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Abstract

A nonparametric family of conditional dis-
tributions is introduced, which generalizes
conditional exponential families using func-
tional parameters in a suitable RKHS. An
algorithm is provided for learning the gener-
alized natural parameter, and consistency of
the estimator is established in the well spec-
ified case. In experiments, the new method
generally outperforms a competing approach
with consistency guarantees, and is competi-
tive with a deep conditional density model on
datasets that exhibit abrupt transitions and
heteroscedasticity.

1 Introduction

Distribution estimation is one of the most general prob-
lems in machine learning. Once an estimator for a
distribution is learned, in principle, it allows to solve
a variety of problems such as classification, regression,
matrix completion and other prediction tasks. With
the increasing diversity and complexity of machine
learning problems, regressing the conditional mean of y
knowing x may not be sufficiently informative when the
conditional density p(y|x) is multimodal. In such cases,
one would like to estimate the conditional distribution
itself to get a richer characterization of the dependence
between the two variables y and x. In this paper, we
address the problem of estimating conditional densities
when x and y are continuous and multi-dimensional.

Our conditional density model builds on a generalisa-
tion of the exponential family to infinite dimensions
(Barron et al., 1991; Canu et al., 2006; Fukumizu, 2009;
Gu et al., 1993; Pistone et al., 1995), where the nat-
ural parameter is a function in a reproducing kernel
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Hilbert space (RKHS): in this sense, like the Gaussian
and Dirichlet processes, the kernel exponential family
(KEF) is an infinite dimensional analogue of the finite
dimensional case, allowing to fit a much richer class of
densities. While the maximum likelihood solution is
ill-posed in infinite dimensions, Sriperumbudur et al.
(2017) have demonstrated that it is possible to fit the
KEF via score matching (Hyvärinen, 2005), which en-
tails solving a linear system of size n × d, where n is
the number of samples and d is the problem dimension.
It is trivial to draw samples from such models using
Hamiltonian Monte Carlo (Neal, 2010), since they di-
rectly return the required potential energy (Rasmussen,
2003; Strathmann et al., 2015). In high dimensions,
fitting a KEF model to samples becomes challenging,
however: the computational cost rises as d3, and com-
plex interactions between dimensions can be difficult
to model.

The complexity of the modelling task can be signifi-
cantly reduced if a directed graphical model can be
constructed over the variables, (Jordan, 1999; Pearl,
2001), where each variable depends on a subset of par-
ent variables (ideally much smaller than the total, as
in e.g. a Markov chain). In the present study, we
extend the non-parametric family of Sriperumbudur
et al., 2017 to fit conditional distributions. The nat-
ural parameter of the conditional infinite exponential
family is now an operator mapping the conditioning
variable to a function space of features of the condi-
tioned variable: for this reason, the score matching
framework must be generalised to the vector-valued
kernel regression setting of Micchelli et al., 2005. We
establish consistency in the well specified case by gen-
eralising the arguments of Sriperumbudur et al., 2017
to the vector-valued RKHS. While our proof allows for
general vector-valued RKHSs, we provide a practical
implementation for a specific case, which takes the form
of a linear system of size n× d 1.

A number of alternative approaches have been pro-
posed to the problem of conditional density estimation.

1The code can be found at:
https://github.com/MichaelArbel/KCEF
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Sugiyama et al., 2010 introduced the Least-Square Con-
ditional Density Estimation (LS-CDE) method, which
provides an estimate of a conditional density function
p(y|x) as a non-negative linear combination of basis
functions. The method is proven to be consistent, and
works well on reasonably complicated learning prob-
lems, although the optimal choice of basis functions
for the method is an open question (in their paper,
the authors use Gaussians centered on the samples).
Earlier non-parametric methods such as variants of
Kernel Density Estimation (KDE) may also be used in
conditional density estimation (Fan et al., 1996; Hall
et al., 1999). These approaches also have consistency
guarantees, however their performance degrades in high-
dimensional settings (Nagler et al., 2016). Sugiyama
et al., 2010 found that kernel density approaches per-
formed less well in practice than LS-CDE.

Kernel Quantile Regression (KQR), introduced by
(Takeuchi et al., 2006; Zhang et al., 2016), allows to pre-
dict a percentile of the conditional distribution when y
is one-dimensional. KQR is formulated as a convex op-
timization problem with a unique global solution, and
the entire solution path with respect to the percentile
parameter can be computed efficiently (Takeuchi et al.,
2009). However, KQR applies only to one-dimensional
outputs and, according to Sugiyama et al., 2010, the so-
lution path tracking algorithm tends to be numerically
unstable in practice.

It is possible to represent and learn conditional prob-
abilities without specifying probability densities, via
conditional mean embeddings (Grunewalder et al., 2012;
Song et al., 2010). These are conditional expectations
of (potentially infinitely many) features in an RKHS,
which can be used in obtaining conditional expectations
of functions in this RKHS. Such expected features are
complementary to the infinite dimensional exponential
family, as they can be thought of as conditional ex-
pectations of an infinite dimensional sufficient statistic.
This statistic can completely characterise the condi-
tional distribution if the feature space is sufficiently
rich (Sriperumbudur et al., 2010), and has consistency
guarantees under appropriate smoothness assumptions.
Drawing samples given a conditional mean embedding
can be challenging: this is possible via the Herding pro-
cedure (Bach et al., 2012; Chen et al., 2010), as shown
in (Kanagawa et al., 2016), but requires a non-convex
optimisation procedure to be solved for each sample.

A powerful and recent deep learning approach to mod-
elling conditional densities is the Neural Autoregressive
Network (Uria et al., 2013, Raiko et al., 2014 and Uria
et al., 2016). These networks can be thought of as a gen-
eralization of the Mixture Density Network introduced
by Bishop, 2006. In brief, each variable is represented
by a mixture of Gaussians, with means and variances

depending on the parent variables through a deep neu-
ral network. The network is trained on observed data
using stochastic gradient descent. Neural autoregres-
sive networks have shown their effectiveness for a va-
riety of practical cases and learning problems. Unlike
the earlier methods cited, however, consistency is not
guaranteed, and these methods require non-convex op-
timization, meaning that locally optimal solutions are
found in practice.

We begin our presentation in Section 2, where we briefly
present the Kernel Exponential Family. We generalise
this model to the conditional case, in our first major
contribution: this requires the introduction of vector-
valued RKHSs and associated concepts. We then show
that a generalisation of score matching may be used
to fit the conditional density models for general vector
valued RKHS, subject to appropriate conditions. We
call this model the kernel conditional exponential family
(KCEF).

Our second contribution, in Section 3, is an empiri-
cal estimator for the natural parameter of the KCEF
(Theorem 1), with convergence guarantees in the well-
specified case (Theorem 2). In our experiments (Sec-
tion 4), we empirically validate the consistency of the
estimator and compare it to other methods of con-
ditional density estimation. Our method generally
outperforms the leading alternative with consistency
guarantees (LS-CDE). Compared with the deep ap-
proach (RNADE) which lacks consistency guarantees,
our method has a clear advantage at small training
sample sizes while being competitive at larger training
sizes.

2 Kernel Exponential Families

In this section we first present the kernel exponential
family, which we then extend to a class of conditional
exponential families. Finally, we provide a methodology
for unnormalized density estimation within this class.

2.1 Kernel Conditional Exponential Family

We consider the task of estimating the density p(y) of
a random variable Y with support Y ⊆ Rd from i.i.d
samples (Yi)ni=1. We propose to use a family of densities
parametrized by functions belonging to a Reproducing
Kernel Hilbert Space (RKHS) HY with positive semi-
definite kernel k (Canu et al., 2006; Fukumizu, 2009;
Sriperumbudur et al., 2017). This exponential family
of density functions takes the form

{
p(y) := q0(y)exp 〈f, k(y, .)〉HY

Z(f)

∣∣∣∣f ∈ F
}
, (1)
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where q0 is a base density function on Y and F is
the set of functions in the RKHS space HY such that
Z(f) :=

∫
Y exp 〈f, k(y, .)〉HY q0(y)dx <∞. In what fol-

lows, we call this family the kernel exponential family
(KEF) by analogy to classical exponential family. f
plays the role of the natural parameter while k(y, .)
is the sufficient statistic. Note that with an appro-
priate choice of the base distribution q0 and a finite
dimensional RKHS HY , one can recover any finite
dimensional exponential family. When HY is infinite-
dimensional, however, the family can approximate a
much broader class of densities on Rd: under mild
conditions, it is shown in Sriperumbudur et al., 2017
that the KEF approximates all densities of the form
{q0(y) exp (f(y)−A)|f ∈ C0(Y)}, A being the nor-
malizing constant and C0(Y) the set of continuous
functions with vanishing tails.

Given two subsets Y and X of Rd and Rp respectively,
we now propose to extend the KEF to a family of con-
ditional densities p(y|x). We modify equation (1) by
making the function f depend on the conditioning vari-
able x. The parameter f is a function of two variables
x and y, f : X ×Y → R such that y 7→ f(x, y) belongs
to the RKHS HY for all x in X . In all that follows, we
will denote by T the mapping

T : X → HY x 7→ Tx

such that Tx(y) = f(x, y) for all y in Y
We next consider how to enforce a smoothness require-
ment on T to make the conditional density estimation
problem well-posed. To achieve this, we will require
that the mapping T belongs to a vector valued RKHS
H: we now briefly review the associated theory, follow-
ing (Micchelli et al., 2005). A Hilbert space (H, 〈., .〉H)
of functions T : X → HY taking values in a vector space
HY is said to be a vector valued RKHS if for all x ∈ X
and h ∈ HY , the linear functional T 7→ 〈h, Tx〉HY is
continuous. The reproducing property for vector-valued
RKHSs follows from this definition. By the Riesz repre-
sentation theorem, for each x ∈ X and h ∈ HY , there
exists a linear operator Γx from HY to H such that for
all T ∈ H,

〈h, Tx〉HY = 〈T,Γxh〉H (2)

Considering the dual operator Γ∗x from H to HY , we
also get

Γ∗xT = Tx.

We can define a vector-valued reproducing kernel by
composing the operator Γx with its dual,

Γ(x, x′) = Γ∗xΓx′ ,

where for all x and x
′ , Γ(x, x′) is a bounded linear

operator from HY to HY , i.e., Γ(x, x′) ∈ L(HY). The
space H is said to be generated by an operator valued
reproducing kernel Γ. One practical choice for Γ is to
define it as:

Γ(x, x
′
) = kX (x, x

′
)IHY ∀x, x′ ∈ X , (3)

where IHY the identity operator on HY and kX is
now a real-valued kernel which generates a real valued
RKHSHX on X (as in the conditional mean embedding;
see Grunewalder et al., 2012). A simplified form of
the estimator of T will be presented in Section 3 for
this particular choice for Γ and will be used in the
experimental setup in Section 4.

We will now express Tx(y) in a convenient form that will
allow to extend the KEF. For a given x, recalling that
Tx belongs toHY , one can write Tx(y) = 〈Tx, k(y, .)〉HY
for all y in Y. Using the reproducing property in (2),
one further gets Tx(y) = 〈T,Γxk(y, .)〉H. By consid-
ering the subset T of H such that for all x in X the
integral

Z(Tx) :=
∫

Y
q0(y) exp(〈T,Γxk(y, .)〉H)dy <∞

is finite, we define the kernel conditional exponential
family (KCEF) as the set of conditional densities
{
pT (y|x) := q0(y)exp 〈T,Γxk(y, .)〉H

Z(Tx)

∣∣∣∣T ∈ T
}
. (4)

Here T plays the role of the natural parameter while
Γxk(y, .) is the sufficient statistic. When T is restricted
to be constant with respect to x, we recover the kernel
exponential family (KEF). The KCEF is therefore an
extension of the KEF introduced in Sriperumbudur
et al., 2017. It is also a special case of the family in-
troduced in Canu et al., 2006. In the latter, the inner
product is given by 〈T, φ(x, y)〉H where φ is a general
feature of x and y. In the present work, φ has the
particular form φ(x, y) = Γxk(y, .). This allows to fur-
ther express pT (y|x) for a given x as an element in a
KEF with sufficient statistic k(y, .), by using the iden-
tity 〈T,Γxk(y, .)〉H = 〈Tx, k(y, .)〉HY . This is desirable
since pT (y|x) remains in the same KEF family as x
varies and only the natural parameter Tx changes.

2.2 Unnormalized density estimation

Given i.i.d samples (Xi, Yi)ni=1 in X×Y following a joint
distribution π(x)p0(y|x), where π defines a marginal
distribution over X and p0(y|x) is a conditional den-
sity function, we are interested in estimating p0 from
the samples (Xi, Yi)ni=1. Our goal is to find the op-
timal conditional density pT in the KCEF that best
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approximates p0. The intractability of the normaliz-
ing constant Z(Tx) makes maximum likelihood esti-
mation difficult. Sriperumbudur et al., 2017 used a
score-matching approach (see Hyvärinen, 2005) to avoid
this normalizing constant; in the case of the KCEF,
however, the score function between π(x)p0(y|x) and
π(x)pT (y|x) contains additional terms that involve the
derivatives of the log-partition function logZ(Tx) with
respect to x. Instead, we now propose a different ap-
proach with a modified version of the score-matching
objective.

We define the expected conditional score between
two conditional densities p0(y|x) and q(y|x) under a
marginal density π on x to be:

J(p0|q) :=
∫

X
π(x)J (p0(.|x)||q(.|x))dx

where:

J (p0(.|x)‖q(.|x)) = 1
2

∫

Y
p0(y|x)

∥∥∥∥∇y log p0(y|x)
q(y|x)

∥∥∥∥
2
dy.

For a fixed value x in X , J (p0(.|x)||q(.|x)) is the score-
matching function between p0(.|x) and q(.|x) as defined
by Hyvärinen, 2005. We further take the expectation
over x to define a divergence over conditional densities.
The normalizing constant of q(y|x), which is a function
of x, is never involved in this formulation, as we take
the gradient of the log-densities over y only. For a
conditional density p0(y|x) that is supported on the
whole domain Y for all x in X , the expected conditional
score is well behaved in the sense that J(p0|q) is always
non-negative, and reaches 0 if and only if the two
conditional distributions p0(y|x) and q(y|x) are equal
for π-almost all x. More discussion can be found in
Appendix D, for the case when this condition fails to
hold. The goal is then to find a conditional distribution
pT in the KCEF for a given T ∈ T that minimizes this
score over the whole family.

Under mild regularity conditions on the densities (see
Hyvärinen, 2005; Sriperumbudur et al., 2017, and be-
low), the score can be rewritten

J(p0||pT ) =E
[ d∑

i=1
∂2
i Tx(y) + 1

2(∂iTx(y))2
]

+E
[ d∑

i=1
∂iTx(y)∂i log q0(y)

]
+ J(p0||q0)

where J(p0||q0) is a constant term for the optimization
problem and the expectation is taken over π(x)p0(y|x).
All derivatives are with respect to y, and we used
the notation ∂if(y) = ∂

∂yi
f(y). In the case of KCEF,

conditions to obtain this expression are satisfied under
assumptions in Appendix A.4, as proved in Theorem 3
of Appendix B.1 . The expression is further simplified
using the reproducing property for the derivatives of
functions in an RKHS (Lemma 3 of Appendix C),

∂iTx(y) = 〈T,Γx∂ik(y, .)〉H
∂2
i Tx(y) = 〈T,Γx∂2

i k(y, .)〉H
which leads to:

J(T ) =E
[ d∑

i=1

1
2
〈
T,Γx∂ik(y, .)

〉2
H +

〈
T, ξi(x, y)

〉
H

]

with:

ξi(x, y) = Γx(∂2
i k(y, .) + ∂i log q0(y)∂ik(y, .)). (5)

We introduced the notation J(T ) := J(p0||pT ) −
J(p0||q0) for convenience. This formulation depends
on p0(y|x) only through an expectation, therefore a
Monte Carlo estimator of the score can be derived as a
quadratic functional of T in the RKHS H,

Ĵ(T ) = 1
n

∑

b∈[n]
i∈[d]

1
2
〈
T,ΓXb∂ik(Yb, .)

〉2
H + 〈T, ξi(Xb, Yb)

〉
H.

Note that the objective functions J(T ) and Ĵ(T ) can
be defined over the whole space H, whereas J(p0|pT )
is meaningful only if T belongs to T .

3 Empirical KCEF and consistency

In this section, we will first estimate the optimal T ∗ =
argminT∈H J(T ) over the whole spaceH by minimizing
a regularized version of the quadratic form in equation
Ĵ(T ), then we will state conditions under which all of
the obtained solutions belong to T defining therefore
conditional densities in the KCEF.

Following Sriperumbudur et al., 2017, we define the
kernel ridge estimator to be Tn,λ = argminT∈H Ĵ(T ) +
λ
2 ‖T‖2H where ‖T‖H is the RKHS norm of T . Tn,λ is
then obtained by solving a linear system of nd variables
as shown in the next theorem:
Theorem 1. Under assumptions listed in Ap-
pendix A.4, and in particular if ‖Γ(x, x)‖Op is uni-
formly bounded on X for the operator norm, then the
minimizer Tn,λ exists, is unique, and is given by

Tn,λ = − 1
λ
ξ̂ +

∑

b∈[n];i∈[d]

β(b,i)ΓXb∂ik(Yb, ·),

where

ξ̂ = 1
n

∑

b∈[n];i∈[d]

ξi(Xb, Yb),
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and ξi are given by (5). β(b,i) denotes the (b− 1)d+ i

entry of a vector β in Rnd, obtained by solving the
linear system

(G+ nλI)β = h

λ
,

where G is an nd by nd Gram matrix, and h is a vector
in Rnd,

(G)(a,i),(b,j) =〈ΓXa∂ik(Ya, ·),ΓXb∂jk(Yb, ·)〉H
(h)(b,i) =〈ξ̂,ΓXb∂ik(Ya, ·)〉H.

The result is proved in Theorem 4 of Appendix B.2.

For the particular choice of Γ in (3), the estimator
takes a simplified form

Tn,λ(x, y) =− 1
λ
ξ̂(x, y) +

∑

b∈[n]
i∈[d]

β(b,i)kX (Xb, x)∂ik(Yb, y),

with

ξ̂(x, y) = 1
n

∑

b∈[n];i∈[d]

kX (Xb, x)∂2
i k(Yb, y)

+ 1
n

∑

b∈[n];i∈[d]

kX (Xb, x)∂i log q0(Yb)∂ik(Yb, y)

The coefficients β are obtained by solving the same
system (G+ nλI)β = h

λ , where G and h reduce to

(G)(a,i),(b,j) =kX (Xa, Xb)∂i∂j+dk(Ya, Yb),
(h)(b,i) =∂iξ̂(Xb, Yb),

and all derivatives are taken with respect to y.

The above estimator generalizes the estimator in Sripe-
rumbudur et al., 2017 to conditional densities. In fact,
if one choses the kernel kX to be a constant kernel,
then one exactly recovers the setting of the KEF.

This linear system has a complexity of O(n3d3) in time
and O(n2d2) in memory, which can be problematic for
higher dimensions d as n grows. However, in practice, if
the goal is to estimate a density of the form p(x1, ..., xd),
one can use the general chain rule for distributions,
p(x1)p(x2|x1)....p(xd|x1, ..., xd−1), and estimate each
conditional density p(xi|x1, ..., xi−1) using the KCEF
in (4). This reduces the complexity of the algorithm
to O(n3d). A reduction to the cubic complexity in
the number of data points n could be managed via a
Nyström-like approximation (Sutherland et al., 2017).

In the well-specified case where the true conditional
density p0(y|x) is assumed to be in (4) (i.e. p0(y|x) =
pT0(y|x)), we analyze the parameter convergence of

the estimator Tn,λ to T0 and the convergence of the
corresponding density pTn,λ(y|x) to the true density
p0(y|x). First, we consider the covariance operator C of
the joint feature Γxk(y, ·) under the joint distribution of
x and y, as introduced in Theorem 3 of Appendix B.1,
and we denote byR(Cγ) the range space of the operator
Cγ . We then have the following consistency result:
Theorem 2. Let γ > 0 be a positive parameter and
define α = max( 1

2(γ+1) ,
1
4 ) ∈ ( 1

4 ,
1
2 ). Under the condi-

tions in Appendix A.4, for λ = n−α, and if T0 ∈ R(Cγ),
then

‖Tn,λ − T0‖ = Op0(n− 1
2 +α).

Furthermore, if supy∈Y k(y, y) <∞, then

KL(p0||pTn,λ) = Op0(n−1+2α).

These asymptotic rates match those obtained for the
unconditional density estimator in Sriperumbudur et
al., 2017. The smoother the parameter T0, the closer
α gets to 1

4 , which in turns leads to a convergence
rate in KL divergence of the order of 1√

n
. The worst

case scenario happens when the range-space parameter
γ gets closer to 0, in which case convergence in KL
divergence happens at a rate close to 1

nγ . A more
technical formulation of this theorem along with a
proof is presented in Appendix B.3 (see Theorems 5
and 6).

The regularity of the conditional density p(y|x) with re-
spect to x is captured by the boundedness assumption
on the operator valued kernel Γ; i.e., ‖Γ(x, x)‖op ≤ κ
for all x ∈ X in Assumption (E). This assumption
allows to control the variations of the conditional dis-
tribution p(y|x) as x changes. Roughly speaking, we
may estimate the conditional density p(y|x0) at a given
point x0 from samples (Yi, Xi) whenever there are Xi

sufficiently close to x0. The uniformly bounded ker-
nel Γ allows to express the objective function J(T ) as
a quadratic form J(T ) = 1

2 〈T,CT 〉H + 〈T, ξ〉H + c0
for constant c0, where C is the covariance operator
introduced in Theorem 3. Furthermore, this bound-
edness assumption ensures that C is a "well-behaved"
operator, namely a positive semi-definite trace-class
operator. The population solution of the regularized
score objective is then given by Tλ = (C + λI)−1CT0
while the estimator is given by: T̂λ,n = −(Ĉ + λI)−1ξ̂

where Ĉ and ξ̂ are empirical estimators for C and ξ.

The proof of consistency makes use of ideas from Capon-
netto et al., 2007; Sriperumbudur et al., 2017, exploit-
ing the properties of trace-class operators. The main
idea is to first control the error ‖T0 − T̂λ,n‖H by intro-
ducing the population solution Tλ,

‖T0 − T̂λ,n‖H ≤ ‖T0 − Tλ‖H + ‖Tλ − T̂λ,n‖H
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The first term ‖T0−Tλ‖H represents the regularization
error which is introduced by adding a regularization
term λI to the operator C. This term doesn’t depend
on n, and can be shown to decrease as the amount
of regularization goes to 0 with a rate λmin(1,γ). The
second term represents the estimation error due to the
finite number of samples n. This term decreases as
n→ 0 but also increases when λ→ 0, therefore a trade-
off needs to be made between decreasing the first term
‖T0 − Tλ‖H by setting λ → 0 and keeping the term
‖Tλ− T̂λ,n‖H small enough. Using decompositions sim-
ilar to those of Caponnetto et al., 2007; Sriperumbudur
et al., 2017, we apply concentration inequalities on the
general Hilbert space H to get a probabilistic bound
on the estimation error of order O( 1

λ
√
n

).

Concerning the convergence in KL divergence, the re-
quirement that the real-valued kernel k is bounded
implies that T is in fact equal to H. Therefore, mini-
mizing the expected score J(pT0 ||pT ) is equivalent to
minimizing the quadratic form J(T ) over the whole
RKHS H. Finally, the rates in KL divergence are
obtained from the error rate of T̂λ,n.

4 Experiments

We perform a diverse set of experiments, on both syn-
thetic and real data, in order to validate our model
empirically. In all experiments, the data are centered
and rescaled such that the standard deviation for every
dimension is equal to 1. Given (X(n)

1 , ..., X
(n)
d )Nn=1 i.i.d.

samples of dimension d we are interested in approx-
imating the joint distribution p0(X1, ..., Xd) of data
using different methods:

• The KEF model from Sriperumbudur et al., 2017
approximates p by a distribution pf that belongs to
the KEF (1) by minimizing the score loss between p
and pf to find the optimal parameter f .

• The KCEF model of Theorem 1 approximates p
by a distribution p̂ that is assumed to factorize ac-
cording to some Directed Acyclic Graphical model
(DAG): p̂(X1, ..., Xd) = Πd

i=1p̂(xi|xπ(i)) where π(i) are
the parent nodes of i. Note that we do not necessarily
make independence assumptions, as the graph can be
fully connected. We will consider in particular two
graphs, the Full graph (F) of the form p̂(X1, ..., Xd) =
p̂(X1)Πd

i=2p̂(Xi|X1, ..., Xi−1) and the Markov graph
(M) of the form p̂(X1, ..., Xd) = p̂(X1)Πd

i=2p̂(Xi|Xi−1).
Each of the factors is assumed to belong to the KCEF in
(4), and is estimated independently from the others by
minimizing the empirical loss Ĵ(T ) to find the optimal
operator Ti such that p̂(Xi|Xπ(i)) = pTi(Xi|Xπ(i)).

• The Orderless RNADE model in Uria et al.,
2016, where we train a 2 Layer Neural Autoregres-

sive model with 100 units per layer. The model con-
sists of a product of conditional densities of the form
Πd
i=1p(Xoi |Xo<i , θ, o), where o is a permutation of the

dimensions [1, ..., d] and θ is a set of parameters that
are shared across the factors regardless of the chosen
permutation o. RNADE is trained by minimizing the
empirical expected negative log-likelihood, where the
expectation is taken over all possible permutations and
data,

L(θ) = Eo∈D EX∈Rd
[
− log p(Xoi |Xo<i , θ, o)

]
.

• The LSCDE model in Sugiyama et al., 2010 where
we also used the 2 factorizations of the joint distribution
(F, M) and solve a least-squares problem to estimate
each of the conditional densities. The approximate den-
sities are of the form αTφ(Xi, Xπ(i)) where φ is a vector
of m known non-negative functions and α is obtained
by minimizing the squared error between p(Xi, Xπ(i))
and αTφ(Xi, Xπ(i)). Only the non-negative component
of the solution α is used.

For all variants of our model, we take the base density q0
to be a centered gaussian with a standard deviation of
2. The kernel function used for both predicted variable
y and conditioning variable x is the anisotropic radial
basis function (RBF) with per-dimension bandwidths.
The bandwidths and the regularization parameter λ
are tuned by gradient descent on the cross validated
score.

Synthetic data: We consider the ’grid’ dataset, which
is a d-dimensional distribution with a tractable density
that factorizes in the form

p(xi|xi−1) = Ci(1 + sin(2πwai xi) sin(2πwbixi−1))

for all i ∈ [d]. Ci is a tractable normalizing constant.
Samples are generated using rejection sampling for each
dimension. To study the effect of sample size on the es-
timator, we generate n training points with n varying
from 200 to 2000 and d = 3, and estimate the log-
likelihood on 2000 newly generated points. To compare
the effect of dimension, we generate 2000 datapoints
of dimension d varying from 2 to 20, and estimate the
log-likelihood on 2000 test points. Unlike in (Sriperum-
budur et al., 2017; Sutherland et al., 2017), the score
function Ĵ(T ) cannot be used as a metric to compare
different factorizations of the estimated distribution, as
it is dependent on the specific factorization of the joint
distribution. Instead, we estimated the log-likelihood
for our proposed model KCEF, where the normalizing
constants are computed using importance sampling.
We discarded the KEF in this experiment, since esti-
mating the normalizing constant in high dimensions
becomes impractical.

In Figure 1(left), we plot the log-likelihood as the num-
ber of samples increases. Both variants of KCEF (F,
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M) performed slightly better than the other methods in
terms of speed of convergence as sample size increases.
The variants that exploit the Markov structure of data
M lead to the best performance for both KCEF and
LSCDE as expected. The NADE method has com-
parable performance for large sample sizes, but the
performance drops significantly for small sample sizes.
This behaviour will also be observed in subsequent ex-
periments on real data. The figure on the right shows
the evolution of the log-likelihood per dimension as
the dimension increases. In the F case, our approach
is comparable to LSCDE with an advantage in small
dimensions. The F approaches both use an anisotropic
RBF kernel with tuned per-dimension bandwidth which
end up performing a kind of automatic relevance deter-
mination. This helps getting comparable performance
to the M methods. A drastic drop in performance
can happen when an isotropic kernel is used instead as
confirmed by Figure 5 of Appendix E. Finally, NADE,
which is also agnostic to the Markov structure of data,
seems to achieve comparable performance to the F
methods with a slight disadvantage in higher dimen-
sions.

Real data: We applied the proposed and existing
methods to the R package benchmark datasets (Team,
2008) (see Table 1) as well as three UCI datasets pre-
viously used to study the performance of other density
estimators (see Silva et al., 2011; Tang et al., 2012;
Uria et al., 2013). In all cases data are centered and
normalized.

First, the R benchmark datasets are low dimensional
with few samples, but with a relatively complex condi-
tional dependence between the variables. This setting
allows to compare the methods in terms of data ef-
ficiency and overfitting. Each dataset was randomly
split into a training and a test set of equal size. The
models are trained to estimate the conditional den-
sity of a one dimensional variable y knowing x using
samples (xi, yi)ni=1 form the training set. The accu-
racy is measured by the negative log-likelihood for
the test samples (x̃i, ỹi)ni=1 averaged over 20 random
splits of data. We compared the proposed method with
NADE and LSCDE on 14 datasets. For NADE we
used CV over the number of units per layer {2, 10, 100}
and number of mixture components {1, 2, 5, 10} for a
2 layer network. We also used CV to chose the hyper-
parameters for LSCDE and the proposed method on
a 20× 20 grid (for λ and σ).

The experimental results are summmarized in Table 1.
LSCDE worked well in general as claimed in the orig-
inal paper, however the proposed method substantially
improves the results. On the other hand, NADE per-
formed rather poorly due to the small sample size of
the training set, despite our attempts to improve its

KCEF NADE LSCDE
caution 0.99± 0.01 4.12± 0.02 1.19± 0.02
ftcollinssnow 1.46± 0.0 3.09± 0.02 1.56± 0.01
highway 1.17± 0.01 11.02± 1.05 1.98± 0.04
heights 1.27± 0.0 2.71± 0.0 1.3± 0.0
sniffer 0.33± 0.01 1.51± 0.04 0.48± 0.01
snowgeese 0.72± 0.02 2.9± 0.15 1.39± 0.05
GAGurine 0.46± 0.0 1.66± 0.02 0.7± 0.01
geyser 1.21± 0.04 1.43± 0.07 0.7± 0.01
topo 0.67± 0.01 4.26± 0.02 0.83± 0.0
BostonHousing 0.3± 0.0 3.46± 0.1 1.13± 0.01
CobarOre 3.42± 0.03 4.7± 0.02 1.61± 0.02
engel 0.18± 0.0 1.46± 0.02 0.76± 0.01
mcycle 0.56± 0.01 2.24± 0.01 0.93± 0.01
BigMac2003 0.59± 0.01 13.8± 0.13 1.63± 0.03

Table 1: Mean and std. deviation of the negative
log-likelihood on benchmark data over 20 runs, with
different random splits. In all cases dy = 1. Best
method in boldface (two-sided paired t-test at 5%).

white -wine parkinsons red wine
KCEF-F 13.05± 0.36 2.86± 0.77 11.8± 0.93
KCEF-M 14.36± 0.37 5.53± 0.79 13.31± 0.88
LSCDE-F 13.59± 0.6 15.89± 1.48 14.43± 1.5
LSCDE-M 14.42± 0.66 10.22± 1.45 14.06± 1.36
NADE 10.55± 0.0 3.63± 0.0 9.98± 0.0

Table 2: UCI results: average and standard deviation
of the negative log-likelihood over 5 runs with different
random splits. Best method in boldface (two-sided
paired t-test at 5%).

performance by reducing the number of parameters to
train and by introducing early stopping.

The UCI datasets (Red Wine, White Wine and Parkin-
sons) represent challenging datasets with non-linear
dependencies and abrupt transitions between high and
low density regions. This makes the densities diffi-
cult to model using standard tools such as mixtures
of Gaussians or factor analysis. They also contain
enough training sample points to allow a stronger per-
formance by NADE. All discrete-valued variables were
eliminated as well as one variable from every pair of
variables that are highly correlated (Pearson correla-
tion greater than 0.98). Following Uria et al., 2013,
90% of the data were used for training while 10% were
held-out for testing. Two different graph factorizations
(F, M ) were used for the proposed method and for
LSCDE.

In Table 2, we report the performance of the different
models. Our method was among the statistically sig-
nificant group of best models on Parkinsons dataset
according to the two-sided paired t−test at significance
level of 5%. On the remaining datasets, it achieved the
second best performance after NADE.

Sampling: We compare samples generated from
the approximate distribution obtained using differ-
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Figure 1: Experimental comparison of proposed method KCEF and other methods ( LSCDE and NADE ) on
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Figure 2: Scatter plot of 2-d slices of red wine and
parkinsons data sets.Black points are real data, red are
samples from the KCEF.

ent methods (KEF, KCEF, NADE). To get samples
(X1, ..., Xd) from the joint distribution of KCEF we
performed ancestral sampling, where a sample from the
parents π(i) of node i is first generated, and then Xi is
sampled according to p(Xi|Xπ(i)). We used the method-
ology and code in Strathmann et al., 2015 to sample
from each conditional distribution p(Xi|Xπ(i)) using
an HMC proposal, since we have access to the gradient
of the conditional densities and their un-normalized
values. We trained the 3 models on Red Wine and
Parkinsons datasets as described previously, and gen-
erated joint samples from two-dimensional slices of
data (see Figure 2). Since each conditional distribution
is low-dimensional, we assumed an idealized scenario
where the burn-in is completed after 100 iterations of
the HMC sampler. We then run 20 samplers for 1000
and thin by a factor 10, which results in 2000 samples.
As shown in Figure 2, KCEF is able to capture chal-
lenging properties of the target distribution, such as
heteroscedasticity and sharp thresholds.

HKEF<KCEF HNADE<KCEF
parkinsons 0.523506 0.011467
red-wine 0.000791 0.326109

Table 3: p-values for the relative similarity test.
Columns represents the p-values for testing whether
samples from KEF ( resp. KCEF) model are closer to
the data than samples from the KCEF (resp. NADE).

We also performed a test of relative similarity between
the generated samples and the ground truth data fol-
lowing the methodology and code of Bounliphone et al.,
2015. Given samples from data Xm and generated sam-
ples Yn and Zr from two different methods, we test the
hypothesis that Px is closer to Pz than Py according
to the MMD metric. The null hypothesis

Hy<z : MMD(Px, Py) ≤MMD(Px, Pz)

is tested against the alternative at a significance level
α = 5% (see Bounliphone et al., 2015 for details). Ta-
ble 3 shows the p-value for testing KCEF vs KEF
and NADE vs KCEF. We see that KCEF signifi-
cantly outperforms NADE with high confidence for
the parkinsons dataset, consistent with Table 2. Per-
formance of the two methods is not statistically distin-
guishable for the red-wine data. See the scatter plots
in Figure 4 of Appendix E, which visually confirm the
result. KCEF gives significantly better samples than
KEF on red-wine: indeed, KCEF generally outper-
formsKEF on distributions where the densities exhibit
abrupt transitions, as is clear by inspection of the plots
in Figure 4 of Appendix E.
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