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Abstract
1.	 The joint analysis of species’ evolutionary relatedness and their morphological 
evolution has offered much promise in understanding the processes that underpin 
the generation of biological diversity.

2.	 Disparity through time (DTT) is a popular method that estimates the relative trait 
disparity within and between subclades, and compares this to the null hypothesis 
that trait values follow Brownian evolution along the time-calibrated phylogenetic 
tree. To visualise the differences a confidence envelope is normally created by 
calculating, at every time point, the 97.5% minimum and 97.5% maximum disparity 
values from multiple simulations of the null model. The null hypothesis is rejected 
whenever the empirical DTT curve falls outside of this envelope, and these time 
periods may then be linked to events that may have sparked non-random trait 
evolution.

3.	 Here, simulated data are used to show this pointwise (ranking at each time point) 
method of envelope construction suffers from multiple testing and a poor, uncon-
trolled, false-positive rate. As a consequence it cannot be recommended. Instead, 
each DTT curve can be given a single rank based upon their most extreme dispar-
ity value, relative to all other curves, and across all time points. Ordering curves 
this way leads to a test that avoids multiple testing, but still allows construction of 
a confidence envelope. The null hypothesis is rejected if the empirical DTT curve 
is ranked within the most extreme 5% ranked curves from the null model. 
Comparison of the rank envelope curve to the Morphological Disparity Index and 
Node Height tests shows it to have generally higher power to detect non-Brown-
ian trait evolution. An extension to allow simultaneous testing over multiple traits 
is also detailed.

4.	 Overall the results suggest the new rank envelope test should be used in null 
model testing for DTT analyses. The rank envelope method can easily be adapted 
into recently developed posterior predictive simulation methods used in model 
selection analyses. More generally, the rank envelope test should be adopted 
whenever a null model produces a vector of correlated values and the user wants 
to determine where the empirical data are different to the null model.
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1  | INTRODUC TION

Understanding the joint temporal dynamics of taxonomic and phe-
notypic diversity can provide tremendous insights into evolutionary 
success and its relationship with ecological opportunity, selective 
pressures, constraints, biotic interactions and environmental con-
ditions. At the most basic level evolutionary biologists are often 
interested in detecting non-random evolution of biological traits 
within and across clades of species. Non-random bursts in evolution 
are often thought to be associated with events that open up eco-
logical opportunities and enable a rapid increase in speciation rates 
and trait evolution, followed by slowdown in both processes as the 
ecological niches become filled. The evolutionary theory of adaptive 
radiation is the special case where the burst in speciation rate and 
trait evolution occur early in the clade’s history (Schluter, 2000), but 
such bursts in trait evolution may occur at other times and can be 
triggered by other processes such as major events in the external 
environment.

A variety of null model, and model selection methods exist to look 
for the signature of evolutionary bursts in trait evolution (Freckleton 
& Harvey, 2006; Harmon, Schulte, Larson, & Losos, 2003; Harmon 
et al., 2010; Slater & Pennell, 2014; Slater, Price, Santini, & Alfaro, 
2010). The model selection approach takes a variety of candidate 
models (Brownian evolution, early burst, selective peak) and fits 
these to the data using maximum likelihood methods before choos-
ing the model that has the “best fit” (Harmon et al., 2010; Slater 
& Pennell, 2014). The null model approach remains more popular, 
partly because the methods have been established for longer, and 
the overall aim is to investigate if the data can be distinguished from 
the null model of Brownian evolution of trait values (Freckleton & 
Harvey, 2006; Harmon et al., 2003).

One of the commonly used null model approaches is to look at 
morphological traits to see if trait disparity increases, decreases 
or stays the same as species accumulate in evolutionary time, and 
also see whether this disparity is greater within or between clades. 
Convergent evolution of traits is implied if morphological dispar-
ity is predominantly found within one or more subclades; whereas 
adaptive radiations are expected to show divergence of traits be-
tween subclades, and in this scenario between clade morphologi-
cal disparity should be greater than within subclade disparity. This 
analysis of between and within clade trait disparity has been cham-
pioned by the disparity through time (DTT) approach introduced by 
Harmon et al. (2003). Here the empirical DTT curve is compared 
to the distribution of DTT curves generated on the same phylo-
genetic tree but under a specific model of how the trait diversity 
evolves. Generally the null model is an uncorrelated random walk, 
also referred to as Brownian evolution (i.e. a Brownian random walk 

over time in trait space). The method of comparison is critical in 
determining whether the empirical data can be distinguished from 
the null model. Early analyses used an integral deviation method 
called the Morphological Disparity Index (MDI) which sums the 
deviations of the empirical DTT curve from the median of the null 
model simulations (Harmon et al., 2003). The index can then be 
compared to the distribution of values produced by the simula-
tion to test whether it is significantly different from the null model 
(Slater et al., 2010). Where MDI > 0, this implies within-clade trait 
variation is generally greater than expected under the null model, 
and MDI < 0 implies between-clade trait variation is more dominant 
than expected under the null model, and is suggestive of an adap-
tive radiation.

Since the MDI produces a number, it does not indicate the time 
periods when the empirical DTT curve deviates from the null model. 
Visualisation of when any non-random bursts might have occurred 
(e.g. early on in the radiation) can only proceed by plotting the empir-
ical DTT curve against the DTT curves sampled from the null model. 
However, determining where statistically significant local deviations 
from the null model are occurring in the time series requires another 
test. The current go-to method is to simulate the null model n times 
(typically n > 1,000) and then construct a (100 − 2α) confidence in-
terval by excluding the α largest, and α smallest relative disparity 
values at each time point. This method is also referred to as the 
pointwise envelope method because the ordering of the curves occurs 
at each time point (Myllymaki, Mrkvicka, Grabarnik, Seijo, & Hahn, 
2017). The observed relative DTT curve can then be compared 
to this envelope and if it falls outside the null model is said to be 
rejected at the 2α level of significance.

The pointwise envelope method continues to be a popular 
method of inference, often as a diagnostic test in conjunction with 
the MDI test (e.g. Arbour & Lopez-Fernandez, 2016; Aristide et al., 
2016; Blackburn et al., 2013; Dornburg et al., 2011; Feilich, 2016; 
Hlusko, Schmitt, Monson, Brasil, & Mahaney, 2016; Ingram, 2015; 
Johnson & Omland, 2004; Slater et al., 2010; Weber, Mitko, Eltz, & 
Ramirez, 2016). The visual/graphical interpretation of the DTT curve 
with an envelope test has extra appeal as it can be used to identify 
time points where the burst of non-Brownian evolution occurred, en-
abling correlation with known evolutionary or environmental events 
that have triggered the burst. However, the pointwise envelope 
method leads to weaker than expected statistical performance be-
cause multiple tests, one at each time point, are being performed si-
multaneously. Multiple testing leads to an increased type 1 statistical 
error rate (an elevated rate of rejection of the null hypothesis when it 
is true) that is no longer in line with the significance level being used 
to generate the confidence intervals of the envelope. Although mul-
tiple testing problems may be solved using a Bonferroni correction, it 
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is not appropriate here because the assumption of independence of 
tests is violated by the correlation of disparity values between con-
secutive time points and also the (often) large number of time points 
being simultaneously evaluated (Loosmore & Ford, 2006).

The continued use of the pointwise envelope suggests its 
graphical interpretation is very appealing and it would therefore be 
worthwhile to circumvent its multiple testing issues. The recent de-
velopment of the rank envelope test in spatial statistics (Myllymaki 
et al., 2017) holds promise to be useful in DTT analyses. Spatial 
analysis of ecological data often leads to the use of a nonparamet-
ric summary statistic such as Ripley’s K that plots the tendency to 
cluster against the radial distance (e.g. Law et al., 2009; Flügge, 
Olhede, & Murrell, 2012), and the problem of pointwise envelopes 
for inference of non-random patterns is well established (Baddeley 
et al., 2014; Loosmore & Ford, 2006). As will be detailed below, the 
rank envelope test assigns each curve a single rank based on its most 
extreme deviation from the median curve from the null model sim-
ulation curves, and standard significance testing can then proceed 
by investigating if the empirical curve is found within the most ex-
treme ranked curves. As shown by Myllymaki et al. (2017), the rank 
envelope method has good type 1 and type 2 error rates and is rec-
ommended for testing point pattern data against the null model of 
complete spatial randomness. The rank envelope can be developed 
and applied to any model that produces a vector (e.g. van Veen & 
Murrell, 2005), however, its performance needs to be tested since 
there are many ways of ordering curves based on how extreme they 
are compared to the null model and not all methods will produce 
desirable results.

In what follows, the rank envelope test will be developed for DTT 
null model analyses and its type 1 and type 2 statistical properties 
compared to the pointwise envelope, MDI and node height tests. 
The pointwise envelope test will be shown to have extremely poor 
type 1 error rates and should not be used for inference even as a di-
agnostic tool in conjunction with the MDI test. In contrast, the rank 
envelope method will be shown to possess desirable type 1 error 
rates, and the best overall power to detect accelerating or decelerat-
ing rates of trait evolution.

2  | MATERIAL S AND METHODS

2.1 | Data simulation

Phylogenetic trees were generated within r (version 3.3.3) by 
implementing the pure birth (Yule) model using the pbtree func-
tion from the phytools library (version 0.6; Revell, 2012), and are 
rescaled so they run between 0 and 1 time units. These phyloge-
netic trees were then used to simulate quantitative trait evolution 
under a variety of scenarios including the null model of Brownian 
evolution. Specifically, trait evolution was simulated using the 
fastBM (in phytools) and rescale (in geiger, version 2.0.6, Pennell 
et al., 2014) functions. The rescale function allows the simulation 
of the accelerating-decelerating (ACDC) trait evolution model 
(Blomberg, Garland, & Ives, 2003) via an exponential rate change 

parameter, a. The null model of Brownian evolution is simulated 
when a = 0. When a < 0 the rate of evolution decelerates with time, 
and evolution accelerates over the phylogenetic tree when a > 0. 
The magnitude of a determines how quickly this burst of activity 
fades away or builds up, with large magnitudes delivering a rapid 
decay or late increase in evolutionary change (examples are given 
in Figure S1). However, as has been shown by Uyeda, Caetano, and 
Pennell (2015), assuming the phyologenetic tree is ultrametric, the 
ACDC model with r > 0 generates traits with a structure equiva-
lent to those produced by a single optimum Ornstein–Uhlenbeck 
(OU) model. It is therefore not possible to distinguish between the 
OU and decelerating trait evolution models using the methods 
described here. Following Slater and Pennell (2014) results below 
are reported in terms of evolution half-life or doubling times, with 
half-life (doubling time) describing how much time is required for 
the trait evolution rate to fall to half (double) its initial value. The 
half-life or doubling time is defined as:

so half-life is defined when a < 0 and doubling time defined when 
a > 0.

2.2 | DTT analyses

DTT has proven to be one of the more popular approaches and uses 
the average pairwise Euclidean distance between species trait val-
ues as a measure of disparity. Following Harmon et al. (2003) relative 
disparity is calculated by dividing the disparity of each subclade by 
the disparity of the whole tree. At each time point (speciation event) 
the average relative disparity for that time point is calculated as the 
mean of the relative disparities for all subclades whose ancestral lin-
eages are present at that time. Relative disparity values close to zero 
indicate that variation in the trait(s) is predominantly partitioned be-
tween subclades rather than within them. Relative disparity values 
larger than unity suggest that a clade contains a large amount of that 
variation, and that clades may overlap in trait space. By definition, 
disparity is 1 at the base of the phylogenetic tree, but is 0 at the 
present day.

Two methods that are currently used to search for the signal of 
bursts in morphological evolution using DTT are (1) the pointwise 
envelope test, and (2) an integral deviation test known as the MDI. 
As well as these a third test, the rank envelope test, was investi-
gated. All make comparisons of the empirical DTT to the DTT taken 
from the ensemble of simulations generated by the null model of 
Brownian evolution, and all use the same measure of disparity de-
fined above.

2.3 | The pointwise envelope test

The pointwise envelope test is a Monte Carlo simulation method 
that aims to produce a confidence interval, or envelope within 
which any part of the empirical DTT curve is said to be statistically 

t1∕2=
log(2)

a
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indistinguishable from the null model. The method currently im-
plemented in geiger (v2.0.6) constructs a (100 − 2α)% confidence 
interval by excluding at each time point the α largest, and α small-
est relative disparity values across the entire ensemble of DTT 
curves simulated under the null model. Normally α = 2.5. More 
formally, the envelope is defined by the lower and upper bounding 
curves

where mink and maxk denotes the kth smallest and largest values of 
the DTT across all simulations s, of the null model at time (speciation 
event) t. If the empirical DTT curve falls outside of this envelope it 
is interpreted as being evidence for a departure from the null model 
of Brownian evolution at the 2α level of significance. The key mes-
sage for the reader is that the confidence interval is determined by 
ordering the null model curves at each time point (hence the name 
pointwise envelope), and that each ordering is done independently of 
all other time points.

2.4 | The MDI test

Perhaps the simplest way to avoid multiple testing is to perform a 
deviation test that sums the deviations of the empirical DTT from 
the median DTT of the ensemble of null model simulations. Known 
as the MDI, negative values indicate the empirical DTT curve is 
below the null model median DTT for at least some of the range 
of time points, again pointing to the possibility of an early burst 
in diversity (Harmon et al., 2003). The test used by Slater et al. 
(2010) to assess statistical significance of a negative MDI is based 
on computing the proportion of cases in which the MDI for all 
null model simulated curves and the empirical curve were greater 
than 0. This is currently implemented using the dtt function in the 
geiger r library, but the user should note that the current version 
of geiger (v2.0.6) has an error which leads to inaccurate p-values 
(G. Slater, personal communication, October 16, 2017), and the 
results below use updated source code from https://github.com/
mwpennell/geiger-v2/blob/master/R/disparity.R. The test as im-
plemented in geiger is a one-tailed test to look for early bursts  
(i.e. the alternative hypothesis is that the empirical MDI is less 
than the null model expectation), but two-tailed tests are straight-
forward to implement with the same approach.

A disadvantage of this approach is that it is not possible to pin-
point the time periods when the empirical DTT deviates from the 
null model without plotting it against the null model simulations 
and then performing some sort of envelope test. Moreover, since 
the index sums up the deviations from the median of the ensemble 
of simulations of the null model, it is theoretically possible for time 
periods where the empirical DTT is above the median DTT to be 
cancelled out by time periods where it is below the median DTT, 
thus giving an MDI value close to that expected under Brownian 

evolution. However, as will be confirmed the MDI test has good 
statistical test properties and has been well used (e.g. Colombo, 
Damerau, Hanel, Salzburger, & Matschiner, 2015; Harmon et al., 
2003; Ingram, 2015; Jonsson, Lessard, & Ricklefs, 2015; Slater 
et al., 2010).

2.5 | Rank envelope test

In this method each curve is given one ranking that summarises how 
extreme it is compared to all other curves. The more formal under-
pinnings of the test can be found in Myllymaki et al. (2017), but the 
process is quite straightforward. Each curve is given a single rank 
using the following steps:

1.	 Rank each DTT curve so

i.	 Tasc
i
(t) is the rank in ascending order of the disparity value of 

curve i at time t, against all other curves at time t. Higher ranks 
denote larger disparity values relative to all other curves (at 
time t). For example if there are s curves to be ranked, then the 
curve with the largest relative disparity value at time t is given 
the highest rank, that is Tasc

i
(t)= s.

ii.	 Tdes
i

(t) is the rank in descending order of the disparity value of 
curve i at time t, against all other curves at time t. Higher ranks 
denote smaller relative disparity values at time t compared to 
all other curves. For example if there are s curves to be ranked, 
then the curve with the smallest disparity value at time t is 
given the highest rank, that is Tdes

i
(t)= s.

Since all curves are constrained to have disparity value of 1 at 
time 0, and disparity value 0 at the last time point, these are ignored 
in the rankings.

2.	 Obtain the global rank Ri for each curve by taking the highest 
ranking it has across all time points and across both ascending 
and descending sets: 

Ri is therefore a measure of how extreme the curve is compared 
to the rest of the curves, and is equivalent to ranking the curve ac-
cording to its maximum deviation from the median DTT curve. An 
illustrative curve ranking is given in Figure 1.

3.	 The empirical DTT curve is then given its global rank, R1 in 
exactly the same manner as for all other curves. Although 
the steps above describe the process for a two-tailed test, a 
one-tailed test can easily be implemented using only Tasc

i
 or 

Tdes
i
 to determine global rank.

2.5.1 | Generation of p-values

If the empirical DTT curve is ranked outside of the (100 − 2α)th 
quantile of globally ranked curves then the null hypothesis can be 
rejected and the observed DTT curve can be said to be lower or 

(1a)T
(k)

low
(t)=mink

i=1,2,…,s
Ti(t)

(1b)T
(k)
upp(t)=maxk

i=1,2,…,s
Ti(t),

Ri=max{Tasc
i
(t),Tdes

i
(t), for all t}.

https://github.com/mwpennell/geiger-v2/blob/master/R/disparity.R
https://github.com/mwpennell/geiger-v2/blob/master/R/disparity.R
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greater than expected under the null hypothesis, as appropriate. 
However, complications arise because ties in ranking are inevi-
table. For example the same curve cannot have both the highest 
and lowest disparity values across the whole ensemble of curves 
at time t, unless all curves have the same disparity value at that 
speciation event. In the two-tailed test there will almost always 
be at least two curves that take on the highest ranking s, at each 
time point. As such, the set of curves can only be weakly ordered. 
In order to generate a p-value a method for dealing with the ties 
needs to be used. Although one option is to use the mid-point 
to break the ties, following Myllymaki et al. (2017), a range of p-
values is reported that encompasses the most liberal and most 
conservative p-values, respectively, defined as

where 1(…) is the indicator function that takes a value of 1 if the 
inequality is true, and takes value 0 otherwise; and where R1 is the 
rank of the empirical DTT curve. This raises the problem that the 
interval defined by p− and p+ could include the significance level 

α, leading to an ambiguous result. However, the likelihood of this 
happening is very small as long as s, the number of Monte Carlo 
simulations of the null model is sufficiently large. Myllymaki et al. 
(2017) recommend s ≥ 2,500, and the results below use s = 2,500.

2.5.2 | Generation of confidence envelope for 
visualisation

From the above DTT curve ordering, it is straightforward to visu-
alise the rank envelope determined by the significance level used. 
The upper and lower boundaries of the rank envelope are computed 
by taking the highest and lowest disparity values at each time point 
across the lowest (100 − 2α)th globally ranked curves. In other words, 
the rank envelope is the area bounded by the (100 − 2α)th globally 
ranked DTT curves simulated from the null model (more formally the 
confidence interval is the convex hull capturing the (100 − 2α) quan-
tiles of the ranked curves). The user can then readily see where the 
empirical data falls outside of the rank envelope, and thus where the 
observed DTT is significantly different to Brownian evolution.

2.6 | The node height test

The final test does not use simulations of the null model to com-
pare to the empirical data but instead relies upon the expectation 
that trait evolution should slow as niche space become packed. The 
node height test (Freckleton & Harvey, 2006) investigates if there 
is a significant correlation between the absolute magnitude of the 
standardised independent contrasts of the trait(s) and the height 
above the root of the node at which they were being compared to. 
The height of a node is defined as the absolute distance between 
the root and the most recent common ancestor of the pair from 
which the contrast is generated. A significant relationship between 
these indicates that the rate of trait evolution is changing system-
atically through the tree with early and late bursts in trait evolution 
being diagnosed by the sign of the slope. Graphical interpretation, 
and identification of key time periods of non-Brownian evolution is 
possible by looking to see which pairs of nodes are contributing to 
the non-zero slope. Since this is an established test, the analyses 
of the node height test were performed using the function nh.test 
within geiger.

3  | RESULTS

3.1 | False-positive rates (type 1 errors)

The false-positive rate was investigated by simulating an empirical 
dataset of trait evolution under the Brownian null model and testing 
how frequently each of the four tests described above incorrectly 
rejects the null hypothesis. Results for the DTT approach using the 
pointwise envelope test at the 5% level of significance show a disap-
pointing, but unsurprising high rate of false positives (Figure 2). The 
multiple testing nature of this method means that the false-positive 
rate increases with the number of species in the comparison, and 

(2a)p− =
1

s+1

∑s+1

i=1
1(Ri<R1)

(2b)p
+
=

1

s+1

∑s+1

i=1
1(Ri≤R1),

F IGURE  1 An example of the curve ranking process for the 
rank envelope test. Here there are 11 disparity through time 
curves and if we focus on the thick solid black line we see that in 
ascending order of disparity values it has the following rankings 
across the eight time points, Tasc

black
={6, 8, 7, 2, 3, 3, 4, 4}; that is at 

the first time point it has the sixth largest relative disparity value 
across all curves; at the second speciation event it has the eighth 
largest relative disparity value, etc. The corresponding rankings for 
this curve across the speciation events in the descending order of 
disparity values are, Tdes

black
={6, 4, 5, 10, 9, 9, 8, 8}. The global ranking 

for this curve is the maximum ranking it takes in both sets, so in this 
case Rblack = 10
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in the simulations the rate of false positives ranges approximately 
between 0.25 and 0.5 for 10–200 species (Figure 2). That is to say, 
for comparisons using more than 100 species the pointwise enve-
lope test is incorrectly rejecting the null hypothesis of Brownian 
evolution in c. 50% of cases. As such it is impossible to recommend 
this method for inference of non-Brownian bursts of trait evolution 
even as a diagnostic tool used with other tests that lack a visual in-
terpretation. In comparison, all three other tests return consistent 
false-positive rates that hover around the significance level used 
(Figure 2).

3.2 | True-positive rates (type 2 errors)

Simulations for decelerating and accelerating rates of trait evolu-
tion confirm that the MDI, the node height, and the rank enve-
lope tests can all successfully detect both early and late bursts 
in trait evolution (Figure 3), and the power of each is (unsurpris-
ingly) positively related to the number of species and the strength 
of the early or late burst. However, other generalities do emerge. 
First, decelerating rates of trait evolution are easier to detect than 
accelerating rates for all tests. Second, the rank envelope gener-
ally shows the highest power to detect non-random trait evolu-
tion (see Figure S2). The MDI test appears to work best (relative to 
other tests) for very small phylogenies in early burst settings, but 
the increase in power with phylogeny size lags behind the node 
height and global envelope tests. In contrast, the node height test 

is generally intermediate to the other tests, but has similar power 
to the rank envelope tests for large phylogenies in the early burst 
model, and also for small phylogenies in the late burst scenario 
(Figures 3 and S2). The tests detailed here are all two-tailed, but 
the pattern remains unchanged when one-tailed tests are used  
instead (Figure S3).

3.3 | Data examples

Having established the rank envelope test possesses desirable type 1 
and type 2 statistical error properties, three datasets were used to illus-
trate how inference of the rates of morphological evolution can change 
depending on whether the pointwise or global envelope test is used. 
Since the pointwise envelope test is too liberal in its rejection of the null 
model the expectation should be for a reduction in support for non-
Brownian bursts in morphological evolution. All tests are two-tailed.

The first example uses the morphological and phylogenetic data 
on Darwin’s finches (Geospiza) which is currently found in the geiger 
(version 2.0.6) r package. Re-analysis shows support for two time 
periods where the empirical DTT curve for culmen length sits above 
the pointwise envelope, consistent with both the accelerating and 
Orstein–Uhlenbeck models of trait evolution (Figure 4a). In contrast, 
there is no departure from the null model of Brownian evolution  
according to the rank envelope test (Figure 4b).

The second example uses a time-calibrated molecular phylogeny 
of extant cetaceans and a morphological dataset on body size from 
Slater et al. (2010) which is also available within geiger (version 2.0.6). 
The pointwise envelope test result would suggest an early burst in 
evolution of body size and that this occurred predominantly during 
the period 6–11 Ma, but that the rank envelope test fails to find 
any departure from the null model of Brownian evolution at the 5% 
level of statistical significance (Figure 4c,d). As noted by Slater et al. 
(2010), the MDI and node height tests also fail to find evidence for 
non-Brownian evolution in whale body length.

The final example is taken from (Feilich, 2016) who investigated 
the evolution of body shape, caudal fin shape, dorsal fin shape 
and anal fin shape in African cichlid fishes. Re-analysing the data 
for anal fin shape using the pointwise envelope (Figure 4e) con-
firms the spike in relative disparity coinciding with the Cichlinae–
Pseudocrenilabrinae split 45–75 Ma reported in the original paper 
as well as the spike nearer to the present day that coincides with 
the haplochromine radiation (Feilich, 2016). In contrast, the rank en-
velope method finds no discernable departure (at the 5% level of 
significance) from the null model of Brownian evolution at any point 
in the evolutionary timeline (Figure 4f).

3.4 | Multiple traits

So far all tests and examples have considered just one trait of inter-
est, but the rank envelope test can be readily extended to consider 
multiple traits. The first option, hereafter referred to as the multi-
variate disparity, is to compute a single DTT curve using all traits 
(or axes described by principle components) and then use the rank 

F IGURE  2 False-positive rates for the four tests for non-random 
disparity through time as a function of the number of species at 
the tips of the phylogenetic tree. False-positive rates are estimated 
from 300 simulated phylogenetic trees for each number of species 
using a pure birth model to generate the phylogenetic tree, and 
assuming Brownian evolution of the trait at each speciation event. 
All tests requiring Monte Carlo simulations were run with s = 2,500 
trait evolution simulations. MDI, Morphological Disparity Index
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envelope test on that multivariate DTT curve. This is the extension 
of the disparity method to multiple traits, and involves computing 
the (normally Euclidean) distance in multiple dimensions by passing 
the multi-trait data to the dtt function in geiger r package. However, 
this approach potentially hides which of the traits are behind any 
non-random evolution, and there is also the possibility that com-
puting a single DTT curve from all traits could lose vital information 
when some traits follow Brownian evolution (see below).

The user could instead perform a single (simultaneous) test across 
all traits by simply concatenating the DTT curves for all individual 
traits, that is for a two trait dataset the user would concatenate each 
pair of null model simulations of trait 1 and trait 2, and then rank 
the concatenated curves as before. The empirical DTT curves for 
each trait would also be concatenated in the same order. An example 
of this multivariate extension to the rank envelope method for two 
aspects of cichlid fish body shape is given in Figure S4, using data 

F IGURE  3 True-positive rates (statistical power) of the rank envelope test, the Morphological Disparity Index (MDI) test and the node 
height test under a range of simulated decelerating and accelerating evolution scenarios, and for a range of size of phylogenetic tree. Power 
is estimated from 300 simulated phylogenetic trees for each number of species using a pure birth model to generate the phylogenetic 
tree, and assuming trait evolution at each speciation event speeds ups or slow downs over evolutionary time. Null model tests on each 
tree were run with s = 2,500 trait evolution Monte Carlo simulations. Doubling time/half life is computed as a log 2, where a controls the 
time dependent change in rate of trait evolution. When a < 0, a decelerating rate in trait evolution occurs early in evolutionary time, and 
accelerating rate occurs when a > 0. Large magnitudes lead to the rate changes occurring over a smaller period of time. The dashed line is 
an arbitrary power threshold to allow easier comparison between parameter sets. Corresponding example plots of disparity through time in 
each scenario are given in Supporting Information
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taken from Feilich (2016). The null model is that the multiple traits 
follow independent Brownian evolution, and the key point is that 
there is one p-value for all traits.

Power analysis of the two options for investigating non-Brownian 
evolution of multiple traits shows that the rank envelope test using the 
multivariate DTT curve does well when both traits have the same rates 
of evolution (Figure S5a). However, power is lost as evolution of one 
of the traits becomes more like the null model (Figure S5b,c) because 
the signal from the strongly non-Brownian trait is lost in the averaging 
over the two traits. On the other hand, the concatenated rank enve-
lope approach maintains higher power to detect deviations from the 
null model when there is greater difference between the evolutionary 
rates of the two traits. The reader should note that separate results 
confirm the concatenated rank envelope method retains desirable type 

1 properties (results not shown), and in principle any number of traits 
could be considered.

4  | DISCUSSION

Envelope tests using the DTT pointwise envelope method continue to 
be a useful and popular way to pinpoint the time periods when trait 
evolution across a clade can be distinguished from being uncorrelated 
(e.g. Feilich, 2016; Hlusko et al., 2016; Slater et al., 2010). However, as 
shown here the current method of constructing the confidence enve-
lope is prone to severe type 1 statistical errors due to multiple testing. 
An alternative method that ranks the DTT curves based upon their most 
extreme disparity value relative to the ensemble of null model DTT 

F IGURE  4 Comparisons of inference from using the pointwise envelope test (left hand column) and the rank envelope test (right hand 
column) for trait disparity through time for three showcase datasets. In each panel, the empirical pattern (solid black line) is compared to 
the median of 5,000 simulations of the null model of Brownian evolution (broken lines), and the shaded regions correspond to the 95% 
confidence intervals calculated using the pointwise (left column) and rank envelope (right column) methods. Top row (a,b) is for Darwin’s 
finches (Geospiza) and the evolution of culmen length; middle row (c,d) is for the evolution of Cetacean body size (Slater et al., 2010); bottom 
row (e,f) is for the evolution of anal fin shape in African cichlids (Feilich, 2016)
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curves shows great promise to both avoid type 1 errors and also retain 
high power to detect true non-random time periods of trait evolution.

The pointwise envelope is often used in conjunction with the 
MDI (Harmon et al., 2003; Slater et al., 2010) or node height test 
(Freckleton & Harvey, 2006) and the introduced rank envelope test 
compares favourably to these alternatives. In general, all three tests 
show higher power to detect early bursts in trait evolution compared 
to the scenario where there is more trait convergence across clades 
(higher relative disparity) than under the null model (Figure 3). The 
node height test has the advantage of not requiring large numbers 
of simulations from the null model, and generally has greater power 
than the MDI test to detect non-Brownian trait evolution (Figure 3). 
However, the rank envelope test consistently outperforms both of 
these methods in all but the smallest of phylogenetic trees (Figure 3); 
is able to deal with multiple traits in a single test (Figure 4); and re-
tains a simple visual interpretation that aids further inference of 
the processes that might be behind the bursts in trait evolution. On 
this basis, the rank envelope test can be recommended for the DTT  
approach to investigating trait evolution.

The methods investigated here all use the same hypothesis testing 
approach. That is to say we test our data against a suitable null model 
to see if there are detectable departures from the null model. A dif-
ferent approach is to consider a number of candidate models and ask 
which model best describes the data (Johnson & Omland, 2004). The 
advantage of this model selection approach is that multiple models are 
considered simultaneously, but of course there is no guarantee that 
the best model, usually determined by some information theoretic 
criterion, is a “good” descriptor of the data, and the method of model 
ranking is crucial to the outcome. Harmon et al. (2010) used maximum 
likelihood methods to fit models that could produce Brownian evolu-
tion, increasing or decreasing trait diversification rates, as well as se-
lective peaks where the trait value has a tendency to return to a medial 
value. Using the likelihood ratio test, they found the Brownian evolu-
tion and the selective peak (OU) models to be the most frequently 
selected across 49 clades, implying early bursts in trait evolution are 
relatively rare. Slater and Pennell (2014) extended this method by 
employing a posterior predictive approach instead of the likelihood 
ratio test. The posterior predictive approach proceeds by fitting the 
parameters to the candidate models using maximum likelihood as in 
(Harmon et al., 2010), but model selection is based upon sampling the 
trait evolution from the fitted models and then comparing the fit of 
each model to the observed trait values. Slater and Pennell (2014) de-
veloped this method using either the MDI test, or the node height test 
and showed both of these posterior predictive methods can have a 
higher power to detect early bursts in trait evolution compared to the 
maximum likelihood ratio approach used in Harmon et al. (2010). Re-
analysing the cetacean dataset with these methods led to the conclu-
sion that an early burst model best described the evolution of whale 
body size (Slater & Pennell, 2014). This is not surprising given the rank 
envelope test clearly shows the empirical DTT curve is close to falling 
below the lower confidence interval (Figure 4d).

Ultimately, the user needs to choose between the null model 
testing and model selection methods. However, the rank envelope 

test developed here could easily be incorporated into the posterior 
predictive methods of Slater and Pennell (2014), since the ranking of 
the observed DTT curve in the ensemble of simulations from each 
of the candidate models generates a single metric, the global rank 
amongst the set of model curves, that could then be used to com-
pare the models. However, for those who prefer null model testing, 
the rank envelope test appears to be a good starting point for inves-
tigating non-Brownian rates of trait evolution.
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r code to compute the rank envelopes and generate the results 
for all figures can be accessed via https://doi.org/10.5281/ 
zenodo.1197535. The data used to compute the DTT analyses 
for cichlid fish body and fin morphology is taken from (Feilich, 
2016) and can be accessed via https://datadryad.org//resource/
doi:10.5061/dryad.h4k6f. All other data used are currently avail-
able within the r library geiger (Pennell et al., 2014), and can be ac-
cessed via downloading the library from https://CRAN.R-project.
org/package=geiger.
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