617 analysis found
negative associations between OS and high heart volumes
receiving more than 5 Gy or 40 Gy (13, 14). A recent meta-
analysis of randomized trials in NSCLC found that for con-
current CRT treatments, higher radiation doses result in
poorerOS, possibly partly because of higher levels of toxicity
in the presence of concurrent chemotherapy (15).

Radiation-induced heart disease (RIHD) has been asso-
ciated with poorer long-term OS in breast and lymphoma
survivors (16, 17). For locally advanced NSCLC patients,
the impact of cardiac irradiation on OS has not been well
characterized because RIHD latency was thought to be
longer than the typical OS. However, NSCLC patients are
generally older than breast cancer or lymphoma patients,
have more underlying cardiopulmonary conditions and
common risk factors for ischemic heart disease, and receive
higher target radiation doses. Interest in RIHD after
NSCLC radiation therapy has therefore increased with the
emergence of evidence suggesting that RIHD affects OS
earlier than was previously thought (18, 19).

In this post-hoc analysis of the prospective data from
IDEAL-CRT (20), we aimed to identify the impact of
cardiac irradiation on the all-cause death rate (DR) using a
dose-volume histogram-wide analysis approach based on
principal components analysis (PCA). We further attempted
to localize to specific cardiac substructures the associations
seen between whole-heart dosimetry and DR, because
whole heart avoidance may not be feasible in clinical
practice. To explore pathophysiologic connections between
cardiac irradiation and survival, we evaluated electrocar-
diogram (ECG) changes after irradiation.
Methods and Materials

Population

Data were analyzed for 78 of all 82 patients with stage IIB/
III NSCLC who were recruited and treated in IDEAL-CRT,
a phase 1/2 trial of isotoxically escalated CRT, which
delivered 63 to 73 Gy in 30 fractions over 6 weeks,
concurrently with 2 cycles of vinorelbine and cisplatin.
Four patients were excluded, 1 because of corrupted radi-
ation therapy planning archival records, 2 because of
replanning during treatment, and 1 because of treatment
termination after toxicity after 5 fractions resulting in very
low heart doses.
ECG scoring

The ECGs obtained at baseline and 6 months after CRT
were assessed by 2 cardiologists (S.R. and A.K.) in a
blinded manner for the following characteristics: normal
ECG, new rhythm changes compared with baseline (sinus
tachycardia/bradycardia, conduction abnormalities such as
bundle branch block, atrial fibrillation), and ischemic or
pericarditis-like changes (new or worsening ST and T wave
changes compared with baseline). ECG changes between
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the 2 time points were then scored dichotomously as pre-
sent or absent (“any ECG change”).

Processing of radiation therapy dosimetric data

Treatment plans were imported into the open-source
Computational Environment for Radiotherapy Research
(CERR) software written in MATLAB R2012b (Math-
works, Inc, Natick, MA). Whole-heart contours delineated
by physicians at participating centers were checked by DL
and SV. The pericardium, right atrium (RA), right ventricle
(RV), left atrium (LA), left ventricle (LV), and AV node
(AVN) were delineated as individual substructures by SV
using a modified version of a validated cardiac atlas (21).
The pericardium was defined as a rim volume lying 5 mm
or less beyond the heart, and the outlined AVN was
expanded by 3 mm superiorly-inferiorly to account for
delineation variability. RA-Wall, RV-Wall, LA-Wall, and
LV-Wall were defined as wall regions lying 5 mm or less
within the RA, RV, LA, and LV contours, respectively.

Differential dose-volume histograms (dDVH) with
1-Gy dose-bins were constructed for the whole heart and
all substructures and were exported to SPSS.23 (IBM
Corp., Armonk, NY) and R 3.2.3 (R Foundation, Vienna,
Austria) for further processing. Separate principal com-
ponents analyses (PCA) were carried out for the whole
heart and for each cardiac substructure, representing pa-
tients’ dDVHs as linear sums of structure-specific
orthogonal principal components (PCs) and the
population-averaged dDVH (Appendix A; available online
at www.redjournal.org) (22-26). The scores of the PCs in
these linear sums reflect the degrees to which they are
present in each patient’s dDVH. For each cardiac struc-
ture, PCA allowed the highly correlated dose distributions
of the whole patient group to be efficiently approximated
by a truncated set of PCs, specifically the 10 highest-
ranked PCs obtained from PCA for that specific
structure. Scores of the initially obtained PCs were
uncorrelated across the patient group, each PC describing
a unique and independent portion of the dosimetric vari-
ability. However, these PCs contained numerous peaks,
obscuring their physical interpretation. We therefore used
varimax rotation to simplify the PC structure (27),
applying an orthogonal rotation to the truncated set of
PCs. The rotated PCs are more easily interpretable, mostly
having nonnegligible amplitudes across only narrow dose
regions, although their scores are no longer orthogonal.

Statistical analysis

Univariable and multivariable analyses (UVA/MVA) of
hazard ratios (HRs) for the all-cause death rate (DR)
(measured from the start of treatment) were performed
with Cox proportional hazards regression. Factors
analyzed for association with DR were as follows:
clinical (patient and treatment) characteristics, ECG
changes, and scores of the 10 highest-ranked whole-heart
dosimetry PCs. Relevant clinical factors, ECG changes,
and PCs having P values �.20 on UVA were initially
included in multivariable models, and stepwise bidirec-
tional variable elimination (28) was performed to find the
model with the lowest Akaike information criterion (AIC)
score (29).

The false-discovery rate for significant associations
after multiple hypothesis testing was controlled using the
Benjamini-Hochberg step-up procedure to identify
positive discoveries (Appendix B; available online at
www.redjournal.org). The predictive abilities of multi-
variable models were characterized using Harrell’s
concordance (C) statistic (30, 31). The C statistic of a
model is 1.0 if for all possible pairs of patients, it correctly
predicts which patient has the longer survival. A value of
0.5 indicates a model performance no better than chance.

Associations between dichotomized ECG changes and
the scores of PCs significantly associated with DR on MVA
were tested using logistic regression.

Two approaches were used to further localize the associa-
tions seen between DR and whole-heart dosimetry to specific
cardiac substructures. The first involved UVA/MVA of
associations between DR and the scores of individual cardiac
substructure PCs (ss-PCs). To avoid excessive multiple
testing, we studied only ss-PCs closely aligned with “heart-
PCmax,” thewhole-heart PCmost strongly associatedwithDR,
using a normalized dot product (NDP) criterion described
in Appendix C (available online at www.redjournal.org) to
assess closeness of alignment.

The second approach was a graphic interrogation of the
shapes of the heart dose distributions of all 78 patients,
mapped to a single reference geometry using an in-house
MATLAB program (described in detail in Appendix D;
available online at www.redjournal.org). Binary masks
were created from each patient’s whole heart and left and
right atria and ventricles, and registered to the corre-
sponding masks of a reference patient by affine trans-
formation. 3D dose distributions were mapped to the
reference geometry through the same affine trans-
formations, and a threshold was applied to identify the
region where dose was associated with the peak in heart-
PCmax (as quantified in the Results section) for each pa-
tient. These high-dose regions were visualized by taking 2D
projections through the reference geometry in each prin-
cipal anatomic plane (transverse, coronal, sagittal), pro-
ducing images with pixel values representing the
percentage of patients for whom the projected high-dose
region was present at each point in the plane. Projections
were convolved with a Gaussian smoothing kernel (3-mm
standard deviation) to avoid identification of features
smaller than the typical registration error. This process was
carried out for both for the whole heart and for each cardiac
substructure, allowing visual localization of the high-dose
peak.
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Table 1 Treatment, ECG, and radiation dosimetry data for
78 patients analyzed

Characteristic Value

Age, y, median (range) 66 (43-84)
WHO performance status*, n (%)
0 32 (41.0)
1 46 (59.0)

Sex, n (%)
Female 20 (25.6)
Male 58 (74.4)

Stage, n (%)
IIB 6 (7.7)
IIIA 54 (69.2)
IIIB 18 (23.1)
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Results

Population, ECG, and radiation therapy dosimetry
data

Patient and treatment data are detailed in Table 1. ECG
changes are also summarized in the table, together with
whole-heart and cardiac substructure dosimetry. Fifty-three
patients had analyzable ECGs both at baseline and
6 months after radiation therapy, and 20 patients (38%) had
documented changes. The mean whole-heart dDVH is
plotted in Figure 1, alongside the 10 varimax-rotated whole-
heart PCs that described more than 95% of total variance.
Nodal status, n (%)
N 2 or 3 65 (83.3)
N 0 or 1 13 (16.7)

Histology, n (%)
Squamous 42 (53.8)
Nonsquamous 36 (46.2)

PTV, cm3, median (range) 400.6 (138.7-1262.1)
Analyzable ECGs, n (%)
Baseline 71 (91.0)
6 months 56 (71.8)
Baseline and 6 months 53 (67.9)

Normal ECGs, time point, n (%)
Baseline 38 (48.7)
6 months 18 (23.1)

ECG changes from baseline to
6 months, n (%)

Rhythm change 9 (11.5)
Ischemic or pericarditis-like change 11 (14.1)

Prescribed dose, Gy, median (range) 67.6 (63-73)
Mean EQD2y, Gy, median (range)
Lung 14.7 (7.9-21.2)
Heart 8.0 (0.4-29.2)
Left atrium wall 17.1 (0.5-64.2)
Left ventricle wall 2.8 (0.3-26.9)
Right atrium wall 4.3 (0.3-61.3)
Right ventricle wall 3.8 (0.3-29.0)
Atrioventricular node 2.2 (0.3-52.5)
Pericardium 10.8 (0.4-27.0)

Abbreviations: ECG Z electrocardiogram; PTV Z planning target

volume.

* Performance status 0eable to carry out all normal activity without

restriction. Performance status 1erestricted in strenuous activity but

ambulatory and able to carry out light work.
y EQD2: equivalent dose in 2 Gy fractions, calculated for a/b Z 3 Gy.
Associations between OS, clinical characteristics,
ECG changes, and whole-heart dosimetry

Results from UVA are shown in Table 2. Patients with
larger planning target volumes (PTVs) or “any ECG
change” had significantly higher HRs for DR (PZ.04 and
.03, respectively). However, when analyzed separately,
ischemic/pericarditis-like ECG changes and conduction
ECG changes were not statistically significantly associated
with DR. The presence of an abnormal baseline ECG was
not significantly associated with DR (Table 2) or with onset
of any ECG change at 6 months after treatment.

Higher DR was significantly associated with larger
Heart-PC6 scores (PZ.009) (Table 2). Heart-PC6 has a
prominent peak at 63 to 69 Gy and a dip at 0 to 4 Gy
(Fig. 1); therefore, in patients with high Heart-PC6 scores,
heart volumes receiving 63 to 69 Gy (VHeart-63-69) and 0 to
4 Gy (VHeart-0-4) are, respectively, relatively large and
small. Higher DR is more plausibly linked to larger vol-
umes receiving high doses than to smaller volumes
receiving low dosesdan interpretation supported by a
significant association between VHeart-63-69 and DR
(HRZ1.13, PZ.03) but not between VHeart-0-4 and DR
(HRZ1.002, PZ.76). Heart-PC6 was not significantly
correlated with PTV size (Pearson correlation rZ.21;
PZ.06) or with prescribed dose (rZ.08; PZ.51)
(Appendix E; available online at www.redjournal.org).

Significant correlations between DR and PTV size, “any
ECG change,” and Heart-PC6 remained classified as posi-
tive discoveries when the false-discovery rate (FDR) was
limited to 20% by the Benjamini-Hochberg procedure. The
multivariable model judged best according to the AIC
retained Heart-PC6 (PZ.02), “any ECG change” (PZ.04),
and PTV size (PZ.08) as factors associated with DR
(Table 3) and had a good Harrell’s C statistic of 0.76 (32).
Associations between cardiac substructure
dosimetry and OS

The hearts of 62 patients received doses in excess of 63 Gy
(the lower end of the peak of Heart PC6), and in 82% of
these patients �1 cm3 of heart received �63 Gy. High dose
levels were concentrated in the left atrium and overlying
pericardium (Fig. 2): specifically, doses �63 Gy were
delivered to the pericardium in all 62 patients, to LA-Wall
in 48 (77%), RA-Wall in 22 (36%), LV-Wall in 18 (29%),
RV-Wall in 16 (26%), and AVN in 2 (3%) patients. In the
20 patients with top quartile Heart-PC6 scores, the median
heart and LA-Wall fractional volumes receiving �63 Gy
(VHeart63, VLA-wall63) were 4% (range, 1%-18%) and 16%
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Table 2 Univariable Cox proportional hazards regression
models of all-cause death rate versus clinical factors, whole
heart dosimetry PCs, and cardiac substructure dosimetry PCs

Covariate P value

Hazard
ratio (95%
confidence
interval)

Clinical factors
Baseline abnormal ECG .96 0.98 (0.45-2.15)
Any ECG change at
6 months

.03 2.94 (1.12-7.76)

PTV size, cm3 .04 1.002 (1.000-1.003)
Prescribed dose, Gy .25 0.93 (0.83-1.05)
Performance status, 0 vs 1 .35 1.49 (0.64-3.47)
Nodal stage, 0/1 vs 2/3 .42 1.64 (0.49-5.49)
Age, y .60 1.01 (0.97-1.06)
Stage, IIba/IIIa vs IIIb .80 1.13 (0.45-2.83)
Sex, female vs male .82 1.11 (0.44-2.79)
Nonsquamous vs
squamous

.94 1.03 (0.47-2.27)

Whole heart dosimetry
Heart PC1 .28 1.18 (0.88-1.58)
Heart PC2 .12 0.52 (0.23-1.19)
Heart PC3 .56 0.83 (0.44-1.56)
Heart PC4 .77 0.94 (0.62-1.43)
Heart PC5 .48 1.15 (0.78-1.70)
Heart PC6 .01 1.54 (1.12-2.13)
Heart PC7 .78 1.05 (0.73-1.52)
Heart PC8 .60 1.11 (0.75-1.63)
Heart PC9 .16 0.73 (0.47-1.13)
Heart PC10 .65 0.92 (0.64-1.31)

Substructure dosimetry
Left atrial wall PC6 .003 1.49 (1.14-1.95)
Pericardium PC5 .005 1.64 (1.16-2.33)

Abbreviations: ECG Z electrocardiogram; PC Z principal

component; PTV Z planning target volume.

Data from 78 patients were analyzed for all factors except ECG

change, for which paired data were available for 53 patients. (P values

are uncorrected for multiple hypothesis testing.)
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Fig. 1. The mean whole-heart differential dose-volume
histograms of 78 patients, plotted together with the 10
varimax-rotated principal components (PCs) describing
>95% of the whole-heart dosimetric variance, and left
atrial wall PC-6 (LA-Wall-PC6) and pericardium-PC5
(Peri-PC5). For ease of visualization, the loadings (frac-
tional volumes receiving different dose levels) of the PCs
have been scaled so that for each PC the maximum absolute
value is 1.
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(range, 2%-77%), respectively, compared with 0.3% (range,
0%-14%) and 0% (range, 0%-22%) in the other 58 patients.

LA-Wall-PC6 and Pericardium-PC5 were the only sub-
structure PCs with NDPs >1 (Appendix C; available online
at www.redjournal.org). Like Heart-PC6, they both had
prominent 63- to 69-Gy peaks (Fig. 1), and their scores
were highly correlated with those of Heart-PC6 (P<.01,
Spearman correlation coefficients of rZ.81 and .91,
respectively). LA-Wall-PC6 and Pericardium-PC5 scores
were both significantly associated with DR on UVA
(Table 2), and these associations remained classified as
positive discoveries when the Benjamini-Hochberg pro-
cedure was used to limit the FDR to 20%, alongside the
associations between DR and PTV size, “any ECG change,”
and Heart-PC6 score.

In MVA of all factors including both whole-heart and
substructure dosimetry, the model judged best according to
the AIC retained higher LA-Wall-PC6 score (PZ.02),
presence of “any ECG change” (PZ.07), and PTV size
(PZ.10) as factors associated with higher DR, the
LA-Wall-PC6 score superseding Heart-PC6 (Table 3). This
model’s Harrell’s C statistic was good at 0.75.
Scale of OS variation with heart dosimetry and ECG
changes

Tables 2 and 3 list DR hazard ratios for the factors
studied on UVA and MVA. The scale of association
between VLA-Wall-63 and DR can be seen in survival curves
plotted in Figure 3: for patients with VLA-Wall-63 values
below or above the median level of 2.2%, median OS was
39.2 and 27.9 months, respectively. At 24 months after
treatment, survival was 23% higher (81% vs 58%) for pa-
tients with less highly irradiated atrial wall volumes. The
scale of association between DR and ECG changes is
shown in the survival curves split by the presence or
absence of any ECG change, also plotted in Figure 3.

http://www.redjournal.org


Table 3 Multivariable Cox proportional hazards models of all-cause death rate judged best according to the AIC measure

Variable P value Hazard ratio (95% confidence interval)

Multivariable modeling including whole heart dosimetry* (Harrell’s C statistic: 0.76)
Heart PC6 .02 1.58 (1.08-2.33)
Any ECG change at 6 mo .04 2.79 (1.03-7.50)
PTV size, cm3 .08 1.00 (1.00-1.01)

Multivariable modeling including whole heart and substructure dosimetryy (Harrell’s C statistic: 0.75)
Left atrial wall PC6 .02 1.52 (1.07-2.17)
Any ECG change at 6 mo .07 2.50 (0.92-6.81)
PTV size, cm3 .10 1.00 (1.00-1.01)

Abbreviations: AIC Z Akaike information criterion; ECG Z electrocardiogram; PC Z principal component; PTV Z planning target volume.

Factors initially included in the modeling were as follows: *clinical characteristics of Table 2 and whole-heart PCs with P value <.2 on univariable

analysis (UVA) (PC2, PC6, PC9) and yfactors from * alongside substructure PCs with P value <.2 on UVA (Pericardium-PC5, Left atrial Wall-PC6). (P

values are uncorrected for multiple hypothesis testing.)
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Correlations between ECG changes and dosimetry

Correlations between “Any ECG change” and scores for
Heart-PC6, Pericardium-PC5, and LA-Wall-PC6 were not
significant (PZ.90, .77, and .44, respectively) (Appendix G;
available online at www.redjournal.org).
All patients with V63>1cm3 (n = 51)
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Discussion

To our knowledge, this is the first study to use a DVH-wide
analysis based on principal components to explore associ-
ations between heart irradiation and death rate in NSCLC
patients, rather than using discrete dose-volume point
20 patients with top quartile Heart-PC6 scores
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metrics. It is also the first to analyze ECG changes and
detailed cardiac substructure dosimetry in relation to DR in
these patients.

We have found higher DR to be significantly associated
with the presence of “any ECG change” 6 months after
radiation therapy, and with large PTV size and larger values
of VHeart-63-69, the whole-heart volume receiving 63 to
69 Gy. Cardiac doses of 63 to 69 Gy were concentrated in
the left atrium and overlying pericardium, and correspond
to 64 to 73 Gy equivalent dose in 2-Gy fractions (EQD2) for
a/bZ 3 Gy. The scale of associations between DR and heart
and substructure volumes receiving 63 Gy was substantial,
despite median values of these volumes being low (2%, 5%,
and 8% for whole-heart, pericardium, and LA-Wall,
respectively). Given that VHeart-63-69 was not significantly
correlated with PTV size or prescribed dose, the association
between heart dose and DR is likely independent of these
latter 2 factors; indeed, both PTV size and Heart-PC6 are
retained in the whole-heart multivariable model judged best
by the AIC criterion, whereas prescribed dose is not
significantly correlated with DR on univariable analysis.

We have additionally explored the impact on DR of the
presence of N2/3 disease, and of subcarinal nodal involve-
ment (Appendix H; available online at www.redjournal.org).
On univariable analysis, neither N2/3 disease nor involve-
ment of subcarinal nodes was significantly associated with
DR (PZ.42 and .12, respectively). After the addition of
these factors into the multivariable models of Table 3, heart
and left atrial wall PC6 remained significantly associated
with DR (PZ.03, with very slightly reduced HRs), whereas
subcarinal nodal involvement was also retained in the
multivariable model judged best on AIC (PZ.07). In this
dataset, then, there is no indication that nodal N2/3 disease
or subcarinal nodal involvement was a confounder of the
observed associations between cardiac dosimetry and DR.

Because of the proximity of the heart to lung tumors and
nodes, it is difficult to avoid the entire heart when esca-
lating tumor dose. It would therefore be useful to identify
specific radiosensitive cardiac substructures to spare pref-
erentially, but few data exist regarding cardiac substructure
dosimetry. Although irradiation of the left atrial wall was
significantly associated with DR in our study, it was not
possible to determine whether this was because damage to
this structure was particularly critical, or whether the as-
sociation simply reflects the strong correlation between
whole-heart and left atrial volumes receiving 63 to 69 Gy
(Spearman correlation rZ0.88, P<.01).

A recent review found no consensus on heart dose
constraints used in NSCLC treatments, with most studies
setting very lenient constraints especially at higher heart
dose levels (33). In IDEAL-CRT, upper limits of 60, 53,
and 45 Gy were placed on D33%, D67%, and D100%,
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respectively, the lowest doses delivered to the most highly
irradiated 33%, 67%, and 100% of the heart (20). One
study set a strict maximum heart dose limit of 63 Gy (34),
and in light of the associations we have seen between DR
and VHeart63-69 we are presently investigating whether this
limit can be met while delivering the 63- to 73-Gy IDEAL-
CRT range of prescribed doses. The lack of well-defined
heart constraints reflects the scarcity of studies exploring
the dose dependence of RIHD after radiation therapy for
NSCLC.

Our results provide direct evidence that DR is associated
with cardiac irradiation after radiation therapy for NSCLC.
This adds to existing indirect evidence from the post-
operative radiation therapy (PORT) meta-analysis, which
demonstrated a 7% absolute reduction in 2-year OS and
higher rates of non-cancer-related deaths for irradiated
compared with nonirradiated NSCLC patients (35).
Analysis of the SEER database found that this increased
risk of death existed in patients treated with PORT between
1983 and 1988, but not between 1989 and 1993, possibly
because of better normal tissue sparing after the introduc-
tion of conformal radiation therapy and higher-energy
linear accelerators rather than cobalt machines (36).
Greater heart toxicity and mortality rates have also been
reported for NSCLC patients with irradiated left-sided
rather than right-sided tumors (36, 37). Studies have
found negative associations between OS and non-radiation
therapy-related cardiac morbidity in NSCLC patients,
suggesting that the additive effect of RIHD has the potential
to further worsen OS (38, 39).

Radiation-induced fibrosis is thought to be a key
mechanism in the development of cardiac dysfunction after
radiation therapy. In rats, fibrosis accumulation and dose-
dependent decreases in end-diastolic diameter were seen
1 month after single fractions of 15 or 20 Gy, and deaths
due to cardiac failure occurred after 22.5 Gy (40, 41). The
impact of atrial irradiation on survival was demonstrated by
the higher survival seen when atria were specifically spared
during heart irradiation (40).

Atrial fibrosis is commonly seen in patients with atrial
fibrillation (AF) and plays an important role in the patho-
physiology of AF (42-45). Continuous AF can lead to LV
dysfunction, increased LA pressure, and impaired atrial
contractility, and it has been associated with worse clinical
outcomes, including stroke (46). A surrogate for fibrosis,
late gadolinium enhancement (LGE) on magnetic reso-
nance imaging, has been seen in the left atrial walls of
patients with AF. In patients with esophageal cancer, LGE
has been seen in areas of heart receiving 40 Gy, and more
so in regions receiving 60 Gy; however, it is not seen
outside radiation fields (47). This dose effect is supported
by evidence from an esophageal cancer study that found
microvasculature circulation obstruction in 0%, 43%, and
68% of myocardial segments receiving 0 Gy, 40 Gy, and
60 Gy, respectively (48, 49). In another study, 14% of
esophageal cancer patients had symptomatic cardiac dis-
ease 5 years after radiation therapy, the risk varying with
the fractions of whole-heart volumes receiving �45 Gy,
50 Gy, and 55 Gy (50). In summary, imaging studies have
demonstrated radiation doseerelated cardiac changes in
patients, but further work is required to directly associate
these changes with morbidity and mortality.

Some limitations of our study must be acknowledged.
First, although it was a prospective study, our analysis
was post hoc and lacked comorbidity or smoking status
data, which may be additive risk factors for RIHD. Sec-
ond, the resting 12-lead ECG has limited value as an
indicator of subtle pathologic changes within the heart
(51, 52). However, in a similar population over the age of
65 without lung malignancies but with baseline ECG
changes, the rate of nonfatal and fatal cardiovascular
events at 6 months was only around 2% (53). Thus, the
higher rate of ECG changes (38%) observed at 6 months
in this study is likely due to the effect of radiation
therapy.

Third, the study was relatively small, and its findings
must consequently be interpreted with caution. Although
we found DR to be associated with dosimetry and ECG
changes, we could not distinguish truly cardiac-related
deaths from cancer-related deaths because there was a lack
of cardiac-specific morbidity or mortality data, and all pa-
tients with early death experienced tumor relapse.
Recording of cause of death is complicated because deaths
of radiation therapy patients after cardiac arrest could be
scored as cancer related.

Fourth, although we found an association between high
doses to left atrium and poorer survival, the mechanism
remains unclear. Although we used a validated atlas (21) to
define the cardiac substructure, there remains some uncer-
tainty in our substructure outlines resulting from motion.
Finally, although PCA provides a very efficient way of
reducing many highly correlated dosimetric variables to a
few factors, the clinical interpretation of the resulting
varimax-rotated PCs can be challenging.
Conclusion

In this small cohort of NSCLC patients we have seen sig-
nificant associations between all-cause death rate and
higher heart volumes receiving 63 to 69 Gy (particularly
the left atrial wall). The observed associations suggest that
small volumes of heart receiving high radiation doses may
have a negative impact on survival, greater and more acute
than that seen in breast cancer and lymphoma patients who
are treated with lower radiation doses. Our study is hy-
pothesis generating and requires further work to establish a
causal relationship between radiation therapy and mortality.
The pathophysiology of acute RIHD needs to be deter-
mined in prospective functional imaging studies before we
recommend modification of treatment plans on the basis of
these initial results, for example, to reduce heart doses
receiving �63 Gy, particularly if this compromises dosi-
metric PTV coverage. Our finding of an association
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between DR and ECG changes at 6 months after treatment
does, however, tentatively suggest a link between DR and
RT-induced cardiac damage.

Given the armory of intensity modulated photon and ion
beam radiation therapy technology available, outcomes of
dose-escalated NSCLC treatments may be improvable in
future by means of cardiac-sparing dose escalation tech-
niques, given greater knowledge of links between survival,
cardiac pathophysiology, and whole-heart and substructure
dosimetry.
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