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Abstract

The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic
knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting
that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative
splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse
confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially
compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining
single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H
inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and
derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity

competent oocytes.

of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-

Introduction

Development of fertilization-competent  oocytes
includes completion of meiosis, cytoplasmic maturational
events that provide competence for fertilization and
embryogenesis, and maintenance of genomic integrity by
protection against disruptive factors such as retro-
transposon activation’. These important processes are
largely dependent on mRNA and proteins that are syn-
thesized and stored in oocytes as maternally inherited
factors during their growth phase® ®. Growing oocytes
with an intact germinal vesicle (GV) are arrested at pro-
phase I (referred to as fully grown GV oocytes) at the end
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of their growth phase. Following their induction by
luteinizing hormone, fully grown GV oocytes undergo
germinal vesicle breakdown (GVBD) and resume meiosis.
Meiosis I commences with the assembly of the meiotic
spindle and is completed when the oocytes extrudes the
first polar body. Meiotic maturation is complete when the
oocytes are arrested at metaphase of meiosis II (referred
as MII oocytes)”. Because there is a transition from the
transcriptionally active state in growing GV oocytes, to a
transcriptionally inactive state in the fully grown GV and
MII oocytes?, it is necessary to generate a sufficient pool
of maternal transcripts, while maintaining the tran-
scriptome integrity in the oocyte.

One of the most important contributors to tran-
scriptome complexity is pre-mRNA alternative splicing
(AS)> ©. The vast majority (89% ensemble Version 82) of
protein-coding genes in the mouse genome undergo AS.
The correct combination of exons through AS ensures
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that gene isoforms are expressed that are required for the
specific context. AS can result in expression of alternative
protein isoforms that have distinct functions’, and defects
in splicing control can result in loss-of-function with
severe phenotypes observed in pluripotent cells, devel-
opment, and disease models®* °. The presence of con-
served stage-specific transcript variants in mouse and
human MII oocytes'®™® suggests that control of splicing
plays a central role in regulation and establishment of the
maternal transcriptome. However, the factors that con-
tribute to the regulation of AS and transcriptome integrity
in oocytes are still largely unknown.

Serine/arginine-rich splicing factor 3 (SRSF3 or SRp20)
is an RNA-binding protein belonging to a highly con-
served family of serine/arginine-rich (SR) proteins'*. Like
other members of the SR protein family, SRSF3 is best
known as a splicing factor and regulator of AS'~%°, but it
also participates in many other posttranscriptional pro-
cesses, including RNA polyadenylation®’, RNA export®,
pri-miRNA processing”, and internal ribosome entry
site-mediated translation of a viral RNA**, SRSF3 is
essential for preimplantation embryo development®,
however, its contribution to the maternal transcriptome
has not been reported. Here we find that loss of SRSF3
function in mouse oocytes severely impairs the mater-
nal transcriptome, substantially compromising the
capacity of entry into meiosis. By analyzing single cell
RNA-Seq data from SSRF3 mutant fully grown GV
oocytes, we identify pervasive splicing aberrations that
partially explain the observed phenotype. Surprisingly,
SRSF3 depletion also induces a dramatic shift in tran-
scriptome composition characterized by increased
expression of B2 short interspersed nuclear element
(SINE) retrotransposons in mutant oocytes. Together
our study highlights how precise control of the mater-
nal transcriptome by RNA-binding proteins is impor-
tant for the growth and development of fertilized
oocytes.

Results
Depletion of maternal SRSF3 protein results in
developmental arrest at one/two-cell stage

Although, Srsf3-zygotic knockout embryos die before
the blastocyst stage”, the role of oocyte-derived SRSF3 in
the oocyte is unknown. We first assessed whether SRSF3
protein and mRNA are present in oocytes and pre-
implantation embryos using immunofluorescence (IF)
and single cell quantitative PCR (Fig. 1a, b). Our results
showed Srsf3 was highly expressed in GV and MII
oocytes (at metaphase of meiosis II), and it is therefore a
maternal factor. Because SRSF3 is present in oocytes,
conventional zygotic knockout (Srsf3~'~) embryos would
have this maternally inherited protein during early
embryogenesis. We therefore established maternal Srsf3-
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knockout oocytes (referred as Zp3-Cre™, Srsf3") using a
Zp3-Cre mating strategy, which leads to a loss of function
exclusively in all female gametes (Supplementary Fig-
ure S1a)*°. IF analysis confirmed the absence of SRSF3 in
the mutant oocytes (Supplementary Figure S1b). Five
maternal knockout females were mated with wild-type
males, but none of them produced live progeny (data not
shown).

To determine the possible causes of sterility, we
examined the development of maternal knockout
embryos collected from mutant Zp3-Cre™, Srsf3"” females
mated with wild-type males (Supplementary Figure S1c).
From five mated Zp3-Cre™, Srsf3”/ females that had plug,
we only obtained fertilized embryos from only one mice.
In addition, during in vitro culture the mutant embryos
were arrested at the one- or two-cell stage (Supplemen-
tary Figure S1d), and all of them lacked the SRSF3 protein
as judged by IF (Supplementary Figure Sle). Taken
together, these results indicate that maternal SRSF3 is
essential for preimplantation development.

Srsf3-knockout oocytes exhibit severe GVBD defects

To determine the cause for the early arrest of maternal
knockout embryos following SRSF3 depletion in the
oocyte, we performed 3D time-lapse confocal live imaging
and visualized microtubules with EB3-eGFP and DNA
with H2B-RFP during in vitro meiotic maturation. For
control fully grown GV oocytes, we found that GVBD was
followed by spindle assembly relocation to the oocyte
surfaces, with segregation of one set of the chromosomes
into the first polar body. A second spindle assembly fol-
lowed, and the egg was arrested at the metaphase II stage
(referred as MII oocytes) (Supplementary Movie S1,
Fig. 1c). In mutant oocytes, we observed two mutually
exclusive phenotypes. The first phenotype was char-
acterized by a lack of GVBD (Supplementary Movie S2,
Fig. 1d), which we detected in 66.7% (16 out of 24) of all
mutant oocytes (Fig. 1le). The second phenotype seen in
33.3% of mutant oocytes (8/24), manifested in a delayed
GVBD and a meiotic spindle that eventually collapsed
(Supplementary Movie S3, Fig. 1c—e). Both phenotypes
appeared to result from a defect in GVBD in mutant
oocytes.

A major regulator of GVBD is the maturation pro-
moting factor (MPF), a complex consisting of CDK1
(CDC2) and a regulatory subunit cyclin B1*”. To investi-
gate whether the GVBD defect observed in mutant
oocytes is associated with dysregulation of MPF activity,
we performed Forster resonance energy transfer (FRET)
experiments using a FRET biosensor”® that detects cyclin
B1-CDK1 kinase phosphorylation and thus kinase in
control and mutant fully grown GV oocytes during
in vitro maturation (Fig. 1f). In all control oocytes, we
found a similar pattern of CyclinB1-CDK1 activity in
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Fig. 1 Srsf3 knockout oocytes show a major defect in meiotic resumption. a Immunostaining shows SRSF3 protein expression in GV oocytes, MlI
oocytes and preimplantation embryos. Scale bar: 100 um. b Single cell quantitative real-time PCR shows Srsf3 mRNA expression in Ml oocytes and GV
oocytes. NC negative control, M20 Ml oocyte, GVO GV oocyte. ¢ Time-lapse confocal live imaging of control and mutant oocytes microinjected with
H2B-RFP and EB3-mEGFP RNAs. Chromosome in magenta, microtubule in green. Scale bar: 20 um, h hour, m minute, GVBD: nuclear envelope
breakdown. d A graph shows the percentage of control and mutant oocytes undergoing normal GVBD, delayed GVBD, or no GVBD. Numbers of
oocytes examined are shown under the graph. e A box plot shows timing from prophase | to GVBD in control and mutant oocytes. Numbers of
oocytes examined are shown under the graph. p-value was calculated by two-tailed Student's t-test. f Schematic illustration of Forster resonance
energy transfer (FRET) experiment using a CDK1 FRET sensor to visualize CDK1 activation in control and mutant oocytes during meiosis. Milrinone
was used to prevent oocytes from entering meiosis. g Gray lines are FRET curves of mutant oocytes. Red line is the mean of FRET curves of six mutant
oocytes. Black squares represent the time point of GVBD. Only two mutant oocytes underwent GVBD during the course of live imaging. h Gray lines
are FRET curves of control oocytes. Red line is the mean of FRET curves of ten control oocytes. Black squares represent time point of GVBD and black
triangles represent the time point of the completion of polar body extrusion (PE), which is the first frame showing complete abscission of the polar
body

which CDK1 was activated shortly before GVBD. Subse-
quently, CDK1 activity gradually decreased, and then

before GVBD (Fig. 1g). These results suggested that the
observed GVBD defect in mutant oocytes is possibly
peaked again at polar body extrusion (Fig. 1h). In contrast, caused by an upstream disruption of meiotic entry and
mutant oocytes showed variably fluctuating CDK1 activ-  not by events involved in the disassembly of the nuclear
ity, and no major activation peak of CDK1 was observed = membrane.
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Fig. 2 Aberrant transcriptome in Srsf3 mutant oocytes. a A heatmap shows the Spearman correlation of gene expression between control and
mutant oocytes in our single cell RNA-Seq data and oocytes and early mouse preimplantation embryos in previously published single cell RNA-seq
data®. b PCA plot using the 5000 genes with the highest variance across all samples, axes are labeled to include the percentage of variance
explained. ¢ A heatmap showing the transcript level of key genes that promote or inhibit meiosis in control and mutant oocytes. The color indicates
the expression level

SRSF3 knockout in oocytes results in numerous changes in
AS

To investigate the molecular mechanism of the GVBD
defect, we performed single cell RNA-seq for control and
mutant oocytes. Both control and mutant samples clus-
tered together with publicly available RNA-Seq data from
mouse  oocytes, and  separately from  other

preimplantation embryos™ (Fig. 2a). When we compared
the mutant and control expression profiles, we found that
they form two distinct groups (Fig. 2b). Interestingly,
mutant oocytes showed higher variation in their gene
expression profiles compared to control oocytes, possibly
reflecting the higher variation in phenotypes of mutant
oocytes compared to strict progression observed in
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control oocytes, even though no clear subpopulations are
distinguishable (Fig. 2b). We found that 3190 genes (1440
downregulated genes and 1750 upregulated genes)
showed significant (more than 2-fold) differences in
transcript levels between mutant and control (Supple-
mentary Table S2). Nevertheless, we found no significant
change in transcript levels of most meiosis-related genes
including the MPF genes Cdkl, Ccnb (cyclin B1)*, the
promoting factors Cdc25b>°, Marfl', Piki*', Plk4*,
BublIb®®, Emil®* and Securin®, or the inhibiting factors
Ppp2ch, Gpr336, Wee2*, Pkmyt]gs, Kdm1a®®, Cdhli,
Fzr1*® *', and Cdc14b™ (Fig. 2c).

Since SRSF3 is an important regulator of AS', we
asked whether SRSF3 depletion results in an altered
splicing pattern. To detect novel AS events, we counted
all split reads (reads that map to two different parts in
the genome, “candidate splicing events”). We then cal-
culated the fold change of the read counts at every
candidate splicing event*®. As we are interested in a
change of junction usage relative to all other junctions of
the same gene, we calculated differential splicing for
every gene separately, thereby correcting for the overall
change in gene expression. Our results show an enrich-
ment of unannotated splicing events in mutant oocytes
compared to controls (51% in mutants vs. 32% in con-
trols) (Fig. 3a), suggesting that AS in Srsf3 mutant
oocytes are strongly affected leading to a high number of
isoforms that have not been described in any context.
While some of these previously unannotated events are
probably genuine regulated AS events, it is possible that
a subset corresponds to “aberrant” events that do not
occur at high frequency in any wild-type context. These
events are likely to change the coding sequence of gene
isoforms, thereby possibly changing the protein function,
and in some cases leading to nonfunctional gene iso-
forms (Supplementary Table S3). This analysis also
confirms an enrichment in exon skipping events in
mutant oocytes (Fig. 3b). Together we find that SRSF3 is
essential for maintaining splicing integrity, most com-
monly by promoting exon inclusion in wild-type mouse
oocytes.

To directly address the relationship between SRSF3-
regulated splicing activity and RNA binding, we analyzed
published data of crosslinking and immunoprecipitation
(CLIP) experiments in embryonic carcinoma cells*. An
SRSF3-regulated splicing map*® was generated using the
SRSF3 CLIP binding datasets on the SRSF3-regulated
cassette exons in control and mutant oocytes. We found
that SRSF3 binding is elevated within SRSF3-enhanced
alternative exons that are also known as mutant-specific
skipped exons (Supplementary Figure S2, red trace)
compared to SRSF3-silenced exons (blue trace) or
control-skipped exons not regulated by SRSF3 (gray
trace). Binding was not elevated in the long intronic
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regions flanking enhanced exons (Supplementary Fig-
ure S2, red trace). There is also no obvious elevation of
SRSF3 binding in the flanking constitutive exons, their
immediate intron flanks and all regions associated with
SRSE3-silenced alternative exons (Supplementary Fig-
ure S2, blue trace). These results suggest that SRSF3 binds
directly to SRSF3-enhanced cassette exons and promotes
inclusion of the exons in the mature transcript

Misregulated Brd8- and Pdlim7-AS contributes to GVBD
defect in Srsf3-knockout oocytes

As a starting point for investigating the contribution of
individual misregulated AS events to the GVBD pheno-
type, we selectively validated a number of exon skipping
events predicted to be regulated by SRSF3 in control and
mutant oocytes, focusing on genes with functions asso-
ciated with the GVBD phenotype: Brd8 (Bromodomain 8),
Pdiim7 (PDZ and LIM domain 7), and Npm2 (nucleo-
plasmin 2). BRDS8 contains a Bromodomain, which binds
acetylated lysines, and is involved in the regulation of
histone acetyl transferase activity, chromatin remodeling,
and transcription*®. Brd8-knockdown colon cancer cells
are particularly sensitive to microtubule spindle poisons®’,
suggesting its potential role in protecting microtubule
spindle. PDLIMY7 is an actin-associated protein that has
the role in the assembly of an actin filament-associated
complex™®, Zygotic knockout of Pdlim7 in mice results in
postnatal lethality®®, NPM2 is known as an oocyte-derived
factor that is essential for nucleolar organization and early
embryonic development®’.

We performed RT-PCR on single control and mutant
oocytes using primers flanking the skipped exons of these
genes (Supplementary Table S1) and the percentage of
exon skipping was determined. Our results confirmed
increased skipping of exon 11 of Brd8 (Fig. 3¢, d), exons 2
and 3 of Npm2 (Supplementary Figure S3a, S3b) and a
mutually exclusive switch from use of Pdlim7 exon 5 to
exon 6 (Supplementary Figure S3c, S3d). The AS events of
Brd8 and Pdlim7 are both annotated in Ensembl and
maintain the same reading frame, whereas the exon
skipping event of Npm2 is newly identified in this study
and is predicted to lead to nonsense-mediated mRNA
decay (NMD) by frameshifting. Taken together, these
results suggest that SRSF3 has a critical role in promoting
exon inclusion to ensure correct splicing and translation
of functional proteins.

Next, we investigated whether artificial induction of AS
can recapitulate the GVBD defect in mutant oocytes. We
designed steric hindrance antisense oligonucleotides
(ASOs)™ to target putative SRSF3 binding sites™ to
induce specific skipping events of Brd8 exon 11, Pdlim7
exon 5 and Npm2 exon 2 and exon 3 (Fig. 4a, Supple-
mentary Figure S4a, Supplementary Table S1). We then
microinjected these ASOs and scramble ASOs into
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.

cytoplasm and nucleus of mouse wild-type oocytes and
performed RT-PCR on single-injected oocytes with pri-
mers flanking the skipped exons (Fig. 4b). Our results
showed that microinjection of the ASOs into mouse wild-
type oocytes switched all three AS events toward the
splicing patterns observed in Srsf3-mutant oocytes
(Fig. 4b-d, Supplementary Figure S4b-c). Next, we
allowed ASO-injected oocytes to enter meiosis and
examined the effect of ASOs-induced exon skipping on
GVBD by immunostaining of tubulin, a microtubule
marker and DAPI to visualize chromosome (Fig. 4e, f,
Supplementary Figure S4d). We found that ASO-
mediated changes in Brd8 and Pdlim7 AS caused partial
failure in GVBD in these injected wild-type oocytes
(Fig. 4g). In contrast, ASO-mediated Npm2 exon skipping
did not affect GVBD (Supplementary Figure S4e). These
results indicated that SRSF3-mediated Brd8 and Pdlim7

exon inclusion is essential to maintain proper GVBD in
mouse oocyte meiosis.

Srsf3-knockout oocytes show derepression of B2 SINE
retrotransposon

Next we investigated our observation that the number of
RNA-Seq reads that could be assigned to genes was
smaller in the mutant oocytes compared to the control
samples, suggesting that the overall composition of the
transcriptome is substantially altered. Surprisingly, this
difference could largely be explained by an upregulation of
repetitive elements (Fig. 5a). In particular, we found that
SINEs, a highly repetitive class of retrotransposons, was
systematically upregulated (Fig. 5b). SINE retroelements
are ubiquitous, and located throughout their host genome
from intergenic regions to being embedded in protein-
coding genes®” °%, but are usually repressed as in control
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oocytes to protect against adverse consequences . The
prominent upregulation of SINE elements suggests a
possible contribution of retrotransposons to the observed
GVBD defect in Srsf3 knockout mice, we therefore further
investigated this SINE upregulation.

Among all SINE families, elements from the B2_Mmla,
B2 Mmlt, and B2_Mm2 were significantly over-
represented in the set of upregulated elements (p < 1le—16,
Fig. 5¢). Using the uniquely mapped reads, we identified
several thousand elements that showed an increase in
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(see figure on previous page)

Fig. 5 Upregulated expression of B2 SINE classes in Srsf3 mutant oocytes. a Percentage of mapped reads that overlap with repetitive elements
for all single control (left) and mutant (right) oocytes. b Percentage of reads mapped to different repeat classes (100% = all reads that map to repeats)
in control (left) and mutant (right) oocytes. ¢ Upregulated retrotransposons in mutant oocytes are significantly enriched in B2_Mm?1a, B2_Mm1t, and
B2_Mm?2 SINE classes. d A heatmap shows expression of individual repeat elements from three upregulated B2 SINE classes in control and mutant
oocytes. The color indicates the expression level. Numbers of repeat elements are indicated on the right (5520 B2_Mm?2 elements, 6458 B2_Mm1a
elements, and 5745 B2_Mm1t elements). e Expression and sequence similarity of three B2 SINE classes that are upregulated in mutant oocytes. The
plot on top panel (plot: average read count) shows the average expression for all elements from these classes. Sequence similarity shows the
conservation along the SINE B2 sequences (plot: sequence similarity). The two bottom panels shows the average of mapped reads of all control and
mutant samples for each element (plot: expression mutant/expression control, red indicates high number of mapped reads, white indicates low
number of mapped reads). f Fraction of mutant-specific B2_Mm1a, B2_Mm1t, and B2_Mm2 elements that overlap with exons, introns, or intergenic
regions of genes. Significance was estimated using Fisher's test. g Fraction of mutant-specific B2_Mm2 elements that overlap with the first exon or
last exon of genes. h Fraction of mutant-specific B2_Mm?2 elements that overlap with genes on the same strand and opposite strand. i Normalized
RNA-Seq data for a locus that show increased expression of intronic B2_Mm1a element in mutant oocytes. J An example of loci with increased

expression of two B2_Mm?2 elements that overlap with the last exon of two genes on the same strand

expression in the mutant oocytes for each of the three SINE
families (Supplementary Table S4, Fig. 5d). Genes over-
lapping such SINE elements showed higher expression in
mutant cells, however the differences were much smaller
compared to the upregulation of SINE expression (Sup-
plementary Figure S5a-c). To better understand the tran-
scripts that are generated, we first aligned the expressed
elements, and then mapped the RNA-Seq reads to the
aligned elements (Fig. 5e). Our analysis did not show pro-
minent splicing patterns, suggesting that the generated
RNAs largely consist of transcribed SINE elements (Fig. 5e).
To test if the expressed SINE elements have different
properties compared to non-expressed elements, we
investigated their distribution with respect to annotated
genes. We observed an enrichment of mutant-specific
elements in introns for the B2_Mmla and B2_Mmlt
families, and an enrichment in exons for elements from all
three families (Fig. 5f). This enrichment in exons was
particularly strong for the B2_Mm2 family (Fig. 5f). When
we investigated exons that overlapped with upregulated
SINE elements, we found that they were significantly
enriched at the 3’ end (Fig. 5g, j). In addition, expressed
elements were more often on the same strand as the
overlapping gene (Fig. 5h—j). Using single cell quantitative
PCR, we confirmed that B2 SINE elements were upre-
gulated in Srsf3-knockout oocytes (Supplementary Fig-
ure S5d). B2 SINE elements were also highly expressed in
zygotic wild-typel6-C embryos and this expression is
unaffected in zygotic knockout 16-C embryos (Supple-
mentary Figure S5e). This suggests that the SRSF3 acts to
repress SINE element expression specifically in oocytes.
To investigate how SRSF3 regulates B2 SINE expres-
sion, we examined the expression of epigenetic modifiers
that repress different types of retrotransposon in mouse
ES cells and germ cells®>. These modifiers have important
roles in regulating DNA methylation/demethylation, his-
tone methylation, miRNA biogenesis, or piRNA pathway.
While there was no significant difference in transcript
levels of most retrotransposon repressors, we found a 2-

fold downregulation of Piwill (also known as Piwi or
Miwi) in mutant oocytes compared to controls (Supple-
mentary Figure S5f, S5g), suggesting that aberrant piRNA
pathway activity upon SRSF3 depletion might contribute
to B2 SINE upregulation. On the other hand, using an
online tool (RBPmap) (http://rbpmap.technion.ac.il/)®’,
we found several potential SRSF3 binding sites in
expressed B2 SINE elements (Supplementary Figure S5h).
In addition, we analyzed published data of CLIP experi-
ments in embryonic carcinoma cells** and found that
SRSE3 can indeed bind directly to B2 SINE elements
(Supplementary Figure S5i), suggesting that loss of direct
binding of SRSF3 to B2 SINE RNAs could contribute to
the mutant phenotype as well. Taken together, our ana-
lysis identifies a significant change in the transcriptome of
oocytes in response to SRSF3 depletion that specifically
induces expression of a subset of SINE retrotransposons.

Upregulation of B2 SINE expression contributes to GVBD
defect in Srsf3-knockout oocytes

To test if the upregulation of B2 SINE elements con-
tributes to the GVBD defect we investigated whether
reduction of upregulated B2 SINE expression could res-
cue the GVBD defect in mutant oocytes. Antisense
“gapmer” oligonucleotides that direct RNase-H cleavage
of target RN As have been used to reduce the expression of
B2 SINE RNAs®* Therefore, we designed four gapmers
targeting different parts of the consensus sequence of the
upregulated B2 SINE (Supplementary Table S1). To
examine the effect of these gapmers on the expression of
B2 SINE RNAs, we microinjected the pooled gapmers into
control and mutant fully grown GV oocytes and measured
the expression of B2 SINE RNAs using single cell quan-
titative PCR after 24-h culture in vitro (Fig. 6a). Expres-
sion of B2 SINE RNAs in mutant oocytes injected with the
gapmers was significantly downregulated compared to
non-injected oocytes (Fig. 6b). Strikingly, we found that
mutant oocytes injected with B2 SINE gapmers under-
went GVBD similar to control oocytes, and control
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Fig. 6 Functional validation of SINE B2 in mouse oocyte meiosis. a Schematic illustration. Control and mutant fully grown GV oocytes were
injected with a pool of four gapmers targeting the consensus sequence of all B2 SINE elements and cultured in M16 supplemented with Milrinone to
prevent GVBD. Oocytes were collected at 24-h postinjection for single cell Q-PCR to measure knockdown efficiency. In different experiments, after 24-
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oocytes injected with B2 SINE gapmers (Fig. 6¢, d). These
results suggest that reduction of upregulated B2 SINE
RNAs can indeed rescue the GVBD defect in mutant
oocytes.

Upregulation of retrotransposons is associated with
increased nuclear double-strand breaks (DSBs) and
GVBD defect in mouse Marfl-depleted oocytes'. How-
ever, we found no significant difference in the numbers of
DSBs between control and mutant oocytes (Supplemen-
tary Figure S6a-b), suggesting that upregulated B2 SINE
may not cause GVBD defect by increasing DSBs. To
examine whether overexpression of B2 SINE RNAs
directly cause GVBD defect in mouse wild-type oocytes,
we synthesized RNAs from consensus sequences of B2
SINE elements using in vitro transcription. We then
microinjected B2 RNAs into wild type fully grown GV
oocytes and measured the percentage of injected oocytes
which had undergone GVBD (Fig. 6e). We found that
oocytes injected with B2 SINE RNAs showed a significant
reduction in the percentage of GVBD (40% reduction) as
compared to those injected with water (Fig. 6f, g). These
results indicate that upregulation of B2 SINE RNAs
contributes to the GVBD defect in mutant oocytes.
Together our study highlights how precise control of the
maternal transcriptome integrity is essential to facilitate
the completion of oocyte meiosis and early embryo
development.

Discussion

The maternally inherited factors in oocytes are essential
for the development of fertilization-competent oocytes
and embryogenesis. However, it has remained unclear
how the establishment of the maternal transcriptome is
controlled and what the critical regulators are. A number
of lines of evidence have suggested that alternative pre-
mRNA splicing and processing make an important con-
tribution to shaping the maternal transcriptome'® ** Here
we report that the RNA-binding protein SRSF3 is a key
factor that contributes to the precise establishment and
regulation of the maternal transcriptome. The most pro-
minently observable phenotype of SRSF3 depletion is a
defect in GVBD that causes sterility in Srsf3 maternal
knockout mice (Fig. 1). Single cell RNA-Seq analysis of
control and Srsf3 knockout oocytes (Fig. 2), revealed that
not only does SRSF3 shape the oocyte maternal tran-
scriptome via its expected role in the regulation of AS
(Fig. 3, Supplementary Figure S6c¢), but it has an unanti-
cipated role in suppressing transposable element expres-
sion in mouse oocytes (Fig. 5, Supplementary Figure Sé6c).

A prominent consequence of SRSF3 depletion on AS
was increased skipping of both annotated cassette exons
(e.g., in Brd8 and Pdlim?7), as well as exons that have not
previously been observed to be skipped (e.g., in Npm?2)
(Fig. 3). Moreover, integration of our RNA-Seq data with
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published SRSF3 iCLIP data** showed a peak of SRSF3
binding within these exons (Supplementary Figure S3e),
consistent with conventional action of SRSF3 as a splicing
activator that acts by binding to exon splicing enhancers.
Recently SRSF3 was shown to co-regulate some alter-
natively spliced exons in conjunction with the nuclear
m6A “reader” protein YTHDC1°®. Whether SRSE3 is
involved in a similar functional cross-talk between the
epitranscriptome and AS in mouse oocytes remains an
interesting possibility.

The SRSF3-dependent AS events included exons within
genes likely to be associated with the GVBD phenotype.
Strikingly, although numerous AS events were affected by
SRSF3 depletion, we were able to partially reproduce the
GVBD defect using exon-targeting ASOs to induce
alterations in individual splicing events in the Pdlim?7 or
Brd8 genes (Fig. 4). These AS events were selected due to
the functional association of the genes with GVBD.
Nevertheless, the precise effects of the AS events on
protein isoform function is not clear. Skipping of Brd8
exon 11 maintains reading frame and is remote from the
Bromodomain encoded by mRNA sequence from exon 17
to exon 19. Switching between selection of Pdlim7 exons
5 and 6 also maintains reading frame, affecting the
encoded protein immediately on the C-terminal side of
the PDZ domain, and upstream of the C-terminal LIM
domain. Although, the exon 5 encoded insert is sub-
stantially longer (40 vs. 6 amino acids), the exon 6 iso-
form, which is induced upon Srsf3 knockout, encodes a
PFAM domain of unknown function (DUF4749)°°, which
might modulate the actin binding function of the PDZ
domain. In contrast, skipping of Npm2 exon 2 and exon 3
is clearly predicted to lead to loss of function by frame-
shifting leading to NMD, but manipulation of this event
had no effect upon GVBD (Supplementary Figure S4).

Surprisingly, loss of SRSE3 in oocytes also dramatically
changed the composition of the transcriptome with a
prominent and consistent surge in B2 SINE retro-
transposon expression (Fig. 5). Upregulation of expressed
Alu sequences was observed in human cells upon
knockdown of hnRNPC as a result of “exonization” of
intronic Alu elements®”. The Alu elements contain
sequences resembling bona fide splice sites, but these are
usually blocked by hnRNPC. In contrast the upregulated
B2 SINES in Srsf3 knockout oocytes are autonomously
transcribed (Fig. 5). Strikingly, experimental over-
expression of B2 SINEs in wild-type oocytes was sufficient
to induce a defect in GVBD (Fig. 6e, f), indicating that
multiple changes in the transcriptome contribute to the
observed phenotype of Srsf3 knockout oocytes. In contrast
to splicing, where a direct effect of SRSF3 is highly likely
(Fig. 4h), the mechanism that leads to induction of B2
SINEs and subsequent defects in GVBD is not evident,
but could plausibly arise from indirect or direct actions of
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SRSE3. Upregulation could be an indirect effect caused by
downregulation of components of the PIWI-interacting
RNAs (piRNA) pathway, such as Piwill (Supplementary
Figure S5e, f), leading to loss of silencing or degradation of
B2 SINE retrotransposons. We did not detect altered
splicing of Piwill, which might account for its down-
regulation via a direct splicing effect of SRSF3. However,
this could be related to lack of sequence depth in our
single cell RNA-Seq data, especially if a novel exon skip-
ping event resulted in NMD. In this scenario, B2 SINE
upregulation would be a downstream consequence of
disrupting the conventional function of SRSF3 as a spli-
cing factor.

On the other hand, direct effects might be possible as
well, as the B2 SINE consensus sequence contains pre-
dicted SRSE3 binding sites and bioinformatics analysis of
published SRSF3 CLIP data demonstrated that SRSF3
binds directly to B2 SINE (Supplementary Figure S5G-I).
Such direct action would imply that binding of SRSF3
leads to degradation of B2 SINE RNAs, which would
represent a novel function for SRSF3. Binding of SRSF3 by
B2 SINE might also explain the ability of injected B2 SINE
RNA to induce a GVBD phenotype. Sequestration of
SRSF3 by the injected RNA could lead to misregulation of
target AS events due to lower available levels of SRSF3, in
a process similar to the misregulated splicing caused by
sequestration of muscle blind-like RNA binding proteins
by CUG expansion RNA in myotonic dystrophy”®.

In addition to its well-known role as a splicing regulator,
SRSF3 has also been documented to play transcript-
specific roles in RNA polyadenylation®!, RNA export®,
pri-miRNA processingzg, and translation®®. It remains
possible that misregulation of some of these processes
might also contribute to the GVBD phenotype. Never-
theless, the ability to partially recreate the GVBD phe-
notype by manipulation of individual SRSF3-regulated AS
events is consistent with this being the major SRSF3
function that is disrupted.

Computational and experimental limitations pose
challenges to identifying a molecular mechanism in
oocytes, as the possible experimental assays are limited to
those that were developed for single cells. Computation-
ally, one of the major challenges in studying B2 elements
is their short and highly repetitive DNA sequence. Even
though a large number of active loci can be identified,
they cannot always be distinguished, and therefore the
expression estimates for individual elements are more
uncertain compared to estimates for gene expression. Our
analysis indicates that the expressed B2 SINE elements are
distinct from the non-expressed ones with respect to
existing genes (Fig. 5), however, a high level of uncertainty
makes it challenging to generate accurate bioinformatics
predictions about any association with expression of the
surrounding genes. While research on repression of
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retrotransposons has provided some insights into the role
of DNA methylation, histone modifications, and
sequence-specific RNA degradation through endogenous
small interfering RNAs or piRNAs®?, research examples
about such a strong induction of B2 SINE expression in
oocytes are not known. Even though the mechanism
remains unclear, our findings open exciting new possibi-
lities of regulation of retrotransposon through context-
specific RNA binding proteins.

In summary, we report a highly reproducible, pervasive
change in transcriptome composition, together with the
dysregulation of many hundreds splice isoforms after
knockout of Srsf3 in mice oocytes. Our study highlights
the relevance of AS and retrotransposon expression in
maintaining cellular function, and suggest a prominent
role of SRSF3 in the establishment and control of tran-
scriptional integrity in mouse oocytes.

Material and methods
Mouse strain and genotyping

Srsf3™™ P mice (Srsf3M°1%) are kindly provided by
Nielsen and colleagues®. Srsf31°%/1°% mice were crossed
with Zp3-Cre transgenic mice carrying cre-recombinase
under the control of the oocyte-specific Zp3 promoter®®
to generate Zp3-Cre; Srsf3"°* male mice. These mice
were then backcrossed to Srsf31°/1°* female mice, and
Zp3-Cre; Srsf31°%/1°% female were selected (Supplemen-
tary Figure S1c). Oocytes from these females are SRSF3-
deleted (Supplementary Figure S1d). Genotyping was
done by PCR using DNA extracted from tails tips of 14-
day-old mice. The primer pairs used to detect the pre-
sence of the Zp3-Cre transgene and the Srsf3-floxed
alleles were as described®” *°.

Collecting oocytes and preimplantation embryos

C57BL/6 or B6CBAF1/] (F1) female mice were super-
ovulated by injecting pregnant mare’s serum gonado-
tropin (PMSG), followed by human chorionic
gonadotropin (hCG) after 48 h and then mated with male
mice. MII oocytes and zygotes were collected from ovi-
ducts 17-22h after hCG injection. Cumulus cells were
removed by incubation with 0.3 mg/ml hyaluronidase
(Sigma, H4272) in M2 medium. The embryos were
recovered in M2 medium and cultured in M16 medium in
BD Falcon Organ Culture Dish in 5% CO, at 37° C. The
embryos were collected at different stages for immunos-
taining. Alternatively, embryos from the 2-cell to 8-cell
stage were flushed from oviducts at 1.5 and 2.5 dpc and
embryos from blastocyst stage were flushed from the
uterus at 3.5 dpc.

GV oocytes were obtained from ovaries of female mice.
Ovaries were placed in a Petri dish with prewarmed (37 °
C) M2 medium (Sigma) supplemented with Milrinone
(Sigma) to prevent oocytes undergoing GVBD. GV
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oocytes were released by puncturing antral follicles with a
30G needle. Cumulus cells were removed by passing fol-
licles through a glass mouth pipette with a small open-
end. For in vitro maturation, oocytes were washed and
cultured in Milrinone-free M16 medium (Millipore) for
various period of times in 5% CO, at 37 °C.

Expression constructs, RNA synthesis, and oligonucleotide
design and synthesis

The coding sequences of human H2B-RFP, EB3-
mEGFP*®, and the FRET biosensor specific for
CyclinB1-CDK1?® were cloned into pBluescript RN3P%°
and verified by DNA sequencing. mRNAs were tran-
scribed in vitro using the mMessage mMachine T3 kit
(Ambion). RNA quality and concentration were quanti-
fied by Tapstation and Nanodrop.

Novel ASOs were applied to bind to nascent transcripts
of a target gene via Watson—Crick bonding, to exert steric
hindrance effects against splicing factors to modulate
splicing. Novel gapmers were applied to bind B2 SINE
RNAs to elicit RNase-H mediated degradation. All the
ASOs are synthesized as single-stranded 2-O-methyl
modified RNA bases linked by a phosphorothioate back-
bone (IDT, UK). The sequences of ASOs are 5'-CGGUG
UGUGUAUCAUUCUCUAGUGU-3’ for scramble ASO;

5-GUGAAGGAAGGAAGAGGA GUGGUGAACUGU
GUG-3’ for Brd8_exon 11 ASO; 5'-CUUGGUGCAAAA
GUGUACCUCGGG GG-3' for Pdlim7 exon 5 ASO; 5'-U
GUUGUGGGGAAAGAUUAUGUCUGUGGUG-3" for
Npm2_exon 2 ASO and 5-AAAGGUGCAAGUCUGCU
UUUCCUGAUUGAGUU-3" for Npm2_exon3 ASO.
Gapmers are synthesized as single-stranded DNA bases
each flanked with three 2 -O- methyl modified RNA bases
linked by a phosphorothioate backbone (IDT, UK). The
sequences of B2 gapmers are 5-UUC(dA)(dA)(dA)(dT)
(dCY(ACY(ACY(dA)(AG)(AC)(dA)(dA)  (dC)(dC)(dA)(C)
(dA)(T)(dG)(AG)(T)(dG)(dG)(dCY(dT)(dC)(dA)(dC)
(dA)ACC-3; 5-AGU (dT)(dC)(dA)(dA)(dA)(AT)(dC)
(dC)(dC)(dA)(dG)(AC)(dA)(dA)(C)(C)(dA)(C)(dA)
(dT)(dG)(dG)(dT)(dG)GCU-3"; 5'-GAG(dT)(dT)(dC)(dA)
(dA)(dA)(AT)(dC)(AC)(AC)(dA)(dG)(AC)(dA)(dA)  (dC)
(dC)(dA)(AC)AUG-3; 5-AGC(dA)(dA)(dC)(dC)(dA)(dC)
(dA)(dT)(AG)(AG)T)(dG)  (dG)(dC)(dT)(dC)(dA)(dC)
(dA)ACC-3’. The ASOs and gapmers (Supplementary
Table S1) were rationally designed for optimal efficiency,
as previously described™. Briefly, target sites were selec-
ted by a computational algorithm that accounted for co-
transcriptional binding accessibilities, binding thermo-
dynamics, and presence of regulatory motifs.

Oocyte microinjection

GV oocytes were maintained in M2 medium supple-
mented with Milrinone during the course of microinjec-
tion. We used Femtojet 4i system (Eppendorf) and
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injecting setting is Pi=110hpA, Pc=15hpA, and ti=
0.5s to deliver volumes ranged from 10-15pl into GV
and/or cytoplasm of oocytes. For live imaging, we injected
EB3-mEGFP RNA at concentration of 300ng/pl and
H2B-RFP RNA at concentration of 10 ng/ul into oocyte
cytoplasm. For FRET experiment, we injected FRET
sensor at concentration 300 ng/pl and H2B-RFP at con-
centration 10 ng/pl. For functional analysis of B2 RNAs,
we injected gapmers targeting B2 RNAs at concentration
of 100 uM into oocyte GV and cytoplasm. For functional
analyses of AS, we injected 100 pM of ASOs into oocyte
GV and cytoplasm. Sequence of ASOs and gapmers are
provided in Supplementary Table S1.

Live imaging, FRET experiment, and image analysis

To facilitate oocyte handling and high-resolution ima-
ging we have developed a multi-well glass chip that con-
tains an array of 252 well-chambers open to the medium.
This device was developed in collaboration with Dolomite
(The Dolomite Centre Ltd), a microfluidics device man-
ufacturer (http://www.dolomite-microfluidics.com/
webshop/microfluidic-chips-wellplate-chips-c-5_159/
embryo-immobilization-chip-p-908) (Dolomite part num-
ber: 3200208). The chip is bonded to a glass reservoir to
hold medium. To mount the device onto the microscope it
was inserted into a metal interface (Dolomite part number
3200209) compatible with standard 35mm petri-dish
microscope stage inserts.

Time-lapse imaging was carried out on a confocal
spinning-disk microscope system (Intelligent Imaging
Innovations, Inc. 3i), comprising an Observer Z1 inverted
microscope (Zeiss), a CSU X1 spinning-disk head
(Yokogawa) and a QuantEM 512SC camera (Photo-
metrics). All data shown were collected using a 63 x NA
1.2 w.corr. objective (Zeiss). Image acquisition and pro-
cessing was carried out in Slidebook 5 software; Image |
was used for additional image processing.

FRET data was analyzed by loading the transmission
and donor channel data (7(¢) and D(¢) respectively) and
their corresponding background levels (67(¢) and 8D(z))
into commercially available data analysis software ORI-
GIN 9.1 (OriginLab). The background levels were sub-
tracted from each channel and the resulting signal
normalized to have a maximum and minimum corre-
sponding to 1 and O respectively. The background sub-
tracted transmission signal was divided by the background
subtracted donor signal to give the FRET signal F(¢),

Fle) = {70 = OT@),
(D(e) - 6D (1))}

where (...) is the contents normalized with a maximum
value of 1 and a minimum of 0.


http://www.dolomite-microfluidics.com/webshop/microfluidic-chips-wellplate-chips-c-5_159/embryo-immobilisation-chip-p-908
http://www.dolomite-microfluidics.com/webshop/microfluidic-chips-wellplate-chips-c-5_159/embryo-immobilisation-chip-p-908
http://www.dolomite-microfluidics.com/webshop/microfluidic-chips-wellplate-chips-c-5_159/embryo-immobilisation-chip-p-908

Do et al. Cell Discovery (2018)4:33

Immunostaining of oocytes and preimplantation embryos
GV oocytes, MII oocytes, and preimplantation embryos
were fixed in 4% paraformaldehyde in PBS for 15 min at
room temperature. They were washed in PBS with 0.1%
Triton three times and permeabilized with 0.25% Triton
in PBS for 1h at room temperature. The embryos were
incubated with primary antibody overnight at 4 °C, after
blocking in PBS with 0.1% Triton, 10% FBS and 5% BSA
for 1 h at room temperature. Primary antibodies used in
this study was a-SRSF3 (a kind gift from Dr Nielsen,
1:100), a-H3S10P (Abcam, 1:100), o-gamma-H2AX
(Millipore, 1:100), o-H3K9me3 (Abcam, 1:100), a-
H3K9me2 (Abcam, 1:100) and «-H3K9ac (Abcam,
1:100). The oocytes and embryos were then stained with
secondary antibodies conjugated with Alexa Fluor 488 or
596 for 1h at room temperature. DAPI was used for
nuclear staining. The embryos were analyzed by Leica Sp5
confocal microscopy using a x40 oil immersion lens.
Images were taken every 2 um through the embryo.

Quantitative real-time PCR or semiquantitative PCR for
single oocytes or embryos

cDNA from single oocyte or single 16-C embryo was
prepared according to previous published protocol”.
Briefly, a single oocyte or single 16-C embryo was picked
and lysed in the buffer comprising 0.9X PCR buffer II
(without MgCl2), 1.35 mM MgCl,, 0.45% NP40, 4.5 mM
DTT, 0.18 U/ul SUPERase-In, 0.36 U/ul RNase inhibitor,
12.5nM UP1 primer, 0.045 mM dNTP mix. The mRNAs
in the lysate were then reverse-transcribed into cDNAs by
poly(T) primer with anchor sequence (UP1) by incubating
at 50 °C for 30 min, and reverse transcriptase was inacti-
vated by incubation at 70°C for 15 min. After this, the
nonreactive primers were digested by exonuclease I. A
poly(A) tail was then added to the first-strand cDNAs at
the 3’ end by terminal deoxynucleotidyl transferase. Next,
the second-strand cDNAs were synthesized by poly(T)
primer with another anchor sequence (UP2). Then these
cDNAs were evenly amplified by PCR of 20 cycles of 95 °C
for 30s, 67°C for 1 min, 72°C for 6 min (plus 6 s more
after each cycle). cDNA was diluted ten time and used for
quantitative real-time PCR and semiquantitative PCR.
Quantitative real-time PCR was performed using Syber-
Green master mix (Sigma) and QuantStudio™ 6 Flex Real-
Time PCR System (Life Technology). Semiquantitative
PCR was performing using HotStarTaq Master Mix Kit

(Qiagen).

Single cell RNA sequencing

GV oocytes were obtained from ovaries of 3-week-old
control and mutant female mice. The zona pellucida was
removed using Tyrode’s solution (Sigma). Zona-free
oocytes were washed through sterile M2 and 1X PBS-
BSA and then placed into individual tubes containing 2 pl
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of 0.2% Triton X-100 (Sigma) supplemented with 1 U/pl
RNASIN (Ambion). mRNA from the single cells was
amplified using the SMARTSeq2 protocol’’, with the
additional inclusion of ERCC spike-in control (1:1,000,000
dilution). Multiplex sequencing libraries were generated
from amplified cDNA using Nextera XT (Illumina) and
sequenced on a HiSeq 1500 at 100 bp paired end.

Bioinformatics analysis

RNA-Seq data were mapped against the mouse genome
version mm10 with TopHat2-2.0.12°' using the annota-
tions of Ensembl version 81°>. SAMtools®® was used to
extract uniquely mapped reads from bam files (fgrep —w
NH:i:1). R 3.1.2 and Bioconductor 3.0 were used for the
RNA-Seq analysis. Repeat was extracted using from the
UCSC Genome Browser. Reads were counted using the R
package GenomicAlignments®* (mode = “Union,” inter.
feature = FALSE), only primary read alignments were
retained. Reads were only counted in regions not over-
lapping with repetitive elements. Differentially expressed
repeats were defined by using two criteria. Log2Fold-
Change of these elements should be higher than 1 and the
adjusted p-values should be lower than 0.05. P-values
were calculated using the Wilcoxon test and they were
adjusted for multiple testing according to Benjamini &
Hochberg. Significance for enrichment of families was
estimated using Fisher’s test. Repeat alignments were
generated using MAFFT v7.154b%.

For the junction read count analysis, we first counted all
split reads across all datasets. We then annotated these
reads according to overlapping known exons. Junction read
count ratios were calculated using DESeq2 per gene®.

For RNA splicing map, SRSF3 iClip data were collected
from Anko et al.** following procedures described else-
where®”. Genome mapping was performed against mouse
genome version NCBI37/mm9 using Bowtie (0.12.7). We
used the random barcode to discriminate and eliminate
PCR duplicates that derived from the original cDNA.
Xlinks, peak calling analysis and groups were done at
iCount iCLIP analysis web site (http://icount.biolab.si/).
Xlinks sites were assessed on differentially spliced
exon—intron boundaries. RNA maps were computed as
the sum of cDNAs tags that match positions and averaged
by the number of splice events on 50 nt bins®®. Density of
xlinks was plotted using geom area from ggplot2 package
and smoother with gaussian method. Data analysis was
performed using R-3.3.1 (R Core Team). The R packages
ggplot2 (2.1.0), latticeextra (0.6.28), reshape2 (1.2.2), and
the package GenomicRanges (1.22.4) were used
throughout the analysis.

Statistical analysis
Two-tailed unpaired Student’s ¢-tests and Mann—Whitney
test (Wilcoxon rank sum test) were performed on R 3.4.1
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program. P-value <0.05 were considered as statistically sig-
nificant. Statistical methods for the RNA-Seq anlaysis are
described in the respective section. Briefly, P-values were
calculated using the Wilcoxon test and they were adjusted
for multiple testing according to Benjamini & Hochberg.
Significance for enrichment of families was estimated using
Fisher’s test.
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