
CPS-MT: A Real-Time Cyber-Physical System
Monitoring Tool for Security Research

Martı́n Barrère∗, Chris Hankin∗, Angelo Barboni∗, Giulio Zizzo∗, Francesca Boem§, Sergio Maffeis∗, Thomas Parisini∗
∗ Imperial College London, UK

{m.barrere, c.hankin, a.barboni16, g.zizzo17, maffeis, t.parisini}@imperial.ac.uk
§ University College London, UK

{f.boem}@ucl.ac.uk

Abstract—Monitoring systems are essential to understand and
control the behaviour of systems and networks. Cyber-physical
systems (CPS) are particularly delicate under that perspective
since they involve real-time constraints and physical phenomena
that are not usually considered in common IT solutions. There-
fore, there is a need for publicly available monitoring tools able
to contemplate these aspects. In this poster/demo, we present
our initiative, called CPS-MT, towards a versatile, real-time CPS
monitoring tool, with a particular focus on security research.
We first present its architecture and main components, followed
by a MiniCPS-based case study. We also describe a performance
analysis and preliminary results. During the demo, we will discuss
CPS-MT’s capabilities and limitations for security applications.

I. INTRODUCTION

In recent years, cyber-physical systems (CPS) have attracted
a lot of research attention due to their intrinsic combina-
tion of cyber and physical aspects, in particular on security
concerns [1]. One of the main challenges is therefore to re-
think security from a new angle where cyber, physical and
human aspects are integrated and understood as a whole. In
addition, CPS systems are usually time critical and thus, real-
time aspects are fundamental. In this work, we focus on indus-
trial control systems (ICS), which are a class of cyber-physical
system where cyber entities (e.g. computers, PLCs) monitor
and control processes and physical actions. Cyber attacks on
these systems may have serious physical consequences such as
flooding, blackouts, or even nuclear disasters [1]. Hence, ICS
security is vital since its compromise may result in a myriad of
severe problems, from service disruptions and economic loss,
to jeopardising natural ecosystems and human lives.

To the best of our knowledge, the security research commu-
nity lacks public and configurable monitoring tools that can be
adapted to different CPS research scenarios and consider real-
time aspects as well. We often see monitoring solutions that
query a server every five seconds to display updated values
on screen. This is clearly not real time, involves unnecessary
computation load, and may also crash the client. In addi-
tion, CPS environments present widely diverse configurations
across different domains and custom setups. CPS-MT aims at
covering these needs by means of a versatile, real-time ori-
ented architecture, and a simple, yet expressive, configuration
mechanism. A demo of CPS-MT is available online at [2]. We
plan to release CPS-MT as an open-source project soon.

This work is supported by the KIOS Research and Innovation Center of
Excellence, European-founded initiative (H2020, ID 739551).

II. MONITORING APPROACH

Our monitoring approach relies on the architecture illus-
trated in Fig. 1. The upper layer represents the CPS elements
to be monitored, e.g., readings from PLCs, actions, sensor
readings, etc. The middle layer acts as a broker between the
elements being monitored and CPS-MT. We use Redis [3] to
implement this layer. Redis is a fast in-memory database that
stores data in the form of key-value pairs. The main idea is
that monitored elements publish their data via Redis channels
and CPS-MT subscribes to these predefined channels in order
to receive updates in real time. This makes CPS-MT almost
agnostic to what is being monitored, and thus very flexible.

The bottom layer illustrates the main components of the
CPS-MT client-server architecture. The main goal of the server
is to monitor the activity on Redis channels and report updates
to the client side. The client (Web browser) will display
and/or capture this new data as it becomes available. We use
WebSockets to implement a two-way communication between
the server and the client [4]. This allows the server to push
data directly into the client in real time. WebSockets eliminate
long polling and multiple client requests as it happens with
traditional HTTP-based approaches.

Visualisation aspects are handled by the client side and rely
mostly on JavaScript, D3.js [5] and related technologies. Fig. 2
shows a snapshot of CPS-MT displaying three monitors in real
time. The system also allows to explore captured sessions in
order to analyse CPS behaviour over specific periods of time.

Fig. 1: CPS-MT high-level architecture



Fig. 2: CPS-MT real-time monitors [2]

III. CASE STUDY

This demo aims at showing and discussing CPS-MT’s ca-
pabilities using auto-generated data as well as MiniCPS-based
simulated environments. MiniCPS is an extensible Python-
based simulation framework [6], built on top of Mininet [7],
that implements simulated CPS components such as PLCs,
their interactions with physical devices, and standard industrial
protocols such as Modbus/TCP and CIP over Ethernet/IP. Our
current research work focuses on ICS security, in particular
on water treatment plants. MiniCPS provides a partial imple-
mentation of a real testbed developed at iTrust, Singapore [8],
which we have used for our research work. MiniCPS uses
SQLite to store the state of sensor readings and physical
devices. We have extended MiniCPS to also support Redis
as its data store, thus enabling CPS-MT to monitor the status
of the whole simulation process, including cyber attacks. In
that context, we will perform different kinds of attacks (e.g.
man in the middle attacks), and will show how we can use
CPS-MT to identify discrepancies and abnormal behaviour.

IV. PRELIMINARY RESULTS

CPS-MT has shown a good performance on our case study.
However, we have also conducted an intensive analysis to
identify to what extent the client is able to properly display
incoming events in real time and store session captures. Our
methodology uses a 30-seconds window where simulated
events are generated at different frequencies (in the order of
milliseconds) and sent to the client in the form of stress tests.
Observations are made until the client becomes unresponsive
(or crashes). We also vary this analysis over a number of
monitors ranging from one to ten, as shown in Fig. 3. We used
a standard MacBook Pro (Mid 2014) for these experiments.

 0

 50

 100

 150

 200

 250

 300

1 3 5 7 10
 0

 500

 1000

 1500

 2000Capture only:
- 1 monitor ~ 1000 events/sec
- 10 monitors ~ 6000 events/sec (all)

N
u

m
b

e
r 

o
f 

d
is

p
la

y
e

d
 e

v
e

n
ts

 p
e

r 
s
e

c
o

n
d

S
to

ra
g

e
 s

iz
e

 i
n

 K
B

Number of active monitors

Multiple monitor performance - #events in 30-seconds window - 1200 ticks

Number of displayed events per second
Storage size in KB

Fig. 3: CPS-MT performance analysis

In the case of one monitor, the system is able to properly
display and capture up to 137.2 events per second, which
corresponds to an average ingress rate of 7 milliseconds. This
is more than enough for standard processes generating a few
dozens events per second. The capture size is around 573.95
KB for a 30-seconds window. We have observed, however,
that the overall manageable ingress rate is even higher when
multiple monitors are considered. For three monitors, the
system is able to properly display up to 174.3 events per
second, while for ten monitors, it reaches 255.7 events per
second across all monitors. This is due to the asynchronous
nature of JavaScript which updates the charts independently.

Another goal of CPS-MT is the ability to capture data for
specific sessions and generate datasets of real and/or simulated
CPS events. This is particularly important for many research
areas such as machine learning where datasets are essential.
CPS-MT implements two ways of storing captured data: one
uses the browser session storage (usually limited to 5-10 MB),
and the other forwards received data to an external storage
server via WebSockets. Our experimental results on capture
only (no display) show that, for one monitor, CPS-MT is able
to capture and send around 1000 events per second, while for
ten monitors, the rate is close to 6000 events per second.

V. DEMO AND DISCUSSION

We will use these results to stimulate enriching discussions
about state-of-the-art techniques and research issues yet to be
solved, including noisy environments (e.g. jitter, delay), hard-
ware in the loop capabilities, real-time visualisation aspects,
scalability, and deployment of security countermeasures.

REFERENCES

[1] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems Security
- A Survey,” IEEE Internet of Things, vol. 4, pp. 1802–1831, Dec 2017.

[2] “CPS-MT - A Real-time CPS Monitoring Tool.” http://demo.cpsmt.org/.
Cited: June 2018.

[3] “Redis.” https://redis.io/. Cited: June 2018.
[4] “RFC 6455 - The WebSocket Protocol.” https://tools.ietf.org/html/

rfc6455. Cited: June 2018.
[5] “D3.js - Data Driven Documents.” https://d3js.org/. Cited: June 2018.
[6] D. Antonioli and N. O. Tippenhauer, “MiniCPS: A Toolkit for Security

Research on CPS Networks,” in Proceedings of the First ACM Workshop
on Cyber-Physical Systems-Security and/or PrivaCy, CPS-SPC’15, 2015.

[7] “Mininet.” http://mininet.org/. Cited: June 2018.
[8] “iTrust: Secure Water Treatment.” https://itrust.sutd.edu.sg/testbeds/

secure-water-treatment-swat/. Cited: June 2018.


