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Abstract: In this paper, a novel framework is proposed for deadbeat distributed Fault Detection
and Isolation (FDI) of large-scale continuous-time LTI dynamic systems. The monitored
system is composed of several subsystems which are linearly interconnected with unknown
parameterization. Each subsystem is monitored by a local diagnoser based on the measured
local output, local inputs and the interconnection variables from the neighboring subsystems.
The local FDI decision is based on two non-asymptotic state-parameter estimators using Volterra
integral operators which eliminate the effect of the unknown initial conditions so that the
estimates converge to the true value in a deadbeat manner and therefore the fault diagnosis
can be achieved in finite time. Moreover, the unknown interconnection parameters and the
unknown fault parameters are simultaneously estimated. Numerical examples are included to
show the effectiveness of the proposed FDI architecture.

1. INTRODUCTION

Among the fault diagnosis literature, major efforts have
been devoted to centralized FDI algorithms (see Patton
et al. (1989) and Blanke et al. (2006) for preliminaries
and typical FDI techniques). However, with the rapid
development of the modern technology, the complexity of
the systems in terms of order and scale is continuously in-
creasing. Moreover, the development of the communication
networks gives rise to the realization of distributed and
networked systems, where centralized approaches are not
always feasible nor reliable. In the recent years, distributed
model-based FDI schemes have been proposed for contin-
uous and discrete-time systems (e.g. Hassan et al. (1992);
Shames et al. (2011); Stankovic et al. (2010); Zhang and
Zhang (2012); Keliris et al. (2015); Reppa et al. (2015);
Boem et al. (2017)). When considering interconnected
systems, the effect of the neighboring subsystems on the
local model could be unknown or modeled as a function
with unknown parameters. Some FDI methodologies con-
sider this issue using adaptive approximation methods
(see Boem et al. (2011)); some works consider bounded
interconnections (Riverso et al. (2016)). However, faster
and more accurate FDI schemes are the goal to pursue in
order to guarantee a prompt fault accommodation.

In this paper, a novel non-asymptotic distributed FDI ar-
chitecture is proposed for LTI linearly interconnected sub-
systems with unknown interconnection parameters, by de-
veloping two deadbeat joint parameters-state estimators.
In fact, non-asymptotic estimation methodologies have
been proposed in the recent literature (Haskara (1998);
Mboup (2009); Fedele and Coluccio (2010)), where the
convergence can be obtained in arbitrarily short time. As
demonstrated in Pin et al. (2016), deadbeat parametric es-
timation can be achieved for continuous-time LTI dynamic
systems with a class of Bivariate Causal Non-asymptotic
Kernels, therein defined. In Pin et al. (2013), a non-

asymptotic state observer for continuous-time SISO linear
systems with a newly defined Bivariate Feed-through Non-
asymptotic Kernels (BF-NK) is proposed and shown to
have very fast convergence rate. The kernel-based dead-
beat approaches, being superior in convergence rate and
accuracy, have found applications for practical problems,
e.g. localization (Li et al. (2016a)), parameter estimation
for sinusoidal signals(Li et al. (2016b)).

In this paper, the deadbeat observer introduced in Pin
et al. (2013) is extended to jointly estimate the local state
of the interconnected subsystems and the parameters of
the unknown interconnection, in a distributed scenario.
Similarly, a second estimator is designed, able to estimate
after fault detection both the state of the faulty subsys-
tem and the parameters of the unknown fault function.
Remarkably, with a set of BFNK functions, the estimators
enjoy a non-asymptotic feature, thus converging to the
true value in finite time, significantly reducing the fault
diagnosis time with respect to asymptotic observer-based
methods. To the authors’ knowledge, this represents the
first contribution in the literature dealing with the fault
detection and isolation problem using the non-asymptotic
kernel-based estimation. A specific PE condition is intro-
duced providing guidance to the system decomposition.
The proposed FDI architecture has been tested in a nu-
merical example where its effectiveness is evaluated.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a large-scale system S, composed of N MISO LTI
subsystems, in which the I-th subsystem SI is modeled as{
x
(1)
I (t)=AIIxI(t)+BIuI(t)+

∑
J∈NI

AIJyJ(t)+fI(t, yI , uI , wI),

yI(t) = c>I xI(t),
(1)

with xI(t) ∈ RnI , yI(t) ∈ R, uI(t) ∈ RmI denot-
ing the state vector, the output and the input vec-



tor of the i-th subsystem respectively. AII ∈ RnI×nI ,
Bi ∈ RnI×mI and cI ∈ RnI are assumed to be known. The
term

∑
J∈NIAIJyJ(t) represents the interconnection with

the neighboring subsystems, where NI denotes the index
set of pI interconnected subsystems affecting the dynamics
of I-th subsystem and the interconnection parameter vec-
tor AIJ ∈ RnI is unknown. The local fault function vector
fI(t, yI , uI , wI) ∈ RnI is modeled as

fI(t, yI , uI , wI) = B(t− T0,I)φI(yI , uI , wI),

where B(t−T0,I) defines the time profile of the local fault
that occurs at an unknown time instant T0,I :

B(t− T0,I) ,
{

0 if t < T0,I
1 if t ≥ T0,I

. (2)

The structural function of the local fault is linearly pa-
rameterized as

φI(yI , uI , wI) , θ>I gI(yI , uI , wI),

where wI ∈ RpI , col {yJ : J ∈ NI} 1 collects the inter-
connection variables and the parameter vector θI ∈ RnI is
assumed to be unknown. gI(·, ·, ·) : RnI×RmI×RpI→R is a
scalar function representing the functional structure of the
effect of the fault on the I-th subsystem. For fault isolation
purposes, for each subsystem a set FI is defined containing
all the NFI possible fault functions, i.e. gIp(yI , uI , wI),
p ∈ {0, . . . , NFI − 1}, affecting SI .
Remark 2.1. For the sake of notational simplicity, here we
consider the scalar fault function case. It is anyway trivial
to extend the algorithm for vector fault functions.

The following assumption is needed:

Assumption 1. The pair (AII , c
>
I ) is completely observ-

able.

The proposed Distributed Fault Detection and Isolation
(DFDI) architecture consists of N Local Fault Diagnosing
Agents (LFDAs), monitoring the health status of the
corresponding subsystem. Each LFDA is equipped with
two estimators. The first is called Fault Detection and
Parameter Estimator (FDPE). It is based on the local
nominal model (1) and, making use of a modified version
of the kernel-based deadbeat observer inspired by Pin
et al. (2013), it estimates both the local state xI and the
interconnection parameters AIJ . The difference between
the local output and the estimated output allows the
detection of the fault. The second estimator is called
fault isolation estimator (FIE); it is activated after fault
detection and allows to identify the type of fault occurring
in the subsystem by estimating the fault parameters θI
and in the mean time providing the state estimates in the
faulty scenario. Both estimators make use of the algebra
of the linear integral Volterra operator.

3. DISTRIBUTED FAULT DETECTION AND
ISOLATION

3.1 Fault detection and parameter estimation scheme

By exploiting the deadbeat SISO observer proposed in Pin
et al. (2013), in this subsection, we develop a deadbeat
state-parameter joint estimator for MISO systems. Based
on the nominal model (1) and on the available data,
i.e. yI(t), uI(t) and yJ(t), J ∈ NI , and treating the
interconnection function term as an additional input of
the subsystem, the FDPE
1 The notations col{} and row{} are defined as col{v1, v2} =
[v>1 v>2 ]> and row{v1, v2} = [v1, v2] for vectors , and as

col{A,B,C} = [A> B> C>]> and row{A,B,C} = [A B C] for
matrices with compatible dimension.

• estimates the state variables of the MISO subsystem;
• estimates the unknown interconnection AIJ .

Thanks to the observability of (AII , c
>
I ), the state vector

xI(t) admits a linear coordinates transformation zI(t) =
TxI(t) such that the equivalent LTI system with respect
to zI(t) can be rewritten in the observer canonical form:

z
(1)
I (t) = ĀIIzI(t) + TBIuI(t) +

∑
J∈NI

TAIJyJ(t),

yI(t) = c̄>I zI(t),
, (3)

where c̄>I = c>I T
−1 = [ 1 0 . . . 0 ] ,

ĀII = TAIIT
−1=


anI−1 1 0 · · · 0

anI−2 0 1
. . .

...
...

...
. . .

. . . 0
a1 0 . . . 0 1
a0 0 · · · 0 0

 ,
and where (−a0,−a1, . . . ,−anI−1) are the coefficients of
the characteristic polynomial of the subsystems deter-
mined by the eigenvalues of matrix AII . We define

TBI = [bnI−1, bnI−2, . . . , b0]>

TAIJ = [αJ,nI−1, αJ,nI−2, . . . , αJ,0]>, J ∈ NI .

With the above parameter definitions, (3) admits the
following I/O model

y(n)(t)=

nI−1∑
i=0

aiy
(i)(t)+

nI−1∑
i=0

biu
(i)(t)+

∑
J∈NI

nI−1∑
i=0

αJ,iy
(i)
J (t).

(4)
For r ∈ {0, . . . , nI −1} the r-th element of the state of the
realization (3) can be expressed as

zI,r(t) = y
(r)
I (t)−

r−1∑
j=0

anI−r+jy
(j)
I (t)−

r−1∑
j=0

bnI−r+ju
(j)
I (t)

−
∑
J∈NI

r−1∑
j=0

αJ,nI−r+jy
(j)
J (t),

where
∑k
j=0{·} = 0, for k < 0.

Let us consider a nI -th order non-asymptotic kernel
K(t, τ) verifying the condition K(i)(t, 0) = 0, ∀i ∈
{0, . . . , nI − 1} [Pin et al. (2013)]. Applying the Volterra
operator 2 VK induced byK(t, τ) to the output signal yI(t)
and its derivatives, we have

[VKy
(i)
I ](t) ,

∫ t

0

K(t, τ)y
(i)
I (τ)dτ,∀i∈{0, . . . , nI − 1}, (5)

which, thanks to the integral by parts and the non-
asymptotic condition, can be rearranged as[

VKy
(i)
I

]
(t) =

i−1∑
j=0

(−1)i−j−1y
(j)
I (t)K(i−j−1)(t, t)

+(−1)i
[
VK(i) yI

]
(t)

(6)

and similarly for u
(i)
I (t) and y

(i)
J (t). Let us consider the

i = 1 case; we have[
VK(1) yI

]
(t) = yI(t)K(t, t)−

[
VKy

(1)
I

]
(t). (7)

Replacing yI(t) with y
(nI−1)
I (t), (7) becomes

2 For details about Volterra algebra, see Pin et al. (2016) and the
reference therein.



[
VK(1) yI

(nI−1)
]
(t) = y

(nI−1)
I (t)K(t, t)−

[
VKy

(nI)
I

]
(t),

which is equivalent to

(−1)nI−1
[
VK(nI ) yI

]
(t) =

−
nI−2∑
j=0

(−1)nI−2−jy(j)(t)K(nI−j−1)(t, t) + y(nI−1)(t)K(t, t)

−
nI−1∑
i=0

ai

[
VKy

(i)
I

]
(t)−

nI−1∑
i=0

bI,i

[
VKu

(i)
I

]
(t)−

∑
J∈NI

nI−1∑
i=0

αJ,i

[
VKy

(i)
J

]
(t)

(8)
thanks to (4). By substituting (6) and its counterpart for[
VKu

(i)
I

]
(t) into (8), after some algebra, we have

(−1)nI−1
[
VK(nI ) yI

]
(t) +

nI−1∑
i=0

ai(−1)i
[
VK(i)yI

]
(t)

+

nI−1∑
i=0

(−1)ibi
[
VK(i)uI

]
(t)=−

∑
J∈NI

nI−1∑
i=0

(−1)iαJ,i
[
VK(i)yJ

]
(t)

+

nI−1∑
r=0

(−1)nI−r−1K(nI−r−1)(t, t)zr(t),

(9)
where the state variables zr(t) and the unknown intercon-
nection parameters αJ,i, J ∈ NI , i ∈ {0, . . . , nI − 1} ap-
pear linearly parameterized on the right hand side. Define

µI(t) , (−1)nI−1
[
VK(nI ) yI

]
(t) +

nI−1∑
i=0

ai(−1)i
[
VK(i)yI

]
(t)

+

nI−1∑
i=0

(−1)ibi
[
VK(i)uI

]
(t) (10)

γI(t) ,
[
− η>I (t), (−1)nI−1K(nI−1)(t, t), . . . ,K(t, t)

]
(11)

where

ηI(t),col

{[
(−1)nI−1

[
V

(nI−1)
K yJ

]
(t), . . . ,

[
VKyJ

]
(t)

]
>,J∈NI

}
.

Therefore, (9) can be rewritten as

µI(t) = γI(t)

[
λI
zI(t)

]
, (12)

where λI ∈ RnIpI , col{TAIJ , J ∈ NI}.

To estimate the unknown elements [λI zI(t)]
> ∈ RnI(pI+1),

(12) is augmented into nI(pI + 1) linearly independent
equations by applying nI(pI + 1) different non-asymptotic
kernel functions. Let us consider a set of Bivariate
Feedthrough Non-asymptotic Kernel functions (BF-NK)
introduced in Pin et al. (2013)

Kh(t, τ) = e−ωh(t−τ)(1−e−ω̄t)δ, h ∈ {0, . . . , nξ−1}, (13)

containing nξ = nI(pI + 1) kernels parameterized by
the same ω̄ but distinct ω0, . . . ωn−1. It is necessary
that δ ≥ nI to guarantee the at least nI -th order of
non-asymptoticity of the kernel functions. For any h ∈
{0, . . . , nI(pI + 1)− 1}, the kernel function verifies

∂K
(i)
h (t, τ)

∂t
= −ωhK(i)

h (t, τ). (14)

Eq. (12) can thus be rewritten as

νI(t) = ΓI(t)

[
λ

zI(t)

]
, (15)

where νI(t) =
[
µ0(t), µ1(t), . . . , µnξ−1(t)

]>
and ΓI(t) =[

γ0(t)>, γ1(t)>, . . . , γnξ−1(t)>
]>

with µh(t) and γh(t) de-
fined in (10) and (11) and induced with the h-th kernel
function h ∈ {0, . . . , nξ}. For signals yI , uI and yJ , the
vector of auxiliary signals is defined as

ξ?(t) ,
[
ξ?,0(t), ξ?,1(t), . . . , ξ?,nξ−1(t)

]>
, (16)

where ? represents signals yI , uI and yJ respectively, with

ξyI ,h(t) ,
[[
VKhyI

]
(t), [V

K
(1)

h

yI
]
(t), . . . , [V

K
(nI )

h

yI
]
(t)
]

ξuI ,h(t) ,
[[
VKhuI

]
(t), [V

K
(1)

h

uI
]
(t), [V

K
(nI−1)

h

uI
]
(t)
]

ξyJ ,h(t) ,
[[
VKhyJ

]
(t), [V

K
(1)

h

yJ
]
(t), [V

K
(nI−1)

h

yJ
]
(t)
]
.

Thanks to the kernel feature (14), the auxiliary signals
(16) can be calculated by{

ξ
(1)
? (t) = G?ξ?(t) + E ? (t)
ξ?(0) = 0,

(17)

where

GyI = blockdiag[G1,h, h = 0, . . . , nξ − 1]

G1,h = diag(−ωh) ∈ R(nI+1)×(nI+1)

GuI =GyJ = blockdiag[G2,h, h = 0, . . . , nξ − 1]

G2,h = diag(−ωh) ∈ RnI×nI

EyI (t) =


E1,0(t)
E1,1(t)

...
E1,nξ−1(t)

 , E1,h(t, t) =

 Kh(t, t)
...

K
(nI)
h (t, t)



EuI(t)=EyJ(t)=


E2,0(t)
E2,1(t)

...
E2,nξ−1(t)

, E2,h(t, t)=

 Kh(t, t)
...

K
(nI−1)
h (t, t)


In order to guarantee the persistent invertibility of the
square matrix ΓI(t) of (15), so to allow the local state-
parameters estimation and the detection of possible faults,
the following definitions and assumptions are needed.

Definition 3.1. (Sufficient richness (SR) of order n [Kreis-
selmeier and Rietze-Augst (1990)]) The signal r(t) is said
to be sufficiently rich of order n in an arbitrary finite time
interval [t1, t2] if there does not exist a non-zero vector q =

[q0, . . . , qn−1] verifying
∑n−1
i=0 qir

(i)(t) = 0,∀t ∈ (t1, t2).

Assumption 2. There exists a time interval (t1, t2), with
t2 > t1 such that ∀J ∈ NI the interconnection variables
yJ(t) are at least sufficiently rich of order nI in (t1, t2).

Proposition 3.1. (Implication) For LTI autonomous sys-
tems SJ , J ∈ NI , it is sufficient that the subsystems are
at least of order nI to satisfy Assumption 2 in (t1,∞). For
LTI subsystems with inputs, if the Laplace transform of
the output YJ(s) of the interconnected subsystems J ∈ NI
is at least nI -th order on the denominator, after canceling
the poles and the zeros of the transfer function FJ(s) with
UJ(s), then Assumption 2 is satisfied in (t1,∞).

The proof is omitted due to length constraints.



Assumption 3. (Independence of the interconnection vari-
ables) There exists a time interval (t1, t2), with t2 > t1
such that the interconnection variables yJ(t), J ∈ NI
satisfy the following property: there does not exist a non-
zero vector q = col{qi,J , i ∈ {0, . . . , nI − 1}, J ∈ NI} such
that ∑

J∈NI

nI−1∑
i=0

qiJy
(i)
J (t) = 0, ∀t ∈ (t1, t2). (18)

Remark 3.1. It is worth noting Assumption 3 is not so
restrictive. In the case that an interconnection variable
yJ(t), J ∈ NI is a linear combination of one (or more)
interconnection variables yL(t), L ∈ NI so that Assump-
tion 3 is not satisfied, but Assumption 2 is, it is anyway
possible to estimate the state of the local I-th subsystem,
and perform the monitoring activity, by reducing the order
of the augmented system (15) and defining a novel inter-
connection variable which is the sum of the two (or more)
not independent original interconnection variables.
Theorem 3.1. (Invertibility and persistency of excitation)
Given the output yI(t), the input uI(t) and the intercon-
nection variables yJ(t), J ∈ NI verifying Assumptions 2
and 3 in (t1, t2), with the designed set of kernel functions
(13), the square matrix ΓI(t) is invertible in (t1, t2).
Remark 3.2. Proposition 3.1 presents some conditions to
guarantee SR in (t1,∞). In the case that either Ass. 2 or 3
are not satisfied at some time t, the proposed scheme will
detect the singularity of matrix ΓI(t) and freeze the fault
detection action.

Having guaranteed the invertibility of ΓI(t) in a time
interval (t1, t2), the unknown vector can be estimated by[

λ̂I
ẑI

]
(t) = ΓI(t)

−1νI(t). (19)

Therefore, the interconnection parameter vectors AIJ , J ∈
NI and the state variables zI(t) can be estimated as

col{ÂIJ , J ∈ NI} = T−1λ, (20)

x̂I(t) = T−1ẑI(t), (21)

and the local estimated output ŷI(t) can be computed as
ŷI(t) = c>I x̂I(t).

For fault detection purposes the local output estimation
error is then considered: eI(t) = |ŷI(t)− yI(t)|. To ensure
that the fault can be detected by the FDPE scheme, the
following assumption is needed.
Assumption 4. (Detectability) The fault fI occurs at an
unknown time T0,I in the time interval (t1, t2), in which
we have invertibility of the matrix ΓI(t) and persistency
of excitation.

Fault detection decision Under assumption 4, a fault
occurring in the I-th subsystem is immediately detected
by the proposed FDPE scheme at time t = Td,I (the local
fault detection time) when the output estimation error is
nonzero, i.e. eI(Td,I) 6= 0.

3.2 Fault isolation scheme

As stated in Section 2, a set FI is defined for each
subsystem collecting all the fault functions gIp(·, ·, ·). Then
the main logic of the FIE is to define a linear combination
of all the fault functions in FI as

FI(yI , uI , wI) ,

NFI−1∑
p=0

θIpgIp(yI , uI , wI). (22)

and estimate the parameter vectors θIp, p ∈ FI . Once at
least one component of the p-th vector θIp is not zero, the
p-th fault can be isolated.

Similarly as in (3), after the fault time T0,I the model (1)
can be rearranged into the observer canonical form

z
(1)
I (t) = ĀIIzI(t) + TBIuI(t) +

∑
J∈NI

TAIJyJ(t)

+

NFI−1∑
p=0

TθIpfIp(yI , uI , wI),

yI(t) = c̄>I zI(t),

(23)

where variables are defined as in (3) and TθIp ,
[σp,0, σp,1, . . . , σp,n−1]>. In the following we will omit the
dependence on yI(t), uI(t) and wI(t) of gIp(yI , uI , wI).
Similarly as what done for eqs. (3)-(9), we obtain:

(−1)nI−1
[
VK(nI ) yI

]
(t) +

nI−1∑
i=0

ai(−1)i
[
VK(i)yI

]
(t)

+

nI−1∑
i=0

(−1)ibi
[
VK(i)uI

]
(t) +

∑
J∈NI

nI−1∑
i=0

(−1)iαJ,i
[
VK(i)yJ

]
(t)

=−
NFI−1∑
p=0

nI−1∑
i=0

(−1)iσp,i
[
VK(i)gIp

]
(t)

+

nI−1∑
r=0

(−1)nI−r−1K(nI−r−1)(t, t)zr(t),

(24)
where (NFI + 1)nI unknown terms are on the right hand

side. Therefore, in the proposed FIE, nξ2 , (NFI + 1)nI
different kernel functions of the shape of (13) are needed,
denoted as

{
Kh(t, τ), h ∈ {0, . . . , nξ2 − 1}

}
, so that (24)

can be augmented, yielding to the square algebraic system

ϕI(t) = ΥI(t)

[
%I
zI(t)

]
(25)

where ϕI(t) = [φ0(t), φ1(t), . . . , φnξ2−1]>

φk(t) =(−1)nI−1
[
VKk(nI ) yI

]
(t)+

nI−1∑
i=0

ai(−1)i
[
V
K

(i)

k

yI
]
(t)

+

nI−1∑
i=0

(−1)ibi
[
V
K

(i)

k

uI
]
(t) +

∑
J∈NI

nI−1∑
i=0

α̂J,i
[
VK(i)yJ

]
(t)

%I = col
{
TθIp, p ∈ {0, . . . , NFI − 1}

}
ΥI(t) = [ ΞI(t) Γ3(t) ]

ΞI(t) =
[
−χ0(t) − χ(t) . . . − χnξ2−1(t)

]>
χk(t) = col

{[
(−1)nI−1

[
VKk(nI−1)gIp

]
(t), . . . ,

−
[
VKk(1)gIp

]
(t),
[
VKkgIp](t)

]
, p∈{0, . . . , NFI − 1}

}
,

k ∈ {0, . . . , nξ2 − 1}

Γ3(t) =


(−1)nI−1K

(nI−1)
0 (t, t) . . . K0(t, t)

(−1)nI−1K
(nI−1)
1 (t, t) . . . K1(t, t)
...

...

(−1)nI−1K
(nI−1)
nξ2−1 (t, t) . . . Knξ2−1(t, t)


and the unknown parameters (α0, α1, . . . , αn−1) are re-
placed by the estimates (α̂0, α̂1, . . . , α̂n−1) obtained by
FDPE. The filtered signals [V

K
(i)

k

?](t) can be calculated

by the LTI system (17), where ? represents yI , uI , yJ
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Fig. 1. System block diagram.

and gIp, ∀J ∈ NI , p ∈ {0, . . . , NFI} with EyI (t) =
col{E1,h, h = 0, . . . , nξ2 − 1}}, EgIp(t) = EuI (t) =
EyJ (t) = col{E2,h, h = 0, . . . , nξ2−1},GyI = blockdiag[G1,h,
h = 0, . . . , nξ2 − 1] and GgIp = GuI = GyJ =
blockdiag[G2,h, h = 0, . . . , nξ2 − 1].

The following assumption is required.
Assumption 5. There exist a time interval [t2, t3] with t2 >
Td,I such that ∀p ∈ {0, . . . , NFI − 1} the fault functions
gIp(t) are mutually independent (as in Assumption 3) and
are at least sufficient rich of order nI in [t2, t3].

Thanks to the results of Theorem 3.1, under Assumption
5, ΥI(t) is invertible within the interval (t2, t3). Therefore,
the unknown terms in (24) can be estimated as[

%̂I
ẑI

]
(t) = ΥI(t)

−1ϕI(t), (26)

The parameters of each fault function and the state
variables can be obtained as

[θ̂I0, . . . , θ̂I(NFI+1)nI ] = T−1%̂(t),

x̂I(t) = T−1ẑI(t).
(27)

Fault isolation With the proposed FIE (26), the p-
th fault is isolated when at least one element of the
corresponding parameter vector θ̂Ip is different from zero.

4. NUMERICAL EXAMPLE

In this section, a numerical example is presented to show
the effectiveness of the proposed deadbeat distributed FDI
architecture. The simulation is carried out in the Matlab
Simulink environment with sampling time Ts = 10−4s.
We consider a 9-th order LTI system decomposed in 4
subsystems (see Fig. 1):{

ẋ(t) = Ax(t) +Bu(t) + f(t, y, u)
y(t) = Cx(t), t ∈ R≥0

(28)

where

A=

 A11 A12c
>
2 0 A14c

>
4

0 A22 A23c
>
3 0

0 0 A33 0

A41c
>
1 A42c

>
2 0 A44

 , B=

[
b1
0
0
0

]
,

C=

 c>1 0 0 0

0 c>2 0 0

0 0 c>3 0

0 0 0 c>4

 , f(t, y, u) =

[
f1(t, y, u)

0
0
0

]
,

with

A11=

[
−1 0
−1 −2

]
, A22=

[
−5 −1
0 −4

]
, A33=

[
−3 1 −2
−5 −2 0
−1 0 −7

]
, A44=

[
−1 −0.5
−2 −1

]
,

b1=

[
1
1

]
, A12=

[
0.5
2

]
, A14=

[
1

0.6

]
, A23=

[
0
−2

]
, A41=

[
−2
3

]
, A42=

[
−1
4

]
c>1 =
[

0.7 0.3
]
, c>2 =

[
1 0
]
, c>3 =

[
1 2 1

]
, c>4 =

[
5 1
]
,
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Fig. 2. Local state x1(t) (dotted lines) and state estimates
x̂1(t) (red and blues lines) by the local FDPE acti-
vated at t = 2.98s. The estimates are set to zero before
the activation time. A fault occurs at t = 6s.
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Fig. 3. Interconnection parameters A12(t) and A14(t) (dot-

ted lines) and estimated values Â12(t) and Â14(t)
(red and blue lines) by the local FDPE activated at
t = 2.98s. The estimates are set to zero before the
activation time. A fault occurs at t = 6s.

and f1(t, y, u) = B(t − 6)θ1

[
sin(0.5u) + cos([0 0 0 1]y)

]
with θ1 = [−2 0.5]>. The initial state vector is x0 =
[0 0 5 2 0 2 −1 0 0]>. The input is u(t) = 2 sin(0.5t). The
fault affects the dynamics of S1 and we consider a fault
set FI =

{
g1 = sin(0.5u)+cos(y4), g2 = sin(y2+y1)+1

}
.

The proposed FDPE is implemented for each subsystem
with kernel functions characterized by δ = 4, ω̄ = 2.5 and
[ω0, . . . , ω5] = [1, 2, 3, 4, 5, 6],

In the simulations, in order to avoid huge overshoot in
the initial phase of estimation caused by inverting a small
matrix ΓI(t), an activation threshold εFDa,I is defined such

that only when det(ΓI(t)) exceeds εFDa,I , the inversion of

ΓI(t) is performed, denoting TFDa,I the activation time. For

S1, we set the activation threshold εFDa,1 = 1.5 × 10−10.
The local FDPE is activated at t = 2.98s estimating
the states x1(t) (see Fig. 2) and the interconnection
parameters A12 and A14 as illustrated in Fig. 3 in a
deadbeat manner. After the occurrence of the fault at
t = 6s, the estimates of the local FDPE are not accurate
anymore. In Fig. 4, we can see that the output estimation
error is different than zero and we have immediate fault
detection. After fault detection by the local FDPE, the
local FIE is switched on to identify the fault parameters
using the same kernel set used for the FDPE. After the
activation time at t = 8.78s , the FIE provides accurate

estimations of the fault parameters θ̂11(t) and θ̂12(t), as
shown in Fig. 5), thus immediately isolating the correct
fault function g1 and excluding g2. Moreover, the local FIE
can simultaneously estimate the local states of the faulty
subsystem as illustrated in Fig. 6.



3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Time[s]

-0.02

0

0.02

0.04

0.06

e
(t
)

Fig. 4. Output estimation error e1(t)(blue line). A thresh-
old εFD1 (dotted line) is set considering computational
accuracy to 0.001. The fault is detected at t=6.001s.
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Fig. 5. Estimated fault parameters (red and blues lines)

θ̂11(t) and θ̂12(t) and the true values (dotted lines).
FIE activation time at t = 8.78s.
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Fig. 6. Local state x1(t) (dotted lines) and state estimates
x̂1(t) (red and blues lines) computed by the local FIE
after activation time t = 8.78s. The estimates are set
to zero before the activation time.

In the meantime, the local FDPEs of the other subsystems
have non-asymptotic convergence on state-parameter esti-
mations. This is not shown due to space constraints.

5. CONCLUDING REMARKS

In this paper, a non-asymptotic distributed FDI scheme
for interconnected LTI subsystems with unknown linear
parameterization is designed. The unknown interconnec-
tion parameters and the states are locally estimated and
the fault can be identified within finite time, thus effec-
tively cutting down the diagnosis time and enhancing the
reliability of the proposed FDI scheme. As a future work,
we will characterize the robustness of the proposed FDI
scheme with respect to noise and uncertainty.
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