
Lessons from Operating Systems for Layering
and Abstractions in 5G Networks

Stuart Clayman and Daphne Tuncer
Dept. of Electronic Engineering, University College London, London, UK

Emails: s.clayman@ucl.ac.uk, d.tuncer@ucl.ac.uk

Abstract—The trend of softwarization within networks, such

as SDN, NFV, and 5G, has increased the need for a network

operating system and all its associated elements. In this paper

we discuss how the layering and abstractions that commonly

appear within computer operating systems are missing within the

domain of networking. As such, the lack of abstractions means

that interacting with and managing networks has already become

a difficult and sometimes cumbersome task. The softwarization

process is magnifying this effect. The abstractions that appear in

operating systems hide the underlying features of the hardware,

presenting elements to programmers and system managers that

are easier to understand and to interact with. In this sense, the

networking world is far behind. We present some of the lessons

learned from these operating system abstractions and consider

what could appear in the networking world.

I. INTRODUCTION

Historically the world of networks and the world of com-
puting have developed separately from each other, but have
been connected to each other – computers are connected to
other computers over networks. Due to this historical sepa-
ration, the management of computers is done differently from
the management of networks. In recent times, the development
and deployment of cloud computing [1] and Software Defined
Networking (SDN) [2] and Network Function Virtualization
(NFV) [3] has brought both worlds much closer together. This
has created a much tighter coupling of computers and networks
as one environment, but it has also highlighted the differences
in approach of usability and management.

Recent efforts in industry, trade groups, and academia have
been addresing multiple 5G technologies, with a particular
interest in network softwarization [4], providing new software
elements that can be folded into the domain of networking,
creating many initiatives such as SDN, the ETSI NFV model
[5], Service Function Chaining (SFC), conferences such as
Netsoft and IEEE SDN-NFV, and much open source software.
One of the major issues still to be addressed, is how the arenas
of orchestration and higher level management can be combined
and how all of these software elements can be designed and
structured to create a working system. An even broader vision
is how to create the equivalent of an operating system for the
network, not just for one host.

To aid in this vision, this paper presents the layering and
abstractions that commonly appear within operating systems
and are missing within the domain of networking, but will
be necessary for 5G management to be effective. Although
layering is common in networks, e.g., the ISO 7-layer model,
it is less common when interacting with and managing devices.

Some abstractions are appearing in the networking world, in
the form of systems on top of NFV, SDN, OpenFlow, but more
will be needed in order to address the new 5G aspects [6]
of programmability and softwarization, of management and
orchestration, and of network slicing.

This paper is focused towards the areas of 5G management
where the role of slicing, SDN, NFV, and SFC is primary and
approaches are needed for effective and appropriate solutions.
The material presented is not about the right or wrong way to
do management, it is more that there are opportunities to use
working and well tested concepts. We present a perspective
from the viewpoint of operating systems and programming
languages. Overall, we wish to encourage people to design /
built / utilize more in the area of abstractions, by showing the
successes in other areas.

II. BACKGROUND

This work came about from discussions with networking
people, telecoms operators, DevOps in recent EU projects and
at the IETF. They all mentioned how difficult it is to interact
with the complex systems they have, and how difficult it
is to deploy a new service. Many operators have a goal to
reduce service deployment from 90 days down to 90 minutes.
Although NFV and SDN are showing good promise in this area
[7] [8], overall there are few mechanisms to make this really
happen at scale. From our perspective, there are not enough
useful abstraction models and not enough abstraction layers.

The lack of layering and common abstractions in the net-
work management means that interacting with and managing
networks has become a difficult and sometimes cumbersome
task. It is still common for network operators to write scripts
that interact directly with specific devices. However, these
scripts are written to send instructions to a machine – a router.
If an operator has routers from Cisco and Juniper, there might
be two versions of the script. Any changes will have to be
made to both of the scripts. This is a non-trivial task, given
the number of commands and attributes, and considering that
the manual for Cisco IOS alone is over 1200 pages. The
introduction of SDN by using Openflow switches [9] has
exacerbated this problem [10] as there are now extra devices
in the network that are controlled using yet another approach.

Networking currently has few common abstractions, where
we see that nearly everyone is trying to talk to the devices
directly. The appearance of Openflow has however opened
up some opportunities and some realisations in this area, and
has encouraged many to look at SDN in a broader way than
just those features provided by Openflow. Many researchers978-1-5090-0223-8/16/$31.00 c� 2018 IEEE

are looking at how SDN, Openflow, and SDN Controller can
be utilized more effectively and expanded to create far more
dynamic environments.

Operating Systems have many abstractions over the devices
in the machine and the controller for the devices. Many of these
were originally devised in the 1960s and 1970s, so there is a
lot of experience as to what function to put in what location.
The abstractions that appear in operating systems hide the
underlying features, operations and interfaces of the hardware,
by presenting elements to programmers and system managers
that are easier to understand and to interact with [11]. The
operations on the abstracted elements are queued, mapped,
processed and multiplexed, through various layers, into control
and data requests for the devices. The top level interfaces of
the operating system do not interact directly with the devices.

Furthermore, there is a need to express operations on these
abstractions in order to make them function. The expression
of these operations is done through the use of high-level
programming languages, of which there are many. They have
different syntax structures and different semantics, but what
they have in common is that they map to the underlying com-
puter. This mapping is done via a compiler or an interpreter,
which converts statements in the high-level language into a set
of instructions for the device - namely the computer.

However, one important complexity that the domain net-
works has to deal with is the distributed and connected nature
of the elements. To address this complexity, SDN utilizes the
concept of the centralized controller. The use of single entity,
centralized management system brings about some design and
implementation simplicity as everything is in one place, but
in a networked environment such an approach is not realistic.
The side effects of centralized design include a growing code
base, a limit on the amount of resources available in a single
place, which bring about a stasis within the system, as well as
the unpredictable delay from the remote network entities.

III. LAYERING AND ABSTRACTIONS

In this section we present some of the layers and ab-
stractions that an operating system has. Of particular note is
that none of these abstractions are manifestations of features
that are present in the hardware. Conversely, there is no, or
very little, hardware support for these abstractions. Each of
the layers provides a mapping from one set of functions to
another. Most operating systems are designed around a set of
architecture principles which guide the overall structure. In
[12], the ideas of modularity and the use of software tools
which can work together, the separation of concerns within
each module, and the concept of do one thing and do it well.

In Figure 1 we see the layers and abstractions present in the
Linux operating system, a UNIX like OS. It shows the 6 main
functional areas of the system, namely: system, processing,
memory, storage, networking, and human interface; as well as
the layers, which present the interface to all of the functions of
the operating system. In particular, there are 6 functional layers
between the main API interfaces, the user space interfaces, and
the hardware interfaces and the devices themselves.

To understand the value of these layers and abstractions we
consider three of them and see the devices they eventually

Fig. 1. Linux Operating System Layers and Abstractions

map down to. They are: processes which map to the CPUs &
memory; the filing system constituting files & directories which
map to the discs; and sockets and the high-level networking
which map to the network interface cards. We also look at the
abstraction that distributed systems present.

A. Processes

A process is a manifestation of a program that executes
on the computer. It is independent of other processes, but can
interact with other processes. Processes have some support in
hardware, but it is not a manifestation of a processor. Modern
computers have hardware for: (i) memory management tables,
which maps a process addresses (from zero upwards, for
each process) into a real physical addresses of the underlying
memory; and (ii) a single bit in the CPU to say whether the
code running is in kernel space (part of the OS) or in user
space (a process).

The process is an abstraction, independent of the hardware
or CPU type. The process itself can be considered (and
also written / developed) without knowing anything about the
physical resources of the computer, how many other processes
there are, or what state the operating system thinks the process
is in. All of this is handled automatically by the process
scheduler. This scheduler function of the OS decides which
process to execute next. The operating system schedules each
process depending on whether it is suitable to execute and
whether is should be allocated some CPU time. From the
human perspective they execute at the same time: this was
devised in the 1960s and is called time sharing [13].

A process itself may be made up of 1 or more threads,
where each thread does a function of the whole program, as
in Figure 2. Every process will have some allocated working
memory, and each will see its memory address space start
from 0, even though it will not really be located in address 0 in
physical memory. Memory allocation per process, and for all of
the processes in the system, is not fixed to the maximum size of
physical memory. It is done dynamically, using virtual memory
and an over-provisioning strategy. This memory space of a
process is split into 3 segments: code, stack, memory for data,
and this pattern is applied to each thread, which will also be

Virtual memory allows the
code and data spaces to be
over provisioned dynamically.

A process is made up of 1 or
more threads. The scheduler
chooses the best one to run.

A collection of independent
processes. Each process is a
runtime instance of a program.

The actual devices - CPU,
memory, disc have no direct
support for processes.

memory
disc

CPU

scheduler

Fig. 2. Processes

composed of the 3 segments. Each segment is broken up into
a set of pages which are smaller chunks of memory directly
managed by the memory management hardware. This virtual
memory and memory management technique was started in
the 1950s and solved in 1960s [14].

B. Filing System

The end-user of a computer sees their data stored in files
and directories. However, the disc drives that actually store all
of the relevant data, have no concept of files or directories or
filing systems. Each of these files & directories are part of a
big tree which is a single uniform abstraction that is mapped
down to specific storage devices in the system.

This tree is the filing system that spans across all the
storage devices in the system. It presents a virtual file system
that is made up of individual logical file systems in underlying
devices, as in Figure 3. The logical filing system will have
its own different format for layout and structure of files and
directories. A file, which can be viewed as a stream of bytes
in the application, will be manifested in the file system and
on the disc as an ordered collection of blocks. The logical file
system layer will map this ordered collection to blocks with
locations. The same layer is responsible for the opposite task of
collecting the blocks with locations, and recreating the streams
that represents a file. The locations of the blocks do not need
to be consecutive, as this layer deals with that mapping.

The blocks themselves are numbered and cached within
the OS. Another layer, the device driver, is responsible for
interacting with each type of storage device, and dealing with
the different control messages that are appropriate for the

device

block

logical
file system

virtual
file system

ATA

SATA

SCSI
etc.

ext3

ext4

NTFSVFAT

etc.

etc.

All the logical file systems are
viewed using a single virtual file
system uniform abstraction.

Each type of file system has a
different format for layout and
structure. Blocks are grouped.

The device driver deals with
blocks from the disc. These are
numbered and cached by the OS.

Each type of device has different
control messages and connector,
includes HD disc , SSD, SD card, ..

Fig. 3. Filing Systems

different kinds of disc, such as: hard disc, SSD, SD card,
etc., and getting the blocks on and off of the disc. It also
deals with issues related to the low level device interfaces and
connector type such as: SATA, SCSI, ATA. Using this layered
and abstraction approach, there are various file system formats
and different storage devices that can exist on the same box.
As discussed earlier, there are layers where elements (blocks
in this case) are queued, mapped, processed and multiplexed.
This work started in the late 1950s / early 1960s, and by 1964
the notion of a file system was in general use [15].

Due to the nature of the layering and abstractions devised
for managing file sytems on discs, it is actually possible to have
modules that interact with any kind of element that presents a
tree and have this presented as part of the overall virtual filing
system view. Examples of this flexibility include modules that
connect to remote ftp sites and present them as though they
were local, or modules that can present a zip file as part of the
filing system. This is also how network filing systems are done.
NFS [16] does not talk directly to storage devices on the same
computer. Rather, there is a component that uses a protocol
(RFC7530) to request the blocks from a remote server. In this
way, we have a distributed system, where the higher levels are
unaware of the lower levels doing networking, as there is a
separation of concerns.

C. Sockets / Networking

The networking layer of most modern operating systems is
presented using TCP/IP. This is accessed via the socket API. A
socket is an abstraction over the transport layer, and supports
operations for sending and receiving data. From the telecoms
perspective it is not always possible to observe how this layer is
put together, and how this abstraction impacts a programmer’s
view of the network.

The implementation of TCP/IP gives the user two kinds
of network interaction: (i) UDP – an unreliable datagram
delivery mechanism; and (ii) TCP – a reliable stream delivery
mechanism, both accessed via two different kinds of socket.

The use of UDP, whereby each piece of data presented to
a UDP socket will become one network packet, is used for
particular kinds of application and is a simple model. Data
sent via UDP can be lost during transmission, and there is no
built in mechanism for notification or retries.

This differs from TCP, where we can consider that TCP
itself is another abstraction over the network. To the user it
presents a reliable stream, and to the network it sends packets
– eventually. Each piece of data presented by the user to a
TCP socket stream will become many packets at the network
level, all of which are carefully managed.

TCP actually has 3 mechanisms:

(i) two byte streams – an input stream and an output
stream which can be accessed from either end of the
TCP connection,

(ii) a reliable transport mechanism – such that any data
loss between the end-points is overcome through re-
sending lost data packets,

(iii) a congestion control mechanism – such that TCP can
adapt its sending rate, both up and down, depending
on how each perceives any congestion in the network.

The packets sent via the sockets are queued both inbound and
outbound, and for TCP they can be reordered and grouped
as necessary. With TCP or UDP there is no need to specify
the bandwidth of the connection in advance, the maximum
capacity, or the length of the lifetime of a session. The
packets pass from a TCP/IP handling layer down to a device
layer, which interacts with the network hardware, and all the
traffic is multiplexed onto the network card. The underlying
networking hardware supports multiple link layer transmission
mechanisms, and can operate using very different devices,
including: ethernet, optical, wireless WiFi, bluetooth, etc.

D. Distributed Systems

In a single system all of the functions and operations are
directly accessible. In a distributed system, the functions and
the operations within a node need to be chosen and designed.
The method of doing this chopping / slicing / separation is
non-trivial, but by using well known and documented design
philosophies systems can be built. As stated earlier, distributed
systems are themselves an abstraction and another layer of
functionality. Within any distributed system there are two main
factors to consider: (i) the function / operation of a node; and
(ii) the interactions between the nodes. In fact, these challenges
are not ad-hoc, but have also been approached from a theo-
retical perspective, for instance, in the Layering Optimization
Decomposition framework [17], in which the different steps to
modularize and distribute centralized computations are tackled
using the mathematical theory of decomposition.

A good example of such a distributed system commonly
used on the Internet is DNS. It has the appearance of a single
system that can be accessed from anywhere. The system is
built as a graph of server nodes that hold information about
hostnames and host addresses. This is coupled with DNS
clients that can make lookups in order to resolve names to
addresses. No node in DNS holds all of the data, and any client
of DNS can do a lookup. More importantly, DNS is utilized
by other distributed systems which need to do name lookups.
There is no need to create another name service mechanism.
From a distributed systems perspective, it works well.

This leads us into the interactions between the elements
of the distributed systems. The interactions are done using
well known and well documented protocols. Protocols are an
important aspect of distributed systems. Some of them are very
old and are still being used: POP3, SMTP, FTP, ARP. The
protocol defines interactions between the end-points. It does
not define what the end-points are, how big or small they are,
what other functionality they do or don’t provide HTTP is a
good example of this type of interaction. Anyone can write a
browser and a server in any language, on any system. There
is no need to know anything except the protocol, as it defines
the interactions. To highlight how important this is, notice the
massive expansion of web services. None of them were pre-
defined by anyone, they had organic growth by their user base.

Alternate approaches to centralized control, using dis-
tributed systems, have been suggested by many. Distributed
systems are themselves an abstraction and another layer of
functionality. A lot of people in the Network Management
community observe that distributed systems are difficult and
manifest many new and more complex problems. This is

indeed true, compared to a single system, however, it is also
an area that has been investigated by computer scientists since
1970s. As one example, consider the large body of work1

by Leslie Lamport, who has been researching this area since
the early 1970s, and his first seminal paper in this area in
1978 called “Time, Clocks and the Ordering of Events in a
Distributed System” [18].

Summary: We can see that with the right layering and
abstractions, the highest level of functionality is presented to
the user, and optimal performance has been superceded by
reliability, stability, and scalability. Using the abstraction of a
process an operating system can reliably execute thousands of
processes concurrently. The user does not need to care about
the number of processes or when they execute. We also see
with files and directories that the filing system layer does not
need to talk directly to a disc drive. It has a wide ranging
power and flexibility that is not possible with simple device
interactions, and can read and write 1000’s of file concurrently.
Furthermore, the use of the socket abstraction and TCP/IP
hides all of the different networking interfaces. Not only can
these interfaces exist in the same computer, in much the same
way as the file system hides the different storage hardware, but
it also manifests the distributed systems abstraction. Imagine
how complex it would be for a programmer to specify these
things for each application they write.

IV. LANGUAGES

The purpose of programming languages is to express op-
erations in a domain. These operations, at the lowest level, are
machine instructions. Originally, assembly languages started
as a 1-to-1 mapping of a text representation of an instruction
to the instruction itself. A computer executes one instruction
at a time, but it take considerable expertise to elaborate and
understand how a sequence of machine instructions represents
a higher level concept.

Programming languages have evolved from being represen-
tations of machine instructions to higher level languages that
process abstract elements of the operating system domain. The
syntax and semantics of these languages also vary dramatically,
however they all eventually specify their high level operations
as low level machine instructions. This is done through the
use of a compiler, which takes the high level language and
creates a sequence of machine instructions, or through the use
of an interpreter, which evaluates the high level language at
run-time. Both of these approaches were devised late in the
1950s, with more families of languages appearing over time.

Expressing operations instruction by instruction is low
level, but this is how much network management if still
done. The operations are instructions for a router or a switch.
Although these router / switch instructions undertake more
work than a machine instruction, in essence the situation and
scenario is the same.

The expansion of the different kinds of languages, with
their own syntax, semantics, and own abstract elements means
that there is now many ways to write the same program. The
choice of language for any job can be seen as a complexity
itself. Some programmers choose a language because they

1http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html

already know it and are expert at it, while others will choose
the language in order to participate with other programmers or
to fit in with an organization. A subset will try to choose the
language where the domain of the problem and the thought
processes for solving the problem are highly correlated with
the syntax and semantics of the language itself.

There is also a split in language styles whereby some
languages, called procedural, are designed to be more clearly
representative of a sequence of instructions, even though they
have high level concepts. Other languages, called declarative
languages, do not specify sequences of instructions. Just like
mathematics, they are an expression or set of declarations in
a domain. It is the responsibility of the language compiler
or interpreter to take these declarative statements and convert
them into a sequence of instructions.

Having the compiler / interpreter and procedural / declar-
ative approaches to specify programs and their execution
environments allowed language designers to devise many
programming languages from the 1950s onwards, and these
expanded dramatically in the 1960s. Diverse languages such
as FORTRAN and Lisp were devised in the late 1950, and
further differentiation in Algol, APL, SNOBOL, etc., came
in the 1960s. Further developments followed in the coming
years. We are now in a position where there are many styles
of languages. Some of them are presented in Table I, together
with the year they were introduced.

Language Style Language Name (Year of Introduction)
Procedural FORTRAN (1957), COBOL (1959),

Algol (1960), Pascal (1970), C (1972)
List LISP (1958), Scheme (1970)
Vector APL (1964)
Pattern matching SNOBOL (1962), awk (1977)
Object oriented Simula (1965), Smalltalk (1972), Java

(1995)
Logic Prolog (1972)
Stack based Forth (1970), Postscript (1982)
Rule based OPS5 (1977)
Functional ISWIM (1966), SASL (1975), Haskell

(1990)

TABLE I. LANGUAGE STYLE, NAME AND YEAR OF INTRODUCTION

Tool sets for creating new languages have been around
since the end of the 1970’s [12], for example yacc allows the
creation of a parser for a new language – most of the input
is the grammar of the language, and lex allows the creation
of a syntax analyzer for a new language – most of its input
is a specification of the symbols in the language. These and
other useful features and processes of a high level language can
be applied during the translation process to analyze the input
language and also to optimize the output of instructions. There
are many analysis and optimization steps that can be taken
when converting a language into a set of machine instructions,
as outlined in the The Dragon Book [19].

V. DISCUSSION

In order to address the new 5G aspects of programma-
bility and softwarization, of management and orchestration,
and of network slicing, allowing a transition from network
devises to network functions and virtual network functions,

to dynamically adapt the network to meet future demands,
to have a programmable network operating system with an
interface to the network, and to create a dynamic, configurable,
programmable, resilient, safe and cost effective E2E network,
there needs to be both system layering and well formed
abstractions plus the relevant. languages [6].

We have previously discussed and seen some designs
of approaches to these aspects from the world of operating
systems and computers. Here we present some elements of
work that utilize such solutions within network management,
and could be the primary contenders for utilizing and extending
in the 5G management domain. To support programmability
and softwarization, we need both well formed abstractions,
languages to manipulate those abstractions, and a programming
model to provide interfaces for network facilities and services,
which will enable a high level of automation in service
development and deployment processes.

The abstractions needed for 5G include new elements from
the Service layer such as network slices, the services that
run inside those slices, and a representation of the individual
service elements; from the Management and Orchestration
layer needed abstractions are the virtualized elements (the
NFVs) of the service, the virtual connectivity, and the graphs
that represent the service chains (SFC). There are already
data models that have representations for some of the above,
but these need to extended to cover all the required aspects,
and work is underway in many projects to address this. The
next step is the need to map such models into data structures
and then formed into libraries of code to act as a basis for
progamming at all levels.

We observe from computers and operating systems that
using high-level languages to express operations over abstract
elements is far more effective that hand coding with low level
device instructions. These languages should specify ’what’
needs to be done to the high level abstraction. Preferably this
would be done at the abstraction level of a slice, or a service
for the networking world, and not specify ’how’ to drive a
router or an Openflow switch. There cannot be many customers
who request a service, and then go on to specify: please set
attribute X on port 14 of router R to 0.95. The customers
will express high level requirements of their service. There
are many approaches to convert high level expressions into
device instructions, and these have been shown to be highly
performant in most cases. UNIX has been written in C since
the late 1970s, except for a few hundred lines of assembler
needed to control certain machine specific features [12].

The networking world can benefit from looking at the large
amount of language styles, the large number of techniques
for converting high-level languages into machine instructions,
and the long history of language development. We can see
that devising languages that are close to the instructions of
the machine makes thinking about the problem domain and
mapping it to the machine far more complex. Writing scripts
that interact directly with a router, or having a controller that
generates Openflow instructions does work to some extent, but
it is clear that it is very limiting. The lesson here is that scripts
driving devices should be minimised and replaced with code
for high level abstractions.

It is the job of a language tool chain to take a high-level

language with high level operations and create the instructions
for the devices. There are many opportunities in the area of
5G management to build such languages, and this has already
started where domain specific languages are currently of inter-
est. These are languages where the functions and symbols are
specific and focused on the domain that the language is being
used. Having abstractions that can be represented in a language
and affected will, over time, bring about the kind of results seen
in the computer domain. To enable better expressiveness in the
SDN arena some languages have been created, such as Frenetic
family of languages [20]. Also, efforts such as P4 [21] allow
for programs that specify how a switch processes packets, and
are removed from the low level instruction approach. A good
survey of SDN languages is presented in [22] which highlights
that some of them are specific purpose languages, aiming to
solve a particular problem, providing specific operations; and
others are general purpose languages that allow a more general
and wider set of operations.

With respect to management and orchestration, we can
observe that many of the papers which introduce new and
enhanced network functionality using SDN controllers rely on
a simple model of 1 layer above the data plane. Consequently
it becomes difficult to mix the functions presented in more
than one paper into a single system, as there is no layering,
no separation of concerns, and few abstractions. The lesson
here is that definitely needs to be work on models and ab-
stractions for building platforms and adding features for SDN
control. Furthermore, these abstractions should be devised to
be composable from one abstraction layer to the next, so that
simple building blocks can be combined in a useful way.

In any domain, a good abstraction is one whereby it can
be extended and used in flexible ways not envisaged by the
original designers / authors. The work on Abstractions for
Software-Defined Networks [23] and vSDN [24] are good
examples in networking of a useful addressable abstraction
that maps to the lower layers of the network equipment. In [25]
the authors provide a comprehensive survey of hypervisors for
virtual SDN networks, but the architectures seen are rather
simple. More elaborate work was done recently by Zhang et
al. [26], where they designed and built a data plane abstraction
using a fully virtualized switch. Some progress is observable,
but in general we can observe that very few of the operating
system features exist in the networking arena, and in this sense,
the networking world is far behind.

We at UCL have used the Operating System design prin-
ciples for our work on Adaptive Resource Management and
Control in Software Defined Networks [27]. Its architecture is
compatible with the overall SDN model, yet consists of three
layers which interact with each other through a set of well
defined interfaces. We have also been using these principles
for designing a network slicing mechanism and tool set which
has been deployed in 5G PPP projects 5GEx [28] and NECOS
[29]. Using a modular structure, the frameworks makes a
clear distinction between the management and control logic
which are implemented by different planes, offering improved
deployment advantages. Each of the layers are themselves
distributed systems. As we have observed, there is no need
to build one big system, distributed nodes are possible, and if
you get the protocols and the interactions right, you deal with
the complexities that distributed nodes may bring about.

The ONOS initiative [30], have a goal to create a software-
defined networking (SDN) operating system for communica-
tions service providers. Work in the area of intent [31] is a
separation of concerns which presents a declarative statement
of requirements which are mapped down to implementation,
rather than specifying how to do operations. Such approaches
go towards the path that was taken in the computer domain
many years ago. All of these elements come together for the
goal of building a Network Operating System.

VI. CONCLUSIONS

Some of the abstractions and layers in operating systems
have been presented. Although it is possible to find potential
imperfections and criticisms for each of these abstractions, the
number of computers and working deployments highlight that
the resulting design, tested and evaluated over 40 years, has
benefits and advantages that far out-weigh the disadvantages.

In the networking world there is a concern that having
abstraction and layering is too heavy, and cannot get the data
rate of the underlying device, or a particular feature of the
device is not exposed via the abstraction.

Consider the converse situation from the operating systems
perspective: although having all of these functions and the
extra code layers requires to manage the abstractions and to
do the mappings means that it is difficult, if not impossible,
for a single process to drive the computer hardware at it
theoretical maximum performance, there is a trade-off by
which we have massive gains. The operating system can
support hundreds and thousands of processes and a similar
number of users on the same box reliably, safely, without
unintended interactions. All of these processes can read and
write 1000’s of files, concurrently, across multiple disc storage
devices, again in a seamless and reliable manner. The same
processes can also have multiple TCP/IP network connections,
without unexpected interactions.

The reality is that the operating system provides a set of
features, a level of scalability, a level of reliability, and a level
of changeability, that would not be possible having a simple
software element interacting directly with the devices. All of
this is done through the use of a layer which interacts with the
underlying hardware and then having layers of software which
implement various algorithms and data structures to map the
abstractions to the loer layers.

In summary, we can observe that the more layers that exist
with different abstractions, the more opportunities there are
to bind in new features. The lessons for designing systems
focused on network and service management and orchestration,
particularly now that softwarization and programmability is a
primary driver, are: (1) devise common and well used abstrac-
tions – do not be fixated on the functionality of the device; (2)
have layering – whereby different layers can provide different
functions and different abstractions; (3) have a separation of
concerns – so that not all the software is in one module; and
(4) in each module do one thing and do it well.

ACKNOWLEDGEMENT

This work was partially supported by the EU projects:
5GEX – “5G Multi-Domain Exchange” [28] and NECOS –
“Novel Enablers for Cloud Slicing” [29].

REFERENCES

[1] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres et al.,
“The RESERVOIR Model and Architecture for Open Federated Cloud
Computing,” IBM Journal of Research and Development, vol. 53, no. 4,
pp. 4–1, 2009.

[2] D. Kreutz, F. M. V. Ramos, P. Veríssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” CoRR, vol. abs/1406.0440, 2014.

[3] M. Chiosi, D. Clarke, P. Willis, A. Reid et al., “Network Functions
Virtualisation,” White paper at the SDN and OpenFlow World Congress,
ETSI, Tech. Rep., 2012.

[4] A. Galis, S. Clayman, L. Mamatas, J. Rubio Loyola, A. Manzalini,
S. Kuklinski, J. Serrat, and T. Zahariadis, “Softwarization of Future
Networks and Services-Programmable Enabled Networks as Next Gen-
eration Software Defined Networks,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1–7.

[5] ETSI-NFV, “Network Functions Virtualisation (NFV) ETSI Industry
Group,” http://portal.etsi.org/portal/server.pt/community/NFV/367.

[6] 5GPPP, “5GPPP Architecture Working Group - View on 5G Architec-
ture,” 2018. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/
2018/01/5G-PPP-5G-Architecture-White-Paper-Jan-2018-v2.0.pdf

[7] F. Hu, Q. Hao, and K. Bao, “A Survey on Software Defined Networking
(SDN) and OpenFlow: From Concept to Implementation,” Communi-
cations Surveys Tutorials, IEEE, vol. PP, no. 99, pp. 1–1, 2014.

[8] J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin, “On
the Implementation of NFV over an OpenFlow Infrastructure: Routing
Function Virtualization,” in Future Networks and Services (SDN4FNS),
2013 IEEE SDN for. IEEE, 2013, pp. 1–6.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[10] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready
for SDN? Implementation challenges for software-defined networks,”
Communications Magazine, IEEE, vol. 51, no. 7, 2013.

[11] A. Tanenbaum, Modern Operating Systems. Pearson, 2008.
[12] B. W. Kernighan, The UNIX Programming Environment, R. Pike, Ed.

Prentice Hall Professional Technical Reference, 1984.
[13] M. T. Alexander, “Time Sharing Supervisor Programs,” May 1969.
[14] D. Sayre, “Is Automatic "Folding" of Programs Efficient Enough to

Displace Manual?” Communications of the ACM, vol. 12, no. 12, pp.
656–660, Dec. 1969.

[15] American Data Processing, Inc., Detroit, “Disc File Applications:
Reports Presented at the Nation’s First Disc File Symposium.” 1964.

[16] T. Haynes and D. Noveck, “Network File System (NFS) Version
4 Protocol,” RFC 7530, Mar. 2015. [Online]. Available: https:
//rfc-editor.org/rfc/rfc7530.txt

[17] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as
Optimization Decomposition: A Mathematical Theory of Network Ar-
chitectures,” Proc. of the IEEE, vol. 95, no. 1, pp. 255–312, Jan 2007.

[18] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[19] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Tech-
niques, and Tools. Reading, MA: Addison-Wesley, 1986.

[20] N. Foster, R. Harrison, M. J. Freedman, J. Rexford, and D. Walker,
“Frenetic: A High-Level Langauge for OpenFlow Networks,” December
2010.

[21] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” SIGCOMM
Computer Communications Review, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[22] C. Trois, M. D. D. Fabro, L. C. E. de Bona, and M. Martinello,
“A Survey on SDN Programming Languages: Toward a Taxonomy,”
IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2687–2712,
Fourthquarter 2016.

[23] M. Casado, N. Foster, and A. Guha, “Abstractions for Software-Defined
Networks,” CACM, vol. 57, no. 10, pp. 86–95, October 2014.

[24] Z. Bozakov and P. Papadimitriou, “Towards a Scalable Software-
Defined Network Virtualization Platform,” in NOMS 2014 - IEEE/IFIP
Network Operations and Management Symposium, May 2014.

[25] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 655–685, 2016.

[26] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “HyperV: A High
Performance Hypervisor for Virtualization of the Programmable Data
Plane,” in 26th International Conference on Computer Communication
and Networks, ICCCN 2017, 2017, pp. 1–9.

[27] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
resource management and control in software defined networks,” IEEE
Transactions on Network and Service Management, vol. 12, no. 1, pp.
18–33, 2015.

[28] 5GEX, “EU H2020 - 5G Multi-Domain Exchange (5GEx) project,”
2015, https://5g-ppp.eu/5GEx.

[29] NECOS, “EU-Brazil - Novel Enablers for Cloud Slicing,” 2017.
[30] ONOS, “The ONOSTM project,” https://onosproject.org.
[31] F. Callegati, W. Cerroni, C. Contoli, and F. Foresta, “Performance

of intent-based virtualized network infrastructure management,” Proc.
IEEE International Conference on Communications (ICC), 2017.

