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  Abstract—NASA’s Global Ecosystem Dynamic Investigation 

(GEDI) mission has been designed to measure forest structure 

using lidar waveforms sampled as it orbits the Earth while aboard 

the International Space Station. In this paper, we report the results 

of a study using airborne measurements of large-footprint (LF) 

lidar to simulate GEDI observations and to verify its capability  its 

to retrieve ground elevation, vegetation height and aboveground 

biomass (AGB) by comparing to airborne small-footprint (SF) 

lidar measurements. The study focused on tropical forests and 

used data collected during the NASA and ESA AfriSAR ground 

and airborne campaigns in the Lope National Park in Central 

Gabon. The measurements covered a gradient of successional 

stages of forest development with different height, canopy density 

and topography. The comparison of the two sensors shows that LF 

lidar waveforms and simulated waveforms from SF lidar are 

equivalent in their ability to estimate ground elevation (RMSE=0.5 

m, bias=0.29 m) and maximum forest height (RMSE=2.99 m; 

bias=0.24 m) over the study area. The difference in the AGB 

estimated from both lidar instruments at the 1-ha spatial scale is 

small over the entire study area (RMSE=6.34 Mg  ha-1, bias=11.27 

Mg  ha-1) and the bias is attributed to the impact of ground slopes 

greater than 10-20 degrees on the LF lidar measurements of forest 

height. Ourresults verify the ability of GEDI LF lidar to measure 

the complex structure of humid tropical forests and to provide 

estimates of AGB comparable to SF. 

 

Index Terms— Lidar, LVIS, GEDI, Gabon, Tropical Forest, 

AfriSAR 

I. INTRODUCTION 

 ASA’s Global Ecosystem Dynamics Investigation Lidar 

(GEDI) space mission is planned to be onboard the 

International Space Station (ISS) for two years beginning late 

2018. The sensor will collect 25m diameter footprint full-

waveform lidar data to help characterize vegetation structure 
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and aboveground biomass globally, and report on aboveground 

biomass dynamics across landscapes. Lidar is an active remote 

sensing technique that is well-suited to providing high 

resolution, three-dimensional information on vertical and 

horizontal forest structures and underlying topography [1]-[5]. 

Over the past few decades, lidar has been used to accurately 

retrieve ground and aboveground forest attributes, such as 

aboveground biomass (AGB), in temperate [6]-[9], boreal [10]-

[13] and tropical forests [14]-[18]. Lidar systems for forestry 

applications are distinguished based on platform type (e.g., 

terrestrial, airborne or spaceborne), signal recording (discrete 

return or full-waveform), footprint size (e.g. small i.e., < 1m or 

large i.e., 10-25m in diameter) and sample scanning pattern 

(profiling or scanning) [19],[20]. The most common lidar 

systems used in forestry applications have been small-footprint 

(SF) discrete return lidar and large-footprint (LF) full-

waveform (FW) lidar. SF lidar sensors record discrete heights 

at peak return of light and are typically flown on airborne 

platforms or operated on the ground, while LF FW lidar sensors 

record a continuous height distribution of surfaces illuminated 

by the laser pulse and are found mainly on spaceborne 

platforms, such as the GLAS (Geoscience Laser Altimeter 

System) sensor [21]. LVIS (Land, Vegetation, and Ice Sensor) 

is a LF lidar sensor on airborne platforms that provides 

coverage of large areas and can be used to simulate the 

characteristics of spaceborne observations such as GEDI [22]. 

In both LF and SF systems, canopy height metrics (i.e., 

maximum height, height percentiles and canopy cover) can be 

derived from the recorded returned signals and may be used to 

retrieve aboveground forest structural properties. For example, 

Lefsky [23] used the GLAS data to produce a global map of 
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forest height and Saatchi et al. [17] converted the GLAS height 

metrics to aboveground biomass to produce a benchmark map 

of carbon stocks of tropical forests across three continents. 

Drake et al. [14] and Drake et al. [24] used metrics derived from 

LVIS to estimate a variety of forest attributes, including AGB, 

over a tropical forest area at the La Selva Biological Station, 

Costa Rica. Asner and Mascaro [25], using SF lidar, developed 

a series of aboveground carbon density models by calibrating 

the plot estimates to simple lidar metrics. 

 The LF and SF lidar sensors have been compared over 

temperate forests to demonstrate the similarity and differences 

in measuring the structural characteristics of forests, such as 

canopy height [26]-[27]. However, examples of such studies 

over tropical forests with dense and structurally complex 

canopy cover are scarce. Meyer et al. [28] used the two lidar 

datasets to examine changes in forest biomass over time, and 

Fricker et al. [29] used the two types of observations to develop 

techniques to correct for LF lidar observations over 

topographically complex terrain in the tropics.  

Here, we aim at comparing SF and LF lidar performance in 

quantifying the vertical structure and biomass across a forest-

savanna boundary region encompassing a natural transition 

from grasslands (very low AGB) to very high aboveground 

biomass and structurally complex ancient afrotropical forests 

(>18,000 years), including many very large trees (>60m), 

located in central Gabon. The study focuses on variations of 3-

D forest structure at the footprint and landscape scales. LF lidar 

and commercial SF lidar for the study site were collected as part 

of the NASA and European Space Agency (ESA) AfriSAR 

campaign with the goal of verifying the performance of future 

spaceborne lidar (GEDI) and radar sensors such as ESA’s 

BIOMASS mission and NASA-ISRO Synthetic Aperture Radar 

(NISAR) systems for ecosystem studies [30], [31] in 

quantifying vertical forest structure and AGB. The paper 

reports on the comparison of LF and SF data over Lopé 

National Park in central Gabon and examines the performance 

of LF simulated waveforms in detecting structure and 

estimating forest aboveground biomass.  

II. MATERIAL AND METHODS 

A. Study Area 

The study area is located north of the Lopé National Park 

(LNP) in central Gabon (Fig. 1) and covers an area of 

approximately 50 km2.  LNP is located in the western Lower 

Congolian semi-evergreen forests of central Africa [32] and is 

made up of dynamic, diversified vegetation types. Forest 

boundaries have been advancing, invading savanna grasslands 

under the influence of post-Pleistocene climate [32]-[34], yet 

anthropogenic uses of fire [35], together with the presence of 

elephant seed dispersal and browsing [36] have been modifying 

and maintaining the Lopé forest edge configuration and 

creating a complex system of forest types across the forest-

savanna boundary. 

Annual rainfall at the study area averages 1500 mm (SEGC 

data, 1984–2016), and there are two rainy seasons and two dry 

seasons. The longer dry season extends from June to mid-

September, followed by the longer rainy season from mid-

September to mid-December. The shorter dry and rainy seasons 

are less regular and can vary in duration and intensity. The 

savanna and forest vegetation are on undulating terrain ranging 

from 230 to 470 m a.s.l. within slopes that can reach more than 

30 degrees in the western region of the study area.   

The vegetation cover in the study area can be divided into four 

structural types: 1) savanna grasslands (SAV) dominated by 

herbaceous plants and fire-resistant woody shrubs. Two types 

of forest patch occur in the savanna-dominated areas: gallery 

forests over rocky or sandy soil along small watercourses; and 

isolated patches of forests or “bosquets” of anthropogenic 

origin, mainly found on hilltops [33], [37], 2) Young colonizing 

forests that grow as a result of fire suppression at the edge of 

forest-savanna boundary (YCF), 3) Okoumé (Aucoumea 

klaineana) dominated forests (ODF), containing mainly 

Okoumé and Azobe (Lophira alata) trees, and 4) Marantaceae 

and Mature old growth forests (OGF) found a greater distance 

from the current savanna edge with greater species diversity and 

structural complexity [33], [37]. These old forests are mainly 

located in the western portion of the study area at the edge of 

the Massif du Chaillu Pleistocene forest refuge and cover a 

more complex, steeply hilly terrain. Based on the SF lidar-

derived canopy height model (CHM), we manually delimited 

four sub-areas across the site to represent the four major 

vegetation types for their variations in structure and 

aboveground biomass (Fig. 1).  

 

B. Field data collection 

Forest inventory data were collected in field plots (N=12; 

LNL1-12) of either 1 ha (ODF, OGF, SAV; n=9) or 0.5 ha 

(YCF; n=3) that were designed to span a gradient of 

aboveground biomass from very low to high biomass values 

[38]-[40]. In each plot, all stems greater than 10 cm in diameter 

at breast height (dbh, at 1.30 m), or above stem irregularity and 

buttresses, were labelled and diameters and heights were 

measured. For the plots in SAV and YCF, stems 5–10 cm in 

dbh were also measured as they can represent a substantial 

portion of aboveground biomass in such vegetation types. In all 

plots, trees were identified to genus level and where possible to 

species level. Wood density values were extracted from global 

data sets [41]-[42]. Using diameter, height, and wood density 

of trees, we calculated the aboveground biomass (dry weight) 

of each stem using the Chave et al. [43] pantropical moist 

tropical forest allometric equation (eq.1).  

 

AGB (kg) = 0.0673 ×  (ρ ×  dbh2  ×  ht)0.976               (1)                     

 

were dbh is in cm, ht is in m, and ρ is the wood density in      

g  cm-3. The total AGB at plot level was then obtained by 

summing individual stem biomass estimates and converting it 

to Mg  ha-1. 
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C. Lidar data and processing 

 

1) Small-footprint Lidar 

The SF DR lidar data were collected using a Riegl VQ480U 

sensor mounted on a helicopter model EC 135 in July 2015 with 

a variable point density and footprint diameter of ~10 cm. Data 

were pre-processed to remove artefacts due to helicopter 

motion. This provided a more uniform point density of ~10 

points.m-2 for vegetation characterization. In this study, digital 

terrain model (DTM), slope, canopy height model (CHM) and 

canopy metrics derived from simulated pseudo-waveforms 

were computed based on the following steps: first, ground 

returns were classified using the Progressive Triangulated 

Irregular Network (TIN) densification algorithm [44], and a 1-

m DTM was created. Slope (%) maps were derived from the 

DTM. Second, normalized height (i.e. the height above ground) 

was obtained for each point of the point cloud by subtracting 

ground elevation (obtained from the DTM) from the raw point 

elevation value, and the 1-m CHM was then computed using 

the highest points. Lastly, within each LVIS footprint, the SF 

lidar point cloud was clipped and pseudo-waveforms were 

simulated by convoluting the returns within each footprint (Fig. 

2a) [27]: 

WV(z) =  [ ∑ Ii ∙ wh(xi, yi) 

i∈U

] ∗ wv (
2 ∙ z

c
) (1) 

 

U =  {i: √(xi − x0)2 + (yi − y0)2  

≤ r and |zi − z| ≤
∆h

2
} 

(2) 

 

where (xi, yi, zi) are the coordinates of each discrete return, (x0, 

y0) refer to the coordinates of the footprint center, r is the 

footprint radius (i.e., defined as half of the 1/e2 of the maximum 

rather than half of the full width at half maximum), ∆h is the 

sensor discretization interval (15 cm for LVIS), U denotes the 

set of those SF lidar returns within the SF footprint (25m in 

diameter), Ii is the intensity of each return, and * denotes the 

convolution operator. The Gaussian distribution of energy both 

along and across the laser beam was approximated by wv and 

wh: 

  

𝑤ℎ(𝑥, 𝑦) = exp [−2
(𝑥𝑖−𝑥0)2+(𝑦𝑖−𝑦0)2

 𝑟2  ], (3) 

wv(t) = exp [−2
(t−t0)

σt
2 ] , 

 

(4) 

where t0 is a reference time corresponding to the peak of an 

emitted pulse, and σt is the interval from t0 to the time at which 

the intensity along the beam drops to e(-2) of the maximum. The 

pulse duration was set to 10 ns [40].  

After simulating the LVIS waveforms, canopy relative height 

metrics (SF RH) were calculated based on the cumulative 

waveform energy (i.e., 10%, 25%, 50%, 75%, 98% and 100%; 

RH10, RH25, R50, RH75, RH98 and RH100). The SF data 

 
Fig. 1. a) Study area, Gabon; b) SF lidar derived Canopy Height Model in Lopé National Park; c) SF-derived Digital Terrain Model in Lopé National Park; D) SF-

derived point cloud profile across a forest-savanna transition zone; Mixed old-growth forest (OGF) b1-c1); Monodominant Okoumé forest (ODF) b2-c2); Young 

colonizing forests of savanna (YCF) b3-c3); and Grassland savanna (SAV) b4-c4) 
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processing was done using FUSION/LDV [38], Lastools [39], 

R [43] and Matlab [44] softwares. 

 

2) Large-footprint Lidar 

 

The LF full-waveform lidar data were acquired in February 

2016 using the LVIS sensor, developed and operated by the 

Laser Remote Sensing Laboratory at NASA’s Goddard Space 

Flight. In this study, LVIS was mounted on the NASA Langley 

B200 aircraft and flown at ~7315 m with a footprint diameter 

of 25 m and nominal spacing of ~10 m both along and across 

track. LVIS footprints were geo-located to the global reference 

ellipsoid WGS 84, using a combination of GPS and Inertial 

Navigation System (INS) information [45], [50]. Our 

preliminary analyses indicate that LVIS data geolocation match 

very well with that of SF DR lidar data and that sensor 

comparison did not require any further geolocation correction. 

LVIS is a full-waveform digitizing system that records the 

vertical distribution of nadir-intercepted surfaces at 15 cm 

vertical resolution [51] using the return energy of Gaussian-

shaped optical pulses at a wavelength of 1064 nm [51] (Fig. 2b). 

Essentially, the amplitude of a LVIS waveform signal is 

proportional to the energy reflected from canopy-intercepted 

surfaces and the ground [52]. For each LVIS waveform, ground 

elevation (ZG) was defined as the center of the lowest mode in 

the waveform greater than mean signal noise [52], [53], and 

height metrics relative to ground elevation (LF RH) were 

calculated based on the normalized cumulative return energy 

[52],[54]. In general, RH100 is considered a noisy metric 

because it is associated with the first return and depends 

strongly on the signal to noise ratio (SNR) setup in LF lidar 

measurements. In comparing LF to SF lidar measurements, 

RH98 (heights at 98 percentiles of energy) was found to be 

more precise. Other metrics such as canopy cover can be 

computed based on the LVIS waveform. However, for this 

study, we only used ZG, RH75 and RH98 (representing ground 

elevation, canopy height at 75% and 98% of the laser return 

energy, respectively) for comparison purposes and AGB 

modeling.   

 

D. Comparison of small- vs. large-footprint lidar-derived 

metrics for ground and forest structure attribute retrieval 

 

1) Ground and Canopy Height Comparison 

We compared ground elevation (ZG) and top-of-canopy 

height (RH98) retrieved from small- and large-footprint lidar at 

different spatial levels (LVIS footprint and grid) over the 

subareas selected to represent the gradient of successional 

stages of vegetation found in the study area (see section 2.1). 

For each metric, the comparison was performed using the two-

sided Wilcoxon–Mann–Whitney rank-sum and equivalence 

tests [55]-[56], at a significance level of 0.05) in R [43]. At the 

footprint level, SF ZG was computed as the mean of ground 

elevation from DTM within the footprint area. At the grid level, 

SF and LF lidar-derived ground elevation and top-of-canopy 

height were averaged at 25-m, 50-m and 100-m spatial 

resolutions leading to mean ZG (SF_ZG_MEAN and 

LF_ZG_MEAN) and mean RH98 (SF_RH98_MEAN and 

LF_RH98_MEAN). The grid cell resolutions were tested to 

quantify (i) how well the two observations characterize the 

landscape variations of aboveground forest structure at different 

scales and (ii) how differences between the two systems scales 

with grid cell resolutions. This approach will also allow us to 

understand how many footprints from LF sensors are required 

to capture landscape variability in forest structure and biomass. 

This, in turn, will provide useful information regarding GEDI 

projected sampling densities to accurately retrieve canopy 

height and biomass over complex tropical landscapes.  

 

2) Aboveground Biomass 

We developed relationships between SF and LF height 

metrics and ground-derived AGB. In this study, we used the 

non-linear least squares (nls) function in R [48] to develop a 

model between AGB and lidar metrics at the plot level. For each 

sample plot, the mean of SF lidar-derived CHM (MCH) and LF 

lidar–derived RH75 were computed (SF_MCH; 

LF_RH75_MEAN) and used as independent variables for 

modeling AGB. Both metrics have been successfully used to 

estimate AGB in other forest ecosystems from lidar data [25], 

[55]. We  adopted a widely-used power-law model to express 

the relationship between the corresponding height metrics and 

AGB [25]. The model predictions were evaluated in terms of 

the coefficient of determination (R²), Root Mean Square Error 

(RMSE) and the Bias  in Mg  ha-1: 

 

AGB = β0 ∙  HL
̅̅̅̅ β1  + ε  

with ε ~ N(0, σ2)                         

(5) 

RMSE = √
∑ (ŷi − yi)

n
i=1

2

n
 

(6) 

Bias =
1

n
∑(ŷi − yi)

n

i=1

 
(7) 

 

where AGB is the aboveground biomass in Mg  ha-1, HL
̅̅̅̅  is 

the lidar-derived mean forest canopy height metric (either 

SF_MCH_MEAN or LF_RH75_MEAN), n is the number of 

plots, 𝑦𝑖  is the observed value for plot i, and 𝑦̂𝑖  is the predicted 

value for plot i. We also calculated relative RMSE and biases 

by dividing the respective absolute values (cf. eqs. 6 and 7) by 

the mean of predictions. 

For validation purposes, the AGB models were embedded in 

a bootstrap procedure with 100 iterations. In each bootstrap 

iteration, we drew 12 times with replacement from the 12 

available samples. In this procedure, on average 44% of the 

total number of samples (~5 samples) are not drawn. These 

samples were subsequently used as holdout samples for
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independent validation. In each bootstrap iteration, Adj.R2 and 

relative and absolute RMSE and bias were computed based on 

the linear relationship between observed and predicted AGB 

using the holdout samples. Wilcoxon–Mann–Whitney rank-

sum and equivalence tests were also used to assess if the mean 

of predicted AGB from the 100 iterations and the observed 

AGB mean differ at a significance level of 5%. 

The height metrics SF_MCH and LF_RH75_MEAN were 

computed for the entire site at a spatial resolution of 100 m, and 

the fitted models were applied to map AGB at landscape level. 

SF- and LF-derived AGB estimates were then compared at 

landscape level and summarized for the four vegetation types 

described in Section 2.1.  

The uncertainty analysis was performed at the landscape 

level, on the SF and LF AGB-derived maps for the entire site 

and for each subarea (Section 2.1).  The total uncertainty was 

computed by integrating the pixel level errors over the regions 

of interest and accounting for spatial autocorrelation of errors 

as follows [58]-[60]: 

𝜎𝐴𝐺𝐵 
2 (𝑅𝑂𝐼) =

1

𝑚2 ∑ ∑ 𝑐𝑜𝑣(𝜎𝑖,𝜎𝑗)

𝑚

𝑗=1

𝑚

𝑖=1

=
1

𝑚2
(∑ 𝜎𝑖

2

𝑚

𝑖=1

+ 2 ∑ ∑ 𝜌(𝑑)

𝑚

𝑖<𝑗

𝑚

𝑖=1

𝜎𝑖𝜎𝑗)  

(eq.8) 

 

where 𝜎𝐴𝐺𝐵
2  is the variance of the estimator for the mean AGB 

for the region of interest - ROI (i.e. the entire study area or 

subareas), m is the number of pixels; cov represents the 

covariance of pixel errors, 𝜎𝑖  is the estimated standard error of 

AGB at the i-th pixel, and 𝜌(𝑑) is the spatial correlation 

function based on an exponential semivariogram model 

depending on the distance d between pixels i and j within the 

region of interest [58]. The square root of the variance (𝜎𝐴𝐺𝐵
2 ) is 

the standard error (SE), which is reported as the uncertainty 

[58]-[60] in our analysis.  

 

E. Impacts of Sample Size on AGB Estimation 

The GEDI instrument will operate with a footprint of 

25 m similar to LVIS LF, but each footprint will be separated 

by 60 m along track and 500 m across track between each of 10 

tracks. In order to evaluate the performance of GEDI for 

modelling AGB in tropical forests, we examine the number of 

footprints required to have a relatively unbiased estimate of 

AGB at 1-ha.  By subsampling the LVIS LF footprints, we 

assessed the impacts of LF sample size on AGB modelling at 

the plot level. The footprint density from LVIS varied at 

different locations in the study area because of the spatial 

variation of overlapping flight lines during the campaign. On 

average, 72 ± 23 (sd) footprints were registered over each field 

plot. We randomly downscaled the number of footprint to 10, 

5, 3 and 1 for each plot, and LF_RH75_MEAN was then 

computed for AGB modeling. For the simulation where only 

one footprint shot was kept, we used the LF RH75 value for 

AGB modelling. Simulations were repeated 100 times and 

distribution histograms of R2, RMSE, Bias and model 

parameters were computed for each subsampling case. Thus, 

we were able to assess how well one GEDI footprint randomly 

located within a 1-ha plot will be able to retrieve plot AGB.  

III. RESULTS AND DISCUSSION 

A. Comparison of SF and LF lidar-derived ground elevation 

and canopy height at footprint level  

The SF and LF lidar-derived ground elevation data are 

strongly correlated (Adj. R2=0.99; Fig. 3). The mean difference 

in ground elevation across all vegetation types is 1.01 ± 0.99 m 

(n.s.; p-value = 0.78; Wilcoxon–Mann–Whitney rank-sum test). 

Difference in ground elevation between SF and LF is highest in 

 
Fig. 2. a) SF-derived pseudo-waveform (vertical black line) and b) LF-derived waveform. Canopy metrics, such as RH75, RH98 and RH100, were derived from 

the normalized cumulative return energy.   



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
6 

the most structurally complex OGF subarea (RMSE=2.46 m, 

rRMSE=0.63%). LF and SF lidar-derived RH98 over the study 

area show significant differences at footprint level for ODF, 

YCF and SAV (mean RMSE= 2.06 ± 1.20 m, mean bias=0.81 

± 0.71 m). Even though differences in RH98 can be higher than 

10 m (RMSE ~ 4 m) in OGF, it is not significant for the four 

subregions combined and does not show a bias across the height 

range (bias=0.47m). Yet, based on equivalence tests, SF and LF 

lidar-derived ground elevation (ZG) and top-of-canopy height 

(RH98) at footprint level are found equivalent across all 

vegetation types.  

Although we did not find significant differences between the 

two measurements when analyzing all footprints within the sub 

regions, there were some large differences between the two 

datasets at individual footprint level (Fig. 3). These differences 

reached up to 10 and 20 m for ground elevation and top-of-

canopy height detection, respectively. Errors remained random 

though across footprints. By analyzing individual footprints 

with large differences in ZG and RH98, we found several 

potential sources of uncertainty in individual measurements 

when comparing the two data sets:  

i) Ground topography is a significant source of error in LF 

lidar quantification of ZG and RH98. Slope (both its variations 

within a LF lidar footprint and its orientation against lidar 

observation) has been shown to induce errors in ground 

elevation retrieval [50],[65]-[67]. In our study site, particularly 

under dense canopy, the individual LF lidar ZG values may 

have large errors (Fig 4). However, similar errors may also 

appear in SF retrieval of ZG. Depending on pulse density and 

observation geometry (i.e., viewing angles), there may be no 

ground-classified points over slopes and the interpolated DTM 

may miss micro-topographical variations across the landscape. 

If the individual LF lidar and the SF lidar pseudo-waveforms 

footprint fall over complex terrains with dense forest cover, the 

errors from both measurements can introduce large differences 

in the footprint level ZG values. In most studies, the difference 

in ZG is often attributed to uncertainties associated with LF 

measurements [27]. However, in dense tropical forests, SF 

measurements may also have errors in detecting ZG depending 

on the pulse density and ground interpolation method [18]. 

ii) Canopy structure might also introduce uncertainty 

when calculating canopy height from LF lidar. In a study 

carried out in Sierra National Forest, USA, Hyde et al. [51] 

reported that differences between field and LVIS measurements 

 
Fig. 3. a) Comparison of small-footprint (SF) and large-footprint (LF) lidar-derived ground elevation and (b) top-of-canopy height at footprint level using the 

equivalence test. Mixed old-growth forest (OGF); Monodominant Okoumé forest (ODF); Young colonizing forests of savanna (YCF); and Grassland savanna 

(SAV). The equivalence plot design presented herein is an adaptation of the original equivalence plots presented by Robinson [57], examples are showing in [61]-

[64]. The grey polygon represents the ± 25% region of equivalence for the intercept, and the orange vertical bar represents a 95% confidence interval for the 

intercept. The LF ZG and RH98 are equivalent to SF ZG and RH98 on both intercept and slope as long as the orange bar remain completely within the grey 

polygon. If the grey polygon is lower than the orange vertical bar, the measurements would be negatively biased; and if it is higher than the orange vertical bar, 

the LF ZG and RH98 are positively biased. Moreover, the grey dashed line represents the ± 25% region of equivalence for the slope, the fit line is within the dotted 

lines and the black vertical bar is within the grey rectangle, indicating that the pairwise measurements are equivalent. An orange and black vertical bar that are 

wider than the region outlined by the grey dashed lines indicates high variance for SF measurements. The white dots are the pairwise measurements, and the solid 

line is a best-fit linear model for the pairwise measurements. The light grey dashed line represented the 1:1 relationship.  
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of canopy height and biomass were mainly attributable to the 

spatial configuration of canopy elements and were less sensitive 

to topography, crown shape, or canopy cover. For instance, in 

our study, we identified that most of the large differences in 

RH98 were found in footprints located at higher slopes and 

across the transition from savanna to forest. In this case, taller 

trees located at the edges were detected by the SF lidar, but not 

detected from the LF lidar because of the low laser intensity at 

the edge of the footprint. In LF systems, Gaussian waveforms 

drop off in power across the footprint, resulting in a lack of 

sensitivity to canopy material progressively towards the edges 

of the footprint [51]. Figure 4 shows examples of footprints and 

geometry of canopy within the footprint from SF simulations 

over three different terrains and conditions where RH98 from 

 LF may be very similar (Fig. 4 a1-d1), larger (Fig. 4 a2-d2) or 

smaller (Fig. 4 a3-d3) than SF. In most comparisons between 

LF and SF data, it is considered that SF lidar derived RH98 

must be higher than LF lidar. SF measurements may have a 

return from a small leaf on the top of the canopy but LF requires 

enough leaves on the top of the canopy to have a significant 

return higher than SNR. However, when simulating the LF 

canopy height metrics from SF measurements, the difference 

may be due both under- and over- estimation.  

iii) Simulation of LF data from SF measurements may also 

be a source of error in comparing RH98 at individual footprint 

level. Our result in Figure 3b shows that this error can be large 

and without any preference or bias towards one lidar 

measurement type. Simulation of LF footprint waveforms from 

SF measurements may include errors associated with the 

geometry of measurements, the form of Gaussian weighting and 

small geolocation error that may partially include or exclude 

large trees around the footprint edges. 

 

 
Fig. 4. Comparison of LF and SF waveforms. LF (a1-a3) and SF (b1-b3) waveforms at footprint level. SF point cloud in 2D (c1-c3; d1-d3) and in 3D (e1-e3). a1-

d1 footprint with difference in RH98 of 0.12 m (UTM E: 786989 N: 9978269). a2-d2 with difference in RH98 of 11.32 m (UTM E: 786184 N: 9977274). a3-d3 

footprint with difference in RH98 of -11.48 m (UTM E: 785368 N: 9977107). The SF derived pseudo-waveform is smoothed for better display herein. 
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B. Comparison of SF- and LF-derived ground elevation and 

canopy height at grid levels 

SF_ZG_MEAN and LF_ZG_MEAN were strongly 

correlated (Adj.R2=0.99) with RMSE ≤ 1.02 m (0.31%) and 

bias ≤ 0.31 m (0.09%) whatever the spatial resolution (Fig. 5). 

Moreover, LF_RH98_MEAN and SF_RH98_MEAN were also 

strongly correlated at all spatial scales with RMSE ≤ 1.66 m 

(6.14%) and bias ≤ 0.62 m (2.94%). The difference between SF 

and LF measurement of ZG_MEAN and RH98_MEAN 

decreased ~32% in relative RMSE from 25 to 100 m 

resolutions. Equivalence tests showed that SF and LF for both 

ZG_MEAN and RH98_MEAN were equivalent across all 

spatial resolutions, but Wilcoxon–Mann–Whitney rank-sum 

tests showed significant differences in SF and LF lidar-derived 

RH98 at spatial resolutions of 25 and 50 m (Fig. 5 a2, b2).  

LF predominantly overestimated ground elevation when 

compared with SF lidar, yet differences exceeding 2 m were 

only found in the OGF area (Figure 6). For RH98_MEAN, we 

observed both under and overestimation, and differences ≥ 1.5 

m were also found in the OGF area. As the grid cell size of the 

maps coarsened from 25 to 100 m, the spread of the differences 

of SF and LF also decreased as shown by the distribution of 

their differences (Fig. 6a-g1.2-3.2). The comparison of the two 

sensors at grid cells revealed the importance of aggregated 

measurements to capture the landscape variations of the forest 

structure. By averaging several LF lidar footprints within a 1-

ha area, random errors between the two measurements were 

reduced significantly, allowing the measurements to converge 

in representing the landscape characteristics of the forests in the 

study area. Comparison of Figures 3 and 5 readily shows the 

impact of LF footprint aggregation even with 25 m grid cells. 

In this study, we believe the temporal mismatch of seven 

months between the two datasets have negligible effects on our 

analysis. Moreover, leaf phenology and potential changes of 

moisture are very small and do not impact the detection of 

ground, the top mean canopy height or RH metrics at footprints 

 
Fig. 5. Equivalence test of mean ground elevation (ZG_MEAN) (a1-c1) and mean canopy height (RH98_MEAN) (a1-c2) at spatial resolution of 25 (a1-a2), 

50 (b1-b2) and 100 m (c1-c2). Mixed old-growth forest (OGF); Monodominant Okoumé forest (ODF); Young colonizing forests of savanna (YCF); and 

Grassland savanna (SAV);   
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or aggregated over 1-ha. However, the only potential impact 

may be due to natural tree falls or branch snapping between the 

two dates. These events are not wide spread and although may 

impact few LF lidar footprints (acquired after SF), the impact 

on the overall statistics are small. Longer time difference 

between the two acquisitions may have increased the impact of 

tree fall and natural disturbance. 

C. Comparison of SF and LF Aboveground Biomass Models 

 

1) Biomass model performance 

SF_MCH and LF_RH75_MEAN were significantly 

correlated with AGB at plot levels (table 1). AGB was 

overestimated in both SF (Bias: 1.24 Mg  ha-1) and LF (bias: 

2.47 Mg  ha-1) models after bootstrapping the performance with 

100 repetitions. However, the Wilcoxon–Mann–Whitney rank-

sum and equivalent tests showed that SF and LF AGB estimates 

at plot level are both equivalent to the ground-estimated AGB 

(p-value ≥ 0.93). Fig. 7 shows the SF and LF derived AGB 

estimates from the bootstrap procedure. According to these 

tests, the mean AGB estimates from the bootstrapping 

procedure are equivalent with ground-estimated AGB (p-value 

≥ 0.89) as well. SF and LF AGB estimates at plot level, both 

from the model and bootstrapping procedure, are also 

equivalent (p-value ≥ 0.88).  

At the 1-ha scale, the number of plots was limited to 12, and 

although this captures variation in biomass across the forest 

types, it may not be enough to develop a more robust cross-

validation test of model performance. However, the accuracies, 

both for training and validation models, presented herein were 

similar to those reported in previous studies [8], [14], [28]. This 

analysis can be done at different spatial scales to allow more 

 
Fig. 6. Spatial distribution of differences between SF and LF lidar-derived ground elevation (ZG_MEAN) and top-of-canopy height (RH98_MEAN) for 

different vegetation types and spatial resolutions. We focused on four vegetation types: mixed old-growth forest (OGF; a1.1-a3.2 and e1.1-e3.2); 

monodominant Okoumé forest (ODF; b1.1-b3.2 and f1.1-f3.2), young colonizing forests of savanna (YCF; c1.1-c3.2 and g1.1-g3.2); and grassland savanna 

(SAV; d1.1-d3.2 and h1.1-h3.2). Three spatial resolutions were considered: 25 m (a1.1-h1.1), 50 m (a2.1-h2.1), and 100 m (a3.1-h3.1). The blue graphs 
represent the distribution of differences between SF and LF lidar-derived ZG_MEAN and RH98_MEAN. The black and red dashed lines represent the 0 and 

mean of difference distribution, respectively.   

TABLE I 

 NONLINEAR POWER-LAW ABOVEGROUND BIOMASS MODELS (N=12) 

Lidar Models R2 

RMSE Bias 

Mg  ha-1 
% 

Mg  ha-1 
% 

SF AGBSF = 7.56 x SF_MCH1.06 0.94 34.28 17.32 1.24 0.63 

LF AGBLF = 6.40 x LF_RH75_MEAN 
1.11 0.93 37.28 18.72 2.47 1.24 
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GEDI footprints over larger landscapes, but requires either 

large ground plots or a more complex error propagation if 

compared with SF lidar-derived AGB. A more complex 

sampling approach to exactly mimic the GEDI samples over the 

landscape was beyond the scope of this study and hence is not 

considered in this paper. 

 

2) Aboveground biomass maps 

Landscape-wide AGB estimates based on the models from 

Table I were mapped at 1-ha grid cells (100 m x 100 m) and are 

showed in the Fig.8. At the map scale, the equivalence test 

showed that LF and SF lidar AGB maps are equivalent at 

landscape level (p-value > 0.05). However, Wilcoxon–Mann–

Whitney rank-sum tests showed statistically significant 

differences in RMSE and bias (p-value ≤ 0.01) of 6.34 Mg  ha-

1 (2.84%) and 11.27 Mg  ha-1 (5.05%), between the two maps. 

The difference map (Fig 8b) showed LF-derived AGB was 

larger across all old growth forest types that appear to be 

distributed across areas with slopes larger than 10 degrees (Fig. 

8c). The uncertainty of the AGB estimates at landscape level 

for the entire study area and for the four regions of interest are 

derived by taking into account the pixel base model errors from 

the bootstrapping approach and the spatial correlation of errors 

as presented in Table II. 

SF and LF lidar-derived biomass models are equivalent in 

performance based on Table I, but different in coefficients and 

if used interchangeably to predict forest AGB over the 

landscapes can introduce larger random or systematic errors. 

However, individually they provide similar mean biomass 

density and similar uncertainty over the study area. Results 

shown in Table II also suggest that the difference between the 

two approaches is within the margin of error in AGB estimation 

for each lidar approach [14], [54]. The results suggest that 

models developed with SF lidar data at landscape scale (≥ 1-ha) 

may be used for LF lidar data as long as equivalent height 

metrics between the two sensors are identified (e.g., mean top 

canopy height). 

D. Impacts of LF lidar sample size on AGB estimation  

The impact of LF sample size on the AGB modeling and 

estimation was examined by randomly selecting 10, 5, 3 and 1 

footprint out of more than 50 footprints in each 1-ha plot (Fig. 

9). Reduced sample size resulted in increased RMSE and bias 

values, but the effect was small until only 1 lidar footprint was 

selected (Fig. 8 a1-2, b1-2). The variability of R2 and 

parameters a and b of the AGB models increased slightly in 

reduced sample sizes (Fig. 9 c1-2, d). The result suggests that a 

minimum of three samples can potentially provide an unbiased 

estimate of AGB of a 1-ha area. 

GEDI lidar is expected to provide global (between ± 51° 

latitude) estimates of forest height structure at different spatial 

sampling schemas [68] such that unbiased forest biomass 

estimates are provided at 1-km2 (100 ha) resolution. However, 

by clustering the samples along tracks, there is a strong 

probability of having a minimum of 3 footprints within a 1-ha 

area. The spatial distribution of a large number of 1-ha biomass 

values can help us to improve the GEDI final product from 100-

ha to 1-ha through geostatistical modeling or machine learning 

approaches [69]. 

 
Fig. 7. Equivalence plots of the observed and predicted AGB (Mg  ha-1) obtained from the 100 bootstrapped model runs using SF_MCH (a) and 

LF_RH75MEAN (b) (N=12). The white dots are the pairwise measurements, and the solid line is a best-fit linear model for the pairwise measurements. The 

horizontal red bar is the standard deviation of AGB estimates from the bootstrapping procedure. The light grey dashed line represented the relationship 1:1. 

N=12 
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Fig. 8. Small (a1) and Large (b2) Lidar-footprint derived Aboveground Biomass Estimates at the landscape level. b) The difference in Aboveground Biomass 

Estimates between SF and LF lidar. (c) slope (degree) map. Mixed old-growth forest (OGF); Monodominant Okoumé forest (ODF); Young colonizing forests 

of savanna (YCF); and Grassland savanna (SAV). 

 
TABLE II 

SUMMARY OF SF AND LF LIDAR-DERIVED AGB ESTIMATES AND UNCERTAINTIES AT LANDSCAPE LEVEL FOR THE ENTIRE STUDY AREA AND REGIONS OF 

INTEREST. 

Region of 

interest (ROI) 

Area  

(ha) 

SF Lidar LF Lidar 

Mean ± Std (Mg  ha-1) 
SE 

(Mg  ha-1; %) 

Mean ± Std 

(Mg  ha-1) 

SE 

 (Mg  ha-1; %) 

OGF 74.15 320.13 ± 31.56 3.69 (1.15) 322.79 ± 38.87 4.35 (1.34) 

ODF 32.42 323.72 ± 32.51 7.47 (2.30) 316.52 ± 32.82 8.19 (2.59) 

YCF 15.92 48.97 ± 22.91 15.29 (31.22) 40.79 ± 19.88 17.97 (44.0) 

SAV 51.69 12.68 ± 20.74 4.46 (30.17) 14.94 ± 22.60 5.26 (35.2) 

Entire Study 

Area 

5044 223.01 ± 121.43 3.86 (1.73) 220.4 ± 120.77 4.16 (1.89) 

Std: standard deviation; SE: standard error (uncertainty) 
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IV. CONCLUSION 

In this paper, we performed a comparison of small and large 

footprint lidar measurements of ground and forest structure, 

including aboveground biomass, across an AGB transition zone 

in central Gabon. We showed that in the dense and complex 

tropical forests of Central Gabon, the LF lidar measurements 

are equivalent to SF lidar measurements in characterizing 

ground elevation and maximum forest height. In addition, 

comparison of gridded LF lidar height with ground plots 

showed that an unbiased estimate of aboveground biomass at 1-

ha can be achieved with a sufficient number of large footprints 

(n ≥ 3). The approach and results from this study can serve as a 

methodological basis for examining GEDI performance for 

estimating and mapping tropical forest structure and biomass. 

In addition, our results demonstrate that SF lidar measurements 

can be readily used for both calibration and validation of LF 

lidar measurements of structure and biomass over different 

tropical forest structures. 

ACKNOWLEDGMENT 

This research was performed at the Jet Propulsion 

Laboratory, California Institute of Technology under a funding 

from NASA for the AfriSAR campaign and science products. 

Carlos Silva was partially supported by a PhD scholarship from 

the National Council of Technological and Scientific 

Development - CNPq via the Science Without Borders Program 

(Process 249802/2013-9). LVIS lidar and forest inventory data 

were acquired with support from NASA and ESA during the 

AfriSAR program. The small footprint lidar data acquisition 

was supported by funding from the US SilvaCarbon program. 

Mariano Garcia is supported by the Marie Curie International 

Outgoing Fellowship within the 7th European Community 

Framework Programme (ForeStMap - 3D Forest Structure 

Monitoring and Mapping, Project Reference: 629376). We 

thank Bryan Blair, Michel Hofton, Steven Hancock and Laura 

Duncanson at NASA Goddard Space Flight Center for their 

contribution by providing LVIS data. 

REFERENCES 

 

[1] M. Maltamo, N. Erik, and J. Vauhkonen, Forestry Applications of 

Airborne Laser Scanning: Concepts and Case Studies, Managing Forest 

Ecosystems, 1st ed. India: Delhi Book Store, 2014, pp. 01-464. 
[2] C. A. Silva, C. Klauberg, A. T. Hudak, L. A. Vierling, V. Liesenberg, S. P. 

C. Carvalho, and L. C. E. Rodriguez, “A principal component approach for 

predicting the stem volume in Eucalyptus plantations in Brazil using 

airborne LiDAR data,” Forestry, vol. 89, no. 4, pp. 422-433, Aug., 2016, 

DOI:10.1093/forestry/cpw016. 
[3] H. Guan, J. Li, J. Yu, L. Zhong. “DEM generation from lidar data in 

wooded mountain areas by cross-section plane analysis,”. Intern J. of Rem. 

Sens, vol 35, n. 3, pp. 927-948. Jan 2014, DOI: 

doi.org/10.1080/01431161.2013.873833 

[4] R. McRoberts, Q. Chen, B. Walters, and D. Kaisershot. “The effects of 
global positioning system receiver accuracy on airborne laser scanning-

assisted estimates of aboveground biomass,” Remote Sens. Environ., vol. 

207, pp. 42-49. Mar. 2018, DOI: doi.org/10.1016/j.rse.2017.09.036 

[5] R. McRoberts, Q. Chen, B. Walters, D. Gormanson, 2018. “The shelf-life 

of airborne laser scanning data for enhancing forest inventory inferences,” 
Remote Sens. Environ., vol. 206, pp. 254-259. Mar. 2018, DOI: 

doi.org/10.1016/j.rse.2017.12.017 

[6] M. García, D. Riaño, E. Chuvieco, and F. Danson, “Estimating biomass 

carbon stocks for a Mediterranean forest in central Spain using LiDAR 

height and intensity data,” Remote Sens. Environ., vol. 114, no. 4, pp. 816–
830, Apr. 2010, DOI: 10.1016/j.rse.2009.11.021. 

[7] A. T. Hudak, E. K. Strand, and L. A. Vierling, “Quantifying aboveground 

forest carbon pools and fluxes from repeat LiDAR surveys,” Remote Sens 

Environ., vol. 123, pp. 25-40, Aug. 2012, DOI: 10.1016/j.rse.2012.02.023. 

[8] C. Silva, A. T. Hudak, L. A. Vierling, C. Klauberg, M. Garcia, A. Ferraz, 
M. Keller, J. Eitel, and S. Saatchi, “Impacts of Airborne Lidar Pulse 

Density on Estimating Biomass Stocks and Changes in a Selectively 

Logged Tropical Forest,” Remote Sens., vol. 9, no. 10, pp. 1068, Oct. 2017, 

DOI: 10.3390/rs9101068. 

[9] A. Ferraz, S. Saatchi, C. Mallet, S. Jacquemoud, G. Gonçalves, C. Silva, P. 
Soares, M. Tomé, and L. Pereira, “Airborne Lidar Estimation of 

 
Fig. 9. LF simulations for AGB modeling at 1-ha. Relative and absolute RMSE and bias (a1-b1; a2-b2). Parameters a (c1) and b (c2) and R2 (d) of the AGB 

models. 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
13 

Aboveground Forest Biomass in the Absence of Field Inventory,” Remote 

Sens., vol. 8, no. 8, pp. 653, Aug. 2016, DOI: 10.3390/rs8080653. 

[10] E. Næsset, “Estimating timber volume of forest stands using airborne laser 

scanner data,” Remote Sens. Environ., vol. 61, no. 2, pp. 246-253, Aug. 

1997, DOI:10.1016/s0034-4257(97)00041-2. 
[11] E. Næsset, “Predicting forest stand characteristics with airborne scanning 

laser using a practical two-stage procedure and field data,” Remote Sens. 

Environ., vol. 80, no. 1, pp.88-99, Apr. 2002, DOI: 10.1016/S0034-

4257(01)00290-5. 

[12] E. Næsset and T. Økland, “Estimating tree height and tree crown 
properties using airborne scanning laser in a boreal nature reserve,” 

Remote Sens. Environ., vol. 79, no.1, pp. 105-115, Jan. 2002, DOI: 

10.1016/S0034-4257(01)00243-7.  

[13] R. Nelson, T. Gobakken, E. Næsset, T. G. Gregoire, G. Stahl, S. Holm, and 

J. Flewelling, “Lidar sampling — Using an airborne profiler to estimate 
forest biomass in Hedmark County, Norway,” Remote Sens. Environ., vol. 

123, pp. 563-578, Aug. 2012, DOI: 10.1016/J.RSE.2011.10.036.  

[14] J. B. Drake, R. O. Dubayah, R. G. Knox, D. B. Clark, and J. B. Blair, 

“Sensitivity of large-footprint lidar to canopy structure and biomass in a 

neotropical rainforest,” Remote Sens. Environ., vol. 81, no. 2-3, pp. 378-
392, Aug. 2002, DOI:10.1016/s0034-4257(02)00013-5.  

[15] M. L. Clark, D. B. Clark, and D. A. Roberts, “Small‐footprint lidar 

estimation of sub‐canopy elevation and tree height in a tropical rainforest 

landscape,” Remote Sens. Environ., vol. 91, no. 1, pp. 68-89, May 2004, 

DOI: 10.1016/j.rse.2004.02.008. 
[16] J. Mascaro, G. P. Asner, H. C. Muller-Landau, M. van Breugel, J. Hall, and 

K. Dahlin, “Controls over aboveground forest carbon density on Barro 

Colorado Island, Panama,” Biogeosciences, vol. 8, pp. 1615-1629, Jun. 

2011, DOI: 10.5194/bg-8-1615-2011. 

[17] S. S. Saatchi, N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. 
Salas, B. R. Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. 

White, M. Silman, and A. Morel, “Benchmark map of forest carbon stocks 

in tropical regions across three continents,” Proc. Natl. Acad. Sci., vol. 108, 

no. 24, pp. 9899–9904, Jun. 2011, DOI: 10.1073/pnas.1019576108. 
[18] C. A. Silva, A. T. Hudak, L. A. Vierling, C. Klauberg, M. Garcia, A. 

Ferraz, M. Keller, J. Eitel, and S. Saatchi, “Impacts of Airborne LiDAR 

Pulse Density on Estimating Biomass Stocks and Changes in a Selectively 

Logged Tropical Forest,” Remote Sens., vol. 9, no. 10, Oct. 2017, DOI: 

10.3390/rs9101068 
[19] D. Lu, Q. Chen, G. Wang, E. Moran, M. Batistella, M. Zhang, G. V. Laurin, 

and D. Saah, “Aboveground Forest Biomass Estimation with Landsat and 

LiDAR Data and Uncertainty Analysis of the Estimates,” Int. J. For. Res., 

vol. 2012, pp. 1-16, Jan. 2012, DOI: 10.1155/2012/436537. 

[20] R. O. Dubayah and J. B. Drake, “Lidar Remote Sensing for Forestry,” J. 
For., vol. 98, no. 6, pp. 44-46, Jun. 2000. 

[21] M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar remote 

sensing for ecosystem studies,” Bioscience, vol. 52, no. 1, pp. 19-30, Jan. 

2002. 

[22] W. Qi and R. O. Dubayah, “Combining Tandem-X InSAR and simulated 
GEDI lidar observations for forest structure mapping,” Remote Sens. 

Environ., vol. 187, no. 15, pp. 253–266, Dec. 2016, DOI: 

10.1016/j.rse.2016.10.018. 

[23] M. A. Lefsky, “A global forest canopy height map from the Moderate 

Resolution Imaging Spectroradiometer and the Geoscience Laser 
Altimeter System,” Geophys. Res. Lett., vol. 37, no. 15, pp. n/a, Aug.  

2010, DOI:10.1029/2010GL043622. 

[24] J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. 

Hofton, R. L. Chazdon, and J. F. Weishampel, “Estimation of tropical 

forest structural characteristics, using large-footprint lidar,” Remote Sens. 
Environ., vol. 79, no. 2-3, pp. 305-309. Feb. 2002, DOI:10.1016/S0034-

4257(01)00281- 

[25] G. P. Asner and J. Mascaro, “Mapping tropical forest carbon: Calibrating 

plot estimates to a simple LiDAR metric,” Remote Sens. Environ., vol. 140, 

pp. 614-624, Jan. 2014, DOI:10.1016/j.rse.2013.09.023. 
[26] J. B. Blair and M. A. Hofton, “Modeling laser altimeter return waveforms 

over complex vegetation using high-resolution elevation data,” Geophys. 

Res. Lett., vol. 26, no.16, pp. 2509–2512, Aug. 1999, 

DOI:10.1029/1999GL010484. 

[27] S. C. Popescu, K. Zhao, A. Neuenschwander, and C. Lin, “Satellite lidar 
vs. small footprint airborne lidar: Comparing the accuracy of aboveground 

biomass estimates and forest structure metrics at footprint level,” Remote 

Sens. Environ., vol. 115, no.11, pp. 2796-2797, Nov. 2011, 

DOI:10.1016/j.rse.2011.01.026. 

[28] V. Meyer, S. S. Saatchi, J. Chave, J. W. Dalling, S. Bohlman, G. A. Fricker, 
C. Robinson, M. Neumann, and S. Hubbell, “Detecting tropical forest 

biomass dynamics from repeated airborne lidar measurements,” 

Biogeosciences, vol. 10, pp. n/a, Aug. 2013, DOI:10.5194/bg-10-5421-

2013. 

[29] G. A. Fricker, S. S. Saatchi, V. Meyer, T. W. Gillespie, and Y. Sheng, 

“Application of semi-automated filter to improve waveform lidar sub-
canopy elevation model,” Remote Sens., vol. 4, no. 6, pp. 1494-1518, May 

2012, DOI: 10.3390/rs4061494. 

[30] T. LeToan, S. Quegan, M. Davidson, H. Balzter, P. Paillou, K. 

Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart, and L. 

Ulander, “The BIOMASS mission: Mapping global forest biomass to 
better understand the terrestrial carbon cycle,” Remote Sens. Environ., vol. 

115, no. 11, pp. 2850-2860, Nov. 2011, DOI:10.1016/J.RSE.2011.03.020. 

[31] S. Saatchi, M. Marlier, R. Chazdon, D. Clark, and A. Russell, “Impact of 

spatial variability of tropical forest structure on radar estimation of 

aboveground biomass,” Remote Sens. Environ., vol. 115, no. 11, pp. 2836-
2849, Nov. 2011, DOI: 10.1016/j.rse.2010.07.015. 

[32] F. White, The vegetation of Africa: A descriptive memoir to accompany 

the Unesco/AETFAT/UNESCO vegetation map of Africa. France: 

Courvoisier S.A., 1983, pp. 1-325 

[33] L. White and K. Abernethy, Guide de la Végétation de la Réserve de la 
Lopé, 2nd ed. Gabon: ECOFAC, 1997, pp. 1-224. 

[34] J. Maley, “The African rain forest: main characteristics of changes in 

vegetation and climate from the Upper Cretaceous to the Quaternary,” 

Proc. Roy. Soc. Edinburgh, vol. 104, pp. 31-73, 1996. 

[35] A. Ngomanda, A. Chepstow-Lusty, M. Makaya, C. Favier, P. Schevin, J. 
Maley, M. Fontugne, R. Oslisly, and D. Jolly, “Western equatorial 

African forest-savanna mosaics: a legacy of late Holocene climatic 

change?,” Clim. Past., vol. 5, pp. 647-659, Oct 2009, DOI: 10.5194/cp-5-

647-2009.  

[36] S. Blake, S.L. Deem, E. Mossimbo, F. Maisels, and P. Walsh, “Forest 
elephants: tree planters of the Congo,” Biotropica, vol. 41, no. 4, pp. 459-

468, Jan. 2009, DOI: 10.1111/j.1744-7429.2009.00512.x.  

[37] A. Cuni-Sanchez, L. J. T. White, K. Calders, K. J. Jeffery, K. Abernethy, 

A. Burt, M. Disney, M. Gilpin, J. L. Gomez-Dans, and S. L. Lewis, 
“African Savanna-Forest Boundary Dynamics: A 20-Year Study,” PLoS 

ONE, vol. 11, no. 6, pp. e0156934, Jun. 2016, DOI: 10.1371/ 

journal.pone.0156934.  

[38] G. Lopez-Gonzalez, S.L. Lewis, M. Burkitt, O.L.  Phillips. 

ForestPlots.net: a web application and research tool to manage and 
analyses tropical forest plot data. Journal of Vegetation Science, vol 22: 

pp. 610–613. Aug 2011, DOI: 10.1111/j.1654-1103.2011.01312.x 

[39] G. Lopez-Gonzalez, S.L. Lewis, M. Burkitt, T.R. Bakerand,  O.L. 

Phillips. ForestPlots.net Database. 2009. Nov. 15, 2016 [Online]. 

www.forestplots.net 

[40] S.L. Lewis et al. Aboveground biomass and structure of 260 African 

tropical forests. Phil Trans R Soc B. v.368, pp. 1-14, Jul. 2013. 
DOI.10.1098/rstb.2012.0295 

[41] J. Chave, D.A. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson, A.E. 

Zanne. “Towards a worldwide wood economics spectrum,” Ecology 

Letters, vol 12, no. 4, pp. 351-366. https://doi.org/10.1111/j.1461-

0248.2009.01285.x 
[42] A.E. Zanne, G. Lopez-Gonzalez, D.A.  Coomes, J. Ili, S. Jansen, S.L. 

Lewis, R.B. Miller, N.G. Swenson, M.C. Wiemann, J . Chave. Data from: 

Towards a worldwide wood economics spectrum. Dryad Digital 

Repository. 2009. https://doi.org/10.5061/dryad.234 

[43] J. Chave, M. Réjou-Méchain, A. Búrquez, E. Chidumayo, M. Colgan, W. 
Delitti, W., A. Duque, T. Eid, P. Fearnside, R. Goodman, M. Henry, A. 

Martínez-Yrízar, W. Mugasha, H. Muller-Landau, M. Mencuccini, B. 

Nelson, A. Ngomanda, E. Nogueira, E. Ortiz-Malavassi, R. Pélissier, P. 

Ploton, C. Ryan, J. Saldarriaga, and G. Vieilledent, “Improved allometric 

models to estimate the aboveground biomass of tropical trees,” Glob. 
Chang. Biol., vol. 20, no. 10, pp. 3177–3190, Oct. 2014, 

DOI:10.1111/gcb.12629. 

[44] P. Axelsson, “DEM generation from laser scanner data using adaptive TIN 

models,” in International Archives of Photogrammetry and Remote 

Sensing, Netherlands: ISPRS, 2000, ch. XXXIII, pp. 110–117. 
[45] J. Blair, D. Rabine, and M. Hofton, “The Laser Vegetation Imaging Sensor: 

a medium-altitude, digitisation-only, airborne laser altimeter for mapping 

vegetation and topography,” ISPRS J. Photogramm. Remote Sens., vol. 54, 

no. 2-3 pp. 115-122, Jul. 1999, DOI: 10.1016/s0924-2716(99)00002-7. 

[46] R. McGaughey, “FUSION/LDV: Software for LIDAR Data Analysis and 
Visualization 2015,” Nov. 15, 2017. [Online]. Available: 

http://forsys.cfr.washington.edu/fusion/fusionlatest.html. 

[47] M. Isenburg, “LasTools-Efficient Tools for LiDAR Processing,” Version 

1.0-1.3, 2017, Nov. 15, 2017. [Online]. Available: http://lastools.org. 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
14 

[48] R Core Team, “A language and environment for statistical computing,” 

Austria: R Foundation for Statistical Computing, 2017, Nov. 15, 2017. 

[Online]. Available: https://www.R-project.org/. 

[49] MATLAB, “Math. Graphs. Programming. Nov. 15, 2017. [Online]. 

Available: https://uk.mathworks.com/products/matlab.html. 
[50] M. Hofton and J. Blair, “Laser altimeter return pulse correlation: a method 

for detecting surface topographic change,” J. Geodyn., vol. 34, no. 3-4, pp. 

477–489, Nov. 2002, DOI:10.1016/S0264-3707(02)00043-1. 

[51] P. Hyde, R. Dubayah, B. Peterson, J. B. Blair, M. Hofton, C. Hunsaker, R. 

Knox, and W. Walker, “Mapping forest structure for wildlife habitat 
analysis using waveform lidar: Validation of montane ecosystems,” 

Remote Sens. Environ., vol. 96, no. 3-4, pp.  427–437, Jun. 2005, 

DOI:10.1016/j.rse.2005.03.005. 

[52] A. Swatantran, R. Dubayah, D. Roberts, M. Hofton, and J. B. Blair, 

“Mapping biomass and stress in the Sierra Nevada using lidar and 
hyperspectral data fusion,” Remote Sens. Environ., vol. 115, no. 11, pp. 

2917-2930, Nov. 2011, DOI:10.1016/j.rse.2010.08.027. 

[53] J. B. Blair, M. A. Hofton, and D. L. Rabine, “Processing of NASA LVIS 

elevation and canopy (LGE, LCE and LGW) data products,” version1.01, 

2006, NASA Goddard Space Flight Center, Greenbelt, MD, USA, Nov. 
12, 2017. [Online]. Available: https://lvis.gsfc.nasa.gov  

[54] W. Huang, G. Sun, R. Dubayah, B. Cook, P. Montesano, W. Ni, and Z. 

Zhang, “Mapping biomass change after forest disturbance: Applying 

LiDAR footprint-derived models at key map scales,” Remote Sens. 

Environ., vol. 134, pp. 319–332, Jul. 2013, DOI: 
10.1016/j.rse.2013.03.017. 

[55] G. Sun, K. J. Ranson, Z. Guo, Z. Zhang, P. Montesano, and D. Kimes, 

“Forest biomass mapping from lidar and radar synergies,” Remote Sens. 

environ., vol. 115, pp. 2906-2916, Mar 2011, 

doi:10.1016/j.rse.2011.03.021 
[56] D. F. Bauer, “Constructing confidence sets using rank statistics,” J. 

Americ. Stat. Assoc., vol. 67, no. 339, pp.  687–690, Aug. 1972. 

[57] A. P. Robinson, R. A. Duursma, and J. D. Marshall, “A regression-based 

equivalence test for model validation: Shifting the burden of proof,” Tree 
Physiol., vol. 25, no. 7, pp. 903–913, Jul. 2005.  

[58] R. E. McRoberts, “A model-based approach to estimating forest area,” 

Remote Sens. Environ., vol. 103, no. 1, pp. 56–66, Jul. 2006, 

DOI:10.1016/j.rse.2006.03.005. 

[59] C. R. Weisbin, W. Lincoln, and S. Saatchi, “A Systems Engineering 
Approach to Estimating Uncertainty in Above‐Ground Biomass (AGB) 

Derived from Remote‐Sensing Data,” Syst. Eng., vol. 17, no. 3, pp. 361–

373, Fall 2014.  

[60] M. Garcia; S. Saatchi; A. Casas; A. Koltunov; S. Ustin, C. Ramirez; J. 

Garcia-Gutierrez; H. Balzter. Quantifying biomass consumption and 
carbon release from the California Rim fire by integrating airborne lidar 

and Landsat OLI data. J. Geophys. Res. Biogeosci. 2017, v. 122, pp. 340–

353, Feb. 2017. DOI: 10.1002/2015JG003315 

[61] C. A. Silva, C. Klauberg, S. P.C. Carvalho, A. T. Hudak, and L. C. E. 

Rodriguez, “Mapping aboveground carbon stocks using LiDAR data in 
Eucalyptus spp. plantations in the state of São Paulo, Brazil,” Scien For., 

vol. 42, no. 104, pp. 591-604, Dec. 2014. 

[62] C. A. Silva, A. T. Hudak, L. A. Vierling, E. L. Loudermilk, J. J. O’Brien, 

J. K. Hiers, S. B. Jack, C. Gonzalez-Benecke, H. Lee H, and M. J. 

Falkowski, “Imputation of Individual Longleaf Pine (Pinus palustris 
Mill.) Tree Attributes from Field and LiDAR Data,” Can J Remote Sens., 

vol. 42, no. 5, pp. 554-573, Oct. 2016. 

[63] C. A. Silva, A. T. Hudak, L. A. Vierling, C. Gonzalez-Benecke, S. P. C. 

Carvalho, L.C. E. Rodriguez, and A. Cardil, “Combined effect of pulse 

density and grid cell size on predicting and mapping aboveground carbon 
in fast-growing Eucalyptus forest plantation using airborne LiDAR data,” 

Carbon Balance Manag., vol. 12, no. 13, pp: 13-29, Jun. 2017.  

[64] C. A. Silva, A. T. Hudak, L. A. Vierling, W. S. W. M. Jaafar, M. Mohan, 

M. Garcia, A. Ferraz, A. Cardil, and S. Saatchi, “Predicting Stem Total 

and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation 
Using Airborne Laser Scanning Data and Random Forest,” Forests, vol. 

8, no. 7, pp. 254-267, Jul. 2017. 

[65] S. Lee, W. Ni-Meister, W. Yang, and Q. Chen, “Physically based vertical 

vegetation structure retrieval from ICESat data: Validation using LVIS in 

White Mountain National Forest, New Hampshire, USA,” Remote Sens. 
Environ., vol. 115, no. 11, pp. 2776–2785, Nov. 2011, DOI: 

10.1016/j.rse.2010.08.026. 

[66] M. Hofton, L. Rocchio, J. Blair, and R. Dubayah, “Validation of 

Vegetation Canopy Lidar sub-canopy topography measurements for a 

dense tropical forest,” J. Geodyn., vol. 34, no. 3-4, pp. 491–502, Oct.-Nov. 
2002, DOI:10.1016/S0264-3707(02)00046-7. 

[67] T. Park, R. E. Kennedy, S. Choi, J. Wu, M. A. Lefsky, J. Bi, J. A. 

Mantooth, R. B. Myneni, and Y. Knyazikhin, “Application of physically-

based slope correction for maximum forest canopy height estimation 

using waveform lidar across different footprint sizes and locations: Tests 

on LVIS and GLAS’, Rem. Sens., vol. 6, no. 7, pp. 6566–6586, Jul. 2014, 
DOI: 10.3390/rs6076566. 

[68] E. N. Stavros, D. Schimel, R. Pavlick, S. Serbin, A. Swann, L. Duncanson, 

J. B. Fisher, F. Fassnacht, S. Ustin, R. Dubayah, A. Schweiger, and P. 

Wennberg, “ISS observations offer insights into plant function,” Nat. Ecol. 

Evol., vol. 1, no. 194, pp. n/a, Jun. 2017, DOI:10.1038/s41559-017-0194. 
[69] L. Xu, S. S. Saatchi, A. Shapiro, V. Meyer, A.  Ferraz, Y. Yang, J. F. 

Bastin, N. Banks, P. Boeckx, H. Verbeeck, S. L. Lewis, E. Muanza, E.  

Bongwele, F. Kayembe, D. Mbenza, L. A. Kalau, F. Mukendi, F. Ilunga, 

and D. Ebuta, “Spatial distribution of carbon stored in forests of the 

Democratic Republic of Congo,” Sci. Rep., vol. 7, no. 15030, pp. 1-12, May 
2017, DOI: 10.1038/s41598-017-15050-z. 

 

 

Carlos Alberto Silva received the B.S. 

degree in forest engineering in 2011 and 

the M.S degree in forest resources in 2013, 

both from the Luiz de Queiroz College of 

Agriculture, University of São Paulo, 

Piracicaba, Brazil. Recently, he received 

his Ph.D. degree in natural resources from 

the University of Idaho, Moscow, USA. 

His current research is focused on using 

lidar remote sensing technology for predicting and mapping 

forest attributes across natural and plantation forests. 

 

 Sassan Saatchi received the Ph.D. degree 

from George Washington University in 

1988 with concentration in electro physics 

and applied mathematics.  

His present research activities include 

land cover classification, biomass and soil 

moisture estimation in boreal forests, land 

use and land cover change, forest structure 

and carbon stock in tropical forests, 

applications of remote sensing in biodiversity and conservation.  

He is currently a senior scientist at the Jet Propulsion 

Laboratory, California Institute of Technology, and adjunct 

professor at the Center for Tropical Research, Institute of 

Environment at the University of California, Los Angeles. 

  

Mariano Garcia received the Ph.D. degree 

in Geographical Information Technologies 

from University of Alcala, Spain. During 

this research he was a Marie Curie research 

associate at the University of Leicester, 

England. Currently he is an Assistant 

Professor at the University of Alcalá, 

Spain. His research interests focus on the 

development of methods to derive 

improved information on 3D forest structure from passive and 

active (Lidar and SAR) remote sensing data. He is particularly 

interested in the role of forest fires in the structure and 

functioning of different terrestrial ecosystems for which fires 

are a major disturbance factor.  



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
15 

 

 António Ferraz was born in Antas de 

Penedono, Portugal. He received the M.S. 

degree in geomatics engineering from 

Universidade de Coimbra, Coimbra, 

Portugal, in 2007 and the Ph.D. degree in 

geophysics from Institute de Physique du 

Globe de Paris, Paris, France, in 2012. 

From November 2007 to January 2014, he 

was with the French National Institute for 

Geographic Information and Forestry, Paris. Since May 2014, 

he has been with the NASA Postdoctoral Program at the Jet 

Propulsion Laboratory, California Institute of Technology, 

Pasadena, CA, USA. His main research interests include remote 

sensing of vegetation, optical image and 3-D point cloud 

processing, direct retrieval of forest variables using airborne 

laser scanning systems, forest 3-D modeling, and carbon and 

biomass estimation over tropical environments. 

 

Nicolas Labrière is a post-doctoral 

research associate funded by CNES. He 

holds a PhD from AgroParisTech, and 

during his PhD research he has extensively 

worked in the Bornean forests, with Yves 

Laumonier and Bruno Locatelli. Shortly 
thereafter, he was hired in Simon Lewis lab 

at UCL to lead a field survey at the Lopé 

field station in Gabon, as part of the 

European Space Agency funded campaign AfriSAR. He is 

exploring the capacity of the TROLL individual-based model 

to assimilate remote sensing and ground data from the AfriSAR 

campaign. He will also contribute to the global effort of 

collecting in situ biomass data for the Forest Observation 

System, in particular with the TmFO network.  

 

 Carine Klauberg received the Ph.D. 

degree in Forest Resources from the Luiz 

de Queiroz College of Agriculture, 

University of São Paulo, Piracicaba, 

Brazil in 2014. She is currently a visitor 

scientist at the Rocky Mountain Research 

Station, USDA Forest Service, Moscow, 

Idaho, USA. The main goal of her 

research is to afford forestry managers 

with information and tools that will enable them to become 

better stewards to sustain or restore healthy and sustainable 

forestry environments. She works at the interface of three 

disciplines: forest management, remote sensing, and modelling. 

Her research looks into various forest management feedback 

mechanisms, which integrate botany, phytosociology, forest 

ecology and inventory, geostatistics, remote sensing, wildfire, 

and non-timber forest products into a single system. forestry.  

 

Victoria Meyer received the Ph.D. degree 

in Environment Science from the 

University of Paul Sabatier (Toulouse III) 

in 2017. She is current a post-doctoral 

research associate at the Jet Propulsion 

Laboratory (JPL). She is working on the 

potential of lidar data to recover biomass 

and forest structure information in old-

growth tropical forests 

 

Simon Lewis received the Ph.D. degree in 

tropical forest ecology from the University 

of Cambridge. He is Professor of Global 

Change Science at University College 

London, as a half time position. He holds an 

equivalent position at the University of 

Leeds. Simon was a Royal Society 

University Research Fellow (2004-2013), 

and in 2011 received a Philip Leverhulme 

Prize recognizing the international impact of his research. His 

primary interest is in how humans are changing the Earth as a 

system.  

 

Kathryn J. Jeffery received the Ph.D. 

degree from Cardiff University in 2003 on 
the socio-genetics of the gorilla community 

in Gabon, adopting a forensic approach to 

genetically track wild apes following a 

period working for the Forensic Science 

Service in London. She went on to direct 

the Wildlife Conservation Society’s 

training centre (CEDAMM) in Lopé 

National Park for 2 years, where she developed and ran a 

number of training courses for Gabonese undergraduates. She 

then directed the SEGC research station for 4 years and oversaw 

a multidisciplinary research program focusing on carbon 

storage and climate change, great ape health and genetics, 

invasive species ecology and fire ecology. Dr Jeffery is now 

Scientific Advisor for the National Parks Agency in Gabon 

(ANPN) and an Associate Researcher for the National Centre 

for Research in Science and Technology in Gabon 

(CENAREST). She is a Postdoctoral Researcher at the 

University of Stirling.  

 

Katharine Abernethy received the Ph.D. 

degree PhD from the University of 

Edinburgh in 1994 on the introduction of 

Sika deer to Scotland. She went to Gabon 

in 1993 as a postdoctoral researcher and 

became Director of the Station d’Etudes 

des Gorilles et Chimpanzés (SEGC) in 

Lopé National Park, in 2000, a post she 

held until 2007. She spent several years 

studying ape ecology before pioneering research into the 

ecology of mandrills and supervising several PhDs on large 

mammal ecology and conservation. Dr Abernethy then went on 

to establish many of the Wildlife Conservation Society’s 

activities in Lopé including the CEDAMM training centre, a 

community outreach project, an Eco-museum and a mandrill 

tourism project. She has influenced environmental policy 



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 
16 

through several high-profile projects, including The National 

Strategy for Bushmeat Management in Gabon. She is also a 

successful botanical artist and her work is widely published. Dr 

Abernethy is now a Senior Research Fellow at the University 

of Stirling, a member of the IUCN Species Survival 

Commission and an Associate Researcher for the National 

Centre for Research in Science and Technology in Gabon.  

 

Lee White received the Ph.D. degree 

PhD on the effects of vegetation history 

and logging on rainforest mammals with 

the University of Edinburgh. He went on 

to a post doc on vegetation history in 

Lope, setting up botanical plots to 

describe and monitor change in the 

vegetation of the region, before founding 

the WCS-Gabon program, writing 

several technical books on African Forest conservation, 

developing training program for national and international 

students and playing a key role in the creation of Gabon’s 

national parks. Prof White directed the Wildlife Conservation 

Society program in Gabon until 2007 and in 2009 became head 

of the National Parks Agency in Gabon (ANPN), responsible 

for a network of 13 National Parks. He is also technical director 

of the Gabonese Government’s Climate Change Task Force. He 
is an Honorary Research Fellow at the University of Stirling 

and is a prominent conservationist in Africa. 

 

Kaiguang Zhao received the Ph.D. degree 

in Forestry from Texas A&M University in 

2008. He is currently an Assistant Professor 

of Environmental Modeling and Spatial 

Analysis in the Ohio State University. His 

research focuses on mapping, monitoring, 

modeling, and managing terrestrial 

environments across scales, especially in 

the context of global environmental 

changes. 

 

Andrew T. Hudak received the Ph.D. 

degree in Environmental, Population, and 

Organismic Biology from the University 

of Colorado in 1999. He is a research 

forester at the Rocky Mountain Research 

Station, USDA Forest Service, Moscow, 

Idaho, USA. His research interests include 

landscape, vegetation, and fire ecology; 

remote sensing of vegetation patterns and 

processes; forest and rangeland ecology and management; 

empirical modeling of spatially explicit ecological data.  

 

 


	I. INTRODUCTION
	II. Material and Methods
	A. Study Area
	B. Field data collection
	C. Lidar data and processing
	1) Small-footprint Lidar
	2) Large-footprint Lidar

	D. Comparison of small- vs. large-footprint lidar-derived metrics for ground and forest structure attribute retrieval
	1) Ground and Canopy Height Comparison
	We compared ground elevation (ZG) and top-of-canopy height (RH98) retrieved from small- and large-footprint lidar at different spatial levels (LVIS footprint and grid) over the subareas selected to represent the gradient of successional stages of vege...
	2) Aboveground Biomass

	E. Impacts of Sample Size on AGB Estimation

	III. RESULTS AND DISCUSSION
	A. Comparison of SF and LF lidar-derived ground elevation and canopy height at footprint level
	B. Comparison of SF- and LF-derived ground elevation and canopy height at grid levels
	C. Comparison of SF and LF Aboveground Biomass Models
	1) Biomass model performance


	Fig. 2. a) SF-derived pseudo-waveform (vertical black line) and b) LF-derived waveform. Canopy metrics, such as RH75, RH98 and RH100, were derived from the normalized cumulative return energy.
	At the 1-ha scale, the number of plots was limited to 12, and although this captures variation in biomass across the forest types, it may not be enough to develop a more robust cross-validation test of model performance. However, the accuracies, both ...
	2) Aboveground biomass maps
	D. Impacts of LF lidar sample size on AGB estimation

	IV. Conclusion
	In this paper, we performed a comparison of small and large footprint lidar measurements of ground and forest structure, including aboveground biomass, across an AGB transition zone in central Gabon. We showed that in the dense and complex tropical fo...

	Acknowledgment
	References

