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Abstract: The paper deals with the problem of defining the optimal topology for a distributed
fault detection architecture. A partition-based distributed fault detection method is considered
based on the model of the system. The system is decomposed into subsystems and each
subsystem is monitored by one local diagnoser. Non-overlapping decompositions are considered.
A novel cost function is proposed to measure the detectability properties of a distributed
fault detection method, depending on the topology of the detection framework. Different
objective functions are taken into account and compared in order to analyze the influence
of the decomposition on fault detection performance. Preliminary numerical results show that
the minimization of the coupling between subsystems could not be always the best choice for
the fault detection performance, and that the proposed cost function minimization allows the
reduction of the detection time with the considered fault detection method.
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1. INTRODUCTION

The work presented in this paper is motivated by the
growing interest towards monitoring methods for large-
scale systems using distributed architectures (see, for in-
stance Stanković et al. (2010); Shames et al. (2011); Zhang
and Zhang (2012); Reppa et al. (2015); Lan and Patton
(2016); Blanke et al. (2016); Gupta and Puig (2016);
Davoodi et al. (2016); Riverso et al. (2016); Boem et al.
(2017)). As it is well known, the advantages of adopting
a distributed architecture are scalability, robustness and
reduction of computational costs. The adoption of dis-
tributed approaches commonly implies the definition of
a partition of the original system into subsystems, where
each subsystem is monitored by a local agent, the Local
Fault Diagnoser (LFD). More specifically, the term system
decomposition (Šiljak (1978)) refers to the clustering of
state, input, and output system variables into subsets,
i.e. the subsystems. Since each LFD is devoted to mon-
itor a subsystem, the decomposition of the overall system
defines the topology of the diagnosis architecture. In the
distributed fault detection frameworks recently proposed
in the literature, the decomposition in subsystems is a
given element of the problem. However, in many cases the
choice of the decomposition is arbitrary. Therefore, some
important questions arise: does the decomposition influ-
ence the fault detection performance? If so, is it possible to
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determine what the best decomposition is? The objective
of this paper is to answer these questions.

In the computer science community, the problem of graph
decomposition has been widely investigated. Many graph
partitioning algorithms have been proposed (Karypis and
Kumar (1998); Schloegel et al. (2000); Hager et al. (2013);
Buluç et al. (2016)), mainly with the goal of minimizing
the weights on the cuts of the graph.

Furthermore, the decomposition problem has been exten-
sively studied in the field of decentralized and distributed
control (Siljak (2011); Ocampo-Martinez et al. (2011); An-
derson and Papachristodoulou (2012); Motee and Sayyar-
Rodsari (2003); Langwen and Jingcheng (2012)), present-
ing algorithms both for overlapping and non-overlapping
decompositions. However, in the Fault Detection and Isola-
tion (FDI) context, it still represents a topic under research
and the decision is often based either on the physical
structure of the system or on traditional approaches tai-
lored for control applications, such as the minimization of
the coupling (Kyriacou et al. (2017)). Other recent works
have considered the decomposition problem in the context
of FDI, but not focusing on the detection performance.
In Bregon et al. (2014), a decentralized fault diagnosis
task using structural model decomposition is considered,
but an event-based method is implemented in a quali-
tative approach. In Staroswiecki and Amani (2014), the
topology of the information pattern is studied in order
to allow fault-tolerant control reconfiguration. In Grbovic
et al. (2012), the decomposition is designed using the
Sparse Principal Component Analysis algorithm, but the



proposed decentralized fault detection architecture is a
data-driven approach, while our method is a model-based
one. In these works, in general, the solution represents a
compromise between the desirable reduction of the compu-
tation cost (leading to a large number of small subsystems)
and a reasonably low communication cost (preferring a
small number of subsystems). But another crucial aspect
is represented by the performance in detecting a fault and
in terms of presence of false alarms.

The aim of this work is to study the decomposition
problem specifically for the fault detection task. The
goal is to understand how the system decomposition and
the adoption of distributed approaches can influence the
detectability performance. An interesting and challenging
research problem is how to define a suitable objective
function able to represent the performance of the fault
detection task.

The main contributions of the paper are: the analysis
and comparison of different objective functions for the
optimal decomposition problem; the definition of a metric
to measure the detectability properties of a distributed
model-based fault detection method; the analysis of the in-
fluence of the system decomposition on the fault detection
performance. In particular we base our study on the novel
fault detection approach proposed in Boem et al. (2016),
formulated for non-overlapping decompositions, and we
present some numerical results obtained applying it on
several use-cases after decomposing the systems according
to different decompositions. We show that the minimiza-
tion of the coupling among subsystems, a metric usually
used in control applications, does not imply in general the
optimization of the detectability goal, and then it may lead
to suboptimal solutions when used for distributed fault
detection. Moreover, we show that the minimization of the
proposed function cost is able to reduce the fault detec-
tion time with the considered distributed fault detection
method.

It is worth noting that, to the best of the authors’ knowl-
edge, it is the first time that the system decomposi-
tion problem is analyzed for non-overlapping frameworks,
specifically for the distributed fault detection purposes,
taking the detection performance into account. In Boem
et al. (2015) preliminary results are presented for the defi-
nition of the optimal FDI topology taking the detectability
properties into account, but focusing on specific faults and
state trajectories, in the case of overlapping decomposi-
tions.

Notation. Given a stochastic variable x, we represent as
E[x] its expected value, and as Var[x] its variance.

2. PROBLEM FORMULATION

Let us consider a discrete-time large-scale linear system Σ,
modeled as

Σ : x(k + 1) = Ax(k) + w(k),

y(k) = Cx(k) + v(k),
(1)

where x ∈ R
n, y ∈ R

p and u ∈ R
m are the state, output

and input vectors, and w ∈ R
n and v ∈ R

m are the process
and measurement noises. We assume w and v are zero-
mean white noises with covariance matrices Q and R,
respectively. In order to implement a distributed model-

based fault detection framework, it is necessary to decom-
pose the system into M ≥ 1 subsystems Σi, each with a
local state vector xi ∈ R

ni , a local output vector yi ∈ R
pi

and a local input vector ui ∈ R
mi . The local vectors are

obtained by clustering the components of the monolithic
system vectors x, y and u. The decomposition has to cover
the whole original system and can be overlapping or non-
overlapping (Šiljak (1978)) depending on whether or not
some state variables are shared among different subsys-
tems. We will consider non-overlapping decompositions.

Once the decomposition problem is solved, the monitored
large-scale system Σ can be modeled by M interconnected
subsystems, where each subsystem Σi, with i = 1, . . . ,M ,
is described by the following equations:

Σi : xi(k + 1) = Aiixi(k) +
∑

j 6=i

Aijxj(k) + wi(k),

yi(k) = Cixi(k) + vi(k),

(2)

where xi(k), wi(k) ∈ R
ni and yi(k), vi(k) ∈ R

pi . We
assume that wi(k) and vi(k) are zero-mean white noises,
E{wi(k)w

⊤
j (k)} = Qiδij , E{vi(k)vj(k)} = Riδij (with

Ri > 0), and E{wi(k)v
⊤
j (h)} = 0 for all i, j = 1, . . . ,M

and h, k ≥ 0. In the above notation, δij is the Kronecher
delta function.

The goal of the paper is to understand the influence of
the decomposition on the fault detection performance and
what is the best choice among all the possible decomposi-
tions of the system Σ. To do this, we now briefly introduce
a specific distributed model-based fault detection method
we will use to evaluate the role of the decomposition.

3. MODEL-BASED DISTRIBUTED FAULT
DETECTION APPROACH

We briefly describe the distributed model-based fault de-
tection method presented in Boem et al. (2016). In the con-
sidered approach, the local diagnosers monitor each sub-
system by communicating with neighboring subsystems
and estimating the local state. To estimate the local state
vector each diagnoser locally implements a Luenberger
observer:

x̂i(k + 1) =
∑

j∈Ni

{Aij x̂j(k) + Lij [yj(k)− Cj x̂j(k)]}

ŷi(k) = Cix̂i(k),

(3)

where Ni denotes the set of predecessors of subsystem i
defined as Ni = {j |Aij 6= 0}. We also define Si, the set
of successors of subsystem i, as Si = {j | i ∈ Nj}. Note
that i is in general included in Si and Ni. For later use,
we also define the set of strict neighbors and successors
Ñi = Ni\{i} and S̃i = Si\{i}, respectively.

Then, for fault detection purposes, each local diagnoser
computes a local residual signal

ri(k) := yi(k)− ŷi(k)

and uses it, together with a properly designed threshold,
to monitor the corresponding subsystem. Given α > 1 and
taking advantage of the Chebishev inequality, for each l-th
component ri,l of the residual ri we can write



Pr(E[ri,l]− α

√

Var[ri,l] ≤ ri,l ≤ E[ri,l] + α

√

Var[ri,l])

≥ 1− 1

α2
.

We define component-wise the time-varying threshold

r̄i,l(k) = α

√

Var[ri,l(k)]. (4)

Therefore, since E[ri(k)] = 0 for all k, in healthy conditions

|ri(k)| ≤ r̄i(k),

with a probability greater than 1− 1
α2 .

In order to compute the fault detection thresholds r̄i(k),
we analyze the local residual that can be written as:

ri(k) = Ciei(k) + vi(k),

where ei(k) = xi(k) − x̂i(k) is the local estimation error.
Hence, considering Eq. (4), we would need the estimation
error covariance matrix Π(k), but this matrix cannot be
computed in a distributed way. In Boem et al. (2016), the
authors overcome this limitation by proposing a suitable
upper bound for the covariance matrix of the estimation
error which can be updated in a distributed way.

The upper bound B(k) for the estimation error covariance
matrix Π(k) is a block diagonal matrix. Each diagnoser
updates the related time-varying block matrix Bi(k) ac-
cording to:

Bi(k + 1) =
∑

j∈Ni

[

(Ãij − LijC̃j)Bj(k)(Ãij − LijC̃j)
⊤

+LijR̃jL
⊤
ij

]

+Qi , (5)

where, for all i, j = 1, . . . ,M , Ãij =
√
ςjAij , C̃i =

√
ςiCi,

and R̃i = ςiRi, and ςi = |Si|.
In Boem et al. (2016) it is proven that Bi(k) is an upper
bound to Πi(k), for all i = 1, . . . ,M and for all k ≥ 1.
Furthermore it is proven that this upper bound converges,
given some conditions on Lij . The proposed bound can be
used for the computation of the local thresholds as:

r̄i,l(k) = α

√

[

CiBi(k)C⊤
i +Ri

]

ll
, (6)

where [M ]ij denotes the (i, j)-th element of matrix M . In
the following, for analysis purposes, we will assume Ci = I
for all i = 1, . . . ,M .

4. OPTIMAL DECOMPOSITION AND OBJECTIVE
FUNCTIONS

Based on the fault detection method presented in the
previous section, we now propose a novel cost function to
define the optimal decomposition problem. This allows us
to measure the performance of the fault detection method
in terms of detectability, that is, the ability of a method to
detect a fault. In order to be robust towards the presence of
uncertainties and noise, and to reduce the presence of false-
alarms, a certain level of conservativeness is introduced in
the method by the detection threshold. As illustrated in
the previous section, the fault detection thresholds for each
residual component depend on the variances of the associ-
ated estimation errors, as evident from (5), which depend
on the specific chosen decomposition. In order to allow
a distributed framework, instead of the actual covariance

matrix Π(k) we consider the upper bound B(k). Hence,
the thresholds depend on the elements on the diagonal of
B(k). Given the same residual signal, we would like the
threshold values to be the lowest possible in order to have
narrow detection intervals, and consequently a faster de-
tection, but continuing to guarantee the same false-alarm
rate, which is lower than 1

α2 in the proposed approach
by exploiting the Chebishev inequality. Consequently, we
consider as an objective function to be minimized for the
choice of the best decomposition, the following quantity:

tr(B̄) =
∑

i

(b̄ii), (7)

where B̄ is the steady-state value of matrix B. The choice
of the steady state matrix allows the computation of an
index that does not depend on the time and on the specific
trajectories of the system. Moreover, the convergence
properties of matrix B are presented in Boem et al. (2016)
and we observed in simulation that the decompositions
ranking by trace remains essentially unchanged after the
first time-step. Thus, the trace of the steady state value
of matrix B can be used as a metric for the choice of the
best decomposition in terms of detectability.

This objective function has been compared with other
fundamental cost functions in order to highlight possible
correlations. In particular we considered:

(1) Communication cost, expressed in terms of number of
state variables that must be exchanged at each time-
step between the LFDs:

Ccomm =
∑

i∈M

∑

j∈Ñi

(nj). (8)

(2) Computational cost, expressed in terms of number of
operations - mainly products - the agent monitoring
the most computationally expensive subsystem has
to compute for estimation, evaluation of the residual
and the threshold (under the assumption that C is an
identity matrix):

Ccomp = maxi∈M

∑

j∈Ni

(5ni + 2ninj + 4nin
2
j ). (9)

(3) Coupling or level of interaction between subsystems,
which is an objective function traditionally used for
the determination of the best decomposition for con-
trol applications, and it is expressed as the sum of the
weights on cut edges of the system structural graph:

Ccoupling =
∑

i∈M

∑

j∈Ñi

∑

r

∑

s

(aijrs), (10)

where aijrs is the (r, s) element of matrix Aij , with
i 6= j.

We are now going to evaluate these objective functions for
all the possible decompositions in some use-cases.

5. NUMERICAL RESULTS AND DISCUSSION

In order to better understand the effect of decomposing a
system into subsystems on the distributed fault detection
performance, we have applied the distributed approach
described in Section 3 to several systems. For each system,



we evaluated the previously defined cost functions for all
the possible decompositions.

All the possible decompositions have been determined
combining permutation and partitions of the dimension n
of the system state, excluding redundancies. In Table 1 the
number of decompositions for several systems dimensions
is reported. It is worth noting that this kind of analysis
would not be feasible for real large-scale systems, since the
number of possible decompositions grows exponentially
with the state dimension. This analysis is used in this
paper in order to evaluate which objectives functions are
suitable in order to determine the best decomposition for
fault detection purposes.

Table 1. Number of decompositions N for
different state vector dimensions n

n 5 6 7 8 9 10
N 52 203 877 4140 21147 115975

The notation we use to describe a decomposition is com-
posed of two strings:

• a permutation string with the indices of the state vari-
ables, written in the order they have to be considered;

• a division string with the dimension (number of state
variables) of each subsystem, referring to the order of
the permutation string.

Then, for example, the permutation string ”14725836”
and the division string ”332” refer to a decomposition
in which the state variables with index 1, 4 and 7 are
grouped together in one subsystem of dimension 3; the
state variables with index 2, 5 and 8 are grouped in
a second subsystem of dimension 3, and finally state
variables 3 and 6 are included in a third subsystem of
dimension 2.

5.1 Application examples

We now present some use-cases we have considered for
analysis in this paper. Other examples have been also
analyzed in Gei (2017), but, due to length limits, these
have been selected for their significance:

• A reduced version of the system studied in Kyriacou
et al. (2017) concerning the distributed contaminant
detection in intelligent buildings. More specifically,
we consider a portion of the floor plan comprising
the rooms from 1 to 8. In Kyriacou et al. (2017),
the authors select the decomposition based on the
minimization of the coupling. Hence, it is of interest
to determine whether or not this choice leads in
turn to the maximization of detectability, i.e. the
minimization of the detection threshold values.

• A tanks system composed of 8 tanks as in Figure 1.
• A cascade tanks system as the one shown in Figure
2.

• A tanks system as the one shown in Figure 3, which
has a hierarchical structure being described by a lower
triangular discrete-time state matrix.

The considered tanks systems are variations of the
quadruple-tanks process described in Shneiderman and
Palmor (2010). A complete description of the models and

Fig. 1. Decentralised tanks system composed of 8 tanks.

Fig. 2. Cascade tanks system.

Fig. 3. Hierarchical tanks system.

the parameters values can be find in Gei (2017). We sim-
ulate these systems with covariance matrices Q = R =
0.000001 I.

5.2 Comparison between different cost functions

In Figure 4, 5 and 6 we can see the value of detectability
cost function (7), as well as the computational cost,
the communication cost and the coupling cost function,
all normalized between 0 and 1, for all the possible
decompositions for the building model, the eight tanks
model and the cascade tanks model, respectively. The
objective of the decomposition optimization problem is to
minimize all these cost functions. In order to show the
results, the decompositions have been ordered as follows:

• decompositions with the same number of subsystems
are gathered together and the groups are separated
by the vertical dashed lines;

• inside each group the results are ordered according to
the increasing value of cost function (7).



Fig. 4. Building model: value of the cost functions for
different decompositions, ordered by the number of
subsystems and the detectability cost function (7).

From the Figures, we can notice there is a clear correlation
between the trace of B objective function, representing
the detectability cost, and the communication cost. The
same cannot be said about the coupling cost function; in
fact, there seems to be almost no correlation between the
coupling and the detectability cost functions. This suggests
that selecting the decomposition according to the coupling
cost function does not guarantee the minimization of the
thresholds value and hence a faster detection.

We can also notice in this examples that the trace assumes
a wide range of values inside each group characterized by
the same number of subsystems and delimited by dashed
lines. Furthermore we can see that there are equally good
decompositions with different numbers of subsystems. As
intuitively obvious, the computation cost decreases with
the increase of the number of subsystems, for all cases.

From the results we obtained (not visible from the Fig-
ures), we can give some indication to the choice of the
best decomposition according to the minimization of the
detectability cost function (7)). As a first observation, we

Fig. 5. Eight Tanks model: value of the cost functions for
different decompositions, ordered by the number of
subsystems and the detectability cost function (7).

noted that in the case of the eight tanks model (Figure
1), where the system has a structure composed by three
not interconnected parts, the results show that it is pre-
ferred to decompose the system into its natural compo-
nents/subsystems, but we could also gather together two
or more ‘natural components’ so that they are monitored
by the same agent, and this would not downgrade the per-
formance of the fault detection. As a second observation,
we saw that in general, for systems with a hierarchical
structure like the one in Figure 3, it is better to separate
into smaller subsystems the state variables which have
more influence on the dynamics of the others.

Furthermore, in order to analyze the significance of the
chosen cost function (7) for detectability, we also consid-
ered other options. In fact, the trace of matrix B, is not the
only one available and might not be the best one for our
purposes. The problem is that we would like to minimize
all the components on the diagonal of B, finding the
decomposition which guarantees the lowest threshold for
every single residual. The trace is the most intuitive metric
and it represents a simple solution to this multi-objective
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Fig. 6. Cascade Tanks model: value of the cost functions
for different decompositions, ordered by the number
of subsystems and the detectability cost function (7).

optimization problem, as it minimizes the sum of all the
threshold components. However it might lead to unbal-
anced solutions with high thresholds for some components
and low thresholds for others. Another possible metric is
the maximum value on the diagonal of B. This gives us
the guarantee that the maximum thresholds component
is minimized. However, this cost function would treat the
same way two decompositions which have equal maximum
value on the diagonal but one has all the elements on the
diagonal equal to that maximum and the other one has
the other elements really low. We hence understand that
the choice is not univocal and trivial. In order to compare
the two detectability metrics, we show in Figure 7 and 8
the trends of the two cost functions for the building model
and the eight tanks model. In these plots the values are
not normalized between zero and one and this allows us
to see what the achievable improvement in each size group
is. The trends are similar but the maximum value on the
diagonal of B takes a more discrete set of values, thus not
making easy the choice between different decompositions.
For this reason, the trace might represent a more informa-
tive metric.
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Fig. 7. Building model: comparison between trace and
maximum value of the diagonal of B.
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Fig. 8. Eight tanks model: comparison between trace and
maximum value of the diagonal of B.

5.3 Relation between system decomposition and detection
time

The simulation results presented in the previous subsec-
tion showed that the decomposition has an influence on
the bound matrix B of the covariance matrix Π. We saw
in Section 3 that the elements on the diagonal ofB are used
to compute the thresholds for all the components of the
residual vectors. This means that the lower these elements
on the diagonal of B, the narrower and less conservative
the thresholds are, maintaining the same maximum false-
alarm rate. Also the choice of smaller α would make the
detection thresholds narrower but this would come at the
expenses of a higher false-alarm rate.

Intuitively, a less conservative bound leads in turn to a
faster detection of a fault. In this section, we analyze
what influence the decomposition can have on detection
time and we show that the minimization of cost function
(7), that is the trace of bound B, implies a reduction
of the detection time. To do this, we simulate some
faults in the use-cases previously presented in this section
and we implement the distributed fault detection method
in Section 3, considering different decompositions of the
system. In particular, we report the results for the eight
tanks model and the hierarchical tanks model, where the
considered faults are leakages in one of the tanks. We then
compare the detection instant for different decompositions.



Table 2. Average value and standard deviation of the detection time

Decomposition Average Detection Time [s] Standard Deviation [s]
Decomposition: ”14725836” Division: ”332” 135 13
Decomposition: ”34567812” Division: ”332” 387 189

Table 3. Average value and standard deviation of the detection time

Decomposition Average Detection Time [s] Standard Deviation [s]
Decomposition: ”4567123” Division: ”4111” 134 23
Decomposition: ”2345167” Division: ”4111” 337 158

For the eight tanks model we simulate a leakage in tank 1.
We consider an incipient fault evolving as (1−e−(t−t0))ah,
being t0 = 100 s the fault time and ah = 2.5%a1, where
a1 = 5.1 cm2 is the cross-section of the outlet hole caus-
ing the leakage. In Figure 9, we compare the detection
performance with two different decompositions composed
of 3 subsystems: the first is characterized by the minimum
value of the proposed detectability cost function, while the
second is another decomposition that might be chosen for
physical reasons grouping the tanks situated at the same
level, characterized by a bigger detectability cost value.
The threshold parameter α is chosen equal to 3. In Figure
9 we analyze the behavior in a time frame of 700 s. We can
see the evolution of the residual corresponding to the first
state variable and the related threshold for the considered
decompositions. The decomposition minimizing the de-
tectability cost function allows for a faster fault detection.
We repeated the simulation 1000 times to evaluate average
and standard deviation of the detection time (instant at
which the residual crosses one of the two threshold). The
average detection times and standard deviations are shown
in Table 2. The difference between the average detection
instants of the two decompositions is quite significant, rep-
resenting almost four minutes of detection delay, proving
how important can the decomposition choice be on the
performance of the fault detection.
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Fig. 9. Eight Tanks model: leakage in tank 1. Residual
and threshold for state variable 1, with two different
decompositions.

For the hierarchical tanks model, we simulated a leakage
in tank 4. We consider an incipient fault evolving as (1−

e−(t−t0))ah, being t0 = 100 s the fault time and ah =
1.3%a4, where a4 = 11.5 cm2 is the cross-section of the
outlet hole. We set α = 3. The considered decompositions
are ”4567123” ”4111” and ”2345167” ”4111”, where the
first is the one, with four subsystems, that minimizes the
detectability cost function, while the second is the one,
with four subsystems, that minimizes the coupling cost
function. We repeated the simulation 1000 times. In Figure
10 we can see the evolution of the residual corresponding to
the fourth state variable and the related threshold for one
of the simulations and both decompositions. The average
detection times and their standard deviations are shown
in Table 3. Also in this case we find a significant difference
in terms of detection time, as it exceeds three minutes,
showing that the minimization of the detectability cost
function allows to obtain better detection performance.
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Fig. 10. Hierarchical Tanks model: leakage in tank 4.
Residual and threshold for state variable 4, with two
different decompositions.

From Figures 9 and 10, we can see that also the residual
evolves differently according to different decompositions.
First results seem to show that the minimization of the
trace of the bound B makes the residual more sensitive to
the fault. This is another aspect that will be analyzed in
future works.

6. CONCLUDING REMARKS

In this preliminary paper, we analyzed the effect the sys-
tem decomposition has on model-based distributed fault
detection. The decomposition problem has been addressed



in the past for control and estimation applications, how-
ever a solution tailored for the fault detection problem
has not been provided yet. A cost function to measure
the detection performance of the FD method has been
proposed, and compared to other possible cost functions.
As a future work, we are going to investigate the design of a
synthesis method to compute the optimal decomposition
with respect to the proposed detectability cost function
and we will consider real large-scale systems examples.
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