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Abstract—We focus on a dual-functional multi-input-multi-
output (MIMO) radar-communication (RadCom) system, where
a single transmitter with multiple antennas communicates with
downlink cellular users and detects radar targets simultaneously.
Several design criteria are considered for minimizing the downlink
multiuser interference. First, we consider both omnidirectional
and directional beampattern design problems, where the closed-
form globally optimal solutions are obtained. Based on the derived
waveforms, we further consider weighted optimizations targeting a
flexible tradeoff between radar and communications performance
and introduce low-complexity algorithms. Moreover, to address
the more practical constant modulus waveform design problem,
we propose a branch-and-bound algorithm that obtains a globally
optimal solution, and derive its worst-case complexity as function
of the maximum iteration number. Finally, we assess the effective-
ness of the proposed waveform design approaches via numerical
results.

Index Terms—Spectrum sharing, radar-communication, multi-
user interference, non-convex optimization, global minimizer.

I. INTRODUCTION

I T HAS been reported that by 2020, the number of connected
devices will jump to more than 20 billion, which brings for-

ward an impending need for extra frequency spectrum resources.
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To address this need, network providers and policy regulators
are exploring the feasibility of shared use of spectrum currently
occupied exclusively by other applications [1]–[4], such as air-
borne radars and navigation systems close to the 3.4 GHz band
[5] and shipborne and Vessel Traffic Service (VTS) radar at 5.6
GHz [6]; these frequencies may be shared with LTE and Wi-
Fi systems in the near future. As an emerging research topic,
communications-radar spectrum sharing (CRSS) not only en-
ables the efficient use of the spectrum, but also provides a new
way for designing novel systems that can benefit from the co-
operation of radar and communications.

As a straightforward way to achieve the spectral coexistence
for communication and radar, opportunistic spectrum sharing
[7] provides a naive approach, where the communication sys-
tem transmits when the space and frequency spectra are not
occupied by the radar. Nevertheless, it does not allow the two
systems to work simultaneously. In view of this, the work of
[8] proposes a null-space projection (NSP), an idea that has
been widely applied to different spectral coexistence scenarios
between MIMO radar and communication systems [9], [10].
In such schemes, a radar beamformer is designed to project
the signals onto the null-space of the interference channel be-
tween the radar and base station (BS)/user equipment (UE),
such that the interference from the radar to the communication
link is zero. This, however, results in performance loss for the
radar, since the beamforming is no longer optimal for target
detection and estimation. Trade-offs between the performance
of radar and communications can be achieved by relaxing the
zero-forcing precoder to impose controllable interference lev-
els on the communication systems [11], which offers a more
realistic coexistence.

More recent contributions have exploited optimization tech-
niques to realize CRSS [12]–[17]. In [12], the radar beamformer
and communication covariance matrix are jointly designed to
maximize the Signal-to-Interference-plus-Noise-Ratio (SINR)
of the radar subject to capacity and power constraints at the
communication’s side. Similar work has been done for the co-
existence between the MIMO-matrix completion (MIMO-MC)
radar and point-to-point (P2P) MIMO communications [13],
[14], where the radar sub-sampling matrix is further introduced
as an optimization variable. To address the more practical coex-
istence issue between MIMO radar and multi-user MIMO (MU-
MIMO) communication, recent work in [17] considers robust
beamforming design with imperfect channel state information
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(CSI) at the communication’s side, where the detection prob-
ability of the radar is maximized subject to SINR constraints
of the downlink users and the power budget of the BS. As a
further development of the technique, a novel beamforming de-
sign has been proposed in [18] that exploits the interference as a
useful power source, which demonstrates orders-of-magnitude
power-savings. While the above coexistence approaches are
well-designed, a critical shortfall is that radar and communi-
cation devices are required to exchange side-information for
achieving a beneficial cooperation, such as the CSI, radar prob-
ing waveforms and communication modulation formats. Typ-
ically, these exchanges are realized by an all-in-one control
center that is connected to both systems via either a wireless
link or a backhaul channel [14], which conducts the coordina-
tion of the cooperation. In practical scenarios, however, such a
control center brings forward considerable extra complexity to
the system, and is therefore difficult to implement.

In contrast to the above coexistence schemes, a more favor-
able approach for CRSS would be to design a dual-functional
system that carries out both radar and communications, without
exchanges of information. Note that such methods would not
be straightforward extension of classic cognitive radio based
techniques, as they require the use of specific radar constraints
and designs. Recent information theoretical work has shown
great potential [19], [20], but it remains to be seen what ben-
efits will bring its implementation in practice. As an enabling
solution, dual-functional waveform design can support target
detection while carrying information at the same time, which
also allows for low-probability-of-intercept (LPI) communica-
tions [21]–[23]. Early researches [24]–[26] focused on single-
antenna systems, where several integrated waveforms that com-
bine the radar and communication signals have been proposed.
Nevertheless, all of these schemes lead to performance loss for
either the radar or the communication, e.g., high peak-average-
power-ratio (PAPR) and limited dynamic range [25]. As a step
further, recent works consider dual-functional waveform design
for MIMO systems. In [27], a transmit beampattern for MIMO
radar is designed to embed the information bits in sidelobe
levels. Related works consider waveform shuffling across the
antennas, or Phase Shift Keying (PSK) by different beamformer
weighting factors as the communication modulation schemes
[28], [29]. It should be noted that in the above approaches, one
communication symbol is represented by one or several radar
pulses, which leads to a low date rate in the order of the radar
pulse repetition frequency (PRF). To support multi-user trans-
mission for the cellular downlink, previous work [30] develops
a series of beamforming approaches for dual-functional Rad-
Com systems, which does not affect the original modulation
scheme and the data rate of the communication system. Never-
theless, the beamforming approaches only focus on the average
power constraints, and do not address the design of the constant
modulus signals.

As an important requirement for both radar and communica-
tion applications, the utilization of constant modulus waveforms
can avoid signal distortion when low-cost non-linear power
amplifiers are used [31], which leads to an energy-efficient
transmission. Such topics have been widely studied for mas-
sive MIMO communication scenarios [32]–[35] as well as the

MIMO radar waveform designs [36]–[39], where optimization
problems with non-convex constant modulus constraint (CMC)
are formulated. Due to the NP-hardness of these problems, only
suboptimal solutions can be obtained via either convex relax-
ation methods or local algorithms, such as Semidefinite Relax-
ation (SDR) [36], [37] and Riemannian manifold methods [33],
[35]. Recent MIMO radar work proposes to approach the con-
stant modulus solution by a successive Quadratic Constrained
Quadratic Programming (QCQP) Refinement (SQR) procedure
[38]. Nevertheless, this technique still only guarantees the local
optimality of the obtained solution. To the best of our knowl-
edge, the efficient global algorithm for constant modulus wave-
form design is widely unexplored in the existing literature.

In this paper, we propose several optimization-based wave-
form designs for dual-functional RadCom systems, which can
be used for both target detection and downlink communica-
tions. Throughout the paper, we aim to minimize the downlink
multi-user interference (MUI) under radar-specific constraints.
First, we consider an orthogonal waveform design, which is
often used for the initial omnidirectional probing by MIMO
radar. Based on this waveform, we study the design of a direc-
tional radar beampattern that points to the targets of interest. The
aforementioned two optimization problems are non-convex, but
the optimal solutions can be readily obtained in closed-forms.
Still, the obtained performance for the communication system
is limited. To allow a trade-off between radar and communi-
cation performance, we consider weighted optimizations for
designing dual-functional waveforms under non-convex power
budget constraints, and obtain the solutions via well-designed
low-complexity algorithms. Given that both radar and commu-
nication systems require constant modulus signals for power-
efficient transmission, we finally consider a more practical op-
timization by enforcing constant modulus constraints and sim-
ilarity constraints (SC) on the waveform design. In contrast to
the existing approaches in both radar and communication works
that obtain the local minimizers of problems with CMC [32]–
[39], we propose a branch-and-bound method that can efficiently
yield a globally optimal solution for the problem. Our numeri-
cal results show that the proposed branch-and-bound algorithm
considerably outperforms the conventional SQR method [38].
For clarity, we summarize our contributions as follows:

� We propose dual-functional waveform design approaches
for both omnidirectional and directional radar beampat-
terns, and derive the closed-form solutions.

� We propose weighted optimizations for designing dual-
functional waveforms that achieve a flexible trade-off be-
tween the radar and communication performance under
both total and per-antenna power constraints, and solve
the problems with low-complexity algorithms.

� We consider the waveform design with CMC and SC con-
straints, and develop a branch-and-bound algorithm to ob-
tain the globally optimal solutions, which outperforms the
conventional SQR algorithm.

� We analytically derive the computational complexity for
the proposed algorithms.

The remainder of this paper is organized as follows,
Section II introduces the system model, Section III proposes
the closed-form waveform optimizations for radar beampattern
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Fig. 1. Dual-functional Radar-Communication System.

design, Section IV considers the trade-off designs between radar
and communications, Section V solves the problem with CMC
and SC constraints, Section VI provides numerical results, and
finally Section VII concludes the paper.

Notations: Unless otherwise specified, matrices are denoted
by bold uppercase letters (i.e., H), vectors are represented by
bold lowercase letters (i.e., x), and scalars are denoted by normal
font (i.e., ρ). Subscripts indicate the location of the entry in the
matrices or vectors (i.e., si,j and ln are the (i, j)-th and the
n-th element in S and l, respectively). tr (·) and vec (·) denote
the trace and the vectorization operations. (·)T , (·)H , (·)∗ and
(·)† stand for transpose, Hermitian transpose, complex conjugate
and Moore-Penrose pseudo-inverse of the matrices, respectively.
diag (·) represents the vector formed by the diagonal elements
of the matrices, and ddiag (·) sets all off-diagonal elements as
zero. Re (·) and Im (·) denote the real and imaginary part of the
argument. ‖·‖, ‖·‖∞ and ‖·‖F denote the l2 norm, l∞ and the
Frobenius norm respectively.

II. SYSTEM MODEL

We consider a dual-functional MIMO RadCom system, which
simultaneously transmits radar probing waveforms to the targets
and communication symbols to the downlink users. As shown in
Fig. 1, the joint system is equipped with a uniform linear array
(ULA) with N antennas, serving K single-antenna users while
detecting radar targets at the same time.

A. Communication Model

The received symbol matrix at the downlink users can be
given as

Y = HX + W, (1)

where H = [h1 ,h2 , ...,hK ]T ∈ CK×N is the channel matrix,
X = [x1 ,x2 , . . . ,xL ] ∈ CN ×L is the transmitted signal ma-
trix, with L being the length of the communication frame,
W = [w1 ,w2 , . . . ,wL ] ∈ CK×L is the noise matrix, with
wj ∼ CN (0, N0IN ) ,∀j.

Following [30], we rely on the following assumptions: 1) The
transmitted signal matrix X is used as dual-functional waveform
for both radar and communication operations. In this case, each
communication symbol is also a snapshot of a radar pulse; 2)
The downlink channel H is flat Rayleigh fading, and remains
unchanged during one communication frame/radar pulse; 3) The
channelH is assumed to be perfectly estimated by pilot symbols.

Given the desired constellation symbol matrix S ∈ CK×L for
the downlink users, the received signals can be rewritten as

Y = S + (HX − S)
︸ ︷︷ ︸

MUI

+W, (2)

For each user, the entry of S is assumed to be drawn from the
same constellation. The second term in (2) represents the MUI
signals. The total MUI energy can be measured as

PMUI = ‖HX − S‖2
F . (3)

It has been proven in [32] that the MUI energy in (3) directly
affects the achievable sum-rate of the downlink users. For the
i-th user, the SINR per frame is given as [32]

γi =
E
(

|si,j |2
)

E
(
∣

∣hT
i xj − si,j

∣

∣
2
)

︸ ︷︷ ︸

MUI energy

+N0

, (4)

where si,j is the (i, j)-th entry of S, E denotes the ensem-
ble average with respect to the time index. It follows that the
achievable sum-rate of the users can be given as

R =
K
∑

i=1

log2 (1 + γi). (5)

For a given constellation with fixed energy, the power of the

useful signal E
(

|si,j |2
)

is also fixed. Hence, the sum-rate can

be maximized by minimizing the MUI energy.

B. Radar Model

It is widely known that by employing uncorrelated wave-
forms, MIMO radar achieves higher Degrees of Freedom (DoFs)
than the traditional phased-array radar [40], [41]. The existing
literature indicates that the design of such a beampattern is
equivalent to designing the covariance matrix of the probing
signals, where convex optimization can be employed. We refer
readers to [41]–[43] for more details on this topic. Here we fo-
cus on designing the dual-functional waveform matrix X, which
has the following spatial covariance matrix

RX =
1
L

XXH . (6)

To ensure that RX is positive-definite, we assume L ≥ N with-
out loss of generality. Further, the transmit beampattern for the
RadCom system can be given as

Pd (θ) = aH (θ)RX a (θ) , (7)

where θ denotes the detection angle, a (θ) =
[

1, ej2πΔ sin(θ) , . . . , ej2π (N −1)Δ sin(θ)
]T ∈ CN ×1 is the
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steering vector of the transmit antenna array with Δ being
the spacing between adjacent antennas normalized by the
wavelength.

In the following, we formulate optimization problems that
minimize PMUI under MIMO radar-specific constraints.

III. CLOSED-FORM WAVEFORM DESIGN FOR GIVEN

RADAR BEAMPATTERNS

In this section, we first consider the omnidirectional beam-
pattern design, which is usually used in MIMO radar for initial
probing. After that, we consider a directional beampattern de-
sign that points to the directions of interest.

A. Omnidirectional Beampattern Design

For an omnidirectional beampattern, the transmitted wave-
form matrix X has to be orthogonal, i.e., the corresponding
covariance matrix must be the identity matrix. To minimize the
MUI energy, the optimization problem is formulated as

min
X

‖HX − S‖2
F

s.t.
1
L

XXH =
PT

N
IN , (8)

where PT is the total transmit power, IN denotes the N × N
identity matrix. Problem (8) is obviously non-convex due to the
equality constraint, which indicates that X is a point on the
Stiefel manifold. Fortunately, it has been proven that (8) can
be classified as the so-called Orthogonal Procrustes problem
(OPP), which has a simple closed-form global solution based
on the Singular Value Decomposition (SVD), and is given as
[44]

X =

√

LPT

N
UIN ×LVH , (9)

where UΣVH = HH S is the SVD of HH S with U ∈ CN ×N

and V ∈ CL×L being the unitary matrices, IN ×L is an N × L
rectangular matrix composed by an N × N identity matrix and
an N × (L − N) zero matrix.

B. Directional Beampattern Design

Given a covariance matrix Rd that corresponds to a well-
designed MIMO radar beampattern, the MUI minimization
problem is given as

min
X

‖HX − S‖2
F

s.t.
1
L

XXH = Rd , (10)

where Rd is the desired Hermitian positive semidefinite covari-
ance matrix. We consider its Cholesky decomposition, which
is

Rd = FFH , (11)

where F ∈ CN ×N is a lower triangular matrix. Without loss of
generality, we assume Rd is positive-definite to ensure that F
is invertible. Hence, the constraint in (10) can be equivalently

written as

1
L

F−1XXH F−H = IN . (12)

Denoting X̃ =
√

1
L F−1X, problem (10) can be reformulated

as

min
X̃

∥

∥

∥

√
LHFX̃ − S

∥

∥

∥

2

F

s.t. X̃X̃H = IN , (13)

which is again an OPP problem, and its globally optimal solution
is given by

X̃ = ŨIN ×LṼH , (14)

where ŨΣ̃ṼH = FH HH S is the SVD of FH HH S. It follows
that the solution of the original problem (10) is given as

X =
√

LFŨIN ×LṼH . (15)

C. Complexity Analysis

The omnidirectional beampattern design includes two
matrix multiplications and one SVD, which needs a total
of O (NKL + NL2

)

complex floating-point-operations
(flops), where one complex flop is defined as one complex
addition or multiplication. The directional beampattern de-
sign, which needs one Cholesky decomposition, four matrix
multiplications and one SVD, has the total complexity of
O (NL2 + N 2L + NKL + N 3 + N 2K

)

. For the conven-
tional communication-only zero-forcing (ZF) precoding, which
involves one pseudo-inverse for H, and one matrix multiplica-
tion between the precoder and the transmitted symbol matrix,
the complexity is O (NKL + N 2K

)

. It is worth noting that the
computational costs of the proposed closed-form approaches
share the same order of magnitude with that of the zero-forcing
precoder.

IV. TRADE-OFF BETWEEN RADAR AND

COMMUNICATION PERFORMANCE

It should be highlighted that both problem (8) and (10) enforce
a strict equality constraint, in which case the radar beampattern
can be strictly achieved while the downlink communication may
suffer from serious performance loss. This is particularly pro-
nounced in the cases that the covariance matrices of the commu-
nication channel are ill-conditioned, where the resulting MUI
minimum is still high. We therefore consider a trade-off design
by allowing a tolerable mismatch between the designed and the
desired radar beampatterns. While the radar typically requires
equivalent transmit power at each antenna, we start from the
case that only the total power is constrained for simplicity. To
ensure the coherence with the previous problems (8) and (10),
we then consider the waveform design with the per-antenna
power constraint.
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A. Trade-off Design with Total Power Constraint

Let us first denote the optimal solution obtained from (8) and
(10) as X0

1. Given X0 , the trade-off problem with total power
constraint can be then formulated as

min
X

ρ ‖HX − S‖2
F + (1 − ρ) ‖X − X0‖2

F

s.t.
1
L
‖X‖2

F = PT , (16)

where 0 ≤ ρ ≤ 1 is a weighting factor that determines the
weights for radar and communication performance in the dual-
functional system. We enforce an equality constraint for the
total power budget, as the radar is often required to transmit at
its maximum available power in practice. It is worth noting that
the trade-off design is in fact a Pareto optimization. By solving
the weighted problem in (16), the obtained solution reaches the
Pareto optimal point [45].

Note that the two Frobenius norms in the objective function
can be combined in the form

ρ ‖HX − S‖2
F + (1 − ρ) ‖X − X0‖2

F

=
∥

∥

∥

∥

[√
ρHT ,

√

1 − ρIN

]T

X −
[√

ρST ,
√

1 − ρXT
0

]T
∥

∥

∥

∥

2

F

.

(17)

Let us denote A =
[√

ρHT ,
√

1 − ρIN

]T ∈ C(K +N )×N ,B =
[√

ρST ,
√

1 − ρXT
0
]T ∈ C(K +N )×L , problem (16) can be

written compactly as

min
X

‖AX − B‖2
F

s.t. ‖X‖2
F = LPT , (18)

which is a non-convex QCQP, and can be readily transformed
into a Semidefinite Programming (SDP) using the SDR tech-
nique. Since it has only one quadratic constraint, according to
[46], [47], the SDR is tight, i.e., the solution of the SDR is
rank-1, which yields the globally optimal solution of (18).

B. Low-complexity Algorithm for Solving (16)

Due to the large number of variables in the problem (18), the
above SDR solver is not computationally efficient in general.
Hence, in this subsection, we propose a low-complexity algo-
rithm that achieves the global optimum in the following. Let us
further expand the objective function of (18) as

‖AX − B‖2
F = tr

(

(AX − B)H (AX − B)
)

= tr
(

XH AH AX
)− tr

(

XH AH B
)

− tr
(

BH AX
)

+ tr
(

BH B
)

. (19)

1Please note that X0 is not necessarily to be the solution of (8) and (10).
In practical scenarios, X0 can be any reference radar waveforms with desired
properties according to the requirements of the system operators. Nevertheless,
here we use these solutions for coherence with the previous designs.

Defining Q = AH A,G = AH B, problem (18) can be rewrit-
ten as

min
X

tr
(

XH QX
)− 2Re

(

tr
(

XH G
))

s.t. ‖X‖2
F = LPT . (20)

Since Q is a Hermitian matrix, problem (20) can be viewed as
the matrix version of the trust-region subproblem (TRS), for
which the strong duality holds [48], i.e., the duality gap is zero.
Let us formulate the Lagrangian multiplier as

L (X, λ) = tr
(

XH QX
)− 2Re

(

tr
(

XH G
))

+ λ
(

‖X‖2
F − LPT

)

, (21)

where λ is the dual variable associated with the equality con-
straint. Let Xopt and λopt be the primal and dual optimal points
with zero duality gap, the optimality conditions for the above
TRS can be given as [49]

∇L (Xopt , λopt) = 2 (Q + λoptIN )Xopt − 2G = 0, (22a)

‖Xopt‖2
F = LPT , (22b)

Q + λoptIN � 0, (22c)

where (22b) and (22c) guarantee the primal and the dual feasi-
bility respectively. It follows from (22a) that

Xopt = (Q + λoptIN )†G, (23)

where (·)† denotes the Moore-Penrose pseudo-inverse of the
matrix. Based on (22b) and (22c) we have

∥

∥

∥(Q + λoptIN )† G
∥

∥

∥

2

F

=
∥

∥

∥V(Λ + λoptIN )−1VH G
∥

∥

∥

2

F
= LPT ,

λopt ≥ −λmin . (24)

where Q = VΛVH is the eigenvalue decomposition of Q with
V andΛ being the orthogonal and diagonal matrices that contain
the eigenvectors and eigenvalues respectively, and λmin is the
minimum eigenvalue of Q. One can further show that there
exists a unique solution for the equations (24). Let us define

P (λ) =
∥

∥

∥V(Λ + λIN )−1VH G
∥

∥

∥

2

F

=
N
∑

i=1

L
∑

j=1

(
[

VH G
]

i,j

)2

(λ + λi)
2 , (25)

where λi is the i-th eigenvalue of Q. It can be seen that P (λ)
is strictly decreasing and convex on the interval λ ≥ −λmin ,
which suggests that λopt can be obtained by simple line search
methods, e.g., Golden-section search [50]. Thanks to the eigen-
value decomposition, in each iteration we only need to calculate
the inversion of a diagonal matrix. Once the optimal λ is ob-
tained, the optimal solution to (16) can be computed by (23).
For clarity, we summarize the above approach in Algorithm 1.
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Algorithm 1: Low-complexity Algorithm for Solving (16).
Input: H,S,X0 , weighting factor 0 ≤ ρ ≤ 1, PT

Output: Global minimizer Xopt

1. Compute A, B, Q and G.
2. Compute the eigenvalue decomposition of Q, set the
searching interval as [−λmin , b], where b ≥ 0 is a searching
upper-bound.
3. Find the optimal solution λopt to (24) using
Golden-section search.
4. Xopt = (Q + λoptIN )†G.

C. Trade-off Design with Per-antenna Power Constraint

Similar to (16), the trade-off problem with per-antenna power
constraint can be given as

min
X

ρ ‖HX − S‖2
F + (1 − ρ) ‖X − X0‖2

F

s.t.
1
L

diag
(

XXH
)

=
PT

N
1, (26)

where diag (·) denotes the vector formed by the diagonal el-
ements of the matrices, and 1 = [1, 1, . . . , 1]T ∈ RN ×1 stands
for the all-one vector. By the same definitions as in (18), the
problem (26) can be recast as

min
X

‖AX − B‖2
F

s.t. diag
(

XXH
)

=
LPT

N
1. (27)

The diagonal constraint can be separated as N quadratic equality
constraints, which again result in non-convex feasible region.
By using the SDR approach, one can relax (27) as a convex
SDP problem that can be readily solved by numerical tools.
Nevertheless, due to the multiple constraints involved, SDR is
no longer tight, in which case Gaussian randomization must be
employed to obtain an approximated rank-1 solution.

D. Low-complexity Manifold Algorithm for Solving (26)

Noting that the SDR approach solves the problem at the price
of high computational costs, we propose in this subsection an
Riemannian Conjugate Gradient (RCG) algorithm [51], [52],
which finds a near-optimal solution within much lower com-
plexity. First of all, note that the feasible region in (27), denoted
as M, forms the so-called complex oblique manifold [53]. The
problem (27) can be therefore reformulated as the following
least-squares (LS) problem on the manifold

min
X∈M

‖AX − B‖2
F . (28)

Given a point X ∈ M, a tangent vector at X is defined as the
vector that is tangential to any smooth curves on M through X.
All such vectors formulate the tangent space TXM, which is a
Euclidean space [54]. According to [53], the tangent space for
the oblique manifold can be given in the form

TXM =
{

Z ∈ CN ×L
∣

∣Re
((

XH Z
)

ii

)

= 0,∀i
}

, (29)

where (·)ii denotes the i-th diagonal element of the matrices.

Denoting the objective function as F (X) = ‖AX − B‖2
F , it

follows that

∇F (X) = 2AH (AX − B) , (30)

which we call Euclidean gradient in the proposed RCG frame-
work [51]. Unlike the conventional gradient based algorithm,
the RCG method adopts the Riemannian gradient for comput-
ing the descent direction, which is defined as the orthogonal
projection of (30) onto the associated tangent space TXM, and
is given as [53]

grad F (X) = PX∇F (X)

= ∇F (X) − XH ddiag
(

Re
(

∇F (X)H X
))

, (31)

where ddiag (·) sets all off-diagonal elements of the matrices as
zero. We then define the Retraction mapping, which maps the
point on TXM to M. This is given by [53]

RX (Z) =

√

LPT

N
ddiag

(

(X + Z) (X + Z)H
)−1/2

(X + Z) ,

(32)
where Z ∈ TXM. Finally, we use the trace operator as the inner
product on the tangent space, which is

〈X,Z〉 = Re
(

tr
(

XH Z
))

. (33)

Following the similar procedure in [30], [55], [56], the proposed
RCG approach is summarized in Algorithm 2. In brief, the RCG
method is the modified version of the conventional Conjugate
Gradient (CG) algorithm defined on the manifold feasible re-
gion. Given the limited space, we refer the reader to [30], [55],
[56] for more background details on this topic.

E. Complexity Analysis

We end this section by analyzing the complexity of the pro-
posed algorithms. For Algorithm 1, the Golden-section search
method is known to have linear convergence rate, which finds
an ε0-solution within O (log (1/ε0)) iterations. In each itera-
tion we calculate the value of a 1-dimensional function, which
suggests that the complexity of the Golden-section search can
be omitted in general. Hence the complexity for Algorithm 1
is dominated by the matrix multiplications, the pseudo-inverse
and the eigenvalue decomposition. Both of the latter two op-
erations involve the computational costs of O (N 3

)

complex
flops, and the matrix multiplications involve the complexity
of O (N 2L + NKL + N 3 + N 2K

)

. Therefore, the total com-
plexity for Algorithm 1 is O (N 2L + NKL + N 3 + N 2K

)

,
which again shares the same order of magnitude with the
communication-only ZF precoding.

To the best of our knowledge, the strict convergence anal-
ysis for the RCG algorithm still remains open problem in the
field of manifold optimization [51], [52]. Hence, it is rather
intractable to analyze the convergence rate of Algorithm 2.
We hereby provide the computational costs within a single
iteration. It can be trivially seen that the dominated com-
putational cost comes from the computation of the gradient
(30), which is O (N 2L + NKL

)

. In contrast, the computation
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Algorithm 2: RCG Algorithm for Solving (26).
Input: H,S,X0 , weighting factor 0 ≤ ρ ≤ 1, PT , δ > 0,

kmax > 2
Output: X(k)

1. Compute A, B. Initialize randomly X(0) = X(1) ∈ M,
set Π0 = − grad F

(

X(0)
)

, k = 1.
while k ≤ kmax and

∥

∥grad F
(

X(k)
)∥

∥

F
≥ δ do

2. Compute the difference between the current and the
previous gradients by

Jk = gradF
(

X(k)
)

− PX (k )

(

grad F
(

X(k−1)
))

.

3. Compute the combination coefficient τk using the
Polak-Ribiére formula as

τk =

〈

grad F
(

X(k)
)

,Jk

〉

〈

grad F
(

X(k−1)
)

, grad F
(

X(k−1)
)〉 .

4. Compute the descent direction Πk by

Πk = −grad F
(

X(k)
)

+ τkPX (k )

(

grad F
(

X(k−1)
))

.

5. Compute stepsize μk by the Armijo line search method,
and set X(k+1) by

X(k+1) = RX (k ) (μkΠk ) .

6. k = k + 1.
end while

TABLE I
COMPUTATIONAL COMPLEXITY FOR THE PROPOSED APPROACHES

costs of the projection (31), the retraction (32) and the inner
product (33) correspond to the lower-order terms in the com-
plexity expression. Hence, the complexity for Algorithm 2 is
O (NiterN

2L + NiterNKL
)

, where Niter is the total itera-
tion number needed 2.

For the sake of clarity, we summarize the computational costs
of the proposed four waveform design approaches in Table I.

V. CONSTANT MODULUS WAVEFORM DESIGN

In the previous sections, the dual-functional RadCom wave-
form is designed under the average power constraints, which is
not guaranteed to generate constant modulus signals. In this sec-
tion, we consider the RadCom waveform design that minimizes
the communication MUI energy given the CMC.

2We observe in our simulations that Algorithm 2 always converges in tens of
iterations for a modest accuracy.

A. Problem Formulation

Following the same notations as in the previous section, our
optimization problem can be formulated as

min
X

‖HX − S‖2
F (34a)

s.t ‖vec (X − X0)‖∞ ≤ η, (34b)

|xi,j | =

√

PT

N
,∀i, j, (34c)

where X0 ∈ CN ×L is a known benchmark radar signal matrix
that has constant-modulus entries, e.g., chirp signals, vec (·)
denotes the vectorization of a matrix, and xi,j is the (i, j)-th
entry of X. The constraint (34b) is called similarity constraint
(SC) in the radar literature [37], which controls the difference
between the designed waveform and the benchmark with η being
the tolerable difference.

It is easy to see that the objective function of (34) is separable,
since

‖HX − S‖2
F =

L
∑

i=1

‖Hxi − si‖2 . (35)

Hence, it can be further simplified using the normalized vector
variable, which is

min
x

∥

∥

∥

∥

∥

√

PT

N
Hx − s

∥

∥

∥

∥

∥

2

s.t ‖x − x0‖∞ ≤ ε,

|x (n)| = 1,∀n, (36)

where ε = η
√

N
PT

, x ∈ CN ×1 , x0 ∈ CN ×1 are the columns of

X and X0 normalized by
√

PT

N , s ∈ CK×1 is the column of S,

and x (n) denotes the n-th entry of x. Since problem (34) can
be solved by solving the problem (36) for each column of X
concurrently, we will focus on (36) in the following discussion.
For notational convenience, we omit the column index.

Note that 0 ≤ ε ≤ 2 since both x and x0 have unit modulus.
According to [37], the similarity constraint can be rewritten as3

arg x (n) ∈ [ln , un ] ,∀n, (37)

where

ln = arg x0 (n) − arccos
(

1 − ε2/2
)

,

un = arg x0 (n) + arccos
(

1 − ε2/2
)

, (38)

which leads to the following equivalent formulation of the
problem

min
x

f (x) =
∥

∥

∥H̃x − s
∥

∥

∥

2

s.t arg x (n) ∈ [ln , un ] ,∀n,

|x (n)| = 1,∀n, (39)

3At this point we note the use of the infinity norm, which allows the element-
wise reformulation of the norm constraint.
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Fig. 2. Feasible region and convex hull of problem (36).

where H̃ =
√

PT

N H. For each x (n), the feasible region is an
arc on the unit circle as shown in Fig. 2, which makes the
problem non-convex, and NP-hard in general. In the following,
we consider a global optimization algorithm for solving (36),
which is based on the general framework of the branch-and-
bound (BnB) methodology [57].

B. The Branch-and-bound Framework

A typical BnB algorithm requires to partition the feasible re-
gion into several subregions, where we formulate corresponding
subproblems. For each subproblem, we obtain a sequence of
asymptotic lower-bounds and upper-bounds by well-designed
bounding functions. In each iteration, we update the bounds
and the set of the subproblems following the BnB rules until
convergence, i.e., the difference between the upper-bound and
lower-bound goes to zero.

It is well-known that the worst-case complexity for the BnB
algorithm is of the exponential order with respect to N , i.e., to
search all the branches of the subproblems exhaustively [57].
Nevertheless, by carefully choosing the tightest bounds, it is pos-
sible to efficiently identify and prune the unqualified branches,
which accelerates the algorithm significantly.

Let us denote the feasible region, i.e., the arc shown in Fig. 2,
as θn = arc (ln , un ). Problem (39) can be compactly written as

P (Θ0) : min
x

f (x)

s.t. x ∈ Θ0 , (40)

where Θ0 = θ1 × θ2 × ... × θN , and f (x) is defined in (39).
By the above notations, a subproblem can be denoted as P (Θ),
where Θ ⊆ Θ0 is the corresponding subregion. We then find a
lower-bound of P (Θ) by a lower-bounding function

fL (Θ) = f (xl) , (41)

where xl is a relaxed solution that achieves the bound. In order
to compute the upper-bound, we find a feasible solution xu for
P (Θ). The upper-bounding function is thus given by

fU (Θ) = f (xu ) . (42)

The above bounding functions (41) and (42) will be specified
in the next subsection. Here we only use fL and fU to introduce
the BnB framework for notational convenience. In the BnB
algorithm, we store all the subproblems in a problem set S,
which will be updated together with the global bounds in each
iteration by the following rules [57]

1) Branching: Pick a problem P (Θ) ∈ S that yields the
smallest lower-bound. Equally divide Θ into two subre-
gions following some subdivision rules detailed in the
following, and generate two subproblems. Then delete
P (Θ) in the problem set.

2) Pruning (optional): Evaluate the qualification of the two
subproblems. If their lower-bounds are less than the cur-
rent global upper-bound, add them into S.

3) Bounding: Choose the smallest lower-bound and upper-
bound from S as the bounds for the next iteration.

Note that the pruning step is only for saving the memory of
storing S, and will not affect the effectiveness of the BnB pro-
cedure. This is because by choosing the smallest bounds in S
we can always avoid the unqualified branches. For clarity, we
summarize our BnB algorithm in Algorithm 3.

Algorithm 3: Branch-and-Bound Method for Solving (36).

Input: H̃,S,x0 , 0 ≤ ε ≤ 2, tolerance threshold δ > 0,
bound functions fL and fU .
Initialization: Let Θ0 be the initial feasible region of
problem (27), S = {P (Θ0) , fU (Θ0) , fL (Θ0)} be the
initialized subproblem set. Set UB = fU (Θ0),
LB = fL (Θ0).
while UB − LB > δ do

Branching
a) Pick P (Θ) ∈ S, such that fL (Θ) = LB. Update

S = S\P (Θ).
b) Divide Θ into ΘA and ΘB following the chosen

subdivision rule.
Bounding
a) Compute fU (Θi) and fL (Θi) for

P (Θi) , i = A,B,
and add them to S.

b) Update UB and LB as the smallest upper-bound
and lower-bound in S, respectively.
end while

Output: xopt = the feasible solution that achieves UB.

To ensure that Algorithm 3 converges in a finite number of
iterations, the chosen subproblem for branching, the subdivision
rule and the bounding functions fL and fU should satisfy the
following conditions [57]

1) The branching is bounding-improving, i.e., in each it-
eration we choose the problem that yields the smallest
lower-bound as the branching node.

2) The subdivision is exhaustive, i.e., the maximum length of
the subregions converges to zero as the iteration number
goes to infinity.

3) The bounding is consistent with branching, i.e., UB −
fopt converges to zero as the maximum length of the
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subregions goes to zero, where fopt is the optimal value
of the original problem.

Our Algorithm 3 satisfies condition 1) automatically. We then
choose the subdivision rules to obtain the subproblems from
the branching node. For a given node P (Θ), we consider the
following two rules:

� Basic rectangular subdivision (BRS): Equally divide
Θ along arc (ln , un ) and keep arc (li , ui) ,∀i �= n un-
changed, where

n = arg max
n

{φn |φn = un − ln } . (43)

� Adaptive rectangular subdivision (ARS): Equally di-
vide Θ along arc (ln , un ) and keep arc (li , ui) ,∀i �= n
unchanged, where

n = arg max
n

{dn |dn = |xu (n) − xl (n)| } . (44)

In (44) xu and xl are the solutions associated with fU (Θ)
and fL (Θ), respectively.

According to [57, Theorem 6.3 and 6.4], both the above two
rules satisfy condition 2). In practical simulations, we observe
that ARS has a faster convergence rate than BRS.

C. Upper-bound and Lower-bound Acquisition

It remains to develop approaches to acquire the lower and
upper bounds, which are key to accelerating the BnB procedure.
Following the approach in [58], we compute the lower-bound by
the convex relaxation of (40). As shown in Fig. 2, the convex hull
for each entry x (n), denoted as Q (θn ), is a circular segment,
and can be given as

Q (θn ) : {x |arg (x) ∈ θn , |x| ≤ 1} . (45)

By simple analytic geometry, the angle constraint can be equiv-
alently written as

Re
(

x∗
(

eju + ejl

2

))

≥ cos
(

u − l

2

)

, (46)

which is nothing but a linear constraint. It follows that the con-
straint for the vector variable is

Re
(

x∗ ◦
(

eju + ej l

2

))

≥ cos
(

u − l
2

)

, (47)

where u = [u1 , u2 , . . . , uN ]T ∈ RN ×1 , l = [l1 , l2 , . . . , lN ]T ∈
RN ×1 , and ◦ denotes the Hadamard product. Hence, the convex
relaxation can be given as the following QCQP problem

QP-LB : min
x

‖Hx − s‖2 (48a)

s.t.Re
(

x∗ ◦
(

eju + ej l

2

))

≥ cos
(

u − l
2

)

,

(48b)

|x (n)|2 ≤ 1,∀n. (48c)

Problem (48) can be efficiently solved via numerical solvers,
e.g., the CVX toolbox. By doing so, we can readily obtain the
lower-bound for each subproblem.

A natural way to compute the upper-bound is to project each
entry of the obtained solution xl of (48) on the corresponding
arc to get a feasible solution. Such a projector can be given in
an element-wise manner as follows

PR1 (x) =

⎧

⎨

⎩

x/ |x|, arg x ∈ [l, u] ,
exp (jl) , arg x ∈ [(l + u)/2 + π, l + 2π] ,
exp (ju) , arg x ∈ [u, (l + u)/2 + π] ,

(49)
where we omit the subscripts for convenience.

The upper-bound obtained by the projector (49) is still loose
in general. To get a tighter bound, one can use PR1 (xl) as the
initial point, and solve the following non-convex QCQP

QP-UB : min
x

‖Hx − s‖2 (50a)

s.t.Re
(

x∗ ◦
(

eju + ej l

2

))

≥ cos
(

u − l
2

)

,

(50b)

|x (n)|2 = 1,∀n. (50c)

which can be locally solved via the fmincon solver in MAT-
LAB. Since the solver employs descent methods, the obtained
local minimizer is guaranteed to yield a smaller value than
f (PR1 (xl)).

To further accelerate the speed for solving QP-LB and ob-
taining the bounds, we consider accelerated gradient projection
(GP) methods [59] in addition to the QCQP solvers. Given
xn ∈ C, the projector PR2 projects xn to the nearest point in
the corresponding convex hull Q (θn ). The details for deriving
PR2 are provided in Appendix A. Here we briefly introduce our
iterative scheme as

v = x(k) +
k − 1
k + 2

(

x(k) − x(k−1)
)

, (51)

x(k+1) = PR2

(

v − 2sH̃H
(

H̃v − s
))

, (52)

where we start from x(0) and x(1) = x(0) . For the least-squares
objective function, we choose the stepsize as s = 1/λ̃max , where
λ̃max is the maximum eigenvalue of H̃H H̃, i.e., the Lipschitz
constant.

Note that the above iteration scheme can only be used for
convex feasible regions due to the interpolation operation (51).
For the non-convex QP-UB problem (50), we use x(k) instead
of the interpolated point v, and replace the projector PR2 with
PR1 , which projects the point onto the arc, i.e., the feasible
region. Similar to (50), we use PR1 (xl) as the initial point.

Based on [60], the complexity for using interior-point method
to solve the QCQP problems is O (N 3

)

per iteration. For both
gradient-based methods, the costs areO (NK) in each iteration,
which are far more efficient in terms of a fixed iteration number.

D. Convergence Analysis and Worst-case Complexity

We end this section by analyzing the convergence behavior
and the worst-case complexity for the proposed Algorithm 3.
The convergence proof is to show that our bounding functions fL

and fU satisfy the condition 3). Recall the definitions of φn and
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dn in (43) and (44). By denoting φmax = max {φn} , dmax =
max {dn}, we have the following Lemma 1.

Lemma 1: As φmax or dmax goes to zero, the difference
between UB and LB uniformly converges to zero, i.e.,

∀δ > 0,∃η1 , η2 ≥ 0 s.t.

φmax ≤ η1 or dmax ≤ η2 ⇒ UB − LB ≤ δ. (53)

Proof: See Appendix B. �
Theorem 1: Algorithm 3 converges in a finite number of

iterations to a value arbitrarily close to fopt .
Proof: See Appendix C. �
The following Theorem 2 specifies the worst-case complexity

of Algorithm 3 for using BRS.
Theorem 2: When the BRS is used, Algorithm 3 converges

to a δ-optimal solution for at most

T =

⌈

2N +1arccosN
(

1 − ε2/2
)

η1

⌉

(54)

iterations, where η1 is given by (67) in Appendix B.
Proof: See Appendix D. �
Although the worst-case costs of both BnB-ARS and BnB-

BRS are at the exponential order with N , our simulations show
that in most cases, the algorithm terminates at a small iteration
number thanks to the tight bounds.

VI. NUMERICAL RESULTS

In this section, we present numerical results to validate the
effectiveness of the proposed waveform design approaches. For
convenience, we set PT = 1, and each entry of the channel ma-
trix H subject to standard Complex Gaussian distribution, i.e.,
hi,j ∼ CN (0, 1). In all the simulations, we set N = 16 and em-
ploy a ULA with half-wavelength spacing between the adjacent
antennas. The constellation chosen for the communication users
is the unit-power QPSK alphabet, i.e., the power of each entry in
the symbol matrix S is 1. Without loss of generality, we define
SNR = PT /N0 , and use ‘Omni’ and ‘Directional’ to represent
omnidirectional and directional beampattern designs. Further,
we denote the waveform optimizations with strict equality con-
straints and the trade-off designs as ‘Strict’ and ‘Tradeoff’, and
use ‘Total’ and ‘perAnt’ for the total and per-antenna power
constrained optimizations, i.e., (16) and (26), respectively. The
length of the communication frame/radar pulse is set as L = 30.

A. Dual-functional Waveform Design with Given Radar
Beampatterns

We first show the communication performance obtained by
different approaches in Fig. 3 and Fig. 4 in terms of the sum-
rate and the symbol error rate (SER), while the associated radar
beampatterns are given in Fig. 5. For directional beampattern de-
sign, we consider three targets of interest with angles of−π/3, 0
and π/3, and exploit the classic LS techniques [43] to obtain
the desired covariance matrix Rd as defined in (10). It can be
observed in Fig. 3 and Fig. 4 that, the proposed omnidirec-
tional designs always outperform the directional ones in terms

Fig. 3. Sum-rate comparison for different approaches, N = 16, K = 4.

Fig. 4. Symbol error rate comparison for different approaches, N = 16,
K = 4.

Fig. 5. Radar beampatterns obtained by different approaches, N = 16,
K = 4.
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Fig. 6. Trade-off between the achievable rate per user and the radar detection
probability for omnidirectional beampattern design, N = 16, radar SNR =
−6 dB, PF A = 10−7 .

Fig. 7. Trade-off of the achievable rate per user and the average MSE between
the designed and desired directional beampattern, N = 16.

of both the sum-rate and the SER. The resultant radar beam-
patterns are shown in Fig. 5 for ‘Strict’, which are exactly the
same with the desired beampatterns. Moreover, by introducing
a small weighting factor ρ = 0.2 to the communication side,
the sum-rates as well as the SER performance for trade-off de-
signs improve significantly by approaching to that of the zero
MUI cases, i.e., the performance lower-bounds. Meanwhile in
Fig. 5, the corresponding radar beampatterns only experience
slight performance loss. By further looking at the per-antenna
power constrained designs, we see that the corresponding perfor-
mance losses in either radar or communication are negligible in
contrast with their total power constrained counterparts, which
suggests that the proposed RCG algorithm can effectively yield
near-optimal solutions to the non-convex problem (26).

Fig. 8. Convergence Behavior of BnB Algorithm for N = 16, K = 4, ε = 1.

Fig. 9. Trade-off between the communication sum-rate and radar waveform
similarity, N = 16, K = 4, SNR = 10 dB.

In Fig. 6 and 7, we aim to explicitly show the trade-offs
between the communication and radar performance. For omni-
directional beampattern design, the detection probability PD is
used as the metric, where we consider the constant false-alarm
rate (CFAR) detection for a point-like target in the far field,
located at the angle of π/5. The receive SNR is fixed at −6 dB.
The false-alarm probability for radar is PF A = 10−7 . We cal-
culate the detection probability based on [9, eq. (69)]. It can
be seen that there exists a trade-off between the communica-
tion rate and the radar detection performance. For a fixed PD ,
the achievable rate increases with the decrease of the number
of users, which suggests that the MUI energy can be further
minimized by increasing the DoFs. Again, by replacing the
total power constraint as per-antenna ones, the associated per-
formance only decreases marginally. The same trends appear
in Fig. 6 for the directional beampattern, where we employ the
mean squared error (MSE) between the desired and obtained
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Fig. 10. Radar pulse compression for different similarity tolerance, N =
16, K = 4. (a) ε = 0.05; (b) ε = 0.4; (c) ε = 1.

directional beampatterns as the radar metric. Both figures prove
that our approach can achieve a favorable trade-off between
radar and communications.

B. Dual-functional Constant Modulus Waveform Design

We show the results for solving the waveform optimiza-
tion problem with CMC and SC in Figs. 8–10. Following the

simulation configurations in [38], we employ the orthogonal
chirp waveform matrix as the reference signal. The conver-
gence behavior of the proposed BnB algorithm for solving (36)
is shown in Fig. 8, with N = 16,K = 4, ε = 1, where we com-
pare the performance of the two different subdivision rules, i.e.,
ARS and BRS. Both methods converge in a finite number of iter-
ations with a nearly constant upper-bound, which suggests that
we can reach the optimal value of problem (36) by iteratively
using the local algorithms for several times, e.g., QCQP solver
or the proposed gradient projection method. Nevertheless, due
to the non-convexity of the problem, we need BnB algorithm
to confirm that this is indeed a global optimum. It can be also
observed that the BnB-ARS has a faster convergence rate than
BnB-BRS, which is consistent with the analysis in [57].

In Fig. 9 and 10, we show the trade-off between communi-
cation sum-rate and radar waveform similarity for the constant
modulus designs, where we employ the SQR-Binary Search
(SQR-BS) algorithm proposed by [38] as our benchmark tech-
nique. Fig. 9 demonstrates the communication sum-rate with
increasing ε for N = 16,K = 4,SNR = 10 dB. As expected,
the proposed BnB algorithm outperforms the SQR-BS signifi-
cantly, since the result obtained by BnB is the global optimum,
while SQR-BS can only yield local minimum solutions. It is
worth highlighting that the performance of BnB is very close
to the convex relaxation bound, which is obtained by solving
QP-LB. When the similarity tolerance ε is big enough, our BnB
algorithm can approximate the zero MUI performance.

Fig. 10 shows the results of radar pulse compression with dif-
ferent similarity tolerance ε, where we use the waveform trans-
mitted by the first antenna, and employ the classic FFT-IFFT
pulse compression method [61] with a Taylor window to reduce
the power of sidelobes. From Fig. 9–10 we see that there ex-
ists a trade-off between the communication sum-rate and radar
pulse compression performance. Moreover, the pulse compres-
sion results of BnB and SQR-BS are nearly the same, as their
performance is guaranteed by the same waveform similarity
constraint, which again proves the superiority of the proposed
BnB Algorithm.

VII. CONCLUSION

In this paper, we have discussed the waveform design for
dual-functional radar-communication system, used for simul-
taneous target detection and downlink communications. First
of all, we have proposed two design approaches to minimize
the multi-user interference while formulating an appropriate
radar beampattern. We have further designed the dual-functional
waveforms via weighted optimizations under both total and
per-antenna power constraints, which achieve a flexible per-
formance trade-off between the radar and the communication.
It has been proven that the computational costs for most of the
above methods are at the same level with the communication-
only ZF precoding. Numerical results have shown that the pro-
posed approaches guarantee both the radar and the communi-
cation performance. Moreover, our trade-off designs can signif-
icantly improve the communication performance by allowing
a slight performance loss at radar. Finally, we have considered
non-convex constant modulus waveform design with similar-
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ity constraints, where an efficient global optimization algorithm
based on the branch-and-bound framework has been developed.
Gradient projection algorithms have been developed to effi-
ciently obtain the upper and lower bounds. Simulations have
shown that the proposed BnB algorithm for constant modulus
waveform design with similarity constraints considerably out-
performs the conventional SQR-BS algorithm by obtaining the
global optimum of the problem.

Future research will focus on waveform designs with fur-
ther practical radar metrics, such as auto-correlation and cross-
correlation constraints, which are important to the target detec-
tion performance. Moreover, since the computational costs of
the proposed closed-form waveform designs (8), (10) and the
trade-off design (16) are rather low, it is easy to implement them
on a hardware platform, which can further prove the effective-
ness of the proposed methods in realistic scenarios.

APPENDIX A
DERIVATION OF THE PROJECTOR PR2

The projector is derived for two cases respectively, i.e., the
open angle of the circular segment is (a) less than π or (b) greater
than π. We start from the first case. As shown in Fig. 11(a), the
whole complex plane C has been divided into five parts. The
lower and the upper bounds for the angle are l and u respectively.
Let us define

A = exp (jl) , B = exp (ju) , T = (A + B) /2, (55)

where T is the midpoint of AB. Given X ∈ C, we aim to
find a nearest point PR2 (X) ∈ M1 as the projection. Note that
∀X ∈ M1 , the projection is itself. For X ∈ M2 and X ∈ M3 ,
the nearest points are A and B respectively. For X ∈ M4 , we
project it onto the line AB, and the projection is the foot of
perpendicular. For ∀X ∈ M5 = C\⋃4

i=1 Mi , we use the nor-
malization as its projection. By basic plane analytic geometry,
we define the following lines

Line AB : f1 (X) = Re (T ∗ (X − T )) = 0,

Line OA : f2 (X) = −Re (jA∗X) = 0,

Line OB : f3 (X) = Re (jB∗X) = 0,

Line AQ : f4 (X) = Re ((A − B)∗ (X − A)) = 0,

Line BP : f5 (X) = Re ((B − A)∗ (X − B)) = 0. (56)

The projector is then given as

PR2 (X) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

X, f1 (X) ≥ 0, |X| ≤ 1 (X ∈ M1) ,
A, f2 (X) ≤ 0 ≤ f4 (X) (X ∈ M2) ,
B, f3 (X) ≤ 0 ≤ f4 (X) (X ∈ M3) ,
XT , f1 (X) , f4 (X) , f5 (X) ≤ 0 (X ∈ M4) ,
X/ |X| , else,

(57)
where XT is the foot of perpendicular on AB, i.e.,
XXT ⊥AB,XT ∈ AB. This is given by

XT = X − Re ((X − T )∗T )
T

|T | . (58)

Fig. 11. Projector for GP. (a) φ ≤ π; (b) φ ≥ π .

For the case of φ ≥ π the projector is the same. The only differ-
ence is that f1 (X) should be defined as

f1 (X) = −Re (T ∗ (X − T )) . (59)

APPENDIX B
PROOF OF LEMMA 1

Let us first denote the points that generate UB and LB as
xu and xl , i.e., UB = f (xu ) , LB = f (xl). Following the La-
grange Mean-value Theorem we have

UB − LB = f (xu ) − f (xl)

= ∇fH (z) (xu − xl)

≤ ‖∇f (z)‖ ‖(xu − xl)‖ , (60)

where

z ∈ {w |w = txu + (1 − t)xl , t ∈ [0, 1]} . (61)
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The upper-bound of the gradient is given as

‖∇f (z)‖ = 2
∥

∥

∥H̃H
(

H̃z − s
)∥

∥

∥

≤ 2
∥

∥

∥H̃H H̃z
∥

∥

∥+ 2
∥

∥

∥H̃H s
∥

∥

∥

≤ 2
√

Nλ̃max + 2
∥

∥

∥H̃H s
∥

∥

∥ , (62)

where the second line of (62) is based on the triangle inequality,
the third line is based on the definition of the matrix l2 norm.

For the convex hull of each arc (ln , un ), the longest line
segment is the chord shown in Fig. 2 (φn ≤ π) or the diameter
(φn ≥ π). By simple geometric relations we have

‖xu − xl‖ ≤
√

Ndmax ≤ 2

√

√

√

√

N
∑

n=1

sin2
(

min (φn , π)
2

)

.

(63)
For φn ≤ π,∀n, it follows that

‖xu − xl‖ ≤
√

Ndmax ≤ 2
√

N sin
(

φmax

2

)

. (64)

By using (60), (62) and (64) we obtain

UB−LB ≤ 4
(

Nλ̃max +
√

N
∥

∥

∥H̃H s
∥

∥

∥

)

sin
(

φmax

2

)

, (65)

UB − LB ≤ 2
(

Nλ̃max +
√

N
∥

∥

∥H̃H s
∥

∥

∥

)

dmax . (66)

Given any δ > 0, let

η1 = min

⎛

⎝π, 2 arcsin

⎛

⎝

δ

4
(

Nλ̃max +
√

N
∥

∥

∥H̃H s
∥

∥

∥

)

⎞

⎠

⎞

⎠ ,

(67)

η2 =
δ

2
(

Nλ̃max +
√

N
∥

∥

∥H̃H s
∥

∥

∥

) , (68)

we have UB − LB ≤ δ if φmax ≤ η1 or dmax ≤ η2 .

APPENDIX C
PROOF OF THEOREM 1

Algorithm 2 satisfies both conditions 1) and 2). Furthermore,
according to the definition of UB and LB we have

0 ≤ UB − fopt ≤ UB − LB. (69)

According to Lemma 1, the bounding is consistent with
branching for the proposed two subdivision rules. Therefore,
Algorithm 2 satisfies condition 3), which completes the proof.

APPENDIX D
PROOF OF THEOREM 2

Define vol (Θ0) =
(

2 arccos
(

1 − ε2/2
))N

as the volume of
the initialized feasible region. Assume that Algorithm 2 termi-
nates at the T-th iteration. According to [62], we have

φmax

2
≤ vol (Θ0)

T
≤ η1

2
, (70)

where η1 is defined by (67). It follows that

T ≥ 2 vol (Θ0)
η1

=
2N +1arccosN

(

1 − ε2/2
)

η1
, (71)

which completes the proof.
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