1 ABSTRACT

2 <u>Background</u>

3 Sub-optimal nutrition among children remains a problem across South Asia.

4 Appropriate complementary feeding practices (CFP) can greatly reduce this risk.

5 <u>Objectives</u>

To undertake a systematic review (SR) of studies assessing CFP; timing, dietary
diversity, meal frequency and influencing factors in children under two in SAs in
India.

9 <u>Methods</u>

10 Searches undertaken between January 2000 to June 2016; MEDLINE, EMBASE,

11 Global Health, Web of Science, OVID Maternity & Infant Care, CINAHL, Cochrane

12 Library, BanglaJOL, POPLINE and WHO Global Health Library. Eligibility criteria:

13 Primary research on CFP in SA children aged 0-2 years and/or their families. Search

14 terms: "children", "feeding" and "Asians" and derivatives. Two researchers undertook

study selection, data extraction and quality appraisal (EPPI-Centre Weight ofEvidence).

17 <u>Findings</u>

18 From 45,712 abstracts screened, 64 cross-sectional, 7 cohort, 1 qualitative and 1 case 19 control studies were included. Despite adopting the WHO Infant and Young Children 20 Feeding Guidelines, sub-optimal CFP were found in all studies. In 29 of 59 studies, 21 CFP was introduced between 6-9 months, with 8 studies finding minimum dietary 22 diversity was between 6% to 33%, and 10 of 17 studies noting minimum meal 23 frequency was achieved in only 25-50% of the study populations. Influencing factors 24 included: cultural influences, poor knowledge on appropriate CFP and parental 25 educational status.

26 Conclusion and Implications

27 This is the first SR to evaluate CFP in SA in India. Campaigns to change health and

28 nutrition behaviour and revision of nationwide child health nutrition programmes is

- 29 needed to meet the substantial unmet needs of these children.
- 30 PROSPERO Registration No: CRD42014014025

31 Keywords

- 32 Infant, child, nutrition, complementary feeding, India
- 33

35 **BACKGROUND**

36 Undernutrition including stunting and suboptimal breast feeding accounts for 45% of

37 all childhood deaths.⁽¹⁾ It is estimated that 30% of the world's stunted children live in

- 38 Asia, with more than 60 million living in India; 31% of the developing world's
- 39 total.^(1,2) Inadequate complementary feeding has been linked to these outcomes.
- 40

41 The WHO defines complementary feeding as: "The process starting when breast milk

42 alone is no longer sufficient to meet the nutritional requirements of infants, and

43 therefore other foods and liquids are needed, along with breast milk".⁽³⁾

44

45 Complementary feeding (CF) therefore focuses on bridging the gradual transition 46 between 6 and 24 months from exclusive breastfeeding to solid foods eaten by the 47 whole family alongside breastfeeding. Poor CF practices (CFP) have been linked to 48 increased risks of respiratory and gastrointestinal infections, to being underweight, and to mortality.⁽⁴⁻⁶⁾ Complementary feeding is also important for reducing stunting, 49 which is a current policy priority in India.⁽⁷⁻⁹⁾ Despite this, in two published non-50 51 systematic reviews in Ramji et al. and Engle et al. on CFP in India, it was noted that complementary feeding was often started at inappropriate times.^(10,11) There was also 52 inappropriate quantities and diversity of complementary feeding, with only 55% of 53 54 South Asian (SA) infants consuming appropriate complementary foods by 6 to 8 months of age, and growth retardation notable by 2 years of age.^(12,13) 55

56

In policy, there has been recent increasing focus on complementary feeding. The 2010 WHO Infant and Young Children Feeding (IYCF) guidelines, an internationally ratified framework adopted in India, emphasises that as a global public health recommendation, infants should be exclusively breastfed for the first six months of life to achieve optimal growth, development and health.⁽¹⁴⁾ Thereafter, infants should receive safe and nutritionally adequate complementary foods while breastfeeding continues for up to two years of age or beyond.

64

65 With no previously published systematic review identified, we aimed to assess the 66 adequacy of CFP based on IYCF recommended criteria for minimum dietary diversity, timing, and meal frequency. We also aimed to investigate barriers and
promoters for appropriate CFP in children under 2 in SAs. By doing so, we hope to
inform future work in developing and assessing the effectiveness of culturally
appropriate interventions to improve CFP across these communities.

71

To limit the scope of our review, we focused on SA families residing in India,
Pakistan, Bangladesh, and Developed Countries.

74

75 METHODS

The publication of the vast number of publications identified, this review summarises publications of CFP in SA families in India only with concurrent reviews summarising publications of CFP in SA families in DC, Pakistan and Bangladesh respectively.⁽¹⁵⁾ DCs were included in order to investigate any differences in practice for SAs who may have emigrated.

81

82 Eligibility criteria

83 Studies were included if they met the following criteria:

- Participants: Children aged 0-2 years, parents, carers and/or their families
- Outcomes: Adequacy of CF (based on minimum dietary diversity and meal
 frequency), timing of introduction of CF and barriers/promoters to
 incorporating WHO recommended CFP
- Language: Studies published in English, or with translation available
 - Year: Published from 2000 or later
- 90

89

We excluded studies solely focusing on exclusive breastfeeding and interventional
studies. Studies focusing on sub-groups, such as children with comorbidities, were
considered eligible in principle.

94

In the IYCF indicators, introduction of CF is assessed on the proportion of infants aged 6-8 months who receive solid, semi-solid or soft foods. In contrast, minimum dietary diversity is assessed by the proportion of children 6-23 months of age who receive foods from 4 or more food groups. The 7 WHO IYCF recommended food groups consist of⁽¹⁴⁾;

100	1. Grains, roots and tubers
101	2. Legumes and nuts
102	3. Dairy products (e.g. milk, yoghurt, cheese)
103	4. Flesh foods (e.g. meat, fish, poultry, and liver/organ meats)
104	5. Eggs
105	6. Vitamin A rich fruits and vegetables
106	7. Other fruits and vegetables.
107	
108	Whilst the consumption of iron rich or iron fortified foods is commonly assessed as a
109	separate IYCF indicator, this was incorporated within dietary diversity for ease of
110	interpretation.
111	
112	Finally, minimum meal frequency was assessed by the proportion of breastfed and
113	non-breastfed children 6-23 months of age who receive solid, semi-solid, or soft foods
114	(but also including milk feeds for non-breastfed children) according to the minimum
115	number of times or more per day; 2 for 6-8 months, 3 for 9-23 months and 4 for 6-23
116	months (if not BF).
117	
118	Due to the nature of the topic, all study types (qualitative, quantitative or mixed) were
119	included to ensure the diversity of evidence was captured and summarised to be of
120	relevance to both policy makers and health and social care professionals.
121	
122	Information sources
123	A search strategy was devised to search the following databases: MEDLINE,
124	BanglaJOL, EMBASE, CINAHL, Global Health, Web of Science, OVID Maternity &
125	Infant Care, The Cochrane Library, POPLINE and WHO Global Health Library. The
126	WHO ICTRP was also searched. Searches were conducted in December 2014 and
127	updated in June 2016.
128	
129	Members of electronic networks on @jiscmail.ac.uk including minority-ethnic-health
130	and networks (e.g. South Asian Health Foundation) developed from the Specialist
131	Electronic Library for Ethnicity and Health were contacted to request any additional
132	or unpublished material from members of the networks themselves. We sought
133	information specialist assistance to attempt to acquire unpublished material from each

134	paper itself, and contacted study authors where possible. Bibliographies of included
135	articles were also hand-searched for possible additional publications.
136	
137	Search strategy
138	The search strategy included terms for "feeding", "South Asian" (including terms
139	specifying all major subgroups) and "children". For example, the search strings used
140	for MEDLINE were:
141	
142	Term 1: Children < 2 years
143	Infant OR Baby OR Babies OR Toddler OR Newborn OR Neonat* OR Child OR
144	Preschool OR Nursery school OR Kid OR Pediatri* OR Minors OR Boy OR Girl
145	
146	Term 2: Feeding
147	Nutritional Physiological Phenomena OR Food OR Feeding behavior OR Feed OR
148	Nutrition OR Wean OR fortif* OR Milk
149	
150	Term 3: Asians
151	Ethni* OR India* OR Pakista* OR Banglades* OR Sri Lanka OR Islam OR
152	Hinduism OR Muslim OR Indian subcontinent OR South Asia
153	
154	Study selection and data extraction
155	In total, 45,712 titles and abstracts were screened against inclusion criteria. Two
156	reviewers assessed these papers independently with conflicts resolved by discussion
157	with the team. In view of the large number of articles deemed eligible for full-text
158	review, articles published before the year 2000 were excluded. In total, 44,852 titles
159	and abstracts were excluded.
160	
161	This left 860 potentially eligible full text articles describing CF practices in South
162	Asian children, which were independently reviewed by two reviewers. 131 full text
163	articles were ultimately extracted of which 73 were relevant to India, 17 were relevant
164	to Pakistan, 36 were relevant to Bangladesh, and 10 were relevant to Developed
165	Countries.
166	
167	Data was extracted by a single reviewer using a piloted modified worksheet

168 including: country of study; study type; study year; study objectives; population 169 studied, eligibility criteria and illness diagnosis; study design; ethical approval; 170 sampling; data collection and analysis; feeding behaviors; adequacy of CF practices; 171 timing of initiation of CF; bias; value of the research; weight of evidence. A second 172 member of the research team checked each extraction, with further checking taking 173 place as necessary.

174

175 **Result synthesis**

The eligible studies tended to address very broad research questions, were conducted using qualitative and/or quantitative and/or descriptive methods and were not presented following standardised reporting guidelines (e.g. STROBE for observational studies or COREQ for qualitative research). Meta-analyses were therefore not undertaken.

181

To standardise study classifications, the formal definitions below were utilised and
 applied:^(16,17)

Intervention study; A study in which patients are assigned to a treatment or
 comparison group and followed prospectively.

186 2. Cohort study; An observational study in which a group of patients are followed187 over time. These may be prospective or retrospective.

188 3. Cross sectional study; An observational study that examines the relationship
189 between health-related characteristics and other variables of interest in a defined
190 population at one particular time.

4. Case control study; A study that compares patients who have a disease or outcome
of interest (cases) with patients who do not have the disease or outcome
(controls).

194 5. Qualitative; A study which aims to explore the experiences or opinions of families
195 through interviews, focus groups, reflective field notes and other non-quantitative
196 approaches.

197 6. Mixed methods; A study that combines both quantitative and qualitative198 methodology.

In view of the considerable heterogeneity in studies identified in terms of methods,participants, interventions and outcomes, a narrative approach to synthesis was

utilised using guidance developed from the University of York Centre for Reviews
 and Dissemination (CRD) and the Economic and Social Research Council (ESRC).^{(18–}
 ²¹⁾

The evidence reviewed is presented as a narrative report with results broadly categorised following IYFP indicators on (1) adequacy of CFP comprising of dietary diversity, meal frequency, timing of introduction of CFP, consumption of iron-rich foods and sources of advice for feeding, and (2) barriers/promoters influencing CF practices.

Barriers were defined as obstacles or impediments to achieving correct CFP whilst promoters were defined as supporters to achieving correct CFP.⁽²²⁾ These were subcategorised into factors influencing at the family (e.g. family members), and organisational level (e.g. health care providers, hospitals, political bodies).

213 **Quality assurance**

The Centre for Reviews and Dissemination (CRD) guidance emphasises the importance of using a structured approach to quality assessment when assessing descriptive or qualitative studies for inclusion in reviews. However, it acknowledges the lack of consensus on the definition of poor quality with some arguing that using rigid quality criteria lead to the unnecessary exclusion of papers.⁽¹⁸⁾

219

220 In our review, the EPPI-Centre Weight of Evidence Framework was used to allow 221 objective judgements about each study's value in answering the review question. It examines three study aspects: Quality of Methodology, Relevance of Methodology 222 and Relevance of Evidence to the Review Question.⁽²³⁾ An average of these 223 224 weightings is taken to establish the study's Overall Weight of Evidence. Studies with an Overall Weight of Evidence of Low are still included in the table of included 225 226 studies but not discussed further within the results and discussion. This was 227 performed by two independent reviewers, with additional arbitration by other team 228 members where required.

229

230 **RESULTS**

231 Of the 45,712 studies identified, 73 studies focusing on CFP in SA families in India

were ultimately included in this systematic review. The study selection process isdenoted in Figure 1.

234

235

237

238 Study and participant characteristics

These 73 studies consisted of 64 cross-sectional, 7 cohort, 1 qualitative and 1 case control. 68 studies met Weight of Evidence criteria and were included in the main results. Their participants included a total of 125,326 children and 5,705 mothers or caregivers when infants were not reported. 21 studies reported details of the religion of participants, which was Hindu majority in 19 samples and Muslim majority in 2 samples.

Table 1 denotes a summary of all the included studies. Figure 2 illustrates the study locations of 63 of these 73 included studies with the remaining 9 not detailing precise study locations, due to being described as 'national' 'various' 'urban' or 'rural' without specifics. Table 1 contains further details of study locations.

250

251

Figure 2: Location Map of included studies used. Map courtesy of Google
 Maps. Data copyright 2017 Google.

254

Table 2 presents the Weight of Evidence awarded to each of the studies. 13 studies
had an Overall Weight of Evidence rating of High, 55 studies an Overall rating of
Medium, and five studies an Overall rating of Low.

259 The core narrative themes extracted from the papers are presented under the headings;

adequacy and factors influencing CFP. The former is categorised further into dietarydiversity, meal frequency, timing and advice providers.

262

263 Adequacy of complementary feeding

As per the WHO IYCF indicators, adequacy of CFP is assessed according to minimum dietary diversity (MDD), meal frequency and timing of introducing CFP. These are detailed in the subheadings below with a further section discussing advice providers.

268

269 <u>Dietary Diversity</u>

Dietary diversity was measured in some form in 14 studies. Rates of achieved MDD varied throughout studies but were generally low, with MDD achieved by between 6% and 33% of infants in eight studies that studies that reported the MDD % for 6-23 month olds.^(24–31) In de Onis (WOE=Medium(M)), infants were fed a mean of 2.8 food groups at 6 months, rising to 5.1 at 24 months.⁽³²⁾ Five other studies reported some information on diversity.^(33–37)

276

Table 3 denotes a summary of all complementary foods groups identified from the studies categorised according to the WHO IYCF food groups defined above. Foods utilised for CF were identified in 53 included studies, of which 9 had High Overall WOE scores and 44 had Medium WOE scores.

281

31 studies identified "Grains, roots and tubers" being used for CFP. Legumes and nuts
were used in 29, and 26 studies identified "Dairy products" (e.g. milk, cheese, yogurt)
being used. In contrast, "eggs" were identified in 12 studies, "Flesh Foods" (e.g.
Meat, Fish, Poultry and Liver/Organ Meats)" in 10 studies, "Vitamin A rich
vegetables" in 8 studies and "other Fruit and Vegetables" in 22 studies.

287

Bentley et al. (WOE=High (WOE=H)) found that grains were consumed by 63.8% of infants in the past 24 hours.⁽²⁵⁾ In Fazilli et al. (WOE=M), Meshram et al. (WOE=H) and Neog et al. (WOE=M), cereals were also widely used.^(38–40) In Katara et al. (WOE=M), cereals were the most frequently used food group, by 96% of infants.⁽³⁵⁾ In contrast, in Kapur et al. (WOE=M) cereal intake in an urban slum in Delhi was noted as grossly inadequate.⁽⁴¹⁾ Ragi, a traditional Indian grain, was identified in 4
 studies as a common cereal type utilised in South India.^(42–45)

295

296 The use of "other fruit and vegetables", namely fruits and vegetables not specified as 297 Vitamin-A rich, varied across India from 95.4% of study populations in rural Andhra 298 Pradesh, to 1.45% in Uttarakhand when given alone.^(40,46) Interestingly, in Garg et al. (WOE=M) in rural India, fruits and vegetables were excluded from an infant's diet 299 300 despite it being part of the family diet due to beliefs that infants could not tolerate spice-cooked fruits and vegetables.⁽³⁴⁾ In Vyas et al. (WOE=M), seasonal fruits such as 301 302 guava and citrus were introduced before the addition of staples (e.g. cereals, rice) with 303 gross undernutrition noted in the study population.⁽⁴⁶⁾

304

In the WHO Multicenter Growth Reference Study, less than 11% of children were 305 noted to consume flesh foods.(32) In an affluent Delhi district, Bhandari et al. 306 307 (WOE=M) found that only 2.4% of infants consumed non-vegetarian food despite 57.5% of their families being non-vegetarian.⁽⁴⁷⁾ Consumption of iron-rich or iron-308 309 fortified foods (e.g. flesh foods) was poorly reported. Kapur et al. (WOE=M) found 310 that children only consumed 46% of the Recommended Daily Allowance (RDA) of 311 iron in their diets, and Pashricha et al. (WOE=M) found that delayed CF increased the 312 risk of low dietary iron intake.^(41,42) Bentley et al. (WOE=H) found that 15% of 6-23 313 month olds consumed iron-rich foods, which was similar to the 12.1% reported by Aguayo et al. (WOE=H).^(25,48) 314

315

Regarding commercial complementary foods, Sharan et al. (WOE=M) and Samuel et 316 al. (WOE=H) noted use of commercial foods.^(45,49) Cerelac was the most frequently 317 mentioned commercial food.^(39,44,50–52) Additionally, Ananda Kumar et al. (WOE=M) 318 319 Lingam et al. (WOE=H), and Chhabra et al. (WOE=M) mentioned Farex, and Narayanappa mentioned Nestum.^(44,50–52) Chhabra et al. also mentioned Nutramul.⁽⁵¹⁾ 320 321 In Sharan et al. only 15% of infants were given commercial complementary food, 322 with use concentrated amongst the highest socioeconomic group, in keeping with Lingam et al. (WOE=H) who that noted higher utilisation rates in urban compared to 323 rural areas.^(45,50) 324

Generally micronutrient intake was not discussed in the included studies. In Pasricha et al. (WOE=M), 66% of children were found to be deficient in at least one micronutrient, with micronutrient deficiencies particularly common in those who breastfed longer.⁽⁴²⁾ The high use of grains and legumes by included infants may be beneficial, as Menon et al. found that intake of these foods were associated with positive anthropometric outcomes relative to higher nutrient foods like eggs or flesh foods.⁽²⁷⁾

333

334 <u>Meal Frequency</u>

335 Meal frequency was explored in 21 studies.^(24,25,28,29,31,32,34–37,40,44,48,49,53–59) In 10

studies, minimum meal frequency (MMF) was attained in between 25 to 50% of the

337 study population.^(25,29,31,35,36,44,55–57,59) In contrast, between 50 and 96% of the

338 population achieved MMF in seven studies.^(24,28,34,37,40,48,58) Seven included studies

had WOE ratings of High, and 14 had WOE ratings of Medium.

340

Senarath et al. (WOE=H) noted that the rate of MMF was 42% in children aged 6–23 months.⁽³⁰⁾ Patel et al. (WOE=H) and Khan et al. (WOE=M) and observed MMF in 41.5% and 48.6% of children respectively.^(29,31) In contrast Chandwani et al. (WOE=M) noted that 96% breast-fed children were fed at least the minimum number of times recommended.⁽²⁶⁾

346

347 Malhotra et al. (WOE=M) noted was a correlation between education and meal

348 frequency in infants aged 9-18 months.⁽³⁶⁾ Finally, Lohia & Udipi (WOE=M) noted

that males tended to have a high feeding frequency than females infants.⁽³⁷⁾

350

351 <u>Timing of introducing CF</u>

Table 4 denotes a summary of timing of when CF was most commonly introduced across the 59 included studies that investigated timing. The most common age for the introduction of CF was between 6 and 9 months (29 studies), followed by 3 to 6 months (22 studies). 4 studies noted that CF was started between 9 and 12 months for the majority of infants, whilst one studies noted that CF was started at an age younger than 3 months for the majority of infants. Twelve studies had Overall WOE ratings of High, and 47 of Medium.

360 CF was noted to be delayed among children particularly in central and eastern 361 India.⁽⁶⁰⁾ Inappropriate timing of initiation of CF was noted in both urban and rural 362 regions of India with timely CF achieved by as low as 3.5%, and as late as over a 363 year.^(45,47,54,61) In 10 out of 15 studies in urban areas, the majority of children started 364 CF at 6-9 months.^(35,41,54,62–64) 8 out of 18 studies in rural areas noted that 365 complementary feeding started during 6-9 months, and 7 out of 18 noted that CF 366 initiated at 3-6 months.^(24,26,40,43,46,50,52,59,61,65–73)

367

In addition, Yasmin et al. (WOE=M) noted that CF was initiated as early as 1 week.⁽⁵⁸⁾ However, in Mukhopadhyay et al. (WOE=M), CF timing was noted to be inappropriately early in 12.5% of the study population in West Bengal slums.⁽²⁸⁾ Similar findings were also noted in Goswami et al. (WOE=M) where only 13.2% of the infants were introduced to CF at the age of 4 to 6 months and an urban slum in Kolkata where 72% of infants were given CF at 6 months.^(54,74)

374

375 <u>Sources of advice for feeding</u>

376 27 studies described advice providers for CFP, nine of which had Overall WOE 377 ratings of High and 18 of Medium. The commonest source of feeding advice were healthcare professionals, including doctors, auxillary nurse midwives, lady health 378 379 visitors and anganwadi health workers, usually at antenatal visits or during immunisations (21 studies ^(24,33,36,43,44,48,49,51–55,58,59,62,64,65,75–78)). The next most 380 381 common source of advice was a family member, usually the grandmother or motherin-law (11 studies ^(24,33,43,44,46,50,52,53,58,65,79)), with 9 further studies specifically 382 mentioning elders (33,38,40,43,49,59,64,75,77). Further sources of feeding advice were the 383 media (4 studies $^{(29,33,36,43)}$) and friends (3 studies $^{(43,54,58)}$). 384

385

386 Factors associated with CF practices

We identified numerous factors that influenced CFP. These are summarised in Table 5 as either a Barrier or Promoter and subcategorised as either acting at family or organisational level. Due to conflicting study findings, factors may appear as both a Barrier and Promoter. 24 promoters and 33 barriers influencing CFP were identified. Promoters and barriers were further divided into factors influencing at the family and organisational level. Overall 55 studies identified factors associated with CF
 practices, of which 12 had Overall WOE ratings of High, and 43 of Medium.

394 Barriers

395 35 studies identified barriers at the organisational level. Barriers were: cultural 396 influences, employment, food insecurity, gender, inadequate antenatal care, lack of 397 knowledge on optimal CFP, lack of media exposure, lack of parental education, 398 location: Northern India and West India, focus on disability, low literacy, poor 399 sanitation, poverty, birth in a public hospital, and price of food. The most commonly 400 cited barrier organisational level was at the cultural influences.^(38,39,43,46,49,52,53,55,59,62,72,75-77,80) Infant feeding practices in India appear to 401 be strongly influenced by elderly women such as the mother in law.^(46,65) 402

403

404 31 studies identified barriers at a family level. Barriers were: caesarian sections, 405 child's age, concern about weight gain, crying infant, difficulty feeding child, 406 inadequate breast milk production, lack of support, maternal age, maternal nutrition 407 status, mothers from joint families, recent illness, religion, siblings, subsequent 408 pregnancy, and primiparity. The most commonly cited barriers at the family level 409 were lack of knowledge on optimal CFP^(24,38,46,51,59,65,75,79-83) and inadequate breast 410 milk production.^(43,45,52,58,59,73,75)

411 Promoters

412 32 studies identified promoters at the organisational level. Promoters were: advice from a healthcare professional, birth within a government institute, certain castes or 413 414 tribe, education of parent, effective antenatal care, family support, Hindu mothers, 415 literacy status of mother, location: northeastern, southern or western, media exposure, 416 social support group, socio-economic status, support system at work, and wealth. The most commonly cited promoters at the organisational level were education of 417 parent.^(24,27,29,34,37,39,40,42,46,61,62,66,71) literary status of mother,^(35,64,66,70,78,84) 418 and wealth.(24,34,50,85,86) 419

420

421 12 studies identified promoters at a family level. Promoters were: acknowledged
422 importance of maternal health, advice seeking, autonomy of mother, BMI of mother,
423 delivery with doctor present, high birth order, knowledge of optimal CFP, mother

who works from home, older age at marriage, and valuing nutrition. The most
commonly cited promoter at the family level was knowledge of optimal CF.^(33,54,65,76)

426

427 **DISCUSSION**

To our knowledge, this is the first systematic review to assess CFP in SAs. We
identified that in many SA families in India, WHO IYCF standards on minimum
dietary diversity, meal frequency, and timing of introducing CF were not being met.

431

432 Implications of Key Findings

Legumes, rice, wheat and cereals appear to be the mainstay of complementary foods in southern India. Whilst this is in keeping with other low and middle income countries, these foods have low nutrient density and mineral bioavailability with use of other food groups essential to satisfy the nutrient and mineral requirements of infants.⁽⁸⁷⁾ Consumption of dietary iron was infrequently mentioned except in the context of flesh foods, which is inadequate considering that low dietary iron has such an important role in infant health.^(41,42)

440

441 Dietary diversity was found to be inadequate in almost all groups studied, with MDD
442 varying from 6% to 33% for 6-23 month olds. Some have argued for use of media
443 sources to influence this, with further research and interventions needed.⁽³⁷⁾

444

It was found that MMF was not met by the majority of sample populations. Educational interventions may be useful to improve MMF going forward; Collison et al. found that, when given a feeding toolkit, frequency of feeds increased.⁽⁵³⁾ In a previous review, educational interventions were also shown to be effective.⁽⁸⁸⁾ Further research is required in order to uncover why MMF is so rarely met by care givers.

The majority of studies found that CF was started during the 6th to 9th month of life with most studies noting limited maternal awareness on recommended CFP. By improving antenatal care and education on caring for an infant alongside decreasing barriers faced by mothers when restarting employment, optimal timing of CF may improve. Having been utilised by the Ministry of Women and Child Development to distribute information, this may include mass media communication.^(36,61,89,90)

458

Of the studies that identified sources of feeding advice, healthcare professionals were 459 460 the most commonly cited. In particular, antenatal checkups were a popular time for feeding advice to be given to mothers by healthcare professionals.^(29,30,36,52,74,82) 461 Family members, particularly a mother-in-law or grandmother, were also very 462 463 commonly cited sources of feeding advice. However, the advice given by them is 464 often inappropriate. Saxena & Kumar noted that some female elders insisted mothers only started complementary feeding after 1 year.⁽⁵⁹⁾ There is a suggestion that family 465 466 members can adversely influence mothers through conveying traditional beliefs, for example that colostrum is "dirty", and that children cannot tolerate animal-based 467 proteins until 18 months of age.^(43,53,65) Similar advice may also be conveyed by 468 friends and peer groups. Media, including radio, newspapers, and magazines, was an 469 470 important but less commonly cited source of advice. Malhotra found that increased 471 frequencies of listening to the radio, or reading newspapers and magazines carries an increased likelihood of mothers having better feeding practices.⁽³⁶⁾ 472

473

474 Several studies identified cultural norms introduced by female elders that are barriers 475 to appropriate CFP such as preferential treatment of male infants. It is therefore key 476 that opinion leaders are equally targeted in any intervention to improve CFP in 477 communities with studies by Senarath and Dewey & Brown noting effectiveness of 478 systematic, participatory, and coordinated approaches to improve CFP through peers 479 and community facilitators, in keeping with UNICEF guidance on applying best 480 practices and design in interventions.^(30,91,92)

481

482 We hope our identification of barriers and promoters will provide inspiration for

483 further interventions to improve CFP. Existing interventions in India have been

484 educational in nature, including counseling,⁽⁹³⁾ resulting in increased energy intake

- 485 and length; and education in complementary and responsive feeding,⁽⁹⁴⁾ resulting in
- 486 increased energy intake and reduced stunting. The Lancet 2008 series on maternal and
- 487 child nutrition included a piece on successful interventions across countries.⁽⁹⁵⁾
- 488

489 Strengths and limitations

The strengths of our systematic review are derived by searching a large number of
databases utilising very broad search strings, performing an updated search in June
2016 and having two reviewers undertake study selection, data extraction and quality
assessment.

494

Key limitations include excluding; (1) papers which solely focused on children over 2
years where CFP described in their younger years may have been missed, (2) papers
published before the year 2000 at full text review and (3) papers not published in
English which would've both added to the diversity of CFP described.

499

500 In several studies where there was overlap between children under and over two years 501 and/or SAs by Indian, Pakistani and Bangladeshi origin, CFP described and attributed 502 to the whole study population maybe incorrect. Furthermore, we did not assess the 503 quantities of the foods used, only the frequency with which they appeared in the 504 studies.

505

506 Whilst we excluded interventional studies which may have described CFP in their 507 study population, this is unlikely to be the primary focus of such studies and therefore 508 unlikely to significantly affect our systematic review. Additionally, if we had included 509 strict exclusion criteria for study design, this may have meant there was less of a need 510 to exclude studies due to low WOE ratings; however, on the other hand, we may have 511 missed some useful studies by being more prescriptive.

512

513 Regarding bias, whilst we attempted to contact numerous authors to identify relevant 514 grey literature for our review, due to the breadth and depth of the field of nutritional 515 research, this is unlikely to be exhaustive with publication bias likely to be present. 516 Additionally, the vast majority of studies (64) were cross-sectional, commonly using 517 recall methods, with only 7 cohort studies. This may mean reported results are biased towards time points where it is convenient to collect single sets of data, such as duringmedical visits.

520

521 Conclusion

522 Despite adoption of the WHO IYCF guidelines, inadequate CFP remain in SA 523 communities across India. Whilst India has made giant strides in decreasing child 524 mortality over the last two decades, more must be done to improve CFP to further this 525 aim. This systematic review has highlighted CFP and the factors that influence them, 526 providing knowledge of current behaviors; we recommend this information be used 527 for context-tailored interventions, which can be assessed and adopted according to 528 their achievements.

- 529
- 530

531 **<u>References</u>**

- 532 1. Black RE, Victora CG, Walker SP, et al. (2013) Maternal and child 533 undernutrition and overweight in low-income and middle-income countries. 534 Lancet (London, England) 382, 427–51. Elsevier. 535 2. UNICEF (2009) Tracking Progress on Child and Maternal Nutrition - A 536 survival and development priority. . 537 WHO (2016) WHO | Appropriate complementary feeding. WHO. World 3. 538 Health Organization. Davies-Adetugbo AA & Adetugbo K (1997) Effect of Early Complementary 539 4. 540 Feeding on Nutritional Status in Term Infants in Rural Nigeria. Nutr. Health 541 12, 25–31. 5. 542 Semahegn A, Tesfaye G & Bogale A (2014) Complementary feeding practice 543 of mothers and associated factors in Hiwot Fana specialized hospital, eastern 544 Ethiopia. Pan Afr. Med. J. 18. 545 6. Macharia CW, Kogi-Makau W & Muroki NM (2004) Dietary intake, feeding and care practices of children in Kathonzweni division, Makueni district, 546 547 Kenya. East Afr. Med. J., 402-407.
- 548 7. Stewart CP, Iannotti L, Dewey KG, et al. (2013) Contextualising
- 549 complementary feeding in a broader framework for stunting prevention.
- 550 *Matern. Child Nutr.* **9**, 27–45.

551	8.	Dewey KG (2016) Reducing stunting by improving maternal, infant and young
552		child nutrition in regions such as South Asia: evidence, challenges and
553		opportunities. Matern. Child Nutr. 12, 27-38.
554	9.	Avula R, Raykar N, Menon P, et al. (2016) Reducing stunting in India: what
555		investments are needed? Matern. Child Nutr. 12, 249-252.
556	10.	Ramji S (2009) Impact of infant & young child feeding & caring practices on
557		nutritional status & health. Indian J. Med. Res. 130, 624-626.
558	11.	Engle PL (2002) Infant Feeding Styles: Barriers and Opportunities for Good
559		Nutrition in India. Nutr. Rev. 60, S109–S114.
560	12.	Senarath U & Dibley MJ (2012) Complementary feeding practices in South
561		Asia: analyses of recent national survey data by the South Asia Infant Feeding
562		Research Network. Matern. Child Nutr. 8, 5-10.
563	13.	Gragnolati M, Shekar M, Das Gupta M, et al. (2005) THE WORLD BANK
564		India's Undernourished Children: A Call for Reform and Action
565	14.	WHO (2010) Indicators for assessing infant and young child feeding practices.
566		World Health Organization.
567	15.	Manikam L, Robinson A, Kuah JY, et al. (2017) A systematic review of
568		complementary feeding practices in South Asian infants and young children:
569		the Bangladesh perspective. BMC Nutr. 3, 56. BMC Nutrition.
570	16.	Porta M (2014) A Dictionary of Epidemiology. 2014th ed.
571	17.	NIHR Glossary - John Williams
572	18.	University of York (2009) Critical Appraisal Skills Programme (CASP)
573		[Internet]. Critical Appraisal Skills Programme (CASP)
574	19.	Dixon-Woods M, Agarwal S, Jones D, et al. (2005) Synthesising qualitative
575		and quantitative evidence: a review of possible methods. J. Health Serv. Res.
576		<i>Policy</i> 10 , 45–53.
577	20.	Collins JA & Fauser BCJM (2005) Balancing the strengths of systematic and
578		narrative reviews. Hum. Reprod. Update 11, 103-104.
579	21.	Popay J, Roberts H, Sowden A, et al. (2006) Guidance on the Conduct of
580		Narrative Synthesis in Systematic Reviews. A Prod. from ESRC Methods
581		Program.
582	22.	Oxford dictionaries Promoter - definition of promoter in English. Oxford
583		Dictionaries. https://en.oxforddictionaries.com/definition/promoter.
584	23.	Gough D (2007) Weight of Evidence: a framework for the appraisal of the

585		quality and relevance of evidence. Res. Pap. Educ. 22, 213-228.
586	24.	Aruldas K, Khan MM., Hazra A, et al. (2010) Increasing appropriate
587		complementary feeding in rural uttar pradesh. J. Fam. Welf. 56, 51-56.
588	25.	Bentley A, Das S, Alcock G, et al. (2015) Malnutrition and infant and young
589		child feeding in informal settlements in Mumbai, India: findings from a census.
590		Food Sci. Nutr. 3, 257–271.
591	26.	Chandwani H, Prajapati A, Rana B, et al. (2015) Assessment of infant and
592		young child feeding practices with special emphasis on IYCF indicators in a
593		field practice area of Rural Health Training Centre at Dabhoda, Gujarat, India.
594		Int J Med Sci Public Heal, 1.
595	27.	Menon P, Bamezai A, Subandoro A, et al. (2015) Age-appropriate infant and
596		young child feeding practices are associated with child nutrition in India:
597		Insights from nationally representative data. Matern. Child Nutr. 11, 73-87.
598	28.	Mukhopadhyay DDK, Sinhababu A, Saren AAB, et al. (2013) Association of
599		child feeding practices with nutritional status of under-two slum dwelling
600		children: A community-based study from West Bengal, India. Indian J. Public
601		<i>Health</i> 57 , 169.
602	29.	Patel A, Pusdekar Y, Badhoniya N, et al. (2012) Determinants of inappropriate
603		complementary feeding practices in young children in India: secondary
604		analysis of National Family Health Survey 2005-2006. Matern. Child Nutr. 8
605		Suppl 1 , 28–44.
606	30.	Senarath U, Agho KE, Akram DES, et al. (2012) Comparisons of
607		complementary feeding indicators and associated factors in children aged 6-23
608		months across five South Asian countries. Matern. Child Nutr. 8, 89-106.
609	31.	Khan AAM, Kayina P, Agrawal P, et al. (2012) A study on infant and young
610		child feeding practices among mothers attending an urban health center in East
611		Delhi. Indian J. Public Health 56, 301. Medknow Publications and Media Pvt.
612		Ltd.
613	32.	De Onis M & Onis D (2006) Complementary feeding in the WHO Multicentre
614		Growth Reference Study. Acta Paediatr. Int. J. Paediatr. 95, 27-37.
615	33.	D???Alimonte MR, Deshmukh D, Jayaraman A, et al. (2016) Using Positive
616		Deviance to Understand the Uptake of Optimal Infant and Young Child
617		Feeding Practices by Mothers in an Urban Slum of Mumbai. Matern. Child
618		<i>Health J.</i> 20 , 1133–1142.

619	34.	Garg A & Chadha R (2009) Index for measuring the quality of complementary
620		feeding practices in rural India. J. Heal. Popul. Nutr. 27, 763-771.
621	35.	Katara PS, Patel S V, Kantharia SL, et al. (2013) Study on feeding practices
622		among children 6 months to 2 years and its effect on their nutritional status in
623		urban slums. Natl. J. Community Med. 4.
624	36.	Malhotra N (2013) Inadequate feeding of infant and young children in India:
625		lack of nutritional information or food affordability? Public Health Nutr. 16,
626		1723–31.
627	37.	Lohia N & Udipi SA (2014) Infant and child feeding index reflects feeding
628		practices, nutritional status of urban slum children. BMC Pediatr. 14, 290.
629	38.	Fazilli A, Imtiyaz A, Iqbal M, et al. (2011) Infant Feeding Practices of
630		Multiparous Women Attending the Antenatal Clinic in a Tertiary Care
631		Hospital. Int J Med Public Heal 1, 47–50.
632	39.	Neog N, Baruah D & Baruah DK (2012) Prevalent infant feeding practices of
633		infants among the missing tribes of Jorhat district, Assam. Food Sci. Res. J. 3,
634		9–13.
635	40.	Meshram II, Laxmaiah A, Venkaiah K, et al. (2012) Impact of feeding and
636		breastfeeding practices on the nutritional status of infants in a district of
637		Andhra Pradesh, India. Natl. Med. J. India 25, 201–206.
638	41.	Kapur D, Sharma S & Agarwal KN (2005) Dietary intake and growth pattern
639		of children 9-36 months of age in an urban slum in Delhi. Indian Pediatr. 42,
640		351–356.
641	42.	Pasricha S-RR, Shet ASS, Black JFF, et al. (2011) Vitamin B-12, folate, iron,
642		and vitamin A concentrations in rural Indian children are associated with
643		continued breastfeeding, complementary diet, and maternal nutrition. Am. J.
644		<i>Clin. Nutr.</i> 94 , 1358–1370.
645	43.	Rangaswamy K, Kumar A & Kumar HV (2013) Socio-Cultural Factors
646		Influencing Infant Feeding Practices in Rural Tumkur. RJPBCS 4.
647	44.	Ananda Kumar TS, Rangaswamy KB & Viswanatha Kumar HM (2013)
648		Weaning practices in rural Tumkur. Curr. Pediatr. Res. 17, 115–117.
649	45.	Sharan S, Kumari SPS & Nagabhushanam K (2001) Status of sericulture farm
650		women and infant feeding habits. Mysore J Agric Sci 35, 351-6.
651	46.	Vyas S, Kandpal SD, Semwal J, et al. (2014) Trends in weaning practices
652		among infants and toddlers in a hilly terrain of a newly formed state of India.

653		Int. J. Prev. Med. 5, 741–748.
654	47.	Bhandari N, Bahl R, Taneja S, et al. (2002) Growth performance of affluent
655		Indian children is similar to that in developed countries. Bull. World Health
656		<i>Organ.</i> 80 , 189–195.
657	48.	Aguayo VM, Nair R, Badgaiyan N, et al. (2016) Determinants of stunting and
658		poor linear growth in children under 2 years of age in India: An in-depth
659		analysis of Maharashtra's comprehensive nutrition survey. Matern. Child Nutr.
660		12 , 121–140.
661	49.	Samuel TM, Thomas T, Bhat S, et al. (2012) Are infants born in baby-friendly
662		hospitals being exclusively breastfed until 6 months of age? Eur. J. Clin. Nutr.
663		66 , 459–465.
664	50.	Lingam R, Gupta P, Zafar S, et al. (2014) Understanding care and feeding
665		practices: Building blocks for a sustainable intervention in India and Pakistan.
666		Ann. N. Y. Acad. Sci. 1308, 204–217.
667	51.	Chhabra R, Subhashini V & Verma S (2010) Existing infant feeding and
668		weaning practices in an urban setup. Asian J. Home Sci. 5, 250–254.
669	52.	Narayanappa R, Ranganath T & Gowda K (2015) nfant Feeding Practices in
670		Rural Field Practice Area of Medical College in Karnataka: A Cross-Sectional
671		Descriptive Study. Natl J Community Med 6, 508-512.
672	53.	Collison DK, Kekre P, Verma P, et al. (2015) Acceptability and utility of an
673		innovative feeding toolkit to improve maternal and child dietary practices in
674		Bihar, India. Food Nutr. Bull. 36, 24–32.
675	54.	Roy S, Dasgupta A & Pal B (2009) Feeding practices of children in an urban
676		slum of kolkata. Indian J. Community Med. 34, 362-363.
677	55.	Aggarwal A, Verma S, Faridi M, et al. (2008) Complementary feeding
678		reasons for inappropriateness in timing, quantity and consistency. Indian J
679		<i>Pediatr</i> 75 , 49–53.
680	56.	Rasania S & Sachdev T (2001) Nutritional status and feeding practices of
681		children attending MCH Centre. Indian J. Community Med. 26, [5] p.
682	57.	Kuriakose JJR (2010) Nutritional Status and Feeding Practices of Infants. Nurs
683		<i>J India</i> 101 , 184–6.
684	58.	Yasmin H (2008) Weaning practices of ruralwomen in Chandauli District,
685		Uttar Pradesh, India. Nurture 2, 24–29.
686	59.	Saxena V & Kumar P (2014) Complementary feeding practices in rural

687		community: A study from block Doiwala district Dehradun. Indian J. Basic
688		Appl. Med. Res. 3, 358–363.
689	60.	Padmadas SSS, Hutter I & Willekens F (2002) Weaning initiation patterns and
690		subsequent linear growth progression among children aged 2-4 years in India.
691		Int. J. Epidemiol. 31, 855–863.
692	61.	Caleyachetty A, Krishnaveni G V., Veena SR, et al. (2013) Breastfeeding
693		duration, Age of starting solids and high BMI risk and adiposity in Indian
694		children. Matern. Child Nutr. 9, 199–216.
695	62.	Bhanderi D & Choudhary S (2011) A Community Based Study Of Feeding
696		And Weaning Practices In Under Five Children In Semi Urban Community Of
697		Gujarat. Natl. J. Community Med. 2, 277–283.
698	63.	Sreedhara MS & Banapurmath CR (2014) A study of nutritional status of
699		infants in relation to their complementary feeding practices. Curr. Pediatr. Res.
700		18 , 39–41.
701	64.	Bagul AS & Supare MS (2012) The infant feeding practices in an urban slum
702		of Nagpur, India. J. Clin. Diagnostic Res. 6, 1525-1527.
703	65.	Jayant D D, Purushottam A G, Deepak B P, et al. (2010) Socio-cultural
704		practices in relation to breastfeeding, weaning and child rearing among Indian
705		mothers and assessment of nutritional status of children under five in rural
706		India. Australas. Med. J. 3, 618–624.
707	66.	Farzani F & Devi R (2011) A study of feeding practices of infants in Parbhani
708		district. FOOD Sci. Res. J. 2, 1–3.
709	67.	Meshram II, Kodavanti MR, Chitty GR, et al. (2013) Influence of Feeding
710		Practices and Associated Factors on the Nutritional Status of Infants in Rural
711		Areas of Madhya Pradesh State, India. Asia. Pac. J. Public Health,
712		1010539513486174
713	68.	Sanjeev D & Anuradha D (2012) Women literacy and infant feeding practices
714		in rural integraded child development scheme (ICDS) block of Delhi. 3, 385-
715		390.
716	69.	Verma R & Gupta P (2015) Impact of Breast Feeding and Weaning Practices
717		Associated with Morbidity in Rural Area of Ghaziabad, Uttar Pradesh, India: A
718		Community Based Longi- tudinal Study. Ntl J Community Med 6, 618-621.
719	70.	Damayanthi M, Jayanth Kumar K & Professor P (2013) Breast Feeding
720		Practices in Rural field practice area of RRMCH, Bangalore 1 2 3. Medica

721		Innov. June 2.
722	71.	Pathi S, Das BC, Rasania SK, et al. (2003) Feeding practices versus nutritional
723		status of infants in a rural ICDS block of Orissa. Heal. Popul. Perspect. Issues
724		26 , 116–120.
725	72.	Shroff MR, Griffiths PL, Suchindran C, et al. (2011) Does maternal autonomy
726		influence feeding practices and infant growth in rural India? Soc. Sci. Med. 73,
727		447–455.
728	73.	Tyagi R & Bhan C (2009) Knowledge of rural mothers regarding
729		recommended child rearing practices. Ann Agri Bio Res 14, 169–73.
730	74.	Goswami M, Dash B & Dash NC (2012) Maternal Care and Childrearing
731		Practices: A Micro Level Study among the Bhumija Tribe of Northern Orissa,
732		India. South Asian Anthropol. 12, 51–59.
733	75.	Saxena V & Kumari R (2014) Infant and young child feeding - knowledge and
734		practices of ASHA workers of Doiwala block, Dehradun District. Indian J.
735		<i>Community Heal.</i> 26 , 68–75.
736	76.	Padhy K & Choudhury RKR (2004) Practices and attitude of mothers in
737		initiation of infant feeding. South Asian Anthr. 4, 157-160.
738	77.	Ganguly S, Mayuri M, Mukherji C, et al. (2012) Bovine milk usage and
739		feeding practices for infants in India. Indian J. Public Health 56, 75.
740	78.	S R, P M S, B U, et al. (2011) Study of complementary feeding practices
741		among mothers of children aged six months to two years - a study from coastal
742		south India. Australas. Med. J. 4, 252–257.
743	79.	Subbiah N & Jeganathan A (2012) Socio-cultural beliefs influencing
744		breastfeeding practices among primi postnatal mothers residing in urban slum
745		area of Delhi. Heal. Popul. Perspect. Issues 35, 61-73.
746	80.	Sharma M & Sharma S (2003) Infant feeding practices in rural women of
747		Kangra district of HP. Himachal J Agric Res 29, 79-83.
748	81.	Sinha A & Pandey H (2000) Weaning practices of 'Ho'mothers in Bihar. Indian
749		J. Nutr. Diet. 37, 338–340.
750	82.	Sinhababu A, Mukhopadhyay DK, Panja TK, et al. (2010) Infant-and young
751		child-feeding practices in Bankura district, West Bengal, India. J. Heal. Popul.
752		Nutr. 28, 294–299.
753	83.	Yousafzai AK, Pagedar S, Wirz S, et al. (2003) Beliefs about feeding practices
754		and nutrition for children with disabilities among families in Dharavi, Mumbai.

755		Int. J. Rehabil. Res. 26, 33–41.
756	84.	Dahiya S & Sehgal S (2002) Infant Feeding Practices of Working and Non-
757		Working Urban Mothers. Indian J. Nutr. Diet. 39, 367-372.
758	85.	Chhabra P & Gupta A (2015) Infant and young child feeding practices and its
759		determinants in an urbanized village of Delhi. Int. J. Med. Public Heal. 5, 228.
760	86.	Veena SR, Krishnaveni G V, Srinivasan K, et al. (2010) Infant feeding practice
761		and childhood cognitive performance in South India. Arch. Dis. Child. 95,
762		347–54.
763	87.	Erdman J (1981) Bioavailability of Trace Minerals from Cereals and Legumes.
764		<i>Cereal Chem</i> 58 , 21–6.
765	88.	Shi L & Zhang J (2011) Recent evidence of the effectiveness of educational
766		interventions for improving complementary feeding practices in developing
767		countries. J. Trop. Pediatr. 57, 91–98.
768	89.	Dibley MJJ, Roy SKK, Senarath U, et al. (2010) Across-country comparisons
769		of selected infant and young child feeding indicators and associated factors in
770		four South Asian countries. Food Nutr. Bull. 31, 366-375.
771	90.	Ministry of Women and Child Development (2016) Articulating a Vision for
772		Empowerment of Women. DRAFT Government of India Ministry of Women
773		and Child Development
774	91.	Dewey KG & Brown KH (2003) Update on technical issues concerning
775		complementary feeding of young children in developing countries and
776		implications for intervention programs. Food Nutr. Bull. 24, 5-28.
777	92.	Rogers P (2014) Theory of Change: Metholodological Briefs-Impact
778		Evaluation No.2. UNICEF Office of Research
779	93.	Bhandari N, Mazumder S, Bahl R, et al. (2004) An Educational Intervention to
780		Promote Appropriate Complementary Feeding Practices and Physical Growth
781		in Infants and Young Children in Rural Haryana, India. J. Nutr. 134, 2342-
782		2348.
783	94.	Vazir S, Engle P, Balakrishna N, et al. (2013) Cluster-randomized trial on
784		complementary and responsive feeding\neducation to caregivers found
785		improved dietary intake, growth and\ndevelopment among rural Indian
786		toddlers. Matern. Child Nutr. 9, 99–117.
787	95.	Bhutta ZA, Ahmed T, Black RE, et al. (2008) What works? Interventions for
788		maternal and child undernutrition and survival. Lancet, 417–440.

789	96.	Bahuguna R, Younis Khan S & Jain a (2013) Influence of feeding practices on
790		dental caries. A case-control study. Eur. J. Paediatr. Dent. 14, 55-8.
791	97.	Dakshayani B & Gangadhar MR (2008) Breast Feeding Practices among the
792		Hakkipikkis: A Tribal Population of Mysore District, Karnataka. Ethno-Med 2,
793		127–129.
794	98.	Fall CHHD, Borja JBB, Osmond C, et al. (2010) Infant-feeding patterns and
795		cardiovascular risk factors in young adulthood: data from five cohorts in low-
796		and middle-income countries. Int. J. Epidemiol. 40, 47-62.
797	99.	Holambe VMV & Thakur NAN (2014) Factors affecting late introduction of
798		complementary food: a Kaplan Meier analysis. Natl J Community Med 5, 140-
799		3.
800	100.	Jindal A (2009) Weaning practices among mothers in selected hospitals in
801		Mangalore. Nurs J India 42, 351–6.
802	101.	Kumar D, Goel NKK, Mittal PCC, et al. (2006) Influence of infant-feeding
803		practices on nutritional status of under-five children. Indian J. Pediatr. 73,
804		417–421.
805	102.	Passi GR & Shad R (2004) Breastfeeding, Weaning Practices and Nutritional
806		Status of Infants of Tea Garden Workers of Assam. INDIAN Pediatr. 41, 1277-
807		1279.
808	103.	Shahrawat R & Joon V (2013) Role of inter personal communication in infant
809		and young child feeding practices in an urban slum: An overview based on case
810		studies. In Indian J. Pediatr., vol. 80, pp. 1041-1046.
811	104.	Singh A & Vaidya M (2015) Traditional weaning foods and practices in
812		Jabalpur district with reference to prevalence of malnutrition. Asian J. Dairy
813		Food Res. 34 , 32.
814		
815		
816		
817		
818		
819		
820		
821		
822		

823	
824	
825	
826	

Table 1 – A summary of all included tables							
Author	Study Type	Location	Population	Sample Size	Adequacy of and factors influencing CFP		
Aggarwal et al. (2008) ⁽⁵⁵⁾	Cross-sectional	Delhi, India	Mothers of infants 6 months to 2 years old attending outpatient paediatric hospital	200	Frequency: Frequency of complementary feeds was less than recommended in about 75% of children. Factors: Maternal and paternal education, lack of knowledge regarding CF, child vomiting, advice from family elders. Timing: 34% started up to a year		
Aguayo et al. (2016) ⁽⁴⁸⁾	Cross-sectional	Maharashtra, India	Children under 23 months old	2561	 Diversity: 6% of 6-23 month olds were fed 4+ food groups. Frequency: 77% of 6-23 month olds met minimum meal frequency. When sick, many children (up to 75%) see their complementary foods restricted in frequency. Factors: Poor sanitation, mother's nutrition status, poverty. Timing: 59% of 6-8 months had CFP introduced 		
Aruldas et al. (2010) ⁽²⁴⁾	Cross-sectional	Rural India	Children aged 0-23 months	4472	 Diversity: 30 percent were fed at least three types of food as recommended. Frequency: 63% of children aged 6-23 months were given the minimum recommended number of feeds in a day. Factors: 56% of mothers commenced CF before 6 months of age because they felt that their breast milk was not sufficient for the child. Other factors include high standard of living, education, media exposure, and ANC check ups. Timing: 46% 7-9 months 		
Bagul & Supare (2012) (64)	Cross-sectional	Urban slum of Nagpur, Maharashtra, India.	Children under 1 year old	384	Factors: Literacy. Timing: 51% under 6 months		
Bahuguna et al. (2013) ⁽⁹⁶⁾	Case Control	Uttar Pradesh, India	Children aged 1-18 years	800	Diversity: Milk, sweets, fruits were eaten, but this was not broken down by age		
Bentley et al. (2015) ⁽²⁵⁾	Cross-sectional	Informal settlements, Mumbai, India	Children under 5	7450	Diversity: Dietary diversity was limited (13%). Frequency : Minimum meal frequency were met by less than half of infants. Timing : 41% commenced at 6-8 months		
Bhandari et al. (2002) ⁽⁴⁷⁾	Cross-sectional	Delhi, India	Children aged 12-23 months	395	Factors: Education. Timing: Animal milk mean age of 3 months		
Bhanderi & Choudhary (2011) ⁽⁶²⁾	Cross-sectional	Petlad town, a semi-urban area of Anand district, Gujarat, India	Children under 5 years old	300	Diversity: Rice, daal, curd, butter milk, ice creams, fruits. Factors: Educated mothers were more receptive to the message of proper weaning passed to them during antenatal visits. Other factors include maternal education, place of delivery, and sociocultural beliefs. Timing: 52% 4-6 months		

Caleyachetty et al. (2013)	Cohort study	Mysore city or surrounding rural villages, India	Mothers attending the antenatal clinic of the Holdsworth Memorial Hospital	830	Factors: Hindu mothers commenced CF later compared to Islam or "other" religions. Other factors include higher education and lower socio-economic status. Timing: 38% at 4 months, 27% at 5 months
Chandwani et al. (2015) ⁽²⁶⁾	Cross-sectional	Rural Health Training Centre at Dabhoda, Gujarat, India	Children 0-24 months old	300	Diversity: 28.3% were given food from four or more groups. Frequency: Minimum meal frequency (MMF) was adequate in 95.6%. Timing: 60% at 6 months
Chhabra & Gupta (2015) ⁽⁸⁵⁾	Cross-sectional	Urbanised villge of East Delhi, India	Children aged 0-23 months.	194	Factors: Wealth and gender of infant, born in government institution. Timing: 6-9 months for 54%
Chhabra et al. (2010) ⁽⁵¹⁾	Cross-sectional	Ludhiana, India	Children under 12 months old	204	Diversity: Dal soup, juice, tea, Kheer, banana, khichri all used. Factors: Mothers believing size was a more important indicator than age. Timing: less than 3 months.
Collison et al. (2015) ⁽⁵³⁾	Cross-sectional	One urban and one rural community in Samastipur District, Bihar, India	Children preterm to 18 months old	60	Diversity: Eggs, meat, fish, fruits, vegetables were used. Frequency: Mothers 'generally' feed infants 2/3 times each day. Factors: Urban and rural status affected feeding practices
D'Alimonte et al. (2016) ⁽³³⁾	Cross-sectional	Slum, Dharavi, Mumbai	Mothers of children under 3 years old	22	 Diversity: Listed 7 IYCF groups. Gave MDD details stratified by positive deviance. Factors: Advice sources included female elders, relatives, community health workers, the media Diversity:MDD achieved by majority at 6 months. Timing: Positive deviants mostly around 6 months
Dahiya & Sehgal (2002) ⁽⁸⁴⁾	Cross-sectional	Haryana, India	Mothers of children aged 6-18 months	100	Diversity: Khichri, dalia, rice, kheer, fruit and vegetables were used. Factors: Only a few mothers belonging to high socio-economic status give ready-made foods to their infants. Timing: Working mothers started before 6 months, non- working after
Dakshayani & Gangadhar (2008) ⁽⁹⁷⁾	Cross-sectional	Karnataka, India	Mothers of children aged 0-60 months	125	Factors: The practice of giving the infants some special type of feeds before initiating breast milk is widespread in tribal areas. Timing: 48% 6-9 months
Damayanthi et al. (2013) ⁽⁷⁰⁾	Cross-sectional	Bangalore, India	Mothers of children under 24 months	300	Factors: Earlier initiation when literate. Timing: 70% at 3-6 months
de Onis (2006)	Cross-sectional	India	Children aged 0- 24 months old	8440	Diversity: Mean dietary diversity at different ages amongst compliant Indian children was: 2.8 foods at 6 months, 4.1 at 9 months, 4.6 at 12 months, 4.9 at 18 months, 4.9 5.1at 24 months. Frequency : Frequency was around a mean of 2 non-milk meals per day amongst compliant children in India at 5 months, rising to 2.8 at 6 months, 4 at 8 months, 4.9 at 12 months, 5.4 at 18 months and 5.5 at

					24 months. Timing: Mean timing was 5 months
Dibley et al. (2010) ⁽⁸⁹⁾	Cross-sectional	29 unnamed states in India	Last-born children aged 0 to 23 months living with the respondent	20108	Factors: Antenatal visits, media, Living North, East or South. Timing: 57% timely CF rate
Fall et al. (2011) (98)	Cohort study	Brazil/Guatemala/India/Philippines/South Africa – New Delhi in India	Babies born to women in an area of Delhi	1526	Timing: 42% 9-12 months
Farzani & Devi (2011) (66)	Cross-sectional	Parbhani district, India	Mothers of children aged 3 – 18 months	130	Diversity: Cow's milk, honey, castor oil, dhal, fruit and vegetables. Factors : Literacy and maternal education. Timing : 52% at 3-6 months
Fazilli et al. (2011) ⁽³⁸⁾	Cross-sectional	Kashmir, India	Multiparous women attending the antenatal clinic of the maternity hospital of Sheri Kashmir Institute of Medical Sciences	585	Diversity: Cereals, fruits, banana were used. Factors: Many harmful infant feeding practices still hold ground in the community having their roots in cultural influences and lack of knowledge regarding CFP timing. Timing: 38% at 6-12 months, 32% at 6 months
Garg & Chadha (2009) (34)	Cross-sectional	Six villages of Ghaziabad district, Uttar Pradesh, India	Mothers of children aged 6 – 12 months	151	 Diversity: 31% and 18% of the mothers in the 6–8 and 9–12 months old infants reported feeding ≥3 and ≥4 food groups respectively to their infants in the preceding 24 hours. Mothers used starchy staples, legumes, milk eggs, others. Frequency: 60% of the mothers fed their infants the recommended number of meals in the previous 24 hours. Factors: Wealth led to better practices. More children led to worse parity. Other factors include socioeconomic factors and maternal education.
Goswami et al. (2012) ⁽⁷⁴⁾	Cross-sectional	5 villages of the Nuapadhi Gram Panchayat, Remuna block of Balasore district of Orissa, India	Mothers of children aged 0 – 60 months	121	Timing: 61% initiate at 6-9 months
Holambe & Thakur (2014) (99)	Cross-sectional	Maharasha, India	Mothers attending immunisation outpatient department (OPD) with their infants (age of baby <12 months)	197	Factors : Maternal age, education, siblings. Timing: 46% started CF at appropriate age

Jayant et al. (2010) ⁽⁶⁵⁾	Cross-sectional	Loni, India	Mothers of children aged 0-5 years attending immunisation clinic and Pediatric (OPD)	300	Diversity: Milk and water mentioned. Factors: Knowledge and support, education on CFP timing. Timing: 42% at 6-8 months
Jindal (2009)	Cross-sectional	Mangalore, India	Mothers of infants aged 6-12 months during their visits at the outpatient department of of two hospitals	104	Diversity: Fruit juice and ragi porridge. Factors: Early, inadequate expressing. Late=child refusing to eat. Timing: Majority weaned before 6 months with fruit juice
Kapur et al. (2005) ⁽⁴¹⁾	Cross-sectional	Urban slum, Delhi, India	Children 9-36 months of age, in an urban slum Integrated Child Development Services project	545	Diversity: Cereals, pulses, flesh foods, milk, vegetables, others mentioned. Factors: Gender of child
Katara et al. (2013) ⁽³⁵⁾	Cross-sectional	Urban slums, India	Children aged 6-24 months	561	Diversity: 64.7% were given an appropriate number of food groups. Cereals, pulses, fruits/vegetables, milk mentioned. Frequency: 25% of children were receiving adequate frequency of CF and its association with gender was significant. Factors: Parents thinking their child is too old for breast milk after 6 months, high birth order, gender, maternal literacy, young mothers. Timing: 60.5% after 6 months
Khan et al. (2012) ⁽³¹⁾	Cross-sectional	Urban health centers of the department of Community Medicine of UCMS, East Delhi, India	Children less 24 months old who were attending an immunisation clinic	374	Diversity: MDD was observed in 32.6% of the children of 6-23 months. Frequency: MMF was observed in 48.6% of the children.
Kumar et al. (2006) ⁽¹⁰¹⁾	Cross-sectional	4 Anganwari areas of urban Allahbad, Uttar Pradesh, India	Children aged under 60 months	217	Diversity: WHO recommended food was used. Factors: Knowledge. Timing: 48% practiced CF during 6-9 months
Kumar et al. (2013) ⁽⁴⁴⁾	Cross-sectional	Rural Tumkur, India	Lactating Mothers	110	Diversity: Ragi sari, biscuits, cerelac, cow's milk, Farex, goat's milk. Frequency: 46% given weaning food twice daily and 31% once daily. Factors: Rural areas
Kuriakose (2010) ⁽⁵⁷⁾	Cross-sectional	Karnataka, India	Randomly selected Infants from Karnataka	112	Frequency: 47% given CF four times daily. Factors: Number of children inversely proportional to quality of CFP, Educational status of mother improved. Timing: 31% started CF at 4 months
Lingam et al. (2014) ⁽⁵⁰⁾	Qualitative	Rural Rajasthan, India	Children aged 0-24 months	87	Diversity: Cerelac, porridge, biscuits, roti, milk, rice, almonds, lentils were used. Factors: Lack of advice, poor families. Timing: Often a delay until 7-12

					months of age
Lohia & Udipi (2014) ⁽³⁷⁾	Cohort study	6 urban slums in 3 western suburbs, Mumbai, India	Children aged 6-24 months	446	Diversity: Scores provided by age, IYCF groups measured. Frequency: Over half of males (54.8%) <12 months of age had a higher feeding frequency score compared to one-third of females (32.7%) at the same age. Factors: Maternal education, male child, age, BMI of mother
Malhotra (2013) ⁽³⁶⁾	Cross-sectional	India - national	Children aged 6–18 months	9241	 Diversity: MDD 6–8 months 3% 9–11 months 9% 12–18 months 17%. Frequency: MMF 6–8 months 25% 9–11 months 39% 12–18 months 54%. Factors: Illness, siblings, HCP advice, media, mother working from home. Timing: 63% had commenced weaning by 6-8 months
Mayuri et al. (2012) ⁽⁷⁷⁾	Cross-sectional	India – four zones	Infants from eight centers from different states across four zones (North, East, South, and West) in India	800	Diversity: Milk, biscuits, fennel seeds, cardamom, cereals. Factors: Perception of insufficient milk, or being tired after labour; convenience, and as per elders' advice
Menon et al. (2015) ⁽²⁷⁾	Cross-sectional	India - national	Children 0-24 months old	18463	 Diversity: Grains, legumes, eggs, meat, fish. 16% 6-23 month olds met MDD. Frequency: 45% met MMF. Factors: Education, delaying age of marriage, poverty, illiteracy. Timing: 58% used CF before 6 months
Meshram et al. (2012) ⁽⁴⁰⁾	Cross-sectional	Andhra Pradesh, India	Child-mother pairs were included using systematic random sampling	805	 Diversity: Cow/buffalo milk, home made semi solids e.g. cereals. Frequency: 95% received CF three times/day. Factors: Timely initiation was more likely among certain castes and tribes. Timing: Classified as 6-9 months
Meshram et al. (2013) ⁽⁶⁷⁾	Cross-sectional	Rural Madhya Pradesh	Children under 1 year old	5,457	Factors: Castes, literacy, wealth. Timing: 50% at 6-8 months
Mukhopadhy et al. (2013)	Cross-sectional	2 slums, West Bengal, India	Children aged 0-23 months from 2 slums via two-stage random sampling technique	245	Diversity: Minimum dietary diversity was 24.4%. Frequency: Age-appropriate minimum meal frequency was found in 67.0% children. Timing: 12% were before 6 months
Narayanappa et al. (2015)	Cross-sectional	Rural Karnataka	Children 9-10 months old	957	Diversity: Janam ghutti, peanuts, Cerelac, animal milk, biscuits, rice with lentils, others. Factors: Education of how to maintain sufficient breast milk production, and appropriate age for weaning. Timing: 66% before 6 months
Neog & Baruah (2012)	Cross-sectional	Jorhat district, Assam, India	Children aged 1- 12 months	120	Diversity: Milk, dal, rice, Cerelac, banana, luthri, khichri, cooked rice. Factors: Community norms, education. Timing: 26% given CF early
Padhy & Choudhury (2004) ⁽⁷⁶⁾	Cross-sectional	Orissa, India	Mothers of children under 12 months	131	Factors: Poverty, tradition, knowledge. Timing: 3% between 3-6 months

Padmadas et al. (2002) ⁽⁶⁰⁾	Cross-sectional	6 regions of India	Children 24-47 months	6285	Factors: Later start in Central and East (except West Bengal) India, maternal education. Timing: 53.5% weaned <6 months
Pasricha et al. (2011) (42)	Cross-sectional	2 rural districts of Karnataka, India	Children aged 12 – 23 months	396	Diversity: Idli and dosa with rice and lentils, sambar, rice, ragi. Factors: Poverty and food insecurity increase breast feeding
Passi & Shad (2004) ⁽¹⁰²⁾	Cross-sectional	Tea Garden in Assam, India	Children aged 0 – 12 months	110	Factors: Poverty and illiteracy. Timing: Commenced by 9-10 months for 56%
Patel et al. (2012) ⁽²⁹⁾	Cross-sectional	India - national	Last-born children aged 6-23 months	15028	Diversity: Among children aged 6-23 months, minimum dietary diversity rate was 15.2%. Foods included potatoes, bread, noodles, milk, flesh foods, chicken, grains, roots, tubers. Frequency: When sick, many children (up to 75%) see their complementary foods restricted in frequency. 41.5%. Factors: North and West India had a higher odds of suffering from poor CF practice; education, antenatal care. Timing: 55% 6-8 months were introduced to solid foods
Pathi et al. (2003) (71)	Cross-sectional	Rural block of Orissa, India	Children aged under 1 year	383	Factors: Lack of awareness regarding proper weaning practices, education. Timing: 36% at 8-12 months
Rangaswamy et al. (2013) $_{(43)}$	Cross-sectional	Nagavalli in Tumkur, India	Children under 1 year of age	110	Diversity: Biscuits, Cerelac, cow's milk, Farex, ragi porridge, rice dhal, others. Factors: Elderly family members were prominent influencers in decision when to add CF. Timing: 46% at 4-6 months
Rao et al. (2011) (78)	Cross-sectional	Mangalore	Mothers of children aged 6-24 months	200	Diversity: Ragi, wheat and rice. Factors : Number of children inversely proportional to quality of CF practice. Education, birth location. Timing: 78% had started CF at recommended time
Rasania et al. (2001) ⁽⁵⁶⁾	Cross-sectional	Mehrauli, Delhi	Children aged under 5 years old	354	Diversity: Top milk was given. Frequency: 46% 5-8 meals/day Factors : Education. Timing: Weaning times ranged from before 4 to after 12 months
Roy et al. (2009) ⁽⁵⁴⁾	Cross-sectional	Urban Health Centre, Chetla, Kolkata, India	Children aged 6–24 months	121	Diversity: Rice, dal, mashed potato, suji. Factors: Health facility, guardian and peer groups. Timing: 71.7% at 6 months
Samuel et al. (2012) ⁽⁴⁹⁾	Cohort study	Bangalore, India	Mothers of children aged 0 – 6 months	50	Diversity: Commercial cereal and milk, biscuits, mixed grain porridges, rice and lentil cakes, others. Factors: Reasons for the early introduction of CF included a crying infant, employment, elders. Timing: 64% by 6 months
Sanjeev & Anuradha (2012) ⁽⁶⁸⁾	Cross-sectional	Delhi, India	Children under 6 years	462	Factors: Lack of education Timing: Majority started before 6 months or after 8 months
Saxena & Kumar (2014) (59)	Cross-sectional	Doiwala Block, Dehradun, India	Mothers of children under 24 months.	336	Diversity: Egg, vegetarian food. Frequency: 31% more than 3 times a day. Factors: Employment and lack of expressing, lack of knowledge, vomiting, child cries. Timing: 13% delayed, 25% early

Saxena & Kumari (2014) (75)	Cross-sectional	Doiwala block, India	Accredited Social Health Activists (ASHA)s who consented to participate and had a child.	168	Diversity: Cow's milk, water, sugar, honey. Factors : Insufficient mother's milk (55.4%), Caesarean sections (20.2%), coercion from elders in the family to start top milk, led to cessation of exclusive breastfeeding. Timing: Early for 55%
Senarath et al. (2012) ⁽³⁰⁾	Cross-sectional	Bangladesh/Nepal/India/Sri Lanka/Pakistan	Children aged between 6 and 23 months old	15028	Diversity: MDD for 6-23 months was 15.2%. Frequency: MMF was 41.5%. Factors: Lack of maternal education and lower household wealth, Limited exposure to media, inadequate antenatal care and lack of post-natal contacts by health workers. Timing: 6-8 months for 55%
Shahrawat et al. (2013) ⁽¹⁰³⁾	Cross-sectional	Delhi	Children aged 0-24 months	5	Diversity: Grains, pulses, milk, fish, fruits. Factors: Better access to advice from healthcare professionals
Sharan et al. (2001) ⁽⁴⁵⁾	Cross-sectional	Bangalore, India	Farming women were randomly selected	306	Diversity: Ragi sari, rice with daal and ghee, vegetables, commercial baby food. Factors: Subsequent pregnancy, insufficient milk, child deemed old enough to wean.
Sharma & Sharma (2003) (80)	Cross-sectional	Baijnath block of Kangra district of Himachal Pradesh, India	Mothers of children under the age of two.	100	Diversity: Kheer, Dalia, dal, Khichri, rice, fruits, vegetables, others. Factors: Knowledge, traditions, health status of mother, sanitation, education. Timing: 70% by 4-6 months
Shroff et al. (2011) ⁽⁷²⁾	Cross-sectional	Andhra Pradesh, India	Mothers of children aged 3 -15 months	600	Factors: Autonomy of mother, tradition Timing: 24.9% were taking other foods or liquids than breast milk at 3-5 months
Singh & Vaidya (2015) (104)	Cross-sectional	Abalpur district of Madhya Pradesh	Children aged 6 months to 23 years.	300	Diversity: Cereals, pulses, millets, khichadi chawal, kudai bhat, latchaka, rejgeera ladoo. Factors: Working mothers were more likely to introduce complementary foods earlier than non-working.
Sinha & Pandey (2000) (81)	Cross-sectional	Bihar, India	Mothers of children under 72 months	200	Diversity: Mandi, papaya, potatoes, rice, dhal, fish and fowl, rice. Factors: Lack of knowledge of mothers and health workers was a barrier to appropriate CF.
Sinhababu et al. (2010) ⁽⁸²⁾	Cross-sectional	Bankura Town, West Bengal, India	Children aged 0-23 months	647	Factors: Insufficient knowledge, inappropriate practices. Timing: 56% by 6-8 months
Sreedhara & Banapurmath (2014) ⁽⁶³⁾	Cross-sectional	Urban slum community of central Karnataka, India	Infants aged 9-12 months	100	Frequency: 29% were given CF feed less than 3 times a day. Timing: 55% between 7-9 months
Subbiah & Jeganathan	Cross-sectional	Delhi, India	Postnatal mothers who had a normal	405	Diversity: Sugar water and honey. Factors: Mothers need more support and information about breast feeding and optimal times to begin CF

(2012) ⁽⁷⁹⁾			delivery		
Tyagi & Bhan (2009) ⁽⁷³⁾	Cross-sectional	Hisar, India	Mothers of children aged 0 – 60 months	380	Factors: Maternal employment, lack of milk
Veena et al. (2012) ⁽⁸⁶⁾	Cohort study	Mysore, India	Mothers who delivered babies at the Holdsworth Memorial Hospital	514	Factors: Familial socio-economic status, maternal education, primiparity Timing: Majority started at or after 4 months
Verma & Gupta (2015) (69)	Cohort study	Uttar Pradesh, India	Children aged below 9 months. Vast majority were under 6.	186	Diversity: Animal milk, cow's milk, porridge. Timing: Evidence of commencement at 3-6 months
Vyas et al. (2014) ⁽⁴⁶⁾	Cross-sectional	Uttarakhand, India	Mothers with children within 3 years of age were included	500	Diversity : Rice water (mand), coarse grains, Jhingora, barley, maize, pulses, Gahat, fruits, nuts. Factors: Lack of advice seeking, cultural influences, education, socioeconomic factors. Timing: 52% after 6 months
Yasmin (2008) (58)	Cross-sectional	6 different villages of Chandaulia district, Uttar Pradesh, India	Mothers of children 0-9 months	120	Diversity: Carrots, pumpkin, cauliflower, spinach, milk, buttermilk, potato, rice, pulses, porridge, kheer, banana. Frequency: 90% of 6-9 months. Factors: Perception of poor quality breast milk. Timing: 60% <3 months
Yousafzai et al. (2003) ⁽⁸³⁾	Cohort study	Mumbai, India	Carers of disabled and non disaled child	41	Factors: Erroneous belief that a disability is curable takes away from the focus of nutrition and its importance for the well-being of children with disabilities. Unaffordability of food.

Table 2: Weight of Evidence Awarded to Each Study				
	Weight of Evidence A	Weight of Evidence B	Weight of Evidence C	Weight of Evidence D
Studies	Quality of Methodology: The accuracy, coherency and transparency of evidence.	Relevance of Methodology: The appropriateness of the methodology for answering the review question.	Relevance of evidence to the review question: The relevance of the focus of the evidence for answering the review question.	Overall weight of evidence: Overall assessment of the extent to which the study provides evidence to answer the review question
Aggarwal et al. (2008) (55)	Low	Medium.	Medium	Medium
Aguayo et al. (2016) ⁽⁴⁸⁾	High	High	High	High
Aruldas et al. $(2010)^{(24)}$	High	High	High	High
Bagul & Supare (2012) (64)	Medium	Medium	Medium	Medium
Bahuguna et al. (2013) ⁽⁹⁶⁾	Medium	Medium	Low	Low
Bentley et al. (2015) ⁽²⁵⁾	High	Medium	Medium.	High
Bhandari et al. $(2002)^{(47)}$	High	Medium	Low	Medium
Bhanderi & Choudhary (2011) ⁽⁶²⁾	Low	Medium	Medium	Medium
Caleyachetty et al. (2013) ⁽⁶¹⁾	High	Medium	Medium	Medium
Chandwani et al. (2015) ⁽²⁶⁾	Medium	Medium	Medium	Medium
Chhabra & Gupta (2015) ⁽⁸⁵⁾	Medium	Medium	Medium	Medium
Chhabra et al. $(2010)^{(51)}$	Low	Medium	High	Medium
Collison et al. $(2015)^{(53)}$	High	Medium	Medium	High
D'Alimonte et al. (2016) (33)	High	Medium	Medium	Medium
Dahiya & Sehgal (2002)	Low	Medium	Medium	Medium
Dakshayani & Gangadhar (2008) ⁽⁹⁷⁾	Low	Medium	Medium	Medium
Damayanthi et al. (2013) ⁽⁷⁰⁾	Medium	Medium	Medium	Medium
de Onis (2006)	Medium	High	Medium	Medium
Dibley et al. (2010) ⁽⁸⁹⁾	High	High	Medium	High
Fall et al. (2011) (98)	Medium	High	High	Medium
Farzana & Devi (2010) ⁽⁶⁶⁾	Medium	Medium	Medium	Medium
Fazilli et al. (2011) ⁽³⁸⁾	Medium	Medium	Medium	Medium

Garg & Chadha (2009) ⁽³⁴⁾	Medium	Medium	Medium	Medium
Goswami et al. (2012) ⁽⁷⁴⁾	Medium	Medium	Medium	Medium
Holambe & Thakur (2014)	Medium	High	High	Medium
Jayant et al. (2010) ⁽⁶⁵⁾	Medium	Medium	Medium	Medium
Jindal (2009)	Low	Medium	Low	Low
Kapur et al. (2005) (41)	Medium	Medium	Medium	Medium
Katara et al. (2013) ⁽³⁵⁾	Medium	Medium	Medium	Medium
Khan et al. $(2012)^{(31)}$	Medium	Medium	Medium	Medium
Kumar et al. (2006) ⁽¹⁰¹⁾	Medium	Medium	Low	Low
Kumar et al. (2013) ⁽⁴⁴⁾	Low	Medium	Medium	Medium
Kuriakose (2010) ⁽⁵⁷⁾	Low	Medium	Medium	Medium
Lingam et al. (2014) ⁽⁵⁰⁾	High	Medium	High	High
Lohia & Udipi (2014) ⁽³⁷⁾	Medium	Medium	Medium	Medium
Malhotra (2013)	High	Medium	Medium	Medium
Mayuri et al. (2012) ⁽⁷⁷⁾	High	Medium	Medium	Medium
Menon et al. (2015) ⁽²⁷⁾	High	Medium	Medium	Medium
Meshram et al. $(2012)^{(40)}$	High	Medium	High	High
Meshram et al. $(2013)^{(67)}$	Medium	Medium	Low	Medium
Mukhopadhy et al. $(2013)^{(28)}$	Medium	Low	Medium	Medium
Narayanappa et al. (2015) ⁽⁵²⁾	High	High	High	High
Neog & Baruah (2012) ⁽³⁹⁾	Low	Medium	Medium	Medium
Padhy & Choudhury (2004) ⁽⁷⁶⁾	Medium	Medium	Medium	Medium
Padmadas et al. (2002) ⁽⁶⁰⁾	High	Medium	Low	Medium
Pasricha et al. $(2011)^{(42)}$	High	Medium	Medium	Medium
Passi & Shad (2004) ⁽¹⁰²⁾	Low	Medium	Low	Low
Patel et al. (2012) ⁽²⁹⁾	High	High	High	High
Pathi et al. $(2003)^{(71)}$	Low	Medium	Medium	Medium
Rangaswamy et al. (2013) ⁽⁴³⁾	Medium	Medium	High	Medium
Rao et al. (2011)	Medium	High	High	High
Rasania et al. (2001) ⁽⁵⁶⁾	High	High	High	High

Roy et al. (2009) ⁽⁵⁴⁾	Medium	Medium	Medium	Medium
Samuel et al. (2012) ⁽⁴⁹⁾	High	High	High	High
Sanjeev & Anuradha (2012) ⁽⁶⁸⁾	Medium	Medium	Medium	Medium
Saxena & Kumar (2014)	Medium	Medium	Medium	Medium
Saxena & Kumari (2014)	Medium	Medium	High	Medium
Senarath et al. $(2012)^{(30)}$	High	High	Medium	High
Shahrawat et al. $(2013)^{(103)}$	Medium	Low	Medium	Low
Sharan et al. $(2001)^{(45)}$	Medium	Medium	Medium	Medium
Sharma & Sharma (2003)	Medium	Medium	Medium	Medium
Shroff et al. (2011) (72)	Medium	Medium	Low	Medium
Singh & Vaidya (2015) (104)	Medium	Medium	High	Medium
Sinha & Pandey (2000) ⁽⁸¹⁾	Low	Medium	Medium	Medium
Sinhababu et al. (2010) ⁽⁸²⁾	Medium	Medium	Medium	Medium
Sreedhara & Banapurmath (2014) ⁽⁶³⁾	Low	Medium	Medium	Medium
Subbiah & Jeganathan (2012) ⁽⁷⁹⁾	Medium	Medium	Medium	Medium
Tyagi & Bhan (2009) ⁽⁷³⁾	Medium	Medium	Low	Medium
Veena et al. (2012) ⁽⁸⁶⁾	Medium	Medium	Medium	Medium
Verma & Gupta (2015) ⁽⁶⁹⁾	High	Medium	Medium	Medium
Vyas et al. (2014) ⁽⁴⁶⁾	Medium	Medium	Medium	Medium
Yasmin (2008)	Medium	Medium	Medium	Medium
Yousafzai et al. (2003) ⁽⁸³⁾	Medium	High	Low	Medium

Table 3: Foods utilised for CF categorised into WHO food groups				
WHO classified Food Groups	Study Reference (author)			
Grains, roots and tubers	$\underset{52,54,58,62,66,69,77,78,80-82,84,104)}{31} \underbrace{studies}_{(24-27,29,32,34,35,38,40,41,43-46,48,50-82,84,104)}$			

Legumes and nuts	29 studies ^(24–27,29,32,35,38,41,43–46,48,50–52,54,58,62,66,67,77,78,80–82,84,104)
Dairy products (e.g. milk, cheese, yogurt)	26 studies ^(24–26,29,32,34,35,39–41,43–45,47,48,51,52,58,62,66,69,75,77,80,82,84)
Flesh foods (e.g. meat, fish, poultry and liver/organ meats)	10 studies ^(24–27,32,41,47,48,52,53,81)
Other Fruit and Vegetables	22 studies ^(24–26,29,32,34,35,38,39,41,45–48,51–53,58,62,66,81,84)
Vitamin A rich fruits and vegetables (e.g. Pumpkin)	8 studies ^(25,26,29,32,40,48,58,59)
Eggs	12 studies ^(24–27,29,32,34,47,48,52,53,59)

Table 4: Timing of initiating CF				
Infant Age	Study Reference			
<3 months	1 study ⁽⁵⁸⁾			
3-6 months	22 studies ^(27,32,43,44,47,49,52,56,57,60–62,64,66,69,70,75,76,80,84,86,104)			
6-9 months	29 studies ^(24–26,28–31,33,35,36,38–40,46,48,50,51,54,63,65,67,74,78,82,84,85,89,97,99)			
9 – 12 months	4 studies ^(38,55,71,98)			
>12 months	0 studies			

Table 5: Factors influencing CF practices							
Family level							
Promoters	Study reference	Barriers	Study reference				
Knowledge of	4 studies ^(33,54,65,76)	Lack of	12 studies ^(24,38,46,51,59,65,75,79–83)				
optimal CFP		knowledge					
		of optimal					
		CFP					
Autonomy of	2 studies (72,80)	Inadequate	7 studies ^(43,45,52,58,59,73,75)				
mother		breast milk					
		production					
Older age at	2 studies ^(27,37)	Siblings	5 studies ^(34,36,57,78,99)				

marriage			
Valuing	2 studies ^(33,76)	Recent	3 studies ^(36,59,80)
nutrition		illness	
BMI of mother	1 study ⁽³⁷⁾	Difficulty	2 studies (55,59)
		feeding child	
Delivery with	1 study ⁽⁴⁰⁾	Crying infant	2 studies ^(49,59)
doctor present			
High birth	1 study ⁽³⁵⁾	Lack of	2 studies ^(24,50)
order		support	
Acknowledged	1 study ⁽³³⁾	Maternal age	2 studies ^(35,99)
importance of			
maternal health			
Advice seeking	1 study ⁽³³⁾	Religion	2 studies ^(70,71)
Mother who	1 study ⁽³⁶⁾	Caesarian	1 study ⁽⁷⁵⁾
works from		sections	
home			
		Child's age	1 study ⁽³⁷⁾
		Concern	1 study ⁽⁵³⁾
		about weight	
		gain	
		Maternal	1 study ⁽⁴⁸⁾
		nutrition	
		status	
		Mothers	1 study ⁽⁷⁰⁾
		from joint	
		families	
		Primiparity	1 study ⁽⁸⁶⁾
		Subsequent	1 study ⁽⁴⁵⁾
		Pregnancy	
	Orgar	isational level	
Promoters	Study reference	Barriers	Study reference
Education of	14 studies	Cultural	15 studies ^(38,39,43,46,49,52,53,55,59,62,72,75–77,80)
parent	(24,27,29,34,37,39,40,42,46,61,62,66,71,86)	influences	
Literacy status	6 studies ^(35,64,66,70,78,84)	Poverty	6 studies ^(27,30,48,50,67)
of mother.			
Wealth	5 studies ^(24,34,50,85,86)	Lack of	6 studies ^(30,55,60,68,80,99)
		parental	
		education	
Socio-	5 studies ^(34,52,61,70,84)	Low literacy	5 studies ^(27,30,64,67,77)
economic			
status			
Media	4 studies ^(24,36,61,89)	Employment	4 studies ^(49,59,73,84)
exposure			

Social support	3 studies ^(33,65,70)	Gender	4 studies ^(35,37,41,85)
group			
Advice from a	3 studies ^(36,54,68)	Poor	3 studies ^(48,80,86)
healthcare		sanitation	
professional			
Effective	3 studies ^(24,62,89)	Inadequate	2 studies ^(29,30)
antenatal care		antenatal	
		care	
Location	3 studies ^(60,62,89)	Food	2 studies (42,80)
		insecurity	
Certain castes	2 studies ^(40,67)	Price of food	2 studies ^(53,83)
or tribe			
Support system	1 study ⁽⁷⁵⁾	Focus on	1 study ⁽⁸³⁾
at work		disability	
Family support	1 study ⁽⁷⁹⁾	Birth in a	1 study ⁽⁷⁸⁾
		public	
		hospital	
		rather than a	
		private	
		hospital	
Hindu mothers	1 study ⁽⁶¹⁾	Location:	1 study ⁽²⁹⁾
		Northern	
		India, West	
		India	
Birth within a	1 study ⁽⁸⁵⁾	Lack of	1 study ⁽³⁰⁾
government		media	
institute		exposure	