Natural history of mitochondrial disorders: a systematic review

Nandaki Keshavan¹ and Shamima Rahman^{1,2}*

¹Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health ²Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK

*Correspondence to: Professor Shamima Rahman Mitochondrial Research Group Genetics and Genomic Medicine UCL Great Ormond Street Institute of Child Health London WC1N 1EH, UK. Telephone: +44 (0)2079052608 <u>shamima.rahman@ucl.ac.uk</u>

Keywords: Mitochondrial disease Natural history Phenotype Survival Outcomes

ABSTRACT

The natural history of a disease defines the age of onset, presenting features, clinical phenotype, morbidity and mortality outcomes of disease that is unmodified by treatments. A clear understanding of the natural history of mitochondrial disorders is essential for establishing genotype-phenotypeprognosis correlations. We performed a systematic review of the reported natural history of mitochondrial disease by searching the literature for all published natural history studies containing at least 20 individuals. We defined a phenotype as 'common' if it was observed in \geq 30% of cases in a study, thereby highlighting common and uncommon phenotypes for each disorder. Thirty-seven natural history studies were identified encompassing 29 mitochondrial disease entities. Fifty-nine percent of disorders had an onset before 18m and 81% before 18y. Most disorders had multisystemic involvement and most often affected were the central nervous system, eyes, gastrointestinal system, skeletal muscle, auditory system and the heart. Less frequent involvement was seen for respiratory, renal, endocrine, hepatic, haematological, and genitourinary systems. Elevated lactate was the most frequent biochemical abnormality, seen in 72% of disorders. Age of death was <1y in 13% of disorders, <5y in 57%, and <10y in 74%. Disorders with high mortality rates were generally associated with earlier deaths. The most robust indicators of poor prognosis were early presentation of disease and truncating mutations. A thorough knowledge of natural history has helped to redefine diagnostic criteria for classical clinical syndromes and to establish a clinical baseline for comparison in single-arm clinical trials of novel therapies.

KEY POINTS

- 1. A majority (81%) of mitochondrial disorders present in childhood
- 2. Multisystemic involvement is almost universal, and elevated lactate is the commonest biochemical abnormality
- 3. Prognosis is poor with age of death <10y in 74% of disorders
- 4. Poor prognosis is often indicated by earlier presentation and in individuals with mutations resulting in truncated protein
- 5. Natural history studies are useful diagnostic tools and are needed to ensure that clinical diagnostic criteria are kept up-to-date
- 6. Natural histories are essential for establishing genotype-phenotype-prognosis correlations which enable accurate provision of prognostic information to affected families, and the development of targeted surveillance programmes to monitor for known complications

 Clinical data from natural history studies may be utilised when designing single-arm clinical trials

INTRODUCTION

Primary mitochondrial diseases

Mitochondria are the site of oxidative phosphorylation (OXPHOS) within eukaryotic cells. The five complexes of the OXPHOS system are the site of a series of redox reactions that lead to the generation of adenosine triphosphate (ATP) (1). Mitochondria contain their own circular genome (mtDNA) that is integral to mitochondrial function (2). In addition several hundred nuclear genes also control mitochondrial function (3). Complexes I, III, IV and V all contain protein subunits that are encoded by both mtDNA and nuclear genes, whilst complex II subunits are encoded entirely by nuclear genes.

Mitochondrial diseases are a group of genetic disorders that are characterized by defects in OXPHOS caused by mutations in genes that encode proteins involved in mitochondrial function (4, 5). They are individually rare but have a collective prevalence of 1:4300-1:5000 (6, 7). They are often multisystemic and present with varying degrees of severity. The most severe presentations often occur in early childhood. Systemic involvement affecting nearly every organ has been described, leading to an immense variation in clinical phenotype which poses an enormous diagnostic challenge. Clear definitions for the classification of clinical phenotypes and formulation of diagnostic pathways are needed to guide clinicians. The situation becomes more complicated with the realisation that a single gene defect may give rise to a multitude of different recognisable clinical syndromes/ phenotypes and that sometimes affected siblings who share the same mutation may present differently, suggesting a role for other genetic and/or environmental modifiers. Even more puzzlingly, unrelated individuals with pathogenic mutations in different genes may share the same clinical phenotype (8). This presents a diagnostic challenge in the clinic when assessing an individual with suspected disease who may present with clinical features that are not specific enough to indicate a single gene defect or clinical syndrome, and also when faced with the task of having to deliver accurate prognostic information to affected individuals and families (9).

Natural History Studies

An understanding of the natural history of the disease is essential in order to address these challenges, as well as to inform future clinical trials of novel therapeutic agents. A natural history study is a longitudinal study of the evolution of the complete clinical phenotype including disease morbidity and mortality that is unmodified by any therapeutic interventions in a large homogeneous cohort of individuals with a single disease entity (10). Such studies are important to be able to:

 Establish a knowledgebase of the phenotypic and genotypic spectrum of disease and identify any genotype-phenotype correlations (8)

- 2. Facilitate earlier diagnosis by identification of a recognisable clinical syndrome (11)
- 3. Update existing diagnostic criteria for established clinical syndromes based on prevalence of clinical features or the discovery of new phenotypes (12, 13)
- 4. Develop a comprehensive programme of surveillance for known disease complications
- 5. Establish clinical, biochemical and genetic prognostic indicators of disease (14)
- 6. Provide up-to-date prognostic information to families including during prenatal genetic counselling
- 7. Define a clinical baseline for comparative analysis in clinical trials of novel therapies and determine indicators of when therapeutic interventions are most likely to be beneficial
- 8. Inform the planning of healthcare services and their delivery in tertiary centres particularly with respect to the formation of a comprehensive multidisciplinary team to provide input that matches the spectrum of multisystemic disease (12).

Natural history studies also present several challenges and limitations:

- Recruitment of patients to a study requires the clear definition of inclusion and exclusion criteria, which is made difficult by the clinical, biochemical and genetic heterogeneity inherent to mitochondrial disease.
- 2. Many patients do not have a genetic diagnosis, which limits the value of natural history studies of a particular clinical or biochemical phenotype.
- 3. Studies of defined genetic disorders with wide phenotypic variability reduces the number of patients within each phenotypic subgroup and therefore makes it more difficult to make meaningful comparisons (12).
- 4. In prospective studies, death and disability reduces the number of assessments made and therefore the power of longitudinal data.
- 5. In retrospective studies there is variable data quality, and there may be a survival bias if only subjects who are alive at the time of study enrolment are recruited.
- 6. Where an effective therapy is available, it may be unethical to withhold treatment to allow a natural history study to be performed prior to conducting a clinical trial.
- 7. Where no therapy is available, patients may not be motivated to participate, owing to a lack of personal benefit (15).
- 8. Rare disorders require national/multinational collaboration in order to recruit sufficient patients.
- Differing methodologies limit the depth of detail and uniformity of data. For example, the use of different severity scales or making assessments at different time points may make meta-analysis difficult and may lead to conflicting conclusions.

METHODS

Search Terms:

The following search terms were input to PubMed (last performed on 21/3/18):

1. Mitochondrial disease AND natural history [Text Word]

This yielded 195 publications of which 16 met our definition of natural history studies, as described above.

2. Mitochondrial disease AND phenotype

This yielded 4921 publications of which a further 14 met our definition.

3. Survival AND natural history [Title] AND outcome

This yielded 606 publications of which another publication met our definition.

4. Survival AND clinical course AND phenotype

This yielded 706 publications of which a further two met our definition

5. Mitochondrial AND disease AND study AND (phenotype OR phenotypes)

This yielded 1460 publications of which a further two met our definition

The natural history of TK2 deficiency was communicated to us by Garone *et al* in advance of publication (16).

Exclusion Criteria:

The following were excluded: case reports, studies with fewer than 20 patients, and studies limited to a single family/pedigree. In addition, studies focussing on a single specific phenotype of a multisystemic disorder were not included where there were other studies that assessed the complete phenotype of the disease. Studies assessing involvement of a single organ system in mitochondrial disorders were not included if they did not define a single disease entity. Studies not published in English and those where the full text was not available were also excluded.

RESULTS

Thirty-seven studies were identified that met our criteria as natural history studies for mitochondrial disorders, encompassing 29 disease entities and 3730 patients. Thirty-two of these 37 studies had a retrospective study design and 5/37 had a prospective study design. The studies were divided into the following groups:

I. Clinical phenotype-based studies

1 study – 1 disease entity - Leigh syndrome (11)

II. Biochemical profile-based studies

• 2 studies - 2 disease entities - Complex I and Complex II deficiency (14, 17)

III. Gene based studies - mtDNA mutations

7 studies, 5 disease entities – single large-scale mtDNA deletions (SLSMDs) (12, 13), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS, m.3243A>G) (15, 18), maternally inherited diabetes and deafness (MIDD, m.3243A>G) (19), myoclonic epilepsy ragged red fibres (MERFF, m.8344A>G) (20), and Leber hereditary optic neuropathy (LHON) (21)

IV. Gene based studies - nuclear gene mutations

27 studies, 21 disease entities – mutations of SURF1 (22), LRPPRC (23), SCO2 (24), TMEM70 (25), POLG (26, 27), TWNK (28, 29), TK2 (16), MPV17 (30), SUCLA2 (31), SUCLG1 (31), TYMP (32), FBXL4 (33), MTO1 (34), DARS2 (35),RMND1 (36), SERAC1 (37), TAZ (38, 39), CLPB (40), OPA1 (41) and FXN (42-44) and PDHc deficiency (45, 46)

Figure 1 shows the age of onset (expressed as either mean or median because of varying data reporting methods) of the 27 disorders for which this information was available. Data for *MPV17* and *TMEM70* mutations were not available. Fifty-nine percent (16/27) of disorders had an onset before 18 months and the majority (22/27, 81%) had an onset before 18 years. Disorders which had predominant adult onset disease included SLSMDs, LHON, MERRF (m.8344A>G), MIDD (m.3243A>G), and *TWNK* (previously known as *PEO1*) mutations. For the reported ranges and standard deviations from the mean/median, where applicable, see Table 1.

Mitochondrial disorders are multisystemic, apart from LHON and *OPA1*-related optic atrophy which only affected the eye in the vast majority of cases for which natural history data were reported (21, 41). Natural history data were not available for the multisystem presentation of OPA1 deficiency. Features were taken to be 'common' if they were observed in at least 30% of patients in studies. Based on this definition, the central nervous system was seen to be commonly involved in 25/29 (86%) of disorders, whilst eye manifestations were common in 21/29 (72%) of disorders, gastrointestinal involvement was a common feature in 20/29 (69%) of disorders, muscle involvement was a common feature in 15/29 52%) of disorders, sensorineural hearing loss was common in 12/29 (41%) and the heart was commonly involved in 7/29 (24%) of disorders. Less frequent involvement was seen for respiratory, renal, endocrine, haematological, hepatic and genitourinary systems which were common in \leq 5 disorders as shown in Figure 2. It should be noted that the full spectrum of each disorder however is far more multisystemic and is expanded upon in Table 1. In 21/29 (72%) of disorders elevated lactate was a common feature. Elevated levels of plasma alanine and urinary Krebs cycle intermediates and 3-methylglutaconate were common features in 6 disorders each (see Table 1). Other biochemical abnormalities common to \leq 4 disorders included hypo/hyperglycaemia, elevated creatine kinase, hyperammonaemia, deranged liver function, methylmalonic aciduria, hyperuricaemia and ketonuria (Table 1). Results of OXPHOS analyses varied considerably and are detailed in Table 1.

On neuroimaging, basal ganglia involvement was commonly seen in 14/29 (48%) of disorders. Brainstem, cerebral, white matter, cerebellar and spinal cord abnormalities were common features in 12, 10, 10 10 and 4 disorders respectively (see Table 1 for details). Thalamus and midbrain involvement was a common feature in 2 disorders each.

Figure 3 shows the age of death (mean/median) in patients who died for 23 disorders for which this information was available. It should be noted that disease related mortality was not seen in LHON, *OPA1*-related optic atrophy and MIDD (19, 21, 28, 41). Age of death was not available for Friedreich ataxia, *DARS2* mutations or *TMEM70* mutations. Age of death was <1 year in 3/23 (13%) of disorders, <5 years in 13/23 (57%) of disorders, and <10 years in 17/23 (74%) of disorders. Disorders with survival to beyond 10 years age included *POLG* mutations (26, 27)*SUCLA2* mutations (31), MERRF caused by the m.8344 A>G mutation (20), MELAS associated with the m.3243 A>G mutation (15, 18) and MNGIE caused by *TYMP* mutations (32). Reported ranges of age of death and mortality rates are included in Table 1, together with the cause of death.

Overall mortality rates are shown in Figure 4 for 25 out of 29 disorders expressed as a percentage of the cohort. Ten disorders had a mortality of at least 50% during the period of follow up. Seven of these (*CLPB, MPV17, RMND1, SCO2, LRPPRC, SUCLG1* mutations and Complex I deficiency) were also among the 10 disorders with worst outcomes according to age at death data (see Figure 1). This demonstrates that disorders with high overall mortality were generally associated with earlier death.

In SLSMDs, most deaths were seen in early presenting patients, who make up the minority of the natural history cohort, while few late presenting patients died during the duration of follow up (12, 13). This also accounts for the mean age of death reported as lower than the overall mean age of onset.

DISCUSSION

Identification of a recognisable clinical phenotype

8

The identification of a classical mitochondrial phenotype/syndrome may make the diagnosis clear to the clinician, and confirmation may be possible with a single-gene test. This reduces the lag time between presentation and diagnosis and improves the ability to monitor complications. For example, MIDD should be suspected when diabetes mellitus is seen in a young patient of low/normal body mass index who later develops hearing loss, especially in the presence of positive family history (19). This may lead to targeted testing for m.3243A>G that enables an earlier diagnosis, and patients to be monitored closely for renal, cardiac, neuromuscular and psychiatric complications that present later. More commonly, however, the recognition of a defined mitochondrial disease phenotype may aid the clinician in formulating a diagnostic hypothesis which can be tested with appropriate genetic investigations. For example an infant presenting with encephalopathy and liver disease with low mtDNA copy number will usually be investigated with a targeted gene panel for hepatocerebral mtDNA depletion syndrome, first starting with *POLG* and then extended to other genes e.g. *DGUOK* and *MPV17* if needed.

On the other hand, some phenotypes appear to overlap with one another and may even be on a continuum. For example, patients diagnosed with MERRF may develop stroke-like episodes that are phenotypically similar to MELAS (20). A single patient may partially match more than one phenotype or may have a phenotype that cannot be classified by existing criteria, e.g. some patients with SLSMDs (12, 13). In such cases the approach to genetic investigations may need to be broader. For nuclear gene defects, whole exome and whole genome sequencing are increasingly being adopted as first-line genetic investigations in suspected mitochondrial disease (5).

Clarification of classical phenotypes

Natural history studies may shed further light on the characteristics of known and well established clinical syndromes. For example in a multinational study of paediatric POLG deficiency it was noted that only children with an Alpers phenotype develop seizures; children with myocerebrohepatopathy spectrum (MCHS) do not (27). Conversely only children with an MCHS phenotype develop renal disease; those with Alpers syndrome do not. This may help discriminate between the two groups, which has important prognostic implications (27).

In succinyl-CoA ligase deficiency, associated with encephalomyopathic mtDNA depletion syndrome, hepatopathy and cardiomyopathy were observed only in patients with mutations in *SUCLG1* but not in *SUCLA2*. This may also discriminate between the two and is important since the two genetic disorders have different prognoses (31). Another example is in Complex IV deficient Leigh syndrome: Debray *et al* noted that LRPPRC deficiency (French Canadian Leigh syndrome) is marked by recurrent

metabolic decompensations and neurological crises which carry negative implications for prognosis and are absent in SURF1 deficiency; this may at least partially explain the relatively better survival of the latter group (22, 23).

Natural history studies are essential to ensure that existing definitions/classifications are kept up-todate by reassessing the incidence of certain manifestations in a given disease. For example, Altmann *et al* noted in their prospective study of a cohort of patients diagnosed with MERRF caused by m.8344A>G, that the canonical features of myoclonus, seizures, ataxia and ragged red fibres were only present in 59, 61, 70 and 63% of patients (20). Conversely, patients had high incidences of other features: hearing loss (72%), psychiatric abnormalities (54%) and migraine (52%). The authors questioned whether the canonical definition captures the phenotype of disease adequately and support the revision of diagnostic criteria for MERRF in view of the expanding clinical phenotype (20).

Similarly, in a series of children with SLSMDs, only four of 11 patients diagnosed with Pearson syndrome met the classical diagnostic criteria of sideroblastic anaemia with pancreatic exocrine dysfunction – indeed, while all 11 were anaemic, only 7 had ringed sideroblasts and only 4 had low faecal elastase and chronic diarrhoea (12). The authors therefore suggested that pancreatic dysfunction not be considered an essential diagnostic criterion for Pearson syndrome. Conversely there was a high number of patients who developed ptosis, endocrine and renal disease (especially tubulopathy) in patients with SLSMDs, thereby expanding the spectrum of phenotypes of disease (12). Another study proposed updated diagnostic criteria for KSS, noting that in a large cohort of patients with SLSMDs, few patients met classical KSS criteria (13). A new definition of patients entitled 'KSS spectrum' was proposed, removing age of onset <20y and retinopathy as essential criteria, maintaining ptosis and ophthalmoplegia as essential criteria and including at least one of retinopathy, ataxia, cardiac conduction defects, hearing loss, FTT, cognitive involvement, tremor and cardiomyopathy as an additional criterion (13).

Correlating clinical phenotype to prognosis

Even where there is no clear genotype-phenotype correlation, natural history studies may reveal a correlation between certain clinical phenotypes and adverse outcomes. An important recurring correlation across many disorders is that early presentation is associated with a worse prognosis. Other correlations are summarised in Table 2.

Identification of genotype-phenotype correlation

10

Ideally, a patient affected by a single gene defect (caused by a single mutation) would present with a defined and unique phenotype with an expected prognosis. This linear paradigm of correlation, where applicable, may simplify the diagnostic process for the clinician. In mitochondrial disease, however, this paradigm is often not applicable as a genotype-phenotype correlation may be difficult to establish for the following reasons:

- For disorders due to mtDNA mutations, the degree of heteroplasmy/mutation load in individual organs influences which tissues are affected. Unaffected/asymptomatic carriers may have lower mutation loads than affected individuals. On the other hand, previously defined 'carriers' may become symptomatic at a later stage, as demonstrated in MELAS (15, 18). Therefore, having a confirmed pathogenic mtDNA mutation does not necessarily predict the presence of disease in a given individual.
- 2. For disorders associated with a large number of known gene defects such as Complex I deficiency and pyruvate dehydrogenase complex deficiency, it may be difficult to find a clear genotypephenotype correlation, because the number of published cases of patients affected by a specific gene defect may actually be too few to identify a clear correlation.
- 3. Even in a very genetically homogenous cohort of patients, e.g. LRPPRC deficiency for which nearly all affected cases had the same common mutation, there were widely varied outcomes (23), suggesting a role for other genetic modifiers and/or environmental factors in influencing severity of disease.
- 4. A single mutation may present with multiple phenotypes, e.g. m.3243A>G in the *MT-TL1* gene is associated with MELAS, MIDD and a range of other phenotypes (47). On the other hand, defects in different genes may present with a common phenotype, for example more than 89 mtDNA and nuclear genes have been linked to Leigh syndrome (8). This leads to a major diagnostic challenge for the clinician.

Despite these caveats, clear genotype-phenotype/ prognosis correlations are seen in some cases. Truncating mutations are likely to be more severe than missense mutations in a number of disorders. These and other correlations are summarised in Table 3.

The value of multicentre collaboration

Multicentre collaboration is essential for recruitment and study of large national or international cohorts. This is essential to increase the power of statistical comparisons, and to eliminate geographical skew of data that may be related to founder effects and environmental modifiers, for example in a large multicentre cohort of SURF1 deficiency seizures were mainly observed in Australian

11

patients (22). It also enables the standardisation of research methodology and data collection which is essential for designing high quality prospective studies.

Examples of where this has been applied in natural history studies include the retrospective recruitment of patients with Leigh syndrome under the auspices of the Mitochondrial Clinical and Research Network (MCRN) which encompasses clinicians in 9 different mitochondrial centres in 7 European countries (11). The German Network for Mitochondrial disorders (MitoNET) comprises a total of 18 specialist centres, and its 'MitoNET registry' was used to recruit patients to a prospective study of MERRF (20). For LHON, an international meeting of experts from 20 centres from 7 countries in North America and Europe was held to review the literature, define the natural history of disease, formulate guidelines for management of the disorder and to define a target population for treatment with idebenone (48). The Barth syndrome registry encompasses data from 8 countries, allowing the clinical description of the largest known cohort of affected patients with Barth syndrome (38). In France, a national retrospective cohort of patients with Barth syndrome was set up by collaboration between healthcare professionals of different disciplines including cardiologists, geneticists, haematologists, metabolic physicians and by referring to national archives containing death certificates that list the disorder as a contributory cause of death (39). For Friedreich ataxia, the European Friedreich Ataxia Consortium for Translational Studies (EFACTS) comprising 11 centres from 6 countries was able to recruit a large number of patients for a prospective study and helped define potential endpoints and sample sizes that could be utilised for clinical trials (44). The Italian Collaborative Network of Mitochondrial Diseases registry of patients was interrogated retrospectively to study a SLSMDs cohort (13).

Define a clinical baseline for comparative use in single-arm clinical trials

For rare diseases with high mortality and no known effective treatments, for which a novel therapeutic agent is to be trialled, the natural history of disease may be useful in assessing therapeutic effectiveness. This is particularly true for a trial drug that is known to have a good safety profile and where preliminary phase 1 data suggests that it may be an effective treatment. In such cases, it may be difficult/unethical to recruit patients to the control arm of the trial, especially if the overall number of patients eligible for recruitment is low. This approach cannot be used in disorders for which an effective treatment already exists and the aim of the trial is to demonstrate non-inferiority or superiority to an existing therapy.

Martinelli *et al* described a single-arm Phase 2A study to assess safety and efficacy of a trial drug EPI-743 in 10 children with 7 different gene defects causing Leigh syndrome (49). Ten children received the treatment enterally for 6 months. The children were required to stop any coenzyme Q₁₀ or other antioxidant treatments. The Newcastle Paediatric Mitochondrial Disease Scale (NPMDS), Gross Motor Function Measure (GMFM) and a quality of life measure (PedsQL Neuromuscular Module) were used to as primary endpoints. The response was compared to baseline patient scores at the start of the trial and to the natural history of disease reported in the literature in children with the same genetic causes of Leigh syndrome. When compared to baseline scores, all 9 patients who completed the treatment course of 6 months showed improvements in all indices. In comparison, 99.4% of all children identified from natural history studies demonstrated either disease progression or death, with only one patient showing some spontaneous improvement. By virtue of this, the authors concluded a positive treatment effect.

Sadun *et al* used similar methodology and applied EPI-743 to LHON in a small single arm trial (50). Five patients with genetically confirmed LHON with 3 different mtDNA mutations were recruited to the trial within 90 days of presentation with visual loss, and administered EPI-743 orally over a period of 18 months. Primary endpoints included assessments of visual acuity, retinal nerve fibre layer thickness, visual fields and colour vision. The response was compared to the natural history of LHON from the literature. Four of the 5 patients experienced reversal of visual loss with 2 having total recovery of visual acuity. When compared to the natural history which demonstrated that visual loss is irreversible, EPI-743 appeared to be effective (50).

The limitations of this type of approach are that assessors are not blinded as there is no placebo control arm, introducing the possibility of assessment bias, and that quantitative comparisons using measured indices are not possible when comparing to natural history data that do not contain measurable outcomes. As such, it was not possible to quantify the degree of improvement seen compared to the natural history data in either of these EPI-743 trials. Clearly, randomised placebo controlled clinical trials are superior but for preliminary studies utilising a small number of patients in rare diseases, a single-arm approach using comparative data from natural history studies may be beneficial before proceeding to recruit patients to randomised placebo controlled clinical trials are necessary.

Limitations of this study

In our literature search we excluded case reports and studies with fewer than 20 patients. While this may preserve to some extent the standardisation of data between patients, a major drawback is a reduction in the number of cases included in meta-analyses. Furthermore, most papers reported retrospective analyses, with associated limitations of lack of data standardisation, incomplete data sets and loss of patients during follow up. Studies of disorders for which there is a 'founder effect' are likely to skew data due to a lack of publications concerning mutations seen in other populations worldwide. Indeed, the majority of studies included concerned European cohorts which may not be genotypically representative of mitochondrial disorders elsewhere in the world. In reporting mortality and survival data, a limitation of using of age of death as an indicator of prognosis is that for disorders where early presenting patients make up the majority of deaths but the minority of the natural history cohort, e.g. SLSMDs, the mean/median age at death may not accurately reflect the overall prognosis of the disorder. The overall mortality needs to be taken into account in this respect. Unfortunately, owing to differences in data reporting between studies, prospective mortality data (e.g. 10 or 20 year mortality) were not available for many disorders. It is clear that more prospective studies are needed.

CONCLUSION

An understanding of the natural history of mitochondrial disorders is essential for defining the spectrum of disease. Establishment of a known recognisable pattern of disease may sometimes lead to a specific genetic diagnosis, but more often is likely to generate a panel of further investigations in order to test or refute diagnostic hypotheses. There is considerable overlap between disorders of varying genetic aetiology and considerable variability in severity of disease for a specific genotype. Certain disorders have specific genotypic and phenotypic predictors of disease severity and prognosis. Multicentre collaboration is essential if large prospective cohorts are to be studied, to ensure significant power of analyses. The use of standardised scales to measure disease severity ensures uniformity of data collection. The input of patients and carers themselves is essential to ensure completeness of data. Natural histories may be beneficial in providing comparative data for use in single-arm clinical trials.

ACKNOWLEDGEMENTS

This work was supported by a Great Ormond Street Hospital Children's Charity Research Leadership Award (V1260) to SR and by the NIHR Great Ormond Street Hospital Biomedical Research Centre. We also acknowledge research grant funding from the Lily Foundation. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. We thank Caterina Garone for sharing the manuscript on the natural history of TK2 deficiency.

14

REFERENCES

1. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. AnnuRevBiochem. 1985;54:1015-69.

2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457-65.

3. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112-23.

4. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nature reviews Disease primers. 2016;2:16080.

5. Rahman J, Rahman, S. Mitochondrial Medicine in the Omics Era. The Lancet. 2018.

6. Thorburn DR. Mitochondrial disorders: prevalence, myths and advances. JInheritMetab Dis. 2004;27(3):349-62.

7. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753-9.

8. Rahman J, Noronha A, Thiele I, Rahman S. Leigh map: A novel computational diagnostic resource for mitochondrial disease. Ann Neurol. 2017;81(1):9-16.

9. Moggio M, Colombo I, Peverelli L, Villa L, Xhani R, Testolin S, et al. Mitochondrial disease heterogeneity: a prognostic challenge. Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology. 2014;33(2):86-93.

10. Dubowitz V. Unnatural natural history of Duchenne muscular dystrophy. Neuromuscular disorders : NMD. 2015;25(12):936.

11. Sofou K, De Coo IF, Isohanni P, Ostergaard E, Naess K, De Meirleir L, et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet journal of rare diseases. 2014;9:52.

12. Broomfield A, Sweeney MG, Woodward CE, Fratter C, Morris AM, Leonard JV, et al. Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. JInheritMetab Dis. 2015;38(3):445-57.

13. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, et al. Redefining phenotypes associated with mitochondrial DNA single deletion. Journal of neurology. 2015;262(5):1301-9.

14. Koene S, Rodenburg RJ, van der Knaap MS, Willemsen MA, Sperl W, Laugel V, et al. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;35(5):737-47.

15. Kaufmann P, Engelstad K, Wei Y, Kulikova R, Oskoui M, Sproule DM, et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology. 2011;77(22):1965-71.

16. Garone C, Taylor, R.W., Nascimento, A., Poulton, J., Fratter, C., Dominguez-Gonzalez, C., Evans, J., Loos, M., Isohanni, P., Suomalainen, A. et al. Retrospective Natural History of Thymidine Kinase 2 Deficiency. J MedGenet. 2018.

17. Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, et al. Complex II deficiency--a case report and review of the literature. American journal of medical genetics Part A. 2013;161a(2):285-94.

18. Dvorakova V, Kolarova H, Magner M, Tesarova M, Hansikova H, Zeman J, et al. The phenotypic spectrum of fifty Czech m.3243A>G carriers. Molecular genetics and metabolism. 2016;118(4):288-95.

19. Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H, et al. Maternally inherited diabetes and deafness: a multicenter study. Annals of internal medicine. 2001;134(9 Pt 1):721-8.

20. Altmann J, Buchner B, Nadaj-Pakleza A, Schafer J, Jackson S, Lehmann D, et al. Expanded phenotypic spectrum of the m.8344A>G "MERRF" mutation: data from the German mitoNET registry. Journal of neurology. 2016;263(5):961-72.

21. Lam BL, Feuer WJ, Schiffman JC, Porciatti V, Vandenbroucke R, Rosa PR, et al. Trial end points and natural history in patients with G11778A Leber hereditary optic neuropathy : preparation for gene therapy clinical trial. JAMA ophthalmology. 2014;132(4):428-36.

22. Wedatilake Y, Brown RM, McFarland R, Yaplito-Lee J, Morris AA, Champion M, et al. SURF1 deficiency: a multi-centre natural history study. Orphanet journal of rare diseases. 2013;8:96.

23. Debray FG, Morin C, Janvier A, Villeneuve J, Maranda B, Laframboise R, et al. LRPPRC mutations cause a phenotypically distinct form of Leigh syndrome with cytochrome c oxidase deficiency. JMedGenet. 2011.

24. Pronicka E, Piekutowska-Abramczuk D, Szymanska-Debinska T, Bielecka L, Kowalski P, Luczak S, et al. The natural history of SCO2 deficiency in 36 Polish children confirmed the genotype-phenotype correlation. Mitochondrion. 2013;13(6):810-6.

25. Magner M, Dvorakova V, Tesarova M, Mazurova S, Hansikova H, Zahorec M, et al. TMEM70 deficiency: long-term outcome of 48 patients. JInheritMetab Dis. 2015;38(3):417-26.

26. Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, Lamantea E, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006;129(Pt 7):1674-84.

27. Hikmat O, Tzoulis C, Chong WK, Chentouf L, Klingenberg C, Fratter C, et al. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genetics in medicine : official journal of the American College of Medical Genetics. 2017.

28. Fratter C, Gorman GS, Stewart JD, Buddles M, Smith C, Evans J, et al. The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology. 2010;74(20):1619-26.

29. Lonnqvist T, Paetau A, Valanne L, Pihko H. Recessive twinkle mutations cause severe epileptic encephalopathy. Brain. 2009;132(Pt 6):1553-62.

30. El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, Wong LJ. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. MolGenetMetab. 2010;99(3):300-8.

31. Carrozzo R, Verrigni D, Rasmussen M, de Coo R, Amartino H, Bianchi M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243-52.

32. Garone C, Tadesse S, Hirano M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2011;134(Pt 11):3326-32.

33. El-Hattab AW, Dai H, Almannai M, Wang J, Faqeih EA, Al Asmari A, et al. Molecular and clinical spectra of FBXL4 deficiency. Human mutation. 2017;38(12):1649-59.

34. O'Byrne JJ, Tarailo-Graovac M, Ghani A, Champion M, Deshpande C, Dursun A, et al. The genotypic and phenotypic spectrum of MTO1 deficiency. Molecular genetics and metabolism. 2018;123(1):28-42.

35. van Berge L, Hamilton EM, Linnankivi T, Uziel G, Steenweg ME, Isohanni P, et al. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation: clinical and genetic characterization and target for therapy. Brain. 2014;137(Pt 4):1019-29.

36. Ng YS, Alston CL, Diodato D, Morris AA, Ulrick N, Kmoch S, et al. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease. J Med Genet. 2016.

37. Maas RR, Iwanicka-Pronicka K, Kalkan Ucar S, Alhaddad B, AlSayed M, Al-Owain MA, et al. Progressive deafness-dystonia due to SERAC1 mutations: A study of 67 cases. Ann Neurol. 2017;82(6):1004-15.

38. Roberts AE, Nixon C, Steward CG, Gauvreau K, Maisenbacher M, Fletcher M, et al. The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study. American journal of medical genetics Part A. 2012;158a(11):2726-32.

39. Rigaud C, Lebre AS, Touraine R, Beaupain B, Ottolenghi C, Chabli A, et al. Natural history of Barth syndrome: a national cohort study of 22 patients. Orphanet journal of rare diseases. 2013;8:70.

40. Pronicka E, Ropacka-Lesiak M, Trubicka J, Pajdowska M, Linke M, Ostergaard E, et al. A scoring system predicting the clinical course of CLPB defect based on the foetal and neonatal presentation of 31 patients. J Inherit Metab Dis. 2017;40(6):853-60.

41. Cohn AC, Toomes C, Hewitt AW, Kearns LS, Inglehearn CF, Craig JE, et al. The natural history of OPA1-related autosomal dominant optic atrophy. The British journal of ophthalmology. 2008;92(10):1333-6.

42. Filla A, DeMichele G, Caruso G, Marconi R, Campanella G. Genetic data and natural history of Friedreich's disease: a study of 80 Italian patients. Journal of neurology. 1990;237(6):345-51.

43. Patel M, Isaacs CJ, Seyer L, Brigatti K, Gelbard S, Strawser C, et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Annals of clinical and translational neurology. 2016;3(9):684-94.

44. Reetz K, Dogan I, Hilgers RD, Giunti P, Mariotti C, Durr A, et al. Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. The Lancet Neurology. 2016;15(13):1346-54.

45. Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. MolGenetMetab. 2012;106(3):385-94.

46. DeBrosse SD, Okajima K, Zhang S, Nakouzi G, Schmotzer CL, Lusk-Kopp M, et al. Spectrum of neurological and survival outcomes in pyruvate dehydrogenase complex (PDC) deficiency: lack of correlation with genotype. Molecular genetics and metabolism. 2012;107(3):394-402.

47. Nesbitt V, Pitceathly RD, Turnbull DM, Taylor RW, Sweeney MG, Mudanohwo EE, et al. The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation--implications for diagnosis and management. Journal of neurology, neurosurgery, and psychiatry. 2013;84(8):936-8.

48. Carelli V, Carbonelli M, de Coo IF, Kawasaki A, Klopstock T, Lagreze WA, et al. International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society. 2017;37(4):371-81.

49. Martinelli D, Catteruccia M, Piemonte F, Pastore A, Tozzi G, Dionisi-Vici C, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease--genetically defined Leigh Syndrome. MolGenetMetab. 2012;107(3):383-8.

50. Sadun AA, Chicani CF, Ross-Cisneros FN, Barboni P, Thoolen M, Shrader WD, et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. ArchNeurol. 2012;69(3):331-8.

FIGURE LEGENDS

Figure 1 Age of onset (median/mean) in years for mitochondrial disorders

Age of onset in years for mitochondrial disorders expressed as either mean or median. The Y axis indicates the number of mitochondrial disorders; data for 27 disorders are shown. Data were not available for 2 disorders (MPV17 and TMEM70 deficiencies). Where a single disorder had more than one natural history study, e.g. Barth Syndrome, PDHc deficiency, Friedrich ataxia, *POLG* mutations, *TWNK* mutations, MELAS and SLSMDs, the mean age of onset was calculated by meta-analysis of raw data.

Figure 2 Common involvement of organ systems in 29 mitochondrial disorders

Common involvement of organ systems, as defined as affecting at least 30% of cases. The Y axis indicates the number of mitochondrial disorders (total 29).

Figure 3 Age of death (median/mean) in years for mitochondrial disorders

Age of death in years for mitochondrial disorders expressed as either a mean or median. Data were not available for TMEM70 deficiency. LHON, *OPA1* mutations, *TWNK* mutations, Friedreich ataxia and MIDD were excluded as no death was reported due to these disorders in the natural history studies captured by the systematic review. Age of death data was combined in meta-analysis of different studies for *POLG* mutations, PDHc deficiency, Barth syndrome and MELAS.

Figure 4 Mortality rates for mitochondrial disorders

The mortality rates are expressed as a percentage of deaths over the duration of follow up as a proportion of total number of cases included in the study. Mortality rates were not available for *TYMP* and *TMEM70* mutations, SLSMDs and Friedreich ataxia.

Table 1 Natural history studies of mitochondrial disease

	Disease		No. cases	Study design	Age onset	Initial features	Overall phenotype	Biochemistry	Neuro- radiology	Muscle Biopsy	Age of death/ Prognosis
CL	INICAL PHEN	IOTYPE BAS	ED ST	UDIES							
1	Leigh syndrome	(11)		Retrospective multinational study	3-12m (median 7m)	Common: abnormal motor findings Uncommon: ocular abnormalities, feeding difficulty, seizures, FTT	Common: motor delay, mental retardation, progressive cognitive decline, hypotonia, dyskinesia, ataxia, dystonia, dysphagia, seizures, ocular abnormalities. Uncommon: respiratory, cardiac/liver/GI/renal involvement, deafness, autonomic dysregulation and cytopaenias.	Lactic acidosis	Bilateral lesions in thalamus, basal ganglia, brainstem, posterior columns of spinal cord, cerebellum	Multiple complexes affected	39% died Median 2.4y Death due to respiratory complications, neurological progression or sepsis
310	OCHEMISTRY	BASED STU	IDIES								
2	Complex I deficiency	(14)	130	Retrospective literature review	0-9y (median 4m)	If <6m: hypotonia, FTT, encephalopathy, epilepsy, eye movement disturbances. If >6m: psychomotor retardation/ regression, pyramidal signs, FTT, optic atrophy, dystonia, epilepsy	Common: Leigh syndrome, optic atrophy. Uncommon: micro/macrocephaly, dysmorphic features, cardiac/renal/hepatic involvement, infective exacerbations.	Lactic acidosis, elevated alanine, elevated Krebs cycle intermediates	Hyperintense lesions in basal ganglia, thalamus, midbrain, brainstem, cerebellum, spinal cord.	Complex I deficiency	75% died Median 10m Death due to cardiorespirator failure, lactic acidosis, central hypoventilation

3	Complex II deficiency	(17)	literature review	,	See overall phenotype	Common: neurological involvement (hypotonia, spasticity, ataxia, seizures, irritability), DD, cardiac involvement (HCM, DCM, conduction defects), muscle and eye involvement (ptosis, PEO, pigmentary retinopathy, optic atrophy, nystagmus), FTT.		Leuko- encephalopath y and features of Leigh syndrome Uncommon: normal, cerebellar atrophy		21% died at median 18m (5m-31y)
	NE BASED STU						L	.	_	
4	Single large- scale mtDNA deletions	(12)	study	(mean 4.3y, median 1w for patients with	Uncommon: FTT, tremor, endocrine and renal involvement	Common: Pearson syndrome, KSS, PEO/PEO plus. Renal, cardiac, deafness, neurological, endocrine involvement. Uncommon: No classifiable phenotype, GI involvement.	lactate, alanine,	Basal ganglia and white matter abnormalities	Complex IV deficiency Uncommon:	32% died, mean 6.7y (median for Pearson: 2y6m and Non-Pearson: 13y9m)
5	Single large- scale mtDNA deletions	(13)	•	14.6y	Uncommon: muscle weakness/wasting/		Uncommon: elevated CK, deranged liver function	ganglia, white matter and brainstem abnormalities	Common: RRF, COX negative fibres Uncommon: Lipid storage	NS

						liver/respiratory involvement			nucleus involvement		
6	MELAS m.3243A>G	(15)		Prospective single centre cohort study	30y. Median	, ,	Common: seizures, SLEs, exercise intolerance, abdominal discomfort, constipation,		Cerebral lesions, MRS shows elevated	Not measured	67% died Mean 34.5y Death due to
						20-30y: deafness	deafness. Uncommon: ptosis, night		lactate peak		neurological events including seizures, and
							blindness, DM, hirsutism.				SLEs, GI pseudo- obstruction
7	MELAS	(18)		Retrospective	,	Common:			Common:	Multiple	33% died at a
	m.3243A>G			study	-				cerebral	complexes	mean of 34.5y ±
					± 12.9 y)	PEO, SNHL		,		affected	16.2 due to
									lesions(parietal		heart failure,
						Uncommon: DM,		U U	and occipital),	RRF, COX	CM, infection,
						FTT, seizures,			cerebellar	negative fibres	suicide
						depression	Uncommon: peripheral		atrophy	libres	
								Uncommon: elevated	Uncommon:		
									cortical		
							retinopathy, WPW, CM, thyroid		atrophy, BG		
							disease, depression.		calcifications,		
									BG lesions		
8	MIDD	(19)	54	Prospective	Presenting	Deafness, DM	Common: Deafness, DM (may or		Uncommon:	NS	NS
	m.3243A>G			multicentre	with DM:		may not be insulin dependent),	glycaemia	cerebral/cereb		
				study	12-67y		low BMI, macular dystrophy,		ellar atrophy		
					(mean		muscle weakness, myalgia,				
					38.8y);		hypertension, renal impairment.				
					Presenting						
					with		Uncommon: hypertrophic				
					deafness:		cardiomyopathy, WPW, AF,				
					2-61y		coronary heart disease,				

					(mean 34.6y)		ophthalmoplegia, ataxia, psychiatric disorder.				
9	MERRF m.8344A>G	(20)	34	Retrospective multicentre national study	6-48y (mean 24.5y)		Common: deafness, muscle weakness, fatigue, myalgia, seizures, cerebellar ataxia, myoclonus, migraine, psychiatric disorders, respiratory insufficiency, GI symptoms, dysphagia Uncommon: hyperthyroidism, cardiac involvement, IDDM, ptosis, eye involvement, SLEs	Elevated lactate, elevated CK	Common: Cerebral/ cerebellar atrophy Uncommon: white matter abnormalities	COX deficient fibres, RRF	2 (6%) patients died, mean 27y (14-40y)
10	LHON	(21)	44	Retrospective and prospective study	4-61y (mean 23.9y)	retinal ganglion cells resulting in loss of visual acuity, visual	Common: stable visual acuity, visual fields and ERG Uncommon: improvement in visual acuity over a mean of 27.5m.	NA	NA	NA	No mortality 68% of patients had stable visual loss
GEI	NE BASED ST	UDIES – NU	JCLEA	R GENE MUTAT	IONS						
11	SURF1 deficiency	(22)	44	Retrospective multinational study	0-5y (median 9.5m)	Uncommon: developmental regression	Common: poor weight gain, hypotonia, vomiting, developmental regression precipitated by infective decompensations, hypertrichosis, nystagmus, ophthalmoplegia, movement disorder Uncommon: seizures, optic atrophy, encephalopathy, hypertrophic cardiomyopathy	Elevated lactate, metabolic acidosis	Common: symmetrical hyperintense lesions in brainstem and basal ganglia Uncommon: normal, white matter involvement,	Complex IV deficiency	82% died Median 5.4y Cause of death: central respiratory failure

									cerebellar atrophy		
12	French Canadian Leigh syndrome (<i>LRPPRC</i> mutations)	(23)	56	Retrospective multicentre study	0-24m (median 5m)	Common: neonatal distress, psychomotor delay, hypotonia, FTT, ataxia, acute metabolic acidosis	dysmorphism, global DD, hypotonia, weakness, ataxia, tremors, strabismus, recurrent metabolic crises Uncommon: seizures, neurological crises, Leigh	metabolic acidosis especially during crises, elevated Krebs cycle intermediates	Common: hyperintense lesions in brainstem, periaqueductal grey Uncommon: lesions in cerebellar white matter, thalamus, basa ganglia	deficiency	82% died Median 1.6y Cause of death: central respiratory failure, multiorgan failure
13	SCO2 deficiency	(24)	36	Retrospective study and literature review	S1 0m S2 4m S3 >12m Mean 5.26m (0- 16m)	S1 CM S2/S3: hypotonia, psychomotor retardation, infective episode causing neurological regression.	Cardiomyopathy, no motor development S2 'SMA-like/Leigh like' Delayed development, respiratory failure, cardiomyopathy S3 'Milder encephalopathic type' Delayed development,	increased Krebs cycle intermediates, low free carnitine, increased phosphor-	Common: Progressive atrophy of cerebrum and cerebellum, Leigh-like changes Uncommon: white matter involvement	Complex IV deficiency	64% died S1 1-2.5m S2 6-16.5m S3 24-48m Mean 15m (2.7- 60)
14	TMEM70 deficiency	(25)	48	Retrospective multinational	Early onset: 1d-1m	Early onset disease: Common: oligo/	Common: facial dysmorphism, ptosis, congenital cardiac	Elevated lactate,	Common: white matter	Common: Complex V	Number of deaths and mean
	,					anhydramnios,	defects, HCM, hypospadias, FTT,	-	changes	•	age of death NS.

				questionnaire	Later onset	IUGR, poor	short stature, microcephaly,	alanine, urate,	especially		Higher risk of
				based survey	1m – 2y	condition at birth,	hypotonia, DD, recurrent	3MGA and 2-	hypo-	Less	death for early
						respiratory failure	vomiting, renal disease,	hydroxy-	myelination	common:	onset disease
					Mean NS	requiring		glutarate in		Complex I	
						ventilation,	developmental regression	-	Uncommon: PV	and IV	No deaths in
						metabolic acidosis,		onset / during	cysts, callosal	deficiency	later onset
						high lactate,		metabolic	agenesis/hypo	-	disease
						hyperammonaemia.	syndactyly, polydactyly,	crises.	plasia, cortical		
						Uncommon: HCM	congenital clubfoot, multiple	Hypo/hypergly	and ponto-		63% survival at
						antenatally	flexion contractures, ataxia,	caemia and	cerebellar		10y
						detected, heart	epilepsy, WPW, cataracts,	hyponatraemia	atrophy,		
						failure, hypo/hyper-	strabismus, pigmentary	seen	normal		
						glycaemia, PPHN.	retinopathy, hypopigmented				
							retina, amblyopia, hearing				
						Later onset disease:	impairment, intestinal pseudo				
						Common: poor	obstruction, endocrine disease				
						feeding, faltering					
						growth, hypotonia,					
						CM, DD, lactic					
						acidosis.					
						Uncommon:					
						hyperammonaemia,					
						hypoglycaemic					
						seizures					
15	POLG	(26)	38	Retrospective	0.5- 63y	Common		NS	NS	NS	18% died, mean
	mutations			multinational	(mean	phenotypic groups:	Liver disease especially induced				age at death
	in adults			study	23.1y)	PEO with additional	by valproate, encephalopathy,				7.85y(1-41y)
	and children					features, Alpers	PEO, myopathy, ataxia,				
					Alpers:	(hepato-	dysphagia, neuropathy				In the hepato-
						encephalopathy)					encephalopathy
					(0.5-7y)		Uncommon: cardiomyopathy,				group 40% died
						Uncommon:	stroke like episodes, myoclonus,				by age 2y
						encephalopathy	diabetes, thyroid disease,				

						without liver disease, unclassified phenotype	hearing loss, psychosis, dementia, cardiac conduction defects				
16	POLG biallelic mutations in childhood	(27)	27	Retrospective multinational study	(mean 12.3m)	Common: seizures, hypotonia, FTT, vomiting, chronic diarrhoea, liver	Classical phenotypes 'Alpers' 'MCHS', 'MNGIE'	-	Common: focal cortical lesions, white matter lesions	multiple	81% died, mean 20.4m (1.03m – 8.75y) Cause of death:
	in childhood					dysfunction	FTT, vomiting, chronic diarrhoea, liver dysfunction	deranged liver function,	Uncommon:	deficiency, normal	liver failure, sepsis, status
						nystagmus, renal tubular dysfunction,	cataracts, optic atrophy, nystagmus, hypoparathyroidism,		cerebral/ cerebellar atrophy, thalamic	Uncommon: isolated complex I and IV	epilepticus
17	TWNK (Twinkle/ PEO1) dominant mutations	(28)	33	Retrospective study	8-65y (mean 42y)	endocrine disease See overall phenotype	hypothyroidism Common: Ptosis, PEO, fatigue Uncommon: proximal muscle weakness, myalgia, dysphagia, ventricular hypertrophy, arrhythmia, ECG abnormalities, endocrine disease, visual impairment, GI symptoms, hearing loss, cataracts, epilepsy.	NS	NS	deficiency COX deficient/ negative fibres, RRF	NS
18	TWNK (Twinkle/ PEO1) recessive mutations	(29)	23	Prospective study	, (mean 1.15y in 19	movements, areflexia.	neuropathy, female hypergonadotrophic hypogonadism, learning difficulties, cognitive impairment, epilepsy, psychiatric	elevated lactate in CSF and plasma, elevated α fetoprotein, elevated liver	,	Uncommon: COX deficiency	35% died, mean 18.5y (4.5 -30y) Cause of death: status epilepticus

									tracts, stroke- like lesions		
1	Thymidine kinase 2 deficiency	(16)	92	retrospective study and literature review	5-35y (mean 17.9y) Infantile onset: (<1y) Childhood onset >1y and <12y Late onset ≥12y		Common: myopathy, delayed motor development and impaired motor function, respiratory compromise, especially in infantile onset cases, ptosis. Uncommon: myoglobinuria, rhabdomyolysis, peripheral neuropathy, PEO, dysphagia, dysarthria, dysphonia, facial weakness, CNS involvement including seizures, encephalopathy, hearing loss,	Elevated CK	myelination, lissencephaly	multiple complex deficiencies, RRF, COX deficient fibres Uncommon: Isolated Complex III, IV deficiency, elevated CS mtDNA depletion/ deletions	Childhood/late onset: median survival 23y Overall mortality 86%, mean 6.24y (0.15-50y) Deterioration in motor function
2	Succinate CoA ligase deficiency (<i>SUCLA2</i> mutations)	(31)	50	•	Median 2m (0-6y)	phenotype	Common: hypotonia, DD, dystonia, SNHL, feeding problems, FTT Uncommon: epilepsy	lactate, CSF lactate, 3MGA, MC, 3OHV, Krebs cycle		Common: Complex I, III and IV	31% died Median 20y (12% survival ≥20y)

2	21	Succinate CoA ligase	(31)	questionnaire-	birth (birth-	 Common: hypotonia, DD, hepatopathy, feeding problems,	plasma MMA,	Common: basal ganglia lesions,	Complex I,	67% died. Median 20m
		deficiency (<i>SUCLG1</i> mutations)		based review (5 cases) and literature review (16)	1.5y)	Uncommon: epilepsy, CM	lactate, Krebs cycle intermediates	Uncommon: leukoencephal opathy, normal	deficiency, mtDNA depletion	(10% survival ≥20y)
2	22	<i>MPV17</i> mutations	(30)			Common: hepatomegaly, liver failure/cirrhosis, DD, muscular weakness, hypotonia, FTT Uncommon: peripheral neuropathy, ataxia, myoclonus, hepatocellular carcinoma, microcephaly, renal tubulopathy, hypoparathyroidism, pancreatitis, reflux, scoliosis,	Lactic acidosis, hypoglycaemia	white matter abnormalities	enzyme deficiencies (especially I,II,IV)	Death in 75%, median age 11m (3m-20y) due to liver failure, sepsis 34% received liver transplant

							neutropaenia, pigmentary				
		(22)	402	.			retinopathy, nephrolithiasis	F I . I	2	.	
2		(32)	102		5m-35y	Common: GI					Mean age of
	(TYMP			study and	(mean	symptoms		lactate and CSF	•		death 35y (15-
	mutations)			literature	17.9y)			protein	opathy	· · · ·	54)y, due to
				review			obstruction), ocular symptoms			normal	pneumonia,
						symptoms,	(ptosis, PEO), neurological				intestinal
							symptoms (demyelinating				rupture, sepsis,
							peripheral neuropathy, absent				suicide,
						loss, tinnitus,	reflexes, foot drop), hearing loss			fibres and	electrolyte
						myopathy				RRF or	imbalance,
							Uncommon: GI symptoms:			normal	malignant
							gastroparesis, dysphagia,				melanoma,
							diverticulosis, aspiration,				arrhythmia,
							constipation, malabsorption,				metabolic
							malnutrition.				acidosis,
							Diabetes, pancreatic				cardiorespiratory
							insufficiency, short stature,				arrest, variceal
							prolonged QT, pigmentary				bleed of
							retinopathy, psoriasis,				oesophagus
							hepatopathy				
											High mortality
											between 20-40y
2	4 FBXL4	(33)	87	Retrospective	Mean 6m	See overall	Common: FTT, short stature,	Lactic acidosis,	Common:	Multiple	Death in 20% of
	mutations			multinational	(0-13y)	phenotype	microcephaly, DD, hypotonia,	hyper-	white matter	complexes	cases, median
				study and				ammonaemia,	abnormalities,	deficient (I-	age of death 2y,
				literature			dysmorphism		cerebral	V)	due to sepsis,
				review				Uncommon:	atrophy, basal		acidosis,
							Uncommon: seizures, movement				pneumonia,
									5 5		cardiorespiratory
							stroke like episodes, HCM,		elevated	•	failure
							arrhythmias, pulmonary HTN,		lactate peak on		
							strabismus, nystagmus, optic		MRS		

	MTO1	(24)	25	Potrocooctivo	Moon	Common: HCM	atrophy, cataracts, SNHL, undescended testes, hypospadias, renal impairment/tubular acidosis, neutropaenia, recurrent infections		Uncommon: hydrocephalus, enlarged cisterna magna, thin CC, cerebellar atrophy, periventricular/ arachnoid cysts, brainstem abnormalities		24% diad at a
25	<i>MTO1</i> mutations	(34)	35	Retrospective study and literature review	Mean 10.2m (1d- 8y)	Common: HCM Uncommon: hypotonia, ataxia	Uncommon: PEO, ptosis, cataract, seizures, ataxia, hepatic and renal dysfunction, hypoglycaemia	lactate, alanine, UOA showed 3MGA, tyrosine metabolites, Krebs cycle intermediates	peduncle abnormalities, hypoplasia of	Complex I,IV deficiency Uncommon: Complex I,III,IV	34% died at a mean of 2.67y (1w – 23y)
26	DARS2 mutations	(35)	66	Retrospective study	0.4-40y (mean 8y)	Cerebellar ataxia, hypotonia	Common: cerebellar ataxia, difficulty walking with deteriorating motor function Uncommon: Impaired cognitive function, delayed development		Leuko- encephalopath y, signal abnormalities in medulla, corticospinal tracts, cerebellum. Elevated lactate on MRS.		2 patients (3%) died under 2y age. No other deaths reported. Unable to report mean survival accurately as number of deaths is low.

	7 <i>RMND1</i> mutations	(36)	32		Median 29d (birth-18m)		seizures, abnormal EEG, microcephaly, CKD, HTN, RTA,		Common: White matter abnormalities Uncommon: cysts in cerebrum, basal ganglia calcification, acute infarcts, normal	Common: Complex I,III,IV deficiency, Complex I and IV or isolated complex IV deficiency	63% died at median of 1.03y (0-6.67y)
2	8 SERAC1 mutations causing MEGDEL syndrome	(37)	67	Multinational retrospective study and literature review		Common: neonatal sepsis, recurrent hypoglycaemia, muscular hypotonia, delayed motor development Uncommon: liver dysfunction, respiratory insufficiency	regression, spasticity, dystonia, dysphagia, drooling, epilepsy, cognitive impairment, DD, scoliosis, SNHL, visual loss, severe liver dysfunction/failure,	Hyper- ammonaemia, jaundice, deranged liver function, 3MGA, lactic acidosis	Progression of disease in 5 stages: pallidal abnormality, swelling of caudate and putamen, with sparing of the dorsal putamen, 'putaminal eye', progressive atrophy of basal ganglia	complexes	24% died at a median age of 9y (5d-16y) due to respiratory infection, multiorgan failure
2	9 Barth syndrome (<i>TAZ</i> mutations)	(38)	73	Patient registry (self report and medical record abstracted data)	0.76±1.6y	Common: CM and cardiac failure, neutropaenia, growth delay, FTT	Common: CM, poor growth, neutropaenia, recurrent mouth ulcers, DD especially motor, FTT, pneumonia	NS	NA	NS	5 deaths: mean age 15.5y (5.8- 25.4y) due to congestive cardiac failure, sepsis, and

30	Barth syndrome (<i>TAZ</i> mutations)	(39)	Retrospective study	(0-1.7y)	Common: CM, infection Uncommon: hypoglycaemia, growth delay	Uncommon: scoliosis, delayed bone age Common: symptomatic CM (91%), neutropaenia, skeletal myopathy	Elevated 3MGA, decreased cardiolipin and low/normal arginine		Lipid storage	gastric erosion associated with use of gastrostomy Mean 0.69y (0.1- 2.56y), 11 deaths related to CM/ sepsis.
31	<i>CLPB</i> mutations	(40)	Multinational retrospective study and literature review	From birth or antenatally	Antenatal scans showing	Common: cataracts, swallowing problems, respiratory insufficiency, abnormal EEG (burst suppression), hyperekplexia, absent voluntary movements, generalised muscular hypertonia/hypotonia, contractures, dystonia, jitteriness, unresponsiveness to pain, neutropaenia Uncommon: seizures	UOA showing 3MGA	Brain atrophy	NS	58% died at median age 2.6m (1d – 3.9y)
32	OPA1- related autosomal dominant optic atrophy	(41)	Retrospective study	Mean 10.2y SD 10.1		Visual impairment (84%), asymptomatic (16%)	NA	NA		In mean 9.6y FU BCVA improved by >2 logMAR lines in 10%, unchanged in 62%, worsened by ≥2 logMAR lines in 28%
33	Friedreich ataxia	(42)	Single centre retrospective study	Mean 11.6 ±4.5y	Common: ataxia	Common: ataxia, areflexia, dysmetria, scoliosis, absent reflexes, hypotonia, dysarthria,		Cerebellar/cere bral/ brainstem atrophy		Progression of disease severity and impairment

						Uncommon: lower limb weakness, clumsiness, dysarthria, tremor, vertigo, cardiac symptoms	pes cavus, dysautonomia, muscle wasting, abnormal ECG Uncommon: dysphagia, nystagmus, ptosis, hyperacusis, dysphoria, urinary urgency, DM, HCM, tachycardia, EEG abnormalities				of central pathways with worsening pyramidal and cerebellar signs
34	Friedreich ataxia	(43)	812	Prospective study	Mean 13.7 ±9.9y	See overall phenotype	Common: ataxia, dysarthria, impaired vision and hearing, scoliosis, cardiomyopathy Uncommon: DM	NA	NA	NA	Progression in severity of all neurological scores and vision scores over a 5 y period. No mortality reported
35	Friedreich ataxia	(44)	605	Prospective study	Mean 15.5 ±10.4y	NS	Ataxia, impaired verbal fluency, cognitive ability and activities of daily living, ophthalmological signs	NA	NA	NA	Progression of severity of all outcome measures over 2y period. No mortality
36	Pyruvate dehydrogen ase complex (PDHc) deficiency		371	Retrospective literature review	Mean 8± 15.9m	Common: neonatal acidotic decompensation associated with respiratory distress	Uncommon: microcephaly, ataxia, facial dysmorphism, spasticity, peripheral	pyruvate, alanine in blood and lactate/	Ventriculo- megaly CC hypo/agenesis, radiological features of Leigh syndrome	NA	36% died Mean 2.7y (0.1- 35y)

37	Pyruvate	(46)	59	Retrospective	NS	NS	Common: hypo/hypertonia,	NS	Ventriculo-	NA	39% died
	dehydrogen			analysis of			seizures, ventriculomegaly,		megaly, CC		Median survival
	ase complex			cases including			callosal agenesis/hypoplasia,		hypo/agenesis,		not stated. 61%
	(PDHc)			questionnaires			microcephaly, visual and hearing		radiological		died by 1y, 91%
	deficiency						impairment.		features of		by 4y. Causes of
									Leigh		death included
							Uncommon: ataxia, dystonia,		syndrome		severe lactic
							peripheral neuropathy				acidosis,
											respiratory
											failure, infection,
											neurological
											progression

Key: 3MGA 3-methylglutaconate, 3OHV 3-hydroxyvalerate, 5MTHF 5-methyltetrahydrofolate, AF atrial fibrillation, BCVA best corrected visual acuity, BMI body mass index, CC corpus callosum, CK creatine kinase, CKD chronic kidney disease, CM cardiomyopathy, COX cytochrome *c* oxidase, CS citrate synthase, CSF cerebrospinal fluid, d days, DCM dilated cardiomyopathy, DD developmental delay, DM diabetes mellitus, ECG electrocardiogram, EEG electroencephalogram, ERG electroretinogram, FTT Failure to thrive, FU follow up, GI gastrointestinal, HCM hypertrophic cardiomyopathy, HTN hypertension, IDDM insulin dependent diabetes mellitus, IUGR intrauterine growth restriction, KSS Kearns-Sayre Syndrome, logMAR logarithm of the minimum angle of resolution, m months, MC methylcitrate, MCHS myocerebrohepatopathy spectrum, MMA methylmalonic acid, MNGIE mitochondrial neurogastrointestinal encephalopathy, MRS magnetic resonance spectroscopy, NA not applicable, NS not stated, PEO progressive external ophthalmoplegia, PPHN persistent pulmonary hypertension, PV periventricular, RRF ragged red fibres, RTA renal tubular acidosis, S1-S3 three commonest genotypes of SCO2 deficiency, SD standard deviation, SLEs stroke-like episodes, SMA spinal muscular atrophy, SNHL sensorineural hearing loss, UOA urinary organic acids, w weeks, WPW Wolff Parkinson White Syndrome, y years

Table 2 Clinical indicators of poor prognosis

STUDY	CLINICAL POOR PROGNOSIS INDICATORS	REFERENCES
Leigh syndrome	Elevated CSF lactate, acute infective exacerbations,	(11)
	presentation <6m, failure to thrive, brainstem involvement, ITU	
	admission, presence of epilepsy	
Complex I	Early presentation	(14)
deficiency		
MELAS	Elevated lactate peak on MRS	(15)
	Early presentation	(18)
LRPPRC mutations	Hyperglycaemia and deranged liver transaminases during	(23)
	metabolic decompensations	
TMEM70	Early presentation	(25)
mutations		
POLG disorders	Alpers phenotype and the presence of seizures	(27)
TK2 mutations	Earlier presentation, which also correlates with presence of CNS	(16)
	involvement/encephalopathy and mtDNA depletion	
MTO1 mutations	Earlier presentation	(34)
DARS2 mutations	Early presentation	(35)
RMND1 mutations	Earlier presentation, presence of renal disease is associated	(36)
	with a better outcome	
Barth syndrome	Severity of neutropenia at the first blood test	(39)
CLPB mutations	Antenatal features including abnormal fetal movements,	(40)
	polyhydramnios	
Friedreich ataxia	Earlier presentation, worse initial baseline scores	(44)
	Male sex	(43)
Pyruvate	High lactates, early presentation, younger patients, lower	(45)
dehydrogenase	enzyme activity; males were twice as likely to die, surviving	(46)
complex deficiency	females have higher disability	

Key: CSF cerebrospinal fluid; CNS central nervous system; ITU intensive therapy unit; m months; MRS magnetic resonance spectroscopy

Table 3 Genotype/phenotype correlations in mitochondrial disorders

STUDY	GENOTYPE – PHENOTYPE/PROGNOSIS CORRELATION	REFERENCES
Leigh syndrome	Certain genotypes had a poorer prognosis: m.8993T>G, and mutations in <i>SLC19A3</i> and <i>SURF1</i> .	(11)
	Prognosis in Leigh syndrome due LRPPRC deficiency is worse than in Complex I deficiency, which is in turn worse than SURF1 deficiency.	(22, 23)
Complex I	Nuclear gene defects have a worse prognosis compared to mtDNA	(14)
deficiency	mutations. Mutations in genes encoding the 14 'core' subunits of	
	Complex I have a worse prognosis compared to non-core subunits.	
	Certain genes were associated with specific phenotypes e.g.	
	ACAD9 and NDFUA11 mutations were associated with	
	cardiomyopathy; NDUFAF2, NDUFS4 and NDUFS7 mutations were	
	associated with Leigh syndrome; NDUFA1 mutations were	
	associated with hearing loss; and NDUFS1 and NDUFV1 mutations	
	were associated with leukoencephalopathy.	
Complex II	Mutations in SDHAF1 were associated with leukoencephalopathy	(17)
deficiency	and SDHA mutations with Leigh syndrome and cerebellar atrophy.	
Single large-scale	Higher % heteroplasmy for deletions was associated with an earlier	(12)
mtDNA deletions	age of presentation of disease. Longer deletions were associated	(13)
	with KSS spectrum compared to PEO.	
SCO2 mutations	Patients who had the c.1541G>A <i>in trans</i> with a stop codon	(24)
	mutation had the worst prognosis – they presented earlier, with	
	neonatal cardiomyopathy, developed more severe neurological	
	disease and died earlier in comparison to c.1541G>A /c.1541G>A	
	and c.1541G>A /c.1653T>C patients.	
TMEM70	Homozygotes with the c.317A>G mutation, who were often of	(25)
mutations	Roma ethnicity, had a worse prognosis compared to compound	
	heterozygotes who had milder phenotypes.	(20)
POLG mutations	Severe early onset disease in childhood was associated with at	(26)
	least one mutation in the linker region and one in the polymerase domain. Exonuclease domain mutations are more commonly found	
	in patients presenting in teenage/adult life with less severe	
	disease.	
TWNK (Twinkle/	Compound heterozygotes for p.Tyr508Cys and p.Ala318Thr	(29)
PEO1/C10orf2)	present earlier and progress more quickly than p.Tyr508Cys	(23)
recessive	homozygotes	
mutations		
Succinyl-CoA	Missense mutations in both SUCLA2 and SUCLG1 were associated	(31)
ligase deficiency	with longer survival compared to loss-of-function mutations.	(-)
c ,	SUCLA2 patients had a better prognosis compared to SUCLG1	
	patients.	
FBXL4 mutations	Missense mutations have a better prognosis/survival than	(33)
	nonsense/frameshift/splice site/in-frame deletions.	
MTO1 mutations	Compound heterozygotes with a truncating mutation had poorer	(34)
	prognosis; no cases had biallelic truncating mutations implying that	
	this may not be compatible with survival.	
DARS2 mutations	Patients with c.228-2120delTTinsC and either	(35)
	c.455 G>T or c.492 + 2 T>C had a milder phenotype	

CLPB mutations	Severe phenotypes were indicated by truncating mutations rather than missense mutations which were associated with a milder phenotype.	(40)
Friedreich ataxia	Longer trinucleotide repeats correlate with greater neurological dysfunction; greater than 353 GAA repeats have worse prognosis.	(43, 44)
Pyruvate dehydrogenase complex deficiency	Patients with missense mutations tended to present later in life; missense mutations more common in boys than frameshift mutations (usually affected girls, present earlier in life). Certain mutations involving amino acid 378 of the <i>PDHA</i> gene were associated with a poorer prognosis. Mortality is higher in boys, probably due to a higher number of patients with <i>PDHA</i> mutations (X-Linked) than other genetic defects.	(45) (46)

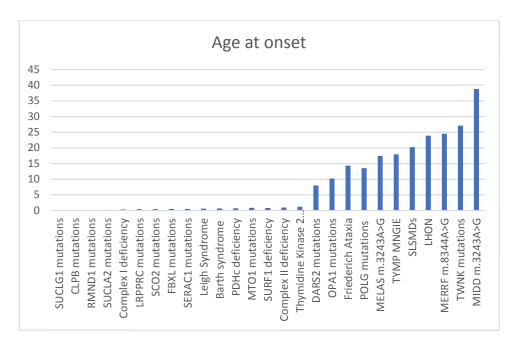


Figure 1 Age of onset(median/mean) in years for mitochondrial disorders

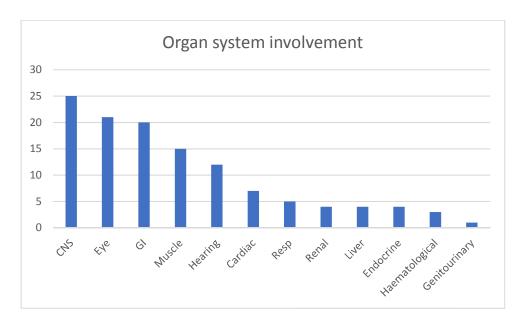


Figure 2 Common involvement of organ systems. Y axis indicates number of mitochondrial disorders (total 29)

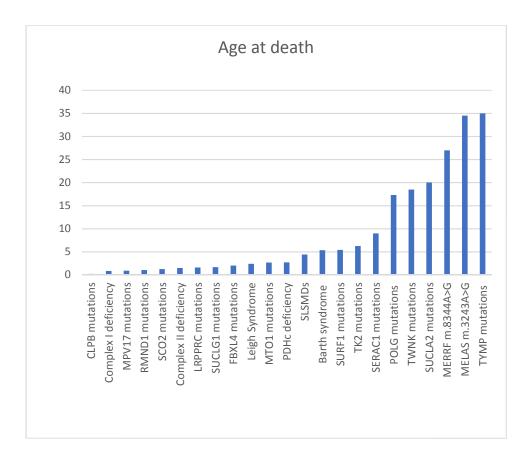


Figure 3 Age of death (median/mean) in years for mitochondrial disorders

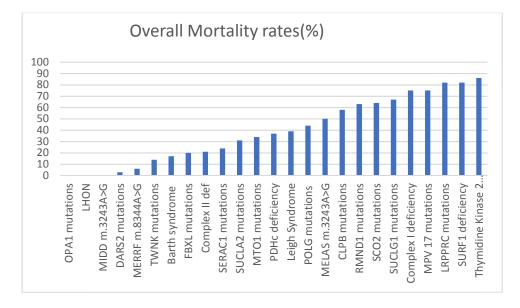


Figure 4 Overall mortality rates (% mortality) for mitochondrial disorders