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Predictive Mutation Testing
Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia and Lu Zhang

Abstract—Test suites play a key role in ensuring software quality. A good test suite may detect more faults than a poor-quality one.
Mutation testing is a powerful methodology for evaluating the fault-detection ability of test suites. In mutation testing, a large number of
mutants may be generated and need to be executed against the test suite under evaluation to check how many mutants the test suite is
able to detect, as well as the kind of mutants that the current test suite fails to detect. Consequently, although highly effective, mutation
testing is widely recognized to be also computationally expensive, inhibiting wider uptake. To alleviate this efficiency concern, we
propose Predictive Mutation Testing (PMT): the first approach to predicting mutation testing results without executing mutants. In
particular, PMT constructs a classification model, based on a series of features related to mutants and tests, and uses the model to
predict whether a mutant would be killed or remain alive without executing it. PMT has been evaluated on 163 real-world projects under
two application scenarios (cross-version and cross-project). The experimental results demonstrate that PMT improves the efficiency of
mutation testing by up to 151.4X while incurring only a small accuracy loss. It achieves above 0.80 AUC values for the majority of
projects, indicating a good tradeoff between the efficiency and effectiveness of predictive mutation testing. Also, PMT is shown to
perform well on different tools and tests, be robust in the presence of imbalanced data, and have high predictability (over 60%
confidence) when predicting the execution results of the majority of mutants.

Index Terms—PMT, mutation testing, machine learning, binary classification.
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1 INTRODUCTION

Software testing plays a key role in ensuring software
quality. In software testing, test suites are usually used to
check the quality of projects under test. The tester also needs
to know the power of the test suites in detecting faults (i.e.,
abbreviated as “test power” in this paper), since a strong-
power test suite may detect more bugs than a weak-power
one. Code coverage has traditionally been widely used as
a proxy for test power. It can be used to quickly check the
proportion of code executed by the test inputs. However,
empirical results suggest that code coverage, alone, is inef-
ficient to capture test power [1], [2], [3].

Mutation testing [4], [5], [6] is a methodology for check-
ing test power that addresses the short-comings of coverage.
By contrast with code coverage, mutation testing generates
faulty programs and checks whether the test suite can detect
these faults. Recent results have confirmed the superiority of
mutation testing (in terms of its ability to reveal real faults)
compared to coverage criteria [3]. Aiming at evaluating the
test power, mutation testing may alleviate the weakness of
code coverage in effectiveness. Specifically, in (first order [7],
[8]) mutation testing, a set of program variants (i.e., mutants)
are generated from the original program based on a set of
transformation rules (i.e., mutation operators) that seed one
syntactic change (e.g., deleting a statement) at a time to
generate one mutant. A mutant is said to be killed by a test
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suite if at least one test from the suite has different execution
results on the mutant and the original program. Otherwise,
the mutant is said to survive (i.e., or to be alive). Based on
such mutant execution results, the ratio of killed mutants
to all the non-equivalent mutants1 is defined as mutation
score. Test suites with higher score are usually considers as
owning stronger test power. At the same time, information
about live mutants may also help developers to locate the
weaknesses in the current test suite and to add new test
cases accordingly.

Except for evaluating test power, mutation testing has
also been shown to be suitable for simulating real faults
in software testing experimentation [9], [10], [11], localiz-
ing faults [12], [13], [14], performing model transforma-
tions [15], and guiding test generation [16], [17], [18], [19],
[20], [21].

Despite its evident usefulness, mutation testing can be
extremely expensive [22]: it requires the generation and
execution of each mutant against the test suite. For exam-
ple, Proteum, a mutation testing tool for C, includes 108
mutation operators that generate 23,847 mutants for a small
C program with only 513 lines of code [23]. The generation
and execution of the large number of mutants can be costly.
Mutant generation cost has been greatly reduced by vari-
ous techniques [24], [25], while mutant execution remains
expensive in spite of various refinement techniques [22],
e.g., selective mutation testing [26], [27], weak mutation
testing [28], high-order mutation testing [29], and optimized
mutation testing [30], [31]. Moreover, developers also com-
plain about the high cost of mutation testing, seeking a com-
promise with respect to early feedback and efficiency [32].
Thus, by contrast with code coverage, mutation testing is
more effective, yet currently, less efficient.

1 The mutants semantically equivalent to the original program are called
equivalent mutants, which can never be killed.
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To address this, we seek an approach to mutation testing
that reduces its effectiveness, yet improves its efficiency.
Motivated by this purpose, we ask – “Can we obtain
mutation testing results without mutant execution?”, and
propose Predictive Mutation Testing (PMT) as the affirmative
answer and incarnation of this question. PMT is the first
mutation testing approach that predicts mutant execution
results (killed or alive) without mutant execution. Specifi-
cally, in this paper, PMT applies machine learning to build
a predictive model: collecting a series of easy-to-access
features (e.g., coverage and mutation operator) on already
executed mutants of earlier versions of the project (i.e., cross-
version prediction) or even other projects (i.e., cross-project
prediction). That is, the classification model is built offline
based on the mutation-testing information (including the
features of each mutant and its execution result) of existing
versions or projects. Based on this model, PMT predicts the
mutation testing results (i.e., whether each mutant is killed
or not by the total set of test cases) for a new version or
project without executing its mutants at all.

PMT has been evaluated on 163 projects under two
application scenarios: cross-version and cross-project. Under
each scenario, we evaluate PMT’s effectiveness and effi-
ciency. First, we use a set of metrics (i.e., precision, recall,
F-measure, and AUC) to evaluate the effectiveness of PMT
in predicting mutant execution results (i.e., killed or alive).
PMT can also be used to predict the mutation score of the
whole project based on the proportion of the mutants it
predicts will be killed. Therefore, we also use the absolute
prediction error (i.e., the absolute value of the difference
between predicted and real mutation scores) to evaluate
the effectiveness of PMT in predicting mutation scores. We
also record the overhead of computing PMT to evaluate its
efficiency. Except for the evaluation on the performance of
PMT, to better understand and apply PMT, we perform
investigations on different aspects of implementing PMT:
the influence of different application factors (i.e., mutation
tools and types of test suites), the influence of different
configurations (i.e., classification algorithms and imbalance
data strategy), the influence of features, and the predictabil-
ity distribution of all the predictions (i.e., on predicting the
execution results of each mutant).

Our experimental results support the claim that PMT
performs well: on effectiveness, for the cross-version sce-
nario, PMT achieves over 0.90 precision, recall, F-measure,
and AUC for 37 out of 39 predictions; for the cross-project
scenario, PMT achieves over 0.85 AUC on classifying mu-
tant execution results for 144 out of the 163 projects, and
lower than 15% error on predicted mutation scores for 143
out of the 163 projects. Furthermore, PMT is shown to
be more accurate than coverage-based testing in predict-
ing mutation scores. On efficiency, PMT is shown to be
much more efficient than traditional mutation testing (with
speedups between 15.2X to 151.4X). Therefore, when pre-
dicting mutation testing results, PMT dramatically improves
the efficiency of mutation testing to a large extent while
incurring only a small accuracy issue, demonstrating a good
tradeoff between efficiency and effectiveness in mutation
testing, and a promising future in measuring test power.

The paper makes the following contributions.
• Dimension. The paper opens a new dimension in mu-

tation testing which predicts mutation testing results
without mutant execution.

• Approach. The paper proposes PMT, a machine-
learning-based approach to predicting mutation testing
results using easy-to-access features, e.g., coverage in-
formation, oracle information, and code complexity.

• Study. The paper includes an extensive empirical study
of PMT on 163 real-world Java projects under two
application scenarios.

• Analysis. The paper includes detailed analysis of the
effectiveness of the various choices in implementing
PMT, the impact of its application factors and features,
as well as the distribution of predictability among all
the predictions.

As this work is an extended version of our conference
paper [33], we list below, the primary novel scientific contri-
butions of this extension:
(1) Investigation into features. We add a new research
question that specially investigates the contribution of the
14 individual features. We also compare the effectiveness of
different categories of features. Results show that Execution
features and test code related features contribute more.
(2) Investigation into predictability. We add a new research
question that specially investigates the predictability of the
mutants under PMT. In particular, the majority of mutants
have a good predictability of over 60%. Additionally, mu-
tants that are easier to kill tend to be easier to predict as
well.
(3) Practical guidelines. We draw more conclusions which
can provide practical guidelines from the experimental re-
sults, including the guidelines on feature selection, mutant
selection, mutant reduction, and so on.
(4) Improvement in effectiveness. We optimize the process
of coverage-related feature collection and further improve
the effectiveness of PMT, e.g., an additional 2.7% improve-
ment over the average AUC values is achieved under the
cross-project scenario.

The rest of this paper is organized as follows. Section 2
introduces the details of our approach. Section 4 introduces
the empirical design. Section 5 presents the result analysis.
Section 6 discusses some related issues. Section 7 discusses
the related work. Section 8 concludes the paper.

2 APPROACH

Mutation testing is widely recognized to be expensive [22]
due to the expensive mutant execution procedure. To alle-
viate this issue, we present a new dimension of mutation
testing - predictive mutation testing (PMT) - which predicts
mutation testing results without mutant execution. Typi-
cally, a mutant has two alternative execution results, killed
or alive, and thus we simplify the prediction of mutant
execution results as a binary classification problem.

In this paper, we adopt machine learning to solve this
problem. To better illustrate our approach, we present the
general framework of PMT in Figure 1. As shown in the
figure, PMT builds a classification model offline by analyz-
ing the training mutants each of which has a label repre-
senting its mutant execution result (i.e., killed or alive) and
some easy-to-access features (i.e., measurable properties or
characteristics that could have associations with labels [34]).
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Fig. 1 The general framework of PMT.

Then the classification model can be used to predict whether
any new mutant is killed or has survived based on the same
types of features.

Next, we controduce two key aspects in building a
predictive model: (1) what features are used to build the
classification model, regarding which we should use infor-
mation that is related to mutation testing results, and is easy
to access due to the efficiency concern (see Section 2.1); (2)
what classification algorithm is used to build the classifica-
tion model (see Section 2.2). Furthermore, we consider the
impact of imbalanced data (see Section 2.3).

2.1 Identified Features

We identify various features that are related to mutation
testing results based on the PIE theory [35], [36], according
to which a mutant can be killed by a test only if the
following three conditions are satisfied: (1) execution, the
mutated statement is executed by the test; (2) infection, the
program state is affected immediately after the execution
of the mutated statement so as the test could distinguish
the mutant from the original program; and (3) propagation,
the infected program state propagates to the test output so
that the test output of the mutant is different from that of
the original program. PMT predicts whether a mutant is
killed by analyzing whether it may satisfy these conditions.
In other words, PMT needs to identify features that have
connections with the preceding three conditions and to
predict whether a mutant is killed.

Note that when choosing features, we do not seek the
universal set of useful features representing each condition.
Instead, considering the major goal of predictive mutation
testing – to reduce the cost of traditional mutation testing
– we adopt features that are easy to fetch and could im-
prove the predictive effectiveness at the same time. As a
result, except for dynamic features (i.e., the features col-
lected through executing the original program), we also
adopt some static code information as features to indicate
dynamic mutant execution information. Such information
could complement dynamic features for precise prediction
of software engineering problems, which is also replete
in the literature [37], [38], [39]. Actually, the entire static
analysis area in the end aims to guarantee that dynamic
program executions satisfy certain properties. For example,
a type checker would not work if static information were

not useful in determining dynamic properties; the static
Terminator tool2 predicts (indeed, proves) the termination
of programs during dynamic execution. Of course, static
analyses cannot offer 100% precision and recall, but they suf-
fice for safely predicting dynamic properties in sufficiently
many situations to be useful and do so statically.

When choosing features for each condition of the PIE
theory, intuitively, we extract features from both mutants
and test code (e.g., whether and how frequently test
cases/assertions can execute/check certain mutant-related
source code elements), since those features directly show
the correlation between tests and mutants. Different mutant
features may indicate different mutant killing probability in
case of even similar tests. For example, even if two program
elements (e.g., statements, methods, or classes) are executed
by the same tests or checked by the same assertions, mutants
in one element may be much easier to kill than mutants
in another element, because one element may have many
connections with other elements (e.g., used by many other
elements), making it rather easy for the infected states to
propagate to the final program state (thus being killed).

Next, we introduce the features we adopted coping with
the three conditions of the PIE theory.

2.1.1 Execution Features
For the first condition (execution), we must identify features
that are necessarily related to the execution of the mutated
statements, which are grouped as a set of execution fea-
tures. In particular, we consider the following two specific
features:
(1) numExecuteCovered, which refers to how many times the
mutated statement is executed by the whole test suite.
(2) numTestCovered, which refers to how many tests from
the test suite cover the mutated statement.

These two features characterize the execution of mutated
statements by the test suite as a whole and by each individ-
ual test, analyzing the execution information of the original
program rather than the mutants themselves. In particular,
the original program is executed against the given test
suite, recording whether each statement is executed by each
test and how many times each statement is executed by
each test, which is used to calculate numExecuteCovered and
numTestCovered. Clearly, if a mutant is not covered by any
test, it cannot be killed at all since no test is even able to
reach the mutation location; on the contrary, if a mutant is
covered by many tests, it may have a high probability to be
killed since any test covering the mutant may be able to kill
it.

2.1.2 Infection Features
In terms of the second condition (infection), we must iden-
tify some features that are related to the infection of the
mutated statements, which are grouped as a set of infection
features. Intuitively, the modification on a statement does
not necessarily change the program state. However, the
possibility of state changes may depend on the types of the
statements and the types of changes. For example, changing
statement “int x=10” to “int x=Math.abs(10)” based
on the absolute value insertion (ABS) mutation operator

2 Byron Cook et al: https://vimeo.com/81641895

https://vimeo.com/81641895
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cannot change the program state during execution. Addi-
tionally, deleting a method invocation may probably have a
huge impact on the program execution, while simply mutat-
ing one constant variable value inside a method invocation
may have less impact. This has also be demonstrated by
previous work in the literature [40], in which Yao et al.
observed that some mutation operators (i.e., different styles
of statement modification [22]) affect program states more
easily than other mutation operators. After careful manual
inspection, Yao et al. found that the ABS mutation oper-
ator generates few stubborn mutants (i.e., non-equivalent
mutants that are hard to kill), while the logical connec-
tor replacement (LCR) mutation operator generates many
stubborn mutants. This indicates that different mutation
operators may have different abilities to infect the program
states.

To sum up, we consider the following two specific
features that may have associations with the statement
infection:
(3) typeStatement, which refers to the type of the mu-
tated statement, e.g., assignment statement, conditional
statement, return statement, or method invocation. Note
that for Java they can be easily categorized by analyzing
bytecode instruction types. To illustrate, INVOKEVIRTUAL,
INVOKESTATIC, and INVOKESPECIAL denote method
invocation while IRETURN, ARETURN, DRETURN, and
FRETURN denote return statements.
(4) typeOperator, which refers to the type of the mutation
operator. Note that mutation testing tools usually record the
mutation operators used to generate each mutant, and it is
easy to fetch such information.

These two features characterize the infection of mutated
statements, and can be easily collected through static analy-
sis on generated mutants.

2.1.3 Propagation Features
In terms of the third condition (propagation), we must
identify some features that are related to the propagation
of infected program states. Intuitively, whether the program
state propagates is related to the complexity of the program
under test. In particular, when the structural units (i.e.,
methods, classes) containing the mutation are complex, the
infected program state may not propagate. Therefore, PMT
uses the following set of complexity features to characterize
to what extent infected program states propagate during
execution:
(5) infoComplexity, which refers to the McCabe Complex-
ity [41] of the mutated method.
(6) depInheritance, which refers to the maximum length of a
path from the mutated class to a root class in the inheritance
structure.
(7) depNestblock, which refers to the depth of nested blocks
of the mutated method.
(8) numChildren, which refers to the total number of direct
subclasses of the mutated class.
(9) LOC, which refers to the number of lines of code in the
mutated method.
(10) Ca, which refers to the number of classes outside the
mutated package that depend on classes inside the package.
(11) Ce, which refers to the number of classes inside the mu-
tated package that depend on classes outside the package.

(12) instability, which is an indicator of the package’s
resilience to change, and is computed based on the Ca and
Ce values, i.e., Ce/(Ce+ Ca).

Furthermore, to learn whether a mutant is killed or has
survived, it is necessary to know whether the tests are
equipped with effective oracles so as to be capable of ob-
serving the behavior difference between the mutant and the
original program. A test oracle is a mechanism to determine
whether the program under test behaves as expected [42].
In practice, developers usually write test assertions in tests,
which are actually one type of test oracles. Except for the
program outputs, these assertions aid to distinguish the
execution results of mutants from the original program. If
a test has no assertion and the program has no output,
the difference between the execution results of mutants
and the original program will not be observed. Therefore,
in order to characterize the extent to which the behavior
difference (between the mutant and the original program)
can be observed, our approach uses a set of features that are
related to test oracles, which includes:
(13) typeReturn, which refers to the return type of the
mutated method.
(14) numMutantAssertion, which refers to the total number
of assertions in the test methods that cover each mutant.
(15) numClassAssertion, which refers to the total number of
test assertions inside the mutated class’s corresponding test
class.

These three features all characterizes program outputs
but are different in the following aspects. The feature type-
Return characterizes the ability of the final program output
on observing the execution difference between mutants and
the original program, whereas the features numMutantA-
ssertion and numClassAssertion characterize the ability of
test assertions on observing the execution results, i.e., the
oracle information. For example, if a method is a void
method, it may still impact the test oracles/assertions, e.g.,
via modifying global variables.

2.2 Classification Algorithm

Machine learning is a technique that gives computers the ca-
pability to learn without being explicitly programmed [43].
Machine learning could devise complex models leading
themselves to prediction, and has been widely used for
solving software engineering problems [44], [45]. In this
paper we use classification methodology that learns a clas-
sification model from instances and then classifies new
instances into different categories. There are many classifi-
cation algorithms available, such as decision tree classifiers,
neural networks, and Support Vector Machines (SVM) [46].
In this paper, we adopt Random Forest, which is a generaliza-
tion of tree-based classification, as our default classification
technique, because Random Forest greatly improves the ro-
bustness of classification models by maintaining the power,
flexibility, and interpretability of tree-based classifiers [47],
and has been shown to be more effective in dealing with
imbalanced data [34].

Random Forest constructs a multitude of decision trees at
training time and output the class based on the voting of
these decision trees. Specifically, Random Forest first gener-
ates a series of decision trees, each of which is generated
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based on the values of a set of random vectors (denoted
as Θk (k=1,. . .)), independent of the past random vectors
Θ1, . . . ,Θk−1 but with the same distribution. The decision
tree is denoted as H(X,Θk), where X is an input vector
representing the set of instances used to build the decision
tree. For any input X , each decision tree of Random Forest
gives its classification result and Random Forest decides the
final classification result of X based on these decision trees.
That is, Random Forest can be viewed as a classifier on a set
of decision tree classifiers {H(X,Θk), k = 1, . . . } [47].

Note that although we use Random Forest as the default
algorithm in this work, PMT is not specific to Random Forest
and our experimental study (in Section 4) also investigates
the choice of other classification algorithms, such as Naive
Bayers, SVM, and J48.

2.3 Imbalanced Data Issue
In practical mutation testing, the proportion of killed mu-
tants may vary greatly (see Table 1). This is a typical
“imbalanced data” problem for machine learning, which is
mostly solved through the following two strategies. First,
cost sensitive, which assigns different costs to labels (e.g.,
killed or alive) according to the distribution of the training
data. Second, undersampling, which arrives at balanced data
by removing some instances of the dominant category from
the training set. However, these strategies also have weak
points: they may decrease the effectiveness of a classification
model by assigning higher costs to essential instances or
removing essential instances.

We investigate the choice of these strategies (i.e, naive,
cost sensitive, and undersampling) in Section 4. In particular,
we use the naive strategy by default, which uses imbalanced
data directly without any further handling.

2.4 Predictability of Mutants
In predictive problems, predictability usually refers to the
property of a system to describe how predictable this system
is [48] using a specific predictive model. Predictability can
be used to quantify the certainty of decisions. It is useful in
providing flexibility in adjusting the decision criteria: one
may choose to examine specific cases with higher risk (i.e.,
lower predictability) to get more accurate results.

In this paper, when talking about the predictability of a
mutant, we refer to the certainty score or probability of PMT
to correctly predict this mutant’s execution result. With such
information, developers may learn the degree of certainty of
the prediction on each mutant and choose to either believe
in the predictive result when the predictability is high, or to
doubt the predictive result and run the mutant against the
tests to get more accurate results when the predictability is
low.

In classification using Random Forest, for each instance
the classifier would provide an array containing the es-
timated membership probabilities for each class. Suppose
that Set X = {x1, x2, ...xm} represents the total set of
instances to be predicted, set Y = {y1, y2, ...yn} represents
the set of different classes, then the array can be represented
as Pr(xi|Y ), meaning that for a given instance xiεX , the
classifier assign probabilities to each class yiεY . The values
of these probabilities are always between zero and one. For

each instance, the probability values of all class labels would
sum up to one.

For binary classification problem, the distribution array
would contain two variables, the first one is the probability
for class label ”yes” (i.e., corresponding to ”killed” in this
work), the second one is the probability for class label
”no”(i.e., corresponding to ”alive” in this work). Each vari-
able in the distribution array is between zero and one. The
classifier would classify the instance to the corresponding
label whose variable is over a threshold (usually valued 0.5).
For example, if an instance has a distribution array [0.9, 0.1]
assigned by the classifier, it means that the classifier deems
90% probability that this instance belongs to the “yes” label,
and 10% probability that this instance belongs to the “no”
label. Consequently, the classification model would classify
this instance to the “yes” label.

In this work, we collect each mutant’s predictability
in the following way: we use the distance between the
probability values and 0.5 as a indicator of the predictability.
For example, for the instance above with a distribution array
of [0.9, 0.1], 0.4 (= 0.9 − 0.5) would be its predictability. In
this way, each instance would have a predictability value
between 0.0 and 0.5. The closer the predictability is to
0.5, the more confident the classifier is in classifying this
instance.

3 APPLICATION MODE

For any project, PMT can predict the execution results of all
its mutants based on a classification model, built in advance.
The classification model can be built either based on the
previous versions of this project or based on other projects.
Thus, there are two major application scenarios for PMT: (1)
cross-version, where PMT uses the mutation testing results
of old versions to predict the mutation testing results of
a new version. During the development cycle of the new
version, the classification model can be built beforehand
based on the earlier version(s). When the new version is
ready, only the features are needed to be collected for the
new version and the corresponding mutation testing results
can be predicted directly. (2) cross-project, where PMT uses
the mutation testing results of other projects to predict the
mutation testing results of a new project. The users can train
a classification model based on other projects beforehand,
and then use that model to predict the test power for a new
project. Under both scenarios, the cost for a new project
lies in collecting those easy-to-access features and making
prediction.

It is worth mentioning that different programs and their
corresponding test suites are designed and implemented
differently by different developers or teams, and thus cross-
project prediction is not an easy task. However, it is still
applicable out of two aspects. First, mutants of different
programs may still have similar properties. For example,
mutants generated by the logical connector replacement
(LCR) mutation operator may be hard to kill regardless
of the program under analysis [40]. Second, test suites
with good fault-revealing ability may have some common
features although each test suite is designed to test its own
program. For example, test suites covering program source
code elements intensively may have high probability to kill
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many mutants. To tackle this challenging but applicable
cross-project prediction problem, we ensure that all our fea-
tures are general and not project specific, and can be directly
used to extract useful source code and test information
for precise mutant execution result prediction. In this way,
with practical machine learning techniques, the predictive
models built on those general features can be used for cross-
project prediction.

In the near future we will also release the online PMT
service in the cloud, in which a large number of real-
world projects from various open-source communities (e.g.,
Github and SourceForge) are used to build a classification
model, so that developers across the world can get the
predictive mutation testing results of a project by only
uploading its source code. Concerned with the property
of source code, developers can also use this service by
uploading the required features of a project (even a subset
of features) rather than its source code.

4 EXPERIMENTAL SETUP

Our experimental study is designed to answer the following
research questions. The first three research questions are
those explored in the conference version of this paper [33],
the last two research questions are new research questions
added in this journal extension.
RQ1: How does PMT perform in predicting mutation testing
results under the two application scenarios in terms of effec-
tiveness and efficiency? This research question investigates
whether PMT predicts mutation testing results accurately
and efficiently.
RQ2: How do different application factors (i.e., mutation
tools and test types) influence the effectiveness of PMT?
This research question investigates the application artifacts
to which PMT fits its predictive model, so as to explore
whether PMT is widely applicable.
RQ3: How do different configurations (i.e., classification
algorithms and imbalance strategies) of PMT influence its ef-
fectiveness? This research question investigates the impacts
of different configurations on PMT, so as to find out the best
configuration with the best effectiveness.
RQ4: How do different categories of features impact the ef-
fectiveness of PMT? This research question investigates the
impact of individual features as well as the performance of
different combinations of features. It explores the possibility
of further reducing the cost of PMT by focusing on fewer
features. It also seeks to identify what categories of features
play key roles in order to provide guidelines for adding new
features that might thereby improve PMT’s effectiveness.
RQ5: What is the predictability of the mutants when us-
ing PMT to predict their execution results? This research
question aims to investigate the kind of mutants that are
easier/harder to predict, so as to give developers more
information when they need more accurate predictive re-
sults. Such findings concerning predictability may also shed
light on the relative usefulness of different mutants, thereby
improving future mutant selection and reduction strategies.

4.1 Implementation and Supporting Tools
Our tools can be categorized into three types: mutation test-
ing tools which are used to generate and execute mutants

Infection Info.

Propagation 
Info.

Execution Info.

Feature Collection
Java AgentProgram, Mutants,

And Tests

Machine LearningPredicted Test Quality

Cobertura
Major

Metric tool

Major

Fig. 2 The tools used in the implementation of PMT.

to collect training instances; feature collection tools which
are used to collect features; machine learning framework
which is used to build the classification model. We present
the three types of tools in Figure 2, and introduce the details
as follows.
Mutation testing tools. We use two popular Java mutation
tools: PIT3 [49] and Major4, both of which have been widely
used in mutation testing research [50], [51]. As our work tar-
gets the cost problem of mutation testing, we choose PIT as
the primary mutation testing tool since it is evaluated to be
very efficient [52]. Moreover, PIT has been demonstrated to
be very robust [52], enabling large-scale experimental study.
Additionally, to further investigate PMT’s performance on
different tools, we use Major as an auxiliary tool, because
it is also widely adopted and can generate mutants that
represent real faults [10].

Note that we use all the 14 operators of PIT and 8 oper-
ators of Major. PIT and Major only support method-level
mutation operators [53], and thus the mutants explored
in this paper are method-level mutants. We discuss the
implications and possibilities of using class-level mutation
operators in Section 5.2.
Feature collection tools. We use Cobertura5 to collect in-
formation for the coverage-related features (i.e., numExe-
cuteCovered and numTestCovered). For the infection features,
we directly obtain them from the adopted mutation testing
tools. When collecting the typeStatement and typeOperator
features, we find that different mutation operators of muta-
tion tools correspond to different statement types perfectly.
Thus, we collect only the mutation operation type in this
study. For the various static-metric-related features (e.g.,
depInheritance and numChildren), we implement our own tool
based on the abstract syntax tree (AST) analysis provided
by the Eclipse JDT toolkit6 (as shown in the red square in
Figure 2). To obtain the remaining features related to the
oracle information (i.e., numMutantAssertion and numClas-
sAssertion), we develop our own tool based on bytecode
analysis using the ASM bytecode manipulation and analysis
framework7. The detailed information about our own tools is
disclosed online [54].

3 http://pitest.org/
4 http://mutation-testing.org/
5 http://cobertura.github.io/cobertura/
6 http://www.eclipse.org/jdt/
7 http://asm.ow2.org/

http://pitest.org/
http://mutation-testing.org/
http://cobertura.github.io/cobertura/
http://www.eclipse.org/jdt/
http://asm.ow2.org/


TRANSACTIONS ON SOFTWARE ENGINEERING 7

Machine learning framework. We use Weka8, the most
widely-used machine learning library, to build and evaluate
our classification model.

All the experiments were performed on a platform with
4-core Intel Xeon E5620 CPU (2.4GHz) and 24 Gigabyte
RAM running JVM 1.8.0-20 on Ubuntu Linux 12.04.5.

4.2 Subject Systems
We use 9 projects that have been widely used in previous
software testing research [50], [55], [56] as the cross-project
scenario subjects to evaluate PMT. In particular, we use the
latest versions (i.e., the HEAD commit) of these projects
as the base subjects. To facilitate the evaluation of PMT in
the cross-version scenario, we prepare multiple versions for
each base subject as in existing work [50]. More specifically,
we select each version by counting backwards 30 commits
at a time from the latest version commit of each project and
generate up to 10 versions per project. Note that projects
may have fewer than 10 versions due to the limited version
history or execution problems for our mutation testing
or feature extraction tools. The information of these base
projects is shown in Table 1. The number of lines of code is
the executable code reported by LocMetrics9.

To further extensively evaluate PMT, we collect another
154 projects. We started with the first 1000 most popular Java
projects10 from Github in June 2015; 388 of these projects
were saved because they are single-packaged, and were
successfully built with Maven11 and passed all their JUnit
tests; then, 234 projects were further removed because they
cannot be handled by the PIT tool or the other supporting
tools used in our study.

The sizes of the final 154 projects range from 172 to
92,176 lines of code. The mutation score distribution of
these projects is shown in Figure 3. From the figure, the
154 projects have various distribution on the proportion
of killed mutants. 24 projects have notably imbalanced
data that the proportion of killed mutants is below 0.2 or
above 0.8. More details of all these subjects (e.g., the subject
name, version number and the statistics) are available at our
project homepage12.

4.3 Independent Variables
First, we consider two independent variables related to the
application of PMT, which are mutation testing tools (i.e.,
PIT and Major) and test types (i.e., manually written and
automatically generated tests). Second, we consider two in-
dependent variables related to the implementation of PMT,
which are classification algorithms (i.e., Random Forest, Naive
Bayes [60], SVM [61], and J48 [60]) and imbalanced data
processing strategies (i.e., the three strategies mentioned
in Section 2.3). Third, we investigate the features of PMT
from two perspectives, which are the PIE features (see more
details in Section 2.1) and the source-code-related and test-
code-related features.

8 https://weka.wikispaces.com/
9 http://www.locmetrics.com/
10 As in previous work [57], [58], [59], we select the most popular projects

based on their number of stars.
11 https://maven.apache.org/
12 https://github.com/sei-pku/PredictiveMutationTesting
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Fig. 3 The mutation score distribution for 154 Github
projects. The x axis represents the range on the proportion
of killed mutants. The y axis represents the number of
projects belonging to each distribution range.

4.4 Dependent Variables

We consider the following common metrics to measure
the performance of PMT: TP , FP , FN , and TN , which
denotes true positive, false positive, false negative, and true
negative, respectively. All these metric values13 are between
0 and 1. In PMT, when predicting the killing label, a true
positive means a killed mutant which is also predicted as
killed, a false positive means a live mutant predicted as
killed, a false negative means a live mutant also predicted
as alive, a true negative means a killed mutant predicted as
alive.
DV1: Precision. The fraction of true positive instances in the
instances that are predicted to be positive: TP/(TP + FP ).
Higher precision means fewer false positive errors.
DV2: Recall. The fraction of true positive instances in the
instances that are actual positive: TP/(TP + FN). The
higher the recall is, the fewer false negative errors there are.
DV3: F-measure. The harmonic mean between recall and
precision: 2 ∗ precision ∗ recall/(precision + recall). A
high F-measure insures that both precision and recall are
reasonably high.
DV4: AUC. The area under ROC curve [63]14, which mea-
sures the overall discrimination ability of a classifier. It is
a widely used measurements in evaluating classification
algorithms on imbalanced data [64], [65]. The AUC score for
a perfect model would be 1, for a random guessing would
be 0.5.

We also consider the following metric specific to muta-
tion testing since mutation score calculation is an important
goal of mutation testing.
DV5: Absolute Prediction Error. The absolute error of the
predicted mutation score, which is the absolute value of the
difference between the actual mutation score MS and the

13 As PMT predicts both killed and live mutants, following previous
work [62], we use the weighted average of all metrics, each metric is
weighted according to the number of instances with the particular class
label.

14 The ROC curve is created by plotting the true positive rate against the
false positive rate at various threshold settings.

https://weka.wikispaces.com/
http://www.locmetrics.com/
https://maven.apache.org/
https://github.com/sei-pku/PredictiveMutationTesting
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TABLE 1 The information of the 9 base subjects. Column “#Ver.” lists the number of versions that we used; Column
“Size (LOC)” lists the minimum and maximum numbers of lines of executable code for each subject considering its various
versions; Column “#Tests” shows the minimum and maximum numbers of manual tests of each version; Column “# All
Mutants” shows the minimum and maximum numbers of mutants generated by PIT for each subject; Column “# Killed
Mutants” shows the minimum and maximum numbers of mutants killed by tests for different versions of each subject;
Column “Time” shows the commit time of the latest version of each subject; finally, Column “Distri” shows the data
distribution (i.e., proportion of killed mutants to all mutants) of the latest version of each subject. “Coverage” presents the
statement coverage information.

Abbr. Subjects #Ver. Size (LOC) # Tests # All Mutants # Killed Mutants Time Distri Coverage
Min. Max. Min. Max. Min. Max. Min. Max.

apns Java APNS 5 666 1,503 65 87 341 953 177 361 01/2013 0.37 0.58
assj AssertJ 6 11,326 13,372 4,708 5,229 6,819 8,112 4,821 6572 02/2014 0.71 0.78
joda Joda-Time 4 29,205 29,702 3,834 4,033 22,878 23,216 13,101 13,132 01/2014 0.57 0.83
lafj Linear Algebra for Java 7 5,810 7,016 245 625 6,607 8,426 2,859 5,181 02/2014 0.54 0.68
lang Apache Commons Lang 7 22,357 25,774 2,309 2,376 22,762 23,118 15,276 15,503 02/2014 0.67 0.91
msg Message Pack for Java 7 8,171 13,481 658 1,145 5,801 10,058 2,635 2,870 06/2012 0.43 0.58
uaa UAA 4 5,691 8,081 223 470 4,070 5,913 880 1,073 02/2014 0.20 0.38
vrap Vraptor 3 13,636 14,093 985 1,124 7,018 8,262 4,161 5,674 01/2014 0.64 0.81
wire Wire Mobile Protocol Buffers 4 1,788 2,382 19 61 1,958 2,433 546 745 01/2014 0.31 0.53

predicted mutation score MSp (i.e., |MS −MSp|)15

We also consider the following two metrics specific to the
measurement of mutants to help future mutant selection or
reduction strategies, except for those general metrics above
for evaluating classification algorithms.
DV6: Predictability. The “easiness” of predicting mutant
execution results with a predictive model. The value is be-
tween 0 and 0.5. Mutants with higher predictability would
be easier for the predictive model to predict (more details in
Section 2.4).
DV7: Killability. The “easiness” of getting killed for a given
mutant. In this paper we use the proportion of test cases
that kill a mutant against all the test cases to measure this
mutant’s killabiity. The value is between 0 and 1. Mutants
with higher killability tend to be killed more easily.

5 RESULT ANALYSIS

5.1 RQ1: Performance of PMT
To answer this RQ, for each application scenario (i.e., cross-
version and cross-project), we present the performance of
PMT with the default configuration (i.e., using the Random
Forest algorithm and the naive imbalanced data processing
strategy) in terms of effectiveness and efficiency.

5.1.1 Effectiveness
Cross-version: in this scenario, for each of the nine base
projects, we apply PMT to predict the mutation testing
results of each version based on the data of the previous
versions.

First, for each version, we use its immediate previous
version to build the classification model. Thus, for a project
with v versions, we perform v − 1 predictions: using one
version as the training set, and the next version as the test
set. The detailed experimental results are shown in Table 2.
From the table, PMT performs extremely well under this
scenario. In particular, the absolute values of prediction

15 As equivalent mutants are inherently resistent to guarantee automated
identification, due to undecidability of equivalence [40], [66], [67], we
calculate the mutation score for traditional mutation testing and predic-
tive mutation testing by ignoring the influence of equivalent mutants.
This approach is also widely adopted in related work with [68], [69],
[70], [71].

TABLE 2 The effectiveness of PMT under the cross-version
scenario. For each project, we use the mutant execution re-
sults of the mutants from an older version (i.e., vi) to predict
the execution results for the mutants in the next version
(i.e., vi+1). Column “changes” represents the changes in the
number of lines of code between two versions. The rest
columns show the values of the metrics that we used for
indicating the predictive effectiveness.

Sub. Ver. changes Prec. Recall F. AUC Err.(%)
apns v0-v1 193 0.960 0.957 0.957 0.989 3.448

v1-v2 362 0.950 0.947 0.947 0.990 3.187
v2-v3 0 0.972 0.972 0.972 0.997 0.398
v3-v4 67 0.954 0.953 0.953 0.993 1.921
v4-v5 215 0.912 0.912 0.911 0.981 2.099

assj v0-v1 997 0.983 0.982 0.982 0.999 1.072
v1-v2 20 0.988 0.988 0.988 0.999 0.644
v2-v3 964 0.985 0.985 0.985 0.998 0.862
v3-v4 555 0.975 0.974 0.974 0.990 1.804
v4-v5 738 0.976 0.976 0.976 0.994 1.381

joda v0-v1 85 0.958 0.957 0.957 0.992 2.475
v1-v2 355 0.956 0.956 0.956 0.992 1.796
v2-v3 169 0.958 0.957 0.957 0.992 2.867

lafj v0-v1 994 0.915 0.913 0.913 0.970 3.414
v1-v2 270 0.921 0.917 0.916 0.987 5.632
v2-v3 190 0.913 0.908 0.908 0.970 4.967
v3-v4 938 0.841 0.826 0.828 0.941 8.007
v4-v5 167 0.913 0.912 0.911 0.964 4.118
v5-v6 949 0.933 0.932 0.931 0.975 3.909

lang v0-v1 49 0.972 0.972 0.972 0.997 1.105
v1-v2 120 0.972 0.972 0.972 0.997 1.164
v2-v3 13 0.972 0.972 0.971 0.997 1.047
v3-v4 14 0.972 0.972 0.972 0.997 1.115
v4-v5 171 0.969 0.969 0.969 0.996 1.748
v5-v6 6,556 0.968 0.967 0.967 0.996 1.515

msg v0-v1 240 0.936 0.935 0.935 0.986 2.017
v1-v2 519 0.957 0.956 0.956 0.992 2.271
v2-v3 4,551 0.959 0.957 0.957 0.991 1.949
v3-v4 4,302 0.960 0.958 0.959 0.992 2.695
v4-v5 331 0.963 0.963 0.963 0.996 0.285
v5-v6 228 0.970 0.970 0.970 0.997 0.605

uaa v0-v1 1,042 0.960 0.957 0.958 0.991 2.097
v1-v2 97 0.973 0.972 0.972 0.994 1.152
v2-v3 1,162 0.930 0.928 0.929 0.976 0.812

vrapt v0-v1 553 0.971 0.971 0.971 0.995 1.895
v1-v2 87 0.931 0.930 0.929 0.969 3.801

wire v0-v1 527 0.890 0.891 0.889 0.967 3.933
v1-v2 28 0.976 0.976 0.976 0.997 1.179
v2-v3 39 0.967 0.966 0.966 0.994 2.096
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Fig. 4 The impact of version intervals. For each project,
we use the first version (v0) as the training set, and each of
the remaining versions as the test set. The x axis represents
the versions used as the test set and the y axis represents
the AUC values. The results show that PMT is effective
under cross-version prediction even using the mutation
information of a very old version.

errors are all below 5% except 2 predictions, and almost all
the other metric values are above 0.9.

Second, to investigate how version intervals impact the
performance of PMT, for each project, we use the first
version (v0) as the training set, and each of the remaining
versions as the test set. The results are shown in Figure 4.
We present only the AUC values here because all the metrics
demonstrate the same pattern. The other metric values are
published on our homepage16. From the figure, when the
version intervals increase, the AUC values decline. This
observation is as expected: large version intervals usually
lead to large difference between the two versions, which
may decrease the effectiveness of PMT. However, AUC
values decline in a very low speed and are still all above
0.90. For example, when using v0 to predict v3 for uaa,
the AUC value is still above 0.95 although the project size
has evolved from 5,691 to 8,081 and the test suite size has
evolved from 223 to 470. This finding indicates that PMT is
effective for cross-version prediction, even when using the
mutation information of an old version far away from the
current version in the code repository.
Cross-project: to investigate the effectiveness of PMT in the
cross-project scenario, for the latest versions of the nine base
projects, we use PMT to build a classification model based
on any 8 base projects to predict the mutation testing results
of the remaining base project. Note that when constructing
the training data, in case that the data of large projects might
otherwise overwhelm those of small projects, we assign
weights to each instance. These weights reflect the sizes
of projects following the standard way used in machine
learning. Suppose the total training data contain s instances,
while training project A contains a instances, we then set
the weight of project A as s/a, thus each project’s weight
multiplying its number of instances is a constant [72]. The
results are shown in Table 3. From the table, PMT performs

16 https://github.com/sei-pku/PredictiveMutationTesting

TABLE 3 The effectiveness of PMT under the cross-project
scenario. For the latest versions of the nine base projects,
we use PMT to build a classification model based on any 8
base projects to predict the mutation testing results of the
remaining base project.

Sub. Prec. Recall F. AUC Err.(%)
apns 0.915 0.901 0.903 0.951 7.765
assj 0.935 0.937 0.934 0.898 3.686
joda 0.923 0.912 0.911 0.939 8.325
lafj 0.887 0.877 0.871 0.880 10.155
lang 0.912 0.909 0.906 0.916 6.163
msg 0.933 0.925 0.925 0.944 6.813
uaa 0.945 0.931 0.935 0.973 5.243
vrapt 0.917 0.912 0.910 0.928 6.676
wire 0.888 0.883 0.885 0.943 2.877

well for all the nine base projects: all the metric values are
above 0.85, and almost all the absolute values of prediction
errors of mutation scores are below 10.0%.

When comparing the predictive results between cross-
version and cross-project scenario, it is obvious that immedi-
ate cross-version prediction has the best predictive effective-
ness, muti-interval cross-version prediction ranks the next,
while cross-project performs the worst. This is because the
more diverse the training data and testing data are, the more
challenging it is for the predictive model to get good results.
Fortunately, even for cross-project scenario, PMT is able to
get good effectiveness with AUC values above 0.85.

In summary, compared to traditional mutation testing,
PMT incurs only a small accuracy penalty for most of the
projects in both cross-version and cross-project scenarios.

5.1.2 Efficiency
We present the cost of PMT, and make comparison with
traditional mutation testing. As discussed in Section 3, the
classification model can be built off-line ahead of time17.
Thus, the cost of PMT in predicting any new upcoming
project contains two parts: feature collection time and pre-
diction time.

Table 4 lists the major findings regarding the latest ver-
sion of each nine base project. Column 2 lists the execution
time by PIT with the default execution setting that the re-
maining tests will not run against a mutant once the mutant
has already been killed. For the cross-version scenario, the
classification model is built from the last nearest version.
From the table, compared with traditional mutation testing
using PIT, PMT requires notably less time under both sce-
narios. Especially, PMT requires less than one minute almost
for all subjects, while the mutation testing tool PIT costs
from 228 seconds to as much as 9,540 seconds (i.e., over two
and a half hour). Furthermore, the time of PIT increases
dramatically when the program size increases, while the
time of PMT remains almost stable, indicating a much better
scalability of PMT.

PIT has embodied a number of optimizations and is
currently one of the fastest mutation testing tools [52],
which indicates that PMT may outperform other mutation
testing tools even more. Of course, there remains scope for
further improving the efficiency of PMT. For example, the

17 According to our experiments, the training time takes less than 5
minutes normally.

https://github.com/sei-pku/PredictiveMutationTesting
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TABLE 4 Performance comparison between PMT and PIT. Column 2 lists the execution time by PIT with the default
execution setting. Columns 3 and 4 list the time by PMT under two application scenarios, including feature collection and
prediction time (i.e., shown in brackets). The right side of each column lists speedup that PMT achieves compared with
PIT. Columns 5, 6, and 7 show the absolute prediction errors of PMT under cross-version and cross-project scenarios and
PIT respectively. The results demonstrate that PMT improves the efficiency a great deal, while incurring only a relatively
small accuracy loss.

Sub Time Err.(%)
PIT PMT:cross-version PMT:cross-project PMT:cross-version PMT:cross-project Cov.

apns 803s 25s (1s) 32.1X 28s (4s) 28.7X 2.1 7.7 21.0
assj 2667s 41s (1s) 65.0X 43s (3s) 62.0X 1.4 3.7 7.3
joda 3120s 60s (2s) 52.0X 63s (5s) 49.5X 2.9 8.3 26.0
lafj 786s 15s (1s) 52.4X 19s (5s) 41.4X 3.9 10.2 14.4
lang 9540s 63s (2s) 151.4X 66s (5s) 144.5X 1.5 6.2 24.2
msg 4980s 45s (1s) 110.7X 49s (5s) 101.6X 0.6 6.8 14.8
uaa 939s 26s (1s) 36.1X 29s (4s) 32.4X 0.8 5.2 17.8
vrapt 6000s 40s (1s) 150.0X 42s (3s) 142.8X 3.8 6.7 16.4
wire 228s 12s (1s) 19.0X 15s (4s) 15.2X 2.1 2.9 23.2

prediction time is less than or equal to 5 seconds for all
projects, and we can further speed up the feature collection
time (details shown in Section 6).

5.1.3 Comparison with Coverage-based Testing
In addition, as statement coverage has been shown to be
effective in predicting test effectiveness in terms of mutation
score [73], we directly apply statement coverage to predict
mutation scores for the 9 base subjects and record absolute
prediction errors in the last column of Table 4. We also show
the absolute prediction errors of PMT under cross-version
and cross-project scenarios in Columns 5 and 6, respectively.

From the table, the errors for both scenarios of PMT can
be seen to be much smaller and more stable than those
of coverage-based testing: the largest error for PMT un-
der cross-version/cross-project scenario is only 3.9%/10.2%
while it is 14.6% for statement coverage. For example, for
subject wire, PMT is able to predict the mutation score
with only 2.1%/2.9% error while statement coverage has an
error of 13.3%. Of course PMT is designed to have greater
information available to it, precisely with the hope that such
reduced errors would be observed.

To conclude, in the first research question, we find that
PMT has good effectiveness as well as efficiency in eval-
uating test power, indicating a promising application for
developers when they seek high effectiveness and efficiency
at the same time.

5.2 RQ2: Application Factors
In this section, we investigate how application factors in-
fluence the effectiveness of default PMT, to find out what
application artifacts PMT fits for.

5.2.1 Mutation Testing Tools
Different mutation testing tools vary in several aspects (e.g.,
operators, environment support) [52], and may even yield
different mutation scores for the same project. Therefore, it is
important to learn whether PMT is also effective when using
mutation tools besides PIT. In this paper, we take the widely
used tool called Major and evaluate its effectiveness based
on the same base projects. Major fails to generate mutants
for joda, vrapt, and assj, so we use the remaining 6 base
subjects instead, and predict the mutation testing results of

each subject using the remaining 5 subjects. The results are
shown in Figure 5. From the figure, almost all the values
of the metrics are above 0.8 for both PMT and Major. Also,
there is no obvious difference between the performance of
PMT using PIT and Major.

In general, the results above indicate that PMT may
achieve good performance on different mutation tools.

5.2.2 Test Types
We also investigate how PMT performs when predicting
the mutation testing results of manually written and au-
tomatically generated tests. For each of the 9 base projects,
we first generate tests using randoop18, collect the related
features introduced in Section 2.1, and construct a new set
based on those automatically generated tests for testing the
classification model. Then, we use the remaining 8 projects
with manually written tests to construct the training set,
which is used to predict both the new test set (constructed
with automatically generated tests) and the original test set
(constructed with manually written tests). randoop fails to
generate compilable tests for 5 base subjects, so we compare
only the results on the remaining 4 base subjects.

The comparison results are shown by Figure 6, where it
is evident that PMT performs almost comparably between
automatically generated and manually written tests. The
performance regarding manually written tests is a bit infe-
rior for most bar pairs (e.g., for the manually written tests of
project apns, the AUC value is around 0.1 lower than that of
automatically generated tests.). We suspect the reason to be
that automatically generated tests are more uniform and less
sophisticated (e.g., with standard test body and assertion
usage), and thus are easier to predict.

To conclude, in the second research question, we find
that PMT can well fit different mutation tools and predict
the mutant execution results against different types of tests.

5.3 RQ3: Configuration Impact
In this section, we further extend our experiments with
another 154 Github projects to investigate the influence
of internal factors of PMT so as to investigate how to
achieve better performance. The latest versions of the 9 base

18 http://mernst.github.io/randoop/

http://mernst.github.io/randoop/
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Fig. 5 The effectiveness of PMT on PIT (i.e., shown by the light green bars) and Major (i.e., shown by the dark green
bars) under cross-project scenario. The x axis represents different projects under prediction. The y axis represents the
values of different metrics. PMT performs good on both PIT and Major.
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Fig. 6 The effectiveness of PMT when predicting the
execution results regarding manually written (i.e., shown
by the light green bars) and automatically generated
(shown by the dark green bars) tests. For each project,
the predictive model is built using the other 8 projects with
manually written tests. PMT performs good on predicting
the execution results of both kinds of tests.

subjects are used to build a classification model, whereas
the remaining 154 Github subjects are used to evaluate the
classification model. The detailed experimental results are
shown in Figure 7. From Figure 7, for the vast majority
of the 154 Github projects PMT is able to predict the mu-
tation testing results with over 0.85 precision, recall, and
F-measure, and over 0.90 AUC, and is able to predict the
mutation scores with errors lower than 15%. This further
demonstrates PMT’s effectiveness.

Classification algorithms: we first investigate whether PMT
predicts better than random guessing. We compare the pre-
diction results of the default PMT classification algorithm
(i.e., Random Forest) with those of the baseline model in ma-
chine learning (i.e., ZeroR [74]) on our 154 Github projects.
The results are shown in Figure 8. From the first three
subfigures, most of the black points are much lower than
bars, indicating that PMT is much better than random guess
in precision, recall, and F-meausre; from the last subfigure,
random guess always has a AUC value of 0.5, while PMT is
much better than that.

We then investigate the effectiveness of PMT by varying
its classification algorithms, including Random Forest, Naive
Bayes [75], SVM [61], and J48 [60]. The comparison results

are shown by Figure 9. From the figure, Random Forest
performs the best; J48 is slightly inferior to Random Forest;
SVM performs worse than J48; Naive Bayes performs the
worst. As both Random Forest and J48 belong to decision tree
algorithms, we suspect that as different features in PMT ob-
viously contribute differently (e.g., execution features con-
tribute most), decision tree algorithms have the advantage
by putting these key features on the top of decision trees,
and thus will get definite decision solutions based on those
key feature conditions [76], which is different from other
algorithms.

Imbalanced data processing strategies: to learn how PMT
performs on very imbalanced test sets, we choose the 24
Github subjects whose proportion of killed mutants are
below 0.2 or above 0.8 as representatives of imbalanced test
sets. The AUC results of PMT are given by Figure 11. From
the figure, the default naive imbalanced data processing
strategy of PMT already performs well even for those very
imbalanced projects. We further compare all the three im-
balanced data processing strategies mentioned in Section 2.3
to deal with the training data, whose results are shown by
Figure 10. From the figure, there is little difference among
the three strategies. This indicates that PMT is robust to
imbalanced data, as the Random Forest algorithm handles
imbalanced data well [34].

To conclude, in the third research question, we find
that with Random Forest algorithm, PMT will have the best
performance. Additionally, PMT is robust to imbalanced
data.

5.4 RQ4: Feature Impact

5.4.1 Rank of Features’ Contribution

PMT builds a classification model based on a set of features,
which may have different contributions to the classification
model. In this section, we study the contribution of these
features so as to better understand PMT. More specifically,
we rank all the features based on their information gain
(through the InfoGainAttributeEval class in Weka), which
measures the contribution of a feature to the decision out-
come in a decision tree [77]. The higher information gain a
feature has, the more preferred it is to other features19.

19 In this paper, for a feature we used InfoGainAttributeEval in Weka to get
the information gain of a dataset constructed by all our projects.
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Fig. 7 Result distribution of PMT on 154 Github projects
under the cross-project scenario. The classification model is
built with the latest versions of the 9 base subjects. The x axis
represents the distribution ranges of different metrics. The
y axis represents the counts of projects belonging to each
distribution range. For the majority of projects, PMT is able
to predict the mutant execution results with high accuracy
and low mutation score error.

The detailed results are shown in Figure 12. Accord-
ing to the figure, the coverage features (numExecuteCovered
and numTestCovered) are the most important features in
predicting mutant execution results. This observation can
be explained by that coverage is a necessary condition for
mutant killing according to the PIE theory [35]. The oracle-
related features, numMutantAssertion and numClassAssertion,
also offer high contribution to decisions, because they indi-
cate detailed information about how many assertions may
have checked a mutant. Furthermore, the instability feature,
which describes how the mutated class interacts with out-
side classes, also ranks high, because mutated classes with
more dependents may have more tunnels to propagate the
internal state change to final output.

From Figure 12, the top-three features have much higher
merit values than other features. It is worth explaining that
this observation does not mean that there is no need to
adopt other features: the rank results shown in the figure are
general results combining all the instances through all the
projects, while for each single project the rank results may
be different. We further explore the performance of using
different number of features in the next Section.

5.4.2 Feature Selection
We investigate how PMT performs with different number
of selected features, to further check whether there are any
redundant features so as to minimize the feature set and
further reduce the cost of feature collection as well as the
training cost. For the default experimental configuration
under the cross-project application scenario (i.e., to use any
8 base projects to build the classification model and predict
the mutation testing results of the remaining base project),
according to the rank using InfoGainAttributeEval, we build
the classification models using the top−n (n = 1, 2, 3, ..., 14)
features, and then compare the effectiveness of each predic-
tion. Each classification model has its own feature ranking
results, but the general ranking would be consistent with
what we have shown in Section 5.4.1.

Figure 13 shows the final results of feature selection.
The x axis represents the number of features, the y axis
represents the AUC values of each prediction. For each
project, there are 14 points, representing the 14 prediction
with features counting from 1 to 14. From the figure, we
have the following observations.

First, the AUC values increase overall when the number
of features increase, indicating that more features usually
yield higher effectiveness. This observation also indicates
that although the three coverage metrics work well, adding
more features can clearly improve the prediction results
(shown in Figure 11). However, there are also fluctuations.
Sometimes adding one more feature would decrease the
effectiveness on some projects a little bit (e.g., add the
third feature for project apns). The reason is that the added
feature, although generally constructive, may do not fit that
project properly.

Second, we observe three distribution patterns on the
nine base projects. (a) For projects apns, assj, msg, and
uaa, the effectiveness increases steadily as the number of
selected features increases. (b) For projects joda, lang, and
lafj, there is an obvious jump in the AUC values when
adding the 10th feature. The reason is that the test sets in
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values of PMT, and black points represent the metric values of random guess. From this figure, PMT is much better than
random guess considering all the classification measurements.
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Fig. 9 Comparison results of using different classification algorithms. The x axis represents all the four algorithms and
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density represents that more projects have this value) among all the 154 projects. From this figure, Random Forest performs
the best among all the algorithms.
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y axis represents different metric values. From this figure, there are no obvious differences between the performance of the
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Fig. 11 AUC values of the 24 most imbalanced projects,
whose proportion of killed mutants are below 0.2 or above
0.8. From the figure, PMT performs good even with very
imbalanced data.

these three projects are more sensitive to the newly added

feature (i.e., infoComplexity), and thus the effectiveness of
corresponding predictive models is quite different with and
without that feature. (c) For projects msg, uaa, and wire,
the effectiveness achieves very near to the peak at the very
beginning with only two or three features, then increases
slowly when adding more features. The reason is that the
first several features (i.e., numExecuteCovered, numTestCov-
ered, and numMutantAssertion) play a key role on these test
sets.

Based on the observations above, as well as our conclu-
sions drawn from Figure 12, all the 14 features we adopted
are useful. However, if the developers care much about
the feature collection time, they may choose 10 features,
which will reduce the cost of feature collection without
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Fig. 12 The rank of feature contribution in terms of their
information gain. The x axis lists all the features used in our
work and the y axis lists all merit values for each feature

affecting much of the effectiveness. According to Figure 12,
the four features developers may consider abandoning in a
general level are: typeReturn, typeOperator, numChildren, and
depInheritance.
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Fig. 13 AUC values of using different number (i.e., from
1 to 14) of features selected based on the information
gain. The x axis represents the number of features. The
y axis represents the AUC values. Each point represents a
prediction with different number of features.

5.4.3 Comparison: Execution, Infection, and Propagation
Features
In this section, we compare the contribution of the three cat-
egories of features we collected based on the PIE principle.
In particular, to investigate the contribution of each category

(i.e., execution, infection, and propagation), we compare
the predictive effectiveness of the classification model built
with or without the features belonging to that category
(more details about the three categories are introduced in
Section 2.1).

Figure 14 presents the final results. From the table, for the
features that we used to build the classification model, the
performance drop the most without execution features, in-
dicating that execution features contribute the most among
the three categories of features. The performance of infection
features, however, is not good, because the performance is
almost not affected when infection features are not included.
The contribution of propagation features is between execu-
tion features and infection features.

The observations above indicate that execution and
propagation features may have more impact on the detec-
tion of a fault, which may provide direct guidelines for test
case generation. The poor performance of infection features
is due to the fact that the design of OO features and JUnit
tests/assertions for modern Java programs makes infections
harder to propagate to the test outcomes than the traditional
procedural languages.

5.4.4 Comparison: Source Code and Test Code Features
We are also interested in the comparison between source-
code-related features and test-code-related features. In this
paper, we refer to the features that are collected through
analyzing only the source code (also called production code)
as source-code-related features, and the features that cannot
be successfully collected without “running test cases” or
analyzing the test code as test-code-related features. For
example, numExecutedCovered is a test-code-related feature,
because we can collect the coverage information of each
mutant only through running the test cases. Among the
14 features that we used in this work, the test-code-related
features include: numExecutedCovered, numTestCovered, num-
MutantAssertion, and numClassAssertion. The remaining fea-
tures (e.g.,typeStatement and the complexity metrics) are all
source-code-related features.

The comparison results are shown in Figure 15. From
the figure, test-code-related features perform much better
than source-code-related features. This is consistent with
our expectation, because from Figure 12, among the top-5
features, four of them are test-code-related.

From the observations above, we find that test code
features are important, because mutation testing aims to
measure test code quality, e.g., without test code features
we cannot predict mutation testing results at all. In some
other application scenarios, such as bug prediction, we may
also consider using test code related features, instead of only
using source code metrics.

To conclude, in the fourth research question, features
related to coverage information contribute most to PMT.
Test code features perform better than source code features,
and should be paid more attention to in other applications
such as bug localization.

5.5 RQ5: Predictability of Mutants

We investigate the level of the predictability of the mutants
to learn the general confidence level of PMT in predicting
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Fig. 14 Comparison of the contribution of the three categories of features. The y axis represents the AUC values.
Different bars indicate the effectiveness without execution features (i.e., numExecutedCovered and numTestCovered), infection
features (i.e., typeStatement and typeOperator), and propagation features (i.e., the remaining features). Execution features
contribute the most.
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Fig. 15 Comparison of source code features and test code features. The y axis represents the AUC values. Different bars
indicate the total effectiveness, as well as the effectiveness with only source code features or test code features. Test code
related features perform much better than source code related features.

mutant execution results (see Section 5.5.1). We also study
the correlation between predictability and some main mu-
tant features to investigate what type of mutants would
have high predictability (so as to provide guidelines in
generating or optimizing mutants, see Section 5.5.2). To
learn whether predictability can be regarded as mutant ef-
fectiveness measurement, we study the correlation between
killability (i.e., how easy is a mutant to be killed) and
predictability (see Section 5.5.3).

5.5.1 Distribution of Predictability
We are interested in the general level of mutant predictabil-
ity in our experiments. In the cross-project application sce-
nario, for each project, we record the probability of PMT on
predicting the each mutant’s execution results correctly, and
compute the predictability (see more details in Section 2.4).
The final distribution results are shown in Figure 16.

From the figure, most mutants have high predictability
(of over 0.4), indicating that the classification model in PMT
is of good quality and has high confidence when classifying
most of the mutants.

Different projects have different distribution patterns.
However, when comparing the predictability distribution
(shown in Figure 16) with the effectiveness of PMT on
each project (shown in Figure 3), we observe high level
of consistency: projects with higher proportion of high-
predictability mutants tend to have better predictive ef-
fectiveness. For example, project assj and lafj have higher
proportion of the mutants with a predictability lower than
0.3, and from Table 3 these two projects also have the lowest

AUC values. These kinds of observations indicate that a
higher predictability may indicate better prediction.

5.5.2 Correlation Analysis of Predictability
In this section, we are interested in the internal common
properties of mutants with high or low predictability. With
this knowledge, we may learn what kind of mutants are
easier to predict, so as to better understand mutants and
provide help in generating mutants. In particular, we inves-
tigate the top-3 features which contribute the most to the
predictive model (based on Figure 12).

Firstly, we are interested in feature numExecutedCovered,
which refers to how many times the mutated statement is
executed by the whole test suite. This feature also makes
the most contribution to the classification model according
to Figure 12. For each project, we use plot figures to present
the correlation between the predictability and the value
of numExecutedCovered of each mutant, which is shown in
Figure 17.

From the figure, there is no obvious linear correlation
between how many times a mutated statement is executed
by the whole test suite and the predictability of the mutant.
However, we could observe a rough pattern that higher exe-
cution times would yield higher predictability, and instances
with very low predictability (i.e., close to 0) usually have
very small execution times. From the figure, we observe
high predictability (i.e., close to 0.5) on many instances when
the execution times are low (i.e., around 0). One reason is
that when a mutant remains uncovered (i.e., the value of
numExecutedCovered is 0), the mutant is alive by definition
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Fig. 16 Predictability distribution under the cross-project scenario. Each sub-figure is for each of our base project. The x
axis represents predictability. The bars present the density of the mutants that own the corresponding predictability. The
black curves represent kernel density estimation (KDE), which is a non-parametric way to estimate the density function [78].
From this figure, the majority of mutants have good predictability with PMT as the predictive model.

, and thus this value, 0, makes the outcome (alive) very
predictable.

We conclude that the predictions on the mutants with
smaller number of execution times (except 0 execution time)
may have higher risk to be unreliable.

We then investigate feature numTestsCovered (i.e., the
number of test cases that cover the mutated statement)
and numMutantAssertion (i.e., the total number of assertions
in the tests that cover the mutated statement). These two
features show similar pattern, as shown in Figure 18 and
Figure 19. From the figures, we can also conclude that the
predictions on the mutants with smaller number of covered
tests or test assertions (except the uncovered mutants) may
have higher risk to be unreliable.

5.5.3 Correlation Between Killability and Predictablity

Figure 20 shows the correlation between the predictability
and killability of the mutants (which are predicted to be
killed by PMT). Each point represents an instance (i.e.,
mutant). Note that some mutants are killed due to “Timed
Out”, “Memory Error”, or “Run Error”20. For these three
kinds of mutants, PIT does not report which specific tests
cause the killing status, and thus we remove them from the
total mutant set in this study.

20 http://pitest.org/quickstart/basic concepts/

From the two sub-figures, although there is no obvious
linear relationship between the killability and predictability
of the mutants, a mutant with higher killability tends to own
higher predictability. In other words, mutants that are easier
to kill tend to be easier to predict as well. However, mutants
that are easier to predict (i.e., with high predictability) are
not necessarily easier to kill.

What’s more, an interesting point worth mentioning is
that from Figure 20, some mutants would have low kil-
lability as well as low predictability. According to recent
work [79], [80], different mutants may have different con-
tributions on evaluating the test power of detecting faults,
and it would be meaningful to investigate whether choosing
mutants with both low killability and predictability is a
better choice.

To conclude, in the last research question, in our experi-
ments the mutants have good predictability with PMT, and
a higher predictability may indicate better prediction. Mu-
tants with low number of execution times or covered tests
may suffer high risk regarding the reliability of prediction.

5.6 Threats to Validity

The threat to internal validity lies in the implementation of
PMT. To reduce this threat, we reused the widely adopted
libraries and frameworks (e.g., Weka, ASM, and Eclipse JDT)
to aid the implementation and reviewed all our code.

http://pitest.org/quickstart/basic_concepts/
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Fig. 17 The correlation between feature numExecutedCov-
ered and predictability. The x axis represents numExecut-
edCovered in order of the values from small to big. The
y axis represents the predictability. Each point represents
one instance. In general, the performance of PMT improves
when adding new features.
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Fig. 18 The correlation between feature numTestsCovered
and predictability. The x axis represents numTestsCovered in
order of the values from small to big. The y axis represents
the predictability. Each point represents one instance.

The threats to external validity mainly lie in the subjects
and mutants. To reduce the threat resulting from subjects,
we selected our base project versions following the same
procedure as that used in the prior work [50] and used a
large number of Java projects to cater for the project vari-
ability. To reduce the threat of mutation tools, we used both
PIT and Major in our study because the former is efficient
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Fig. 19 The correlation between feature numMutantAsser-
tion and predictability. The x axis represents numMutan-
tAssertion in order of the values from small to big. The y
axis represents the predictability. Each point represents one
instance.
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Fig. 20 The correlation between predictability and kil-
lability of mutants. Each sub-figure is for each of our
base project. The x axis represents predictability. The y axis
presents the killability. Each point represents a mutant that
is predicted to be killed by PMT. The results demonstrate
that mutants with higher killability tend to have higher
predictability.

whereas the latter is proved to be effective in generating
representative mutants.

The threat to construct validity lies in the metrics used
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to measure the classification model. To reduce this threat,
we used various widely used measurement metrics for
classification models (e.g., precision, recall, F-measure, and
AUC).

6 DISCUSSION

In this section, we discuss implementation issues and the
tradeoffs of PMT, as well as its impact on software testing.
(1) Implementation
Feature optimization may help to refine the effectiveness
or reduce PMT’s cost. We use 14 features in this paper.
More effective features (e.g., semantic information based on
advanced control/data flow analysis) may contribute to a
more effective predictive model. Also, we choose features
without considering their overlap. Based on our results in
Section 5.4, feature selection techniques can be applied, and
thus developers may use fewer features (i.e., 10 features is
suggested) to achieve the same effectiveness. Furthermore,
the current feature collection of PMT can also be sped up
to make the process faster, e.g., the current static metric
collection is based on the costly Eclipse JDT analysis and
we plan to reimplement that based on bytecode analysis.

Training set size is another internal factor of PMT, which
may influence its effectiveness. Intuitively, a bigger training
set may improve the effectiveness of PMT by sacrificing
some efficiency on classification model construction, which
actually occurs before prediction and can be constructed
offline. However, from Table 3, the prediction results of PMT
on a training set constructed by only 8 projects are already
satisfactory. The reason is that even a single training project
can provide a large number of training instances for PMT.
For example, the lang project alone already contains more
than 26,000 training instances.

Currently PMT is implemented for Java programs with
JUnit tests. Although the implementation frameworks and
the detailed feature sets may vary across different lan-
guages, the idea can be applied to programs written in
different languages with different test paradigms.

Additionally, in this paper both PIT and Major support
only method-level mutation operators and generate only
method-level mutants consequently. For the consideration
of experiment scalability and popularity, we do not explore
class-level mutants generated by some other mutation tools
(e.g., muJava [81]. However, we could infer the possibilities
of class-level mutants and their differences with method-
level mutants. For example, because class-level mutants are
mutants particular for object-oriented programs and contain
injected faults related to inheritance, polymorphism, encap-
sulation, and so on, they maybe easier to predict. When
considering the contribution of different features, mutation
operators do not belong to Infection Features but belong to
Propagation Features. The contributions of Propagation Fea-
tures would be larger than those of method-level mutants.
(2) Tradeoff: Efficiency v.s. Effectiveness
Although we propose PMT to address the efficiency prob-
lem in mutation testing, it potentially raises its own ac-
curacy concerns. Fortunately, PMT makes a good tradeoff
between efficiency and accuracy; it improves the efficiency
of mutation testing (i.e., 15.2X-151.4X) while only incurring
a small accuracy penalty (e.g., over 0.85 AUC in most cases).

Therefore, for projects that traditional mutation testing is
unacceptably long, PMT is typically useful and applicable.
For such projects, developers may tend to give up mutation
testing in the past, but now can use PMT as an alternative:
PMT can provide both mutation score information as well
as killing/survival info for each mutant. Therefore, PMT can
be used to measure test power (based on mutation score) as
well as guide the test augmentation process to kill more
mutants (based on detailed mutant killing info). Sometimes,
developers may wish to know the rough fault-revealing
ability of their test suites as soon as possible, under which
circumstance PMT is also a good choice.

Furthermore, with PMT, developers may choose to ac-
cept the total predictive results, or choose to execute the
mutants with low predictability. Based on our results shown
in Section 5.5.1, the majority mutants own high predictabil-
ity, and thus developers are expected to rerun only a small
proportion of mutants, for example, 10%, to get high-quality
results with low risks.
(3) Impacts in Software Testing
From the microscopic view, PMT can be viewed as an
improvement over traditional mutation testing. In particu-
lar, the machine-learning based process in PMT facilitates
assessment of mutation testing results, so that it is not
necessary to obtain mutation testing results through mutant
execution. Thus, predictive mutation testing is more light-
weight than traditional mutation testing, yet retains rea-
sonably accurate results. From the macroscopic view, PMT
may be viewed as a new measurement for test suite quality.
That is, the predicted mutation score based on PMT can be
directly used to evaluate the test power rather than being
treated as a replacement of the traditional mutation testing
score. Compared with the widely used coverage criterion,
the predicted mutation score may be more useful because
it characterizes the execution, infection, and propagation of
faults whereas coverage criterion characterizes only the ex-
ecution (confirmed by experimental results in Section 5.2.1).
Compared with the traditional mutation score, the predicted
mutation score is more light-weight because it does not
require the costly mutant execution.

7 RELATED WORK

7.1 Mutation Testing
Mutation testing is a powerful methodology to evaluate
the effectiveness of test suites. It was first proposed by
Demillo et al. [4] and Hamlet [5], and has gained increasing
popularity [19], [27], [82]. Despite its effectiveness, mutation
testing has a main limitation, i.e., it is extremely expensive
since it needs to execute the test suite on each mutant.
Therefore, many researchers have focused on presenting
various techniques to reduce the cost of mutation testing.

Some techniques focus on reducing the number of mu-
tants: Mathur and Wong [83] analyzed 22 mutation op-
erators used by Mothra [84] and observed that several
operators contribute to most of the generated mutants.

Based on this, Offutt et al. [26] proposed N-selective
mutation, which reduces the number of mutants by omitting
the N most prevalent operators. Following their work,
many researchers focused on detecting sufficient mutation
operators [26], [27], [85], [86], [87], [88], [89].
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Zhang et al. [23] conducted an empirical study on com-
paring random mutant selection and operator-based mutant
selection, and found that random mutant selection is as
effective as operator-based mutation selection.

Other techniques focus on reducing the mutant exe-
cution time. Howden [28] proposed the concept of weak
mutation testing, which executes a mutant partially to speed
up mutant execution. Later, Woodward and Halewood [90]
proposed firm mutation testing, which is a compromise of
weak mutation testing and traditional mutation testing.

Offutt and Lee [91] conducted an empirical study on
weak mutation testing and found that weak mutation test-
ing can be better applied in unit testing of non-critical
applications. Emillo et al. [24] and Untch et al. [25] changed
a compiler to enable to compile all mutants at one time.

Krauser et al. [92] and Offutt et al. [93] ran mutants in
parallel to speed up mutation testing. Just et al. [94] found
that redundant mutants would affect mutation score as well
as increasing the cost. Zhang et.al. [95] found that selective
mutation testing has good scalability, and the proportion of
selected mutants is predictable. To facilitate mutation testing
for evolving programs, Zhang et al. [31] proposed to speed
up mutation testing by reusing the execution results of some
mutants on the previous program.

Wang et.al. [96] proposes a novel approach which re-
moves redundancies in executions by exploiting the equiva-
lence of statements modulo the current state. The approach
accelerates mutation analysis with a speedup of 2.56x on
average.

Although the existing techniques can speed up mutation
testing, they still need to execute the mutants to get each
mutant’s execution result and are still costly. In contrast,
PMT opens a new dimension in mutation testing which does
not require mutant execution, and has been shown to be
more efficient than state-of-the-art techniques that embody
various existing optimizations. Note that Jalbert [97] also
applied machine learning to mutation testing, while their
technique only classifies the mutation score of a source code
unit into three categories: low, medium, and high.

7.2 Coverage-based Testing

Besides mutation testing, code coverage is another widely
used methodology for measuring test suite effectiveness in
both academia and industry [73], [98], [99], [100], [101]. A
huge body of research has been dedicated to study the
relationship between test coverage and test effectiveness.
Namin and Andrews [102] reported that block coverage,
decision coverage, and other two data-flow criteria can
influence test suite effectiveness. Gligoric et al. [101] found
that branch coverage correlates well with test effectiveness.
Later on, Gopinath et al. [73] performed a larger scale empir-
ical study, and observed that statement coverage correlates
the best with test effectiveness.

However, recently, more and more people realized that
code coverage may not have high correlation with test
suite effectiveness. Inozemtseva and Holmes [2] conducted
several studies to evaluate such correlation, and found the
correlation to be weak. They suggest that code coverage
should not be used as a quality target. Later on, Zhang
and Mesbah [103] further found that one possible reason

for the low correlation is that code coverage usually does
not consider assertion information. Thierry et al. [3] found
that branch coverage is less effective in fault revelation than
(strong) mutation testing. In industry, many developers also
start to doubt test coverage.

In fact, though code coverage is widely used, it does
not consider the oracle information at all, while a test suite
could be useless if it has no oracle, even if it achieves 100%
coverage. Considering test oracle information, Schuler and
Zeller [104] proposed checked coverage (i.e., the proportion
of statements dynamically checked by test assertions) to
indicate test effectiveness. Although powerful at measuring
test effectiveness in detecting faults captured by assertions,
checked coverage cannot precisely measure test effective-
ness in detecting faults captured by other exceptions. In the
near future, we plan to include checked coverage as one
feature in PMT.

PMT costs comparatively with code coverage, but has
been demonstrated to be effective in measuring test effec-
tiveness (also more powerful than the most effective state-
ment coverage identified by Gopinath et al. [73] recently).

8 CONCLUSION

In this paper, we propose and extensively evaluate predictive
mutation testing, the first approach that predicts mutation
testing results without any mutant execution. We have im-
plemented the proposed approach using the Random Forest
algorithm. The experimental results on 163 real-world Java
projects demonstrate that PMT can predict mutant execution
results accurately. The comparison with traditional testing
methodologies also shows that PMT is able to predict muta-
tion testing results accurately with small overhead, demon-
strating a good tradeoff between efficiency and effectiveness
of mutation testing.

In the extended experiments, we find that the execution
and test code related features contribute more to the predic-
tive model than other categories of features; the majority of
mutants have a good predictability; mutants that are easier
to kill tend to be also easier to predict.

In future, we plan to investigate how the training data
size would impact the effectiveness of PMT. Furthermore,
we would like to investigate the possibility of predicting
the mutant execution results of each mutant against each
single test case. We will also explore how to choose fea-
tures considering more test properties [105] as well as the
characteristics of different projects (in different domains)
under cross-project scenario, in order to further improve the
effectiveness of PMT.
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P. Rümmer, and G. Weissenbacher, “Mutation-based test case
generation for Simulink models,” in Proc. FMCO, pp. 208–227,
2010.

[17] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and
H. Mei, “Test generation via dynamic symbolic execution for
mutation testing,” in Proc. ICSM, pp. 1–10, 2010.

[18] M. Papadakis, N. Malevris, and M. Kallia, “Towards automating
the generation of mutation tests,” in Proc. AST, pp. 111–118, 2010.

[19] G. Fraser and A. Arcuri, “Achieving scalable mutation-based
generation of whole test suites,” Empirical Software Engineering,
pp. 1–30, 2014.

[20] J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via test
case mutation: Let existing test cases help,” in Proc. FSE, pp. 910–
913, 2015.

[21] D. Hao, L. Zhang, M.-H. Liu, H. Li, and J.-S. Sun, “Test-data
generation guided by static defect detection,” JCST, vol. 24, no. 2,
pp. 284–293, 2009.

[22] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” TSE, vol. 37, no. 5, pp. 649–678, 2011.

[23] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-
based mutant selection superior to random mutant selection?,”
in Proc. ICSE, pp. 435–444, 2010.

[24] R. A. DeMillo, E. W. Krauser, and A. P. Mathur, “Compiler-
integrated program mutation,” in Proc. COMPSAC, pp. 351–356,
1991.

[25] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis
using mutant schemata,” in Proc. ISSTA, pp. 139–148, 1993.

[26] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evalu-
ation of selective mutation,” in Proc. ICSE, pp. 100–107, 1993.

[27] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective
mutation testing for concurrent code,” in Proc. ISSTA, pp. 224–
234, 2013.

[28] W. E. Howden, “Weak mutation testing and completeness of test
sets,” TSE, no. 4, pp. 371–379, 1982.

[29] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order
mutation-based test data generation,” in Proc. FSE, pp. 212–222,
2011.

[30] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing
inspired by test prioritization and reduction,” in Proc. ISSTA,
pp. 235–245, 2013.

[31] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression
mutation testing,” in Proc. ISSTA, pp. 331–341, 2012.

[32] http://www.codeaffine.com/2015/10/05/
what-the-heck-is-mutation-testing/.

[33] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and
L. Zhang, “Predictive mutation testing,” in Proc. ISSTA, pp. 342–
353, ACM, 2016.

[34] M. Liu, M. Wang, J. Wang, and D. Li, “Comparison of random
forest, support vector machine and back propagation neural
network for electronic tongue data classification,” SABC, vol. 177,
pp. 970–980, 2013.

[35] J. M. Voas, “Pie: A dynamic failure-based technique,” TSE,
vol. 18, no. 8, pp. 717–727, 1992.

[36] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in Proc.
ISSTA, pp. 315–326, 2014.

[37] B. Cook, A. Podelski, and A. Rybalchenko, Terminator: Beyond
Safety, pp. 415–418. 2006.

[38] J. Zheng, “Cost-sensitive boosting neural networks for software
defect prediction,” ESA, vol. 37, no. 6, pp. 4537–4543, 2010.

[39] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Proc. NAFIPS, pp. 69–72, 2007.

[40] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stub-
born mutation operators using human analysis of equivalence,”
in Proc. ICSE, pp. 919–930, ACM, 2014.

[41] T. J. McCabe, “A complexity measure,” TSE, no. 4, pp. 308–320,
1976.

[42] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based inference of polynomial metamorphic relations,”
in Proc. ASE, pp. 701–712, 2014.

[43] A. L. Samuel, “Some studies in machine learning using the game
of checkers,” IBM Journal of Research and Development, vol. 3,
pp. 210–229, July 1959.

[44] Y. Brun and M. D. Ernst, “Finding latent code errors via machine
learning over program executions,” in Proc. ICSE, pp. 480–490,
2004.

[45] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A
survey on bug-report analysis,” SCIS, vol. 58, no. 2, pp. 1–24,
2015.

[46] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine learn-
ing, neural and statistical classification,” 1994.

[47] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[48] P. J. Webster, V. O. Magana, T. Palmer, J. Shukla, R. Tomas,
M. Yanai, and T. Yasunari, “Monsoons: Processes, predictability,
and the prospects for prediction,” Journal of Geophysical Research:
Oceans, vol. 103, no. C7, pp. 14451–14510, 1998.

[49] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ven-
tresque, “Pit: a practical mutation testing tool for java,” in Proc.
ISSTA, pp. 449–452, ACM, 2016.

[50] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Bal-
ancing trade-offs in test-suite reduction,” in Proc. FSE, pp. 246–
256, 2014.

[51] L. Inozemtseva, H. Hemmati, and R. Holmes, “Using fault his-
tory to improve mutation reduction,” in Proc. FSE, pp. 639–642,
2013.

[52] M. Delahaye and L. du Bousquet, “A comparison of mutation
analysis tools for Java,” in Proc. QSIC, pp. 187–195, 2013.

[53] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mutation opera-
tors for java,” in Proc. ISSRE, pp. 352–363, IEEE, 2002.

[54] “PMT homepage.” https://github.com/sei-pku/
PredictiveMutationTesting.

[55] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-
based and random mutant selection: Better together,” in Proc.
ASE, pp. 92–102, 2013.

http://www.codeaffine.com/2015/10/05/what-the-heck-is-mutation-testing/
http://www.codeaffine.com/2015/10/05/what-the-heck-is-mutation-testing/
https://github.com/sei-pku/PredictiveMutationTesting
https://github.com/sei-pku/PredictiveMutationTesting


TRANSACTIONS ON SOFTWARE ENGINEERING 21

[56] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and
combining test-suite reduction and regression test selection,” in
FSE, pp. 237–247, 2015.

[57] “Github developer document.” https://developer.github.com/
v3/search/#search-repositories.

[58] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study
of programming languages and code quality in github,” in Proc.
FSE, pp. 155–165, ACM, 2014.

[59] P. Bhattacharya and I. Neamtiu, “Assessing programming lan-
guage impact on development and maintenance: A study on c
and c++,” in Proc. ICSE, pp. 171–180, IEEE, 2011.

[60] T. R. Patil and S. Sherekar, “Performance analysis of naive bayes
and J48 classification algorithm for data classification,” IJCSA,
vol. 6, no. 2, pp. 256–261, 2013.

[61] T. Joachims, “Advances in kernel methods,” ch. Making Large-
scale Support Vector Machine Learning Practical, pp. 169–184,
MIT Press, 1999.

[62] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” TSE, vol. 31, no. 10, pp. 897–910, 2005.

[63] J. A. Hanley and B. J. McNeil, “The meaning and use of the
area under a receiver operating characteristic curve.,” Radiology,
vol. 143, no. 1, pp. 29–36, 1982.

[64] C. G. Weng and J. Poon, “A new evaluation measure for imbal-
anced datasets,” in AusDM, pp. 27–32, 2008.

[65] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” TKDE, vol. 17, no. 3, pp. 299–310, 2005.

[66] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to
overcome the equivalent mutant problem and achieve tailored se-
lective mutation using co-evolution,” in Proc. GECCO, pp. 1338–
1349, 2004.

[67] M. Papadakis, Y. Jia, M. Harman, and Y. LeTraon, “Trivial com-
piler equivalence: A large scale empirical study of a simple, fast
and effective equivalent mutant detection technique,” in Proc.
ICSE, 2015.

[68] D. Schuler and A. Zeller, “Javalanche:efficient mutation testing
for java,” in FSE, pp. 297–298, 2009.

[69] “Major: An efficient and extensible tool for mutation analysis in
a java compiler,”

[70] W. E. Wong, ed., Mutation Testing for the New Century. Kluwer
Academic Publishers, 2001.

[71] L. Madeyski, “The impact of test-first programming on branch
coverage and mutation score indicator of unit tests: An experi-
ment,” IST, vol. 52, no. 2, pp. 169–184, 2010.

[72] http://nestor.coventry.ac.uk/∼nhunt/meths/strati.html.
[73] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite

evaluation by developers,” in Proc. ICSE, pp. 72–82, 2014.
[74] L. Lu, H. Jiang, and H. Zhang, “A robust audio classification and

segmentation method,” in Proc. ACMMM, pp. 203–211, ACM,
2001.

[75] A. McCallum, K. Nigam, et al., “A comparison of event models
for naive bayes text classification,” in Proc. AAAI, vol. 752, pp. 41–
48, 1998.

[76] J. R. Quinlan, “Induction of decision trees,” Machine learning,
vol. 1, no. 1, pp. 81–106, 1986.

[77] J. T. Kent, “Information gain and a general measure of correla-
tion,” Biometrika, vol. 70, no. 1, pp. 163–173, 1983.

[78] S. J. Sheather and M. C. Jones, “A reliable data-based bandwidth
selection method for kernel density estimation,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 683–690,
1991.

[79] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon,
“Threats to the validity of mutation-based test assessment,” in
Proc. ISSTA, pp. 354–365, ACM, 2016.

[80] B. Kurtz, “On the utility of dominator mutants for mutation
testing,” in Proc. FSE, pp. 1088–1090, ACM, 2016.

[81] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class
mutation system,” Software Testing, Verification and Reliability,
vol. 15, no. 2, pp. 97–133, 2005.
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