The addition of the mTORr inhibitor, Everolimus, to consolidation therapy in acute myeloid leukaemia: experience from the UK NCRI AML17 trial.

Alan K Burnett¹, Emma Das Gupta², Steve Knapper³, Asim Khwaja⁴, Marion Sweeney³, Lars Kjeldsen⁵, Timothy Hawkins⁶, Sophie E Betteridge⁷, Paul Cahalin⁸, Richard E Clark⁹, Robert K Hills⁹, Nigel H Russell² on behalf of the UK NCRI AML Study Group.

- 1. Formerly Department of Haematology, Cardiff University School of Medicine, Cardiff UK
- 2. Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham UK
- Department of Haematology, University Hospital of Wales Cardiff, U K
- 4. University College, London Cancer Institute, London, UK
- 5. Department of Haematology, Rigshospitalet, Copenhagen, Denmark
- 6. Department of Haematology, Auckland City Hospital, New Zealand
- 7. Centre for Trials Research, Cardiff University School of Medicine, Cardiff, UK.
- 8. Department of Haematology, Blackpool Victoria Hospital, Blackpool, U.K
- 9. Department of Haematology, Royal Liverpool University Hospital, Liverpool, U.K.

Corresponding author: Alan K Burnett, Blackwaterfoot, Isle of Arran, UK

Word Count: 2673 Abstract: 168

Abstract

As part of the UK NCRI AML17 trial, adult acute myeloid leukaemia patients in remission could be randomised to receive the mTOR inhibitor everolimus, sequentially with post-induction chemotherapy. Three hundred and thirty-nine patients were randomised (2:1) to receive everolimus or not for a maximum of 84 days between chemotherapy courses. The primary endpoint was relapse free survival (RFS). At 5 years there was no difference in Relapse Free Survival (29% vs 40%; OR 1.19 (0.9-1.59) p=0.2), cumulative incidence of relapse (60% vs 54%: OR 1.12(0.82-1.52): p=0.5) or overall survival (45% vs 58%: OR 1.3 (0.94-1.81): p=0.11). The independent Data Monitoring Committee advised study termination after randomisation of 339 of the intended 600 patients due to an excess mortality in the everolimus arm without any evidence of beneficial disease control. Dose delivery of everolimus was variable, but there was no evidence of clinical benefit in patients with adequate dose delivery compared with no treatment. This study suggests that the addition of mTOR inhibition to chemotherapy provides no benefit.

Introduction

The majority (70-85%) of younger patients with acute myeloid leukaemia (AML) will enter complete morphological remission with any one of a variety of induction treatments. However nearly half will relapse. It is increasingly being recognised that a substantial proportion of those in morphological remission have residual disease as assessed by techniques of minimal/measurable residual disease assessment (flow cytometry or quantitative polymerase chain reaction^{1,2}). In our previous studies we have endeavoured to define the optimum post remission chemotherapy. To date we conclude that, apart from transplantation, following two induction courses of anthracycline containing therapy, two consolidation courses of Ara-C is adequate³. An aim of the UK NCRI AML17 trial was also to explore a further reduction in the total number of chemotherapy courses from 4 to 3, as well as the addition of molecularly targeted treatments to consolidation therapy. Among these was the

incorporation of the inhibitor of the mammalian target of rapamycin (mTOR), everolimus.

There is plausible pre-clinical evidence both *in vitro* and *in vivo* that mTOR inhibition could be beneficial in AML. mTOR is a serine/threonine protein kinase that is predominantly modulated by PI3K-AKT-dependent mechanisms and acts as a central regulator of cellular metabolism, growth and survival⁴. Dysregulation of the mTOR pathway is closely associated with cancers including AML^{5,6} and other human diseases. Part of the rationale is the evidence of constitutive activation of the PI3K-AKT pathway in 90% of AML samples and the demonstration that this activation is central to the survival of AML blasts but not of normal CD34+ cells⁷. The concept that everolimus may have the potential to eliminate leukaemia-initiating stem cells whilst sparing normal haematopoietic stem cells is also appealing. In vivo evidence in NOD/SCID mice has suggested that mTOR regulates a critical cell survival pathway in AML stem cells^{8,9}. In an preliminary unrandomised clinical trial, the mTOR inhibitor sirolimus was administered as a single agent to 9 relapsed, refractory or poor-risk AML patients for 28 days resulting in partial responses in 4, and stable disease in a 5th patient¹⁰. De-phosphorylation of downstream effectors of mTOR was demonstrated. In an ongoing U.K. trial, 11 elderly patients with primary and relapsed AML have been treated with the combination of low dose Ara-C and sirolimus. Following a single 28-day course of treatment, of the 7 patients eligible for analysis, one had achieved a CR, 4 a PR, one marrow was profoundly hypocellular and one patient was a non-responder (Das Gupta, unpublished data). Patients in this trial reliably maintained trough sirolimus levels of 8-16 ng/ml, which are consistent with the published concentrations required to inhibit AML cell growth in vitro. The feasibility of combining mTOR inhibition (sirolimus) with intensive chemotherapy had also been assessed in AML patients in conjunction with the more intensive MEC (Mitoxantrone, Etoposide and Cytarabine) chemotherapy regimen in a phase I dose escalation study and reported in abstract form. In this study standard renal transplant doses of sirolimus were well tolerated and did not increase the non-haematological toxicity of MEC chemotherapy with a median time to neutrophil recovery of 27 days¹¹. Based on this background information, the NCRI AML17 trial included the option for

eligible patients to be randomised to receive, or not, the mTOR inhibitor everolimus daily between consolidation chemotherapy courses.

Methods

The UK NCRI AML 17 trial (ISRNCTN 55675535) was a large, prospective phase 3 multi-centre trial for patients with newly-diagnosed AML or high risk myelodysplastic syndrome (MDS; >10% marrow blasts), generally under the age of 60 years, open from April 2009 to December 2014 in >130 centres in the United Kingdom, Denmark and New Zealand. It addressed several randomised questions (supplementary figure 1). Between October 2009 and October 2012, 499 adult patients who did not have acute promyelocytic leukaemia (APL), had received the first induction course and who did not have Core Binding Factor leukemia, high risk disease (defined using a multifactorial score¹²) and were not in the lestaurtinib randomisation for patients with FLT3 mutations, could be randomised between adding everolimus, or not in a 2:1 ratio, between subsequent consolidation chemotherapy courses. Treatment schedules have been set out elsewhere¹³. Allogeneic stem cell transplantation was permitted for patients with intermediate- or poor-risk disease with a recommendation of myelo-ablative conditioning for patients aged <35 years and reduced intensity conditioning for intermediate risk patients >45 years, with investigators able to choose an ablative or reduced intensity approach for patients between 35 and 45 years.

Patients eligible to enter the everolimus randomisation included 34% of all adult patients entering AML17 while the randomisation was available. Oral everolimus (10mg daily from 2 days after each chemotherapy course for up to 28 days or until 2 days before the start of the subsequent course, whichever was shorter) or not was given between each course of consolidation chemotherapy. In patients allocated 3 courses of treatment, a final 28-day course of everolimus was given after a one-week break. In patients with side effects thought due to everolimus, subsequent doses could be reduced by 50% in daily dosing. If this did not improve tolerability, dosing could be further reduced to alternate days; if these dose reductions were not tolerated, subsequent doses would be omitted. After 65% (n=146) of the patients randomised to everolimus were assessed, the Independent Data Monitoring

Committee recommended, because of increased side effects and reduced compliance, that the starting daily dose of everolimus be reduced to 5mg with the option to increase to 10mg if well-tolerated.

Extensive Sanger sequencing (111 genes) was undertaken in 123 patients; *NPM1* status was available in 302 patients.

Patients were requested to provide a trough blood sample taken immediately prior to everolimus dosing on day 14 of each treatment course to measure the level of mTOR inhibitory activity in their plasma (PIA). Methods are summarised here (supplementary figure 2) and will be more fully reported elsewhere.

Statistical considerations:

All analyses are by intention-to-treat. Categorical endpoints were compared using Mantel-Haenszel tests, giving Peto odds ratios and confidence intervals. Continuous/scale variables were analysed by Wilcoxon rank sum tests; and time-to-event outcomes using the log-rank test, with Kaplan-Meier survival curves. Odds/hazard ratios (OR/HR) <1 indicate benefit for everolimus. All survival percentages are at 5 years unless otherwise stated.

Stratified analyses were performed with suitable tests for interaction¹⁴ and interpreted cautiously.

It was planned to recruit 600 patients to the everolimus randomisation, giving 85% power to detect a 12.5% difference in the primary endpoint of RFS, from 50% to 62.5% (HR 0.68). Follow-up is complete until 1st March 2016 (median follow-up from diagnosis 53.5 months (range 4.3 – 76.8 months)).

The trial was conducted in accordance with the Declaration of Helsinki, sponsored by Cardiff University and approved by Wales REC3 on behalf of all UK investigators, by the Danish Medicines Agency for sites in Denmark, and by MEDSAFE for sites in New Zealand.

Results

Patient characteristics: The randomisation opened in October 2009. In 2012, the Independent Data Monitoring Committee recommended closure of the randomisation, because of an excess of early mortality in remission with everolimus and no associated evidence of relapse reduction. Between

October 2009 and October 2012, 332 of 482 eligible patients were randomised (Figure 1). Their characteristics are shown in table 1. There was no significant survival difference in outcome between eligible patients who entered the randomisation and those who did not (p=0.8), although patients with higher WBC, worse performance and secondary disease were marginally less likely to enter the randomisation. The median age was 47 years (range 16-69). The majority presented with *de novo* AML and had a WHO performance score of <2. The other protocol treatments given to patients in the everolimus randomisation are shown in table 1. In addition to standard daunorubicin/Ara-C induction additional etoposide and gemtuzumab ozogamicin was given to 43% and 45% of patients respectively in induction with no difference between arms.

Overall, 132/332 (40%) of patients received a transplant (everolimus 39%, control 42%, p=0.6), with a minority of these (34/132) being allografts in first remission (20 vs 14; p=0.3). There was no evidence of differences in transplantation rates or types of transplants between the arms (any SCT 39% vs 42%; p=0.6; allograft 31% vs 34% p-0.6; allograft in CR1 9% vs 13%, p=0.3; Table 1).

Extensive Sanger sequencing (111 genes) was undertaken in 123 patients, and the gene panel and distribution is shown in supplementary figure 3. In addition *NPM1* status using previously published methods, was available in 302 patients.

Treatment compliance: Of the 220 patients allocated to receive everolimus, 16 never started therapy. Approximately 25% of patients did not receive 14 days of everolimus; about half completed the first 28 day course. At the time of the second course of everolimus (course 3 of chemotherapy), 35% of patients with second everolimus course information did not receive drug (figure 2). Reasons were given for about two thirds of patients (39/61) – 11 patients had not completed the previous course; 11 patients chose to discontinue (often because of toxicity in the previous course), in 3 cases the DMC had recommended closure and stopping treatment; in 5 cases patients did not reach the starting point for everolimus therapy on protocol; in 2 cases

the clinician decided, and in 4 other cases, everolimus was not given due to a variety of toxicities.

Toxicity: The recorded toxicities are shown in figure 3. There was more haematological toxicity in the everolimus arm which was most obvious after the first everolimus course, with median time to platelet recovery to >100 x 10^{9} /L being 9 days longer (39 vs 29 days; p= 0.006), which was reflected in a significantly greater requirement for platelet support.(table 3). The kinetics of neutrophil recovery was unaffected by everolimus, but there was significantly more use of antibiotics and a longer hospital stay with the first course of everolimus, as well as increased oral toxicity (course 1) and higher alanine transaminase levels (course 2).

Cumulative Risk of Relapse and Death in Remission: The overall outcomes are shown in table 2. The cumulative incidence of relapse at 5 years (figure 4a) did not differ significantly between arms (60% vs 54%, HR 1.12 (0.82-1.52), p=0.5). There was a significant excess of deaths in remission in the everolimus arm in the first 6 months following randomisation (8% vs 1%, HR 3.57 (1.36-9.42), p=0.009), with no significant differences thereafter leading to a non-significant excess of overall mortality with everolimus (11% vs 6%, HR 1.75 (0.83-3.70), p=0.14, Figure 4b). The causes of death in remission were: in the first 6 months 17 vs 1 (infection 9 vs 1; infection+haemorrhage 3 vs 0; haemorrhage/CVA 3 vs 0; cardiac 1 vs 0; multiple 1 vs 0); beyond 6 months 6 vs 6 (infection 1 vs 1; cardiac 1 vs 0; hepatic 1 vs 0; second cancer 1 vs 0; GVHD 0 vs 1; multiple 0 vs 2; unknown/other 2 vs 2).

Relapse Free and Overall Survival: Both relapse free and overall survival were non-significantly inferior in the everolimus arm, (figures 4c and d),reflecting the adverse hazard ratios for both relapse and death in remission, and no evidence of differences in salvage between arms after relapse (RFS: 29% vs 40%, HR 1.19 (0.90-1.59), p= 0.2; OS: 45% vs 58%, HR 1.30 (0.94-1.81), p=0.11). A sensitivity analysis, censoring patients at stem cell transplant showed results which were consistent with the overall analysis (table 2).

Exploratory Analyses: The correlation with PIA did not show a convincing pattern. Using this assay, even patients whose samples showed deep and sustained inhibition, did not have an associated reduction in relapse (supplementary figure 2). There was no relationship between the level of inhibition and toxicity or excess mortality. Prior induction chemotherapy, age, gender, WBC, and minimal residual disease status after course one, all had no impact on outcomes (Supplementary Figure 4A). In addition no relationship between other treatment modalities given and response was found, and no gene mutation, including the 110 genes assayed by Sanger sequencing in 123 patients showed a differential response (Supplementary Figure 5). Because of concerns about compliance with everolimus treatment, RFS was compared between patients with satisfactory drug delivery (defined as at least 14 days of treatment per course), those with inadequate drug delivery (less than 14 days treatment per course) and those allocated to no treatment. Although inadequate drug delivery (n=85) had a worse RFS (29%) there was no difference in RFS between patients with satisfactory drug delivery (n=63) at 41% and no everolimus (n=99) at 40% (supplementary figure 4).

Discussion

In this trial there was no benefit of the addition of the mTOR inhibitor everolimus to post-induction chemotherapy, despite the pre-clinical *in vitro* and *in vivo* rationale for its use. The main observed explanation appears to be excess toxicity, which was primarily gastrointestinal (mucositis and diarrhoea) and biochemical evidence for liver toxicity at the dose chosen. Infection was a major issue in the first 6 months of treatment with 12 vs 1 deaths attributed to infection. This did not appear to be the result of prolonged neutropenia but may be attributable to the immunosuppressive effects of everolimus when given with chemotherapy, which reflects what has been seen with its use in solid tumours¹⁵. This in turn contributed to sub-optimal drug delivery for many patients. The chosen schedule of 10mg daily was not feasible in this setting, but drug delivery improved when a 5mg daily dose was introduced. Other studies in leukaemia have used equivalent schedules^{16,17} or a loading dose (12mg) followed by 4mg/day for 7 days per cycle¹¹ or lower doses in

combination with low dose Ara-C¹⁸. However even when the subgroup of good compliers was compared separately, there was no evidence of improved disease control.

We had hoped that the development of an assay to quantitate PIA would provide insight to response or toxicity, but unlike the experience of PIA in the setting of *FLT3* inhibitor^{19,20}, this was not found to be consistent. In a phase 2 study in relapsed AML treated with clofarabine and temsirolomus, correlation of response to dephosphorylation of pS6RP (S6 ribosomal protein) was demonstrated.²¹ However the target cells were the patient's own blasts, which were not available in the current study and it was unclear if the clinical outcome was superior to that which clofarabine alone could achieve.

Finally the mTOR inhibitors tested to date have been inhibitors of the TORC1 pathway. This may be by-passed by the TORC2 pathway which is insensitive to this class of mTOR inhibitors, but may be sensitive to agents which have dual inhibition.

Author Contributions:

AKB was co-Chief Investigator; devised the study; wrote the manuscript. EDG co-ordinated the study and wrote the manuscript. AK, LK, LP, PC, REC were highest recruiting investigators. SK and MS developed the PIA assay. RKH undertook the Statistical and data supervision and analysed the data. NHR was co-Chief Investigator. All authors reviewed the manuscript.

Acknowledgements

The authors are grateful to Novartis for the provision of everolimus, to Cancer Research UK for research funding of the trial and to the investigators, research staff and patients in the participating sites:

Aalborg Hospital: Maria Kallenbach; Aarhus University Hospital: Hans Beier Ommen, Jan Maxwell Norgaard; Aberdeen Royal Infirmary: Dominic Culligan; Addenbrookes Hospital: George Follows, Jenny Craig; Auckland City Hospital: Lucy Pemberton, Richard Doocey, Sophie Lee, Timothy Hawkins; Barnet General Hospital: Andres Virchis; Barts and the London NHS Trust: Jamie Cavenagh, Matthew Smith; Basingstoke and North Hampshire Foundation NHS Trust: Sylwia Simpson; Beatson West of Scotland Cancer Centre: Mark Drummond; Belfast City Hospital: Claire Arnold, Mary Francis McMullin, Robert Cuthbert; Birmingham Heartlands Hospital: Donald Milligan, Guy Pratt, Matthew Lumley, Shankara Paneesha; Blackpool Victoria Hospital NHS Foundation Trust: Paul Cahalin; Borders General Hospital: John Tucker: Bradford Royal infirmary: Adrian Wiliams, Lisa Newton, Sam Ackroyd; Bristol Haematology and Oncology Centre: Priyanka Mehta; Chesterfield Royal Hospital: Mark Wodzinski, Robert Cutting; Christchurch Hospital: Ruth Spearing, Steve Gibbons; Christie Hospital NHS Trust: Mike Dennis; Countess of Chester Hospital: Salah Tuegar; Crosshouse Hospital: Julie Gillies; Derby Hospitals NHS Foundation Trust: Juanah Addada; Derriford Hospital: Hannah Hunter, Tim Nokes; Doncaster Royal Infirmary: Stuti Kaul: Dorset County Hospital NHS Foundation Trust: Akeel Moosa; East Kent Hospitals University NHS Foundation Trust: Jindriska Lindsay, Vijay Ratnayake; East Sussex Hospitals NHS Trust: Richard Grace; Falkirk and District Royal Infirmary: Christopher Brammer, Marie Hughes; Glan Clwyd Hospital: Christine Hoyle, Earnest Heartin, Margaret Goodrick; Gloucestershire Royal Hospital: Adam Rye, Sally Chown; Great Western Hospital: Alex Sternberg, Atherton Gray, Norrbert Blessing; Guys and St Thomas' Foundation Trust: Kavita Raj, Robert Carr; Hairmyres Hospital: Iain Singer; Heatherwood and Wexham Park NHS Foundation Trust: Nicola Bienz, Simon Moule: Hereford County Hospital: Sara Willoughby; Herlev Hospital: Morten Krogh Jensen, Peter Moller; Hillingdon Hospital: Riaz Janmohamed, Richard Kaczmarski; Hull Royal Infirmary: Sahra Ali; James Cook University Hospital: Ray Dang; James Paget University Hospital: Cesar Gomez, Shala Sadullah; John Radcliffe Hospital: Paresh Vyas; Kettering General Hospital: Isaac Wilson-Morkeh, Matthew Lyttelten; Leicester Royal Infirmary: Ann Hunter, Murray Martin; Lincoln County Hospital: Kandeepan Saravanamuttu; Maidstone Hospital: Evangelia Dimitriadou; Manchester Royal Infirmary: Eleni Tholouli, Guy Lucas; Milton Keynes Hospital NHS Foundation Trust: Moez Dungarwalla; Monklands Hospital: John Murphy, Lindsey Mitchell, Pamela Paterson; New Cross Hospital: Sunil Hada, Supratik Basu; Ninewells Hospital and Medical Centre: Keith Gelly; Norfolk and Norwich University Hospital NHS Foundation Trust: Matthew Lawes; Northampton General Hospital: Angela Bowen, Sajan Mittal, Suchitra Krishnamurthy@Ngh.Nhs.Uk; Nottingham University Hospitals NHS Trust: Emma Dasgupta, Jenny Byrne, Kate Forman, Nigel Russell; Odense University Hospital: Claus Marcher, Lone Friis, Poul Gram Hansen; Peterborough District Hospital: Kanchan Rege; Pinderfields General Hospital: David Wright, Mary Chapple, Paul Moreton; Poole General Hospital: Fergus Jack; Queen Alexandra Hospital: Mary Ganczakowski, Tanya Cranfield; Queen Elizabeth Hospital, Birmingham: Charles Craddock, Jim Murray; Queen Elizabeth Hospital, Norfolk: Jane Keidan; Queens Hospital, Romford: Claire Hemmaway; Raigmore Hospital NHS Highland: Chris Lush, Peter Forsyth; Rigshospitalet: Carsten Niemann, Lars Kjeldsen, Ole Wei Bjerrum, Ove Juul Nielsen, Peter Kampmann; Rotherham General Hospital: Arun Alfred; Royal Berkshire Hospital: Henri Groch, Stuart Mucklow; Royal Cornwall Hospital: Bryson Pottinger, Richard Noble; Royal Devon and Exeter Hospital: Claudius Rudin, Malcolm Hamilton, Paul Kerr; Royal Free Hospital: Panos Kottaridis; Royal Hallamshire Hospital: Chris Dalley, John Snowden; Royal Liverpool University Hospital: Rahuman Salim, Richard Clark; Royal Marsden Hospital: Mark Ethell; Royal Oldham Hospital: Allameddine Allameddine, David Osborne, Hayley Greenfield, Sumaya Elhanash, Vivek Sen; Royal Surrey County Hospital: Johannes Devos, Louise Hendry; Royal Sussex County Hospital: Timothy Corbett; Russell's Hall Hospital: Jeff Neilson; Salford Royal Hospital: John Houghton, Simon Jowitt, Sonya Zaman;

Salisbury Hospital NHS Foundation Trust: Jonathan Cullis, Tamara Everington; Sandwell Hospital: Faroog Wandoo, Yasmin Hasan; Singleton Hospital: Saad Ismail; South Devon Healthcare NHS Foundation Trust: Deborah Turner, Nicholas Rymes; Southampton University Hospital NHS Trust: Deborah Richardson, Kim Orchard, Matthew Jenner; St Helens and Knowsley NHS Trust: Toby Nicholson; St James University Hospital: David Bowen; St Richard's Hospital: Sarah Janes; Stafford Hospital: Andrew Amos; Stoke Mandeville Hospital: Helen Eagleton; Sunderland Royal Hospital: Annette Nicolle, Scott Marshall; Taunton and Somerset Foundation Trust: Sarah Allford; The Newcastle upon Tyne NHS Foundation Trust: Gail Jones, Graham Jackson; University College London Hospitals: Anthony Goldstone, Asim Khwaja, Kirit Ardeshna, Nishal Patel; University Hospital Aintree: Barbara Hammer, Walid Sadik; University Hospital Coventry and Warwickshire NHS Trust: Mekkali Narayanan, Nicholas Jackson, Peter Rose, Syed Bokhari; University Hospital of North Staffordshire NHS Trust: Andrew Stewart, Kamaraj Karunanithi, Neil Phillips, Srinivas Pillai; University Hospital of North Tees and Hartlepool: Zor Maung; University Hospital of Wales: Jonathan Kell, Steve Knapper: Victoria Hospital NHS Fife: Stephen Rogers; Waikato Hospital: Hugh Goodman, Humphrey Pullon; Wellington Hospital: John Carter; Westem General Hospital: Peter Johnson, Ph Roddie, Annielle Hung; **Worcestershire Royal Hospital:** Juliet Mills; **Worthing Hospital:** Santosh Narat; ;

References

- 1. Buckley SA, Wood BL, Othus M, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865-873.
- 2. Ivey A, Hills RK, Simpson MA, et al. Assessment of Minimal Residual Disease in Standard-Risk AML N Engl J Med. 2016;374(5):422-433.
- 3. Burnett AK, Hills RK, Milligan DW, et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol. 2010;28(4):586-595.
- 4. Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol. 2011;4(5):476-495.
- Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35.
- 6. Park S, Chapuis N, Tamburini J, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica. 2010;95(5):819-828.

- 7. Recher C, Beyne-Rauzy O, Demur C, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105(6):2527-2534.
- Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood. 2003;102(3):972-980.
- 9. Xu Q, Thompson JE, Carroll M. mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood. 2005;106(13):4261-4268.
- Luger S, Perl A, Kemner A, et al. A Phase I dose escalation study of the mTOR inhibitor Sirolimus and MEC chemotherapy targetting signal transduction in leukemic stem cells for acute myeloid leukemia. Blood. 2006;108(11):161.
- 11. Perl AE, Kasner MT, Tsai DE, et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res. 2009;(15):6732-6739.
- 12. Burnett AK, Hills RK, Wheatley K, et al. A sensitive risk score for directing treatment in younger patients with AML Blood. 2006;108(11):18.
- Knapper S, Russell N, Gilkes A, et al. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML. Blood. 2017;129(9):1143-1154.
- 14. Early Breat Cancer Trialists Collaborative Group (EBCTCG): Treatment of early breast cancer. 1. Worldwide evidence 1985-1990, Oxford University Press, USA, 1990
- 15. Kaymakcalan, M D., Je Y. Sonpavde G. et al. Risk of infections in renal cell carcinoma (RCC) and non-RCC patients treated with mammalian target of rapamycin inhibitors. Br J Cancer. 2013;108(12):2478-2484.
- 16. Daver N, Boumber Y, Kantarjiian H, et al. A Phase I/II study of the mTOR inhibitor everolimus in combination with hyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(12):2704-2714.
- Yee AL, Zeng Z, Konople. Phase I/II study of the mammalian target or rapamycin inhibitor everolimus (RAD001) inn patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12(17):5165-5173.

18. Wei AH, Sadawarte S, Catalono J. Phase lb Study combining mTOR inhibitor everolimus (RAD001) with low-dose cytarabine in untreated elderly AML. Blood. 2010;116(21):3299.

19. Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108(10):3477-3483.

20. Knapper S, Burnett AK, Littlewood T, et al. A Phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108(10):3262-3270.

21. Amadori S, Stasi R, Martelli A M. Temsirolimus, an mTOR inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML1107) Br J Haematol. 2012;156(2):205-212.

Table 1: Patient C	Characteristics
--------------------	-----------------

Characteristic		Everolimus (n=220)	Control (n=112)
Age:	16-29 30-39 40-49 50-59 60+ Median Range		16 (14%) 17 (15%) 31 (28%) 37 (33%) 11 (10%) 46 17-66
Sex:	Female	117 (53%) 103 (47%)	70 (63%) 42 (37%)
Diagnosis:	Male	103 (47 %)	42 (37%)
	De Novo Secondary MDS	· · · ·	103 (92%) 3 (3%) 6 (5%)
WHO PS:			
	0	178	88
	1	37	19
	2	4	3 2
	3	1	2
WBC:	т		
	0-9.9	138 (63%)	65 (58%)
	10-49.9	61 (28%)	34 (30%)
	50-99.9	15 (7%)	9 (8%)
	100+	6 (3%)	4 (4%)
	Median	5.8	5.5
Cutoconstico	Range	0.4-177.7	0.5-249.0
Cytogenetics Intermediate		194 (88%)	106 (95%)
Unknown		26 (12%)	6 (5%)
FLT3 ITD			
WT		199 (96%)	101 (99%)
Mutant		8 (4%)	1 (1%)
Unknown		13	10
NPM1c			
WT		132 (65%)	61 (61%)
Mutant		70 (35%)	39 (39%)
Unknown FLT3 TKD		18	12
WT		204 (99%)	100 (98%)
Mutant		3 (1%)	2 (2%)
Unknown		13	10

Induction chemotherapy ADE (not randomised)	13 (6%)	7 (6%)
ADE ADE+GO3 ADE+GO6	29 (13%) 26 (12%) 26 (12%)	14 (13%) 14 (13%) 14 (13%)
DA+GO3 DA+GO6	20 (12%) 22 (10%) 26 (12%)	14 (13%) 11 (10%) 12 (11%)
DA 90mg	37 (17%)	12 (11%)
DA 60mg	41 (19%)	21 (19%)
Post Course 1 Risk Score Good risk	27 (13%)	11 (10%)
Standard Risk MRD status post course 1 (CR	193 (87%)	101 (90%)
only) CR, MRD -ve	43 (20%)	24 (21%)
CR, MRD +ve	63 (29%)	24 (21%)
No MRD data/no CR Transplanted	114 (52%) 85 (39%)	64 (57%) 47 (42%)
Any allograft Any transplant in CR1	69 (31%) 24 (11%)	38 (34%) 16 (14%)
Allograft in CR1	20 (9%)	14 (13%)

	Everolimus	Control	OR/HR & CI	P-
				value
CR/CRi	99%	99%	1.02 (0.09-	1.0
			11.2)	
MRD positivity post course 2 (CR	63%	65%	1.07 (0.50-	0.9
only)			2.33)	
30-day mortality	1%	1%	1.48 (0.19-	0.7
			11.7)	
60-day mortality	4%	1%	2.77 (0.70-	0.15
			11.0)	
5 year OS	45%	58%	1.30 (0.94-	0.11
			1.81)	
5 year RFS	29%	40%	1.19 (0.90-	0.2
			1.59)	
5 year cumulative incidence of	60%	54%	1.12 (0.82-	0.5
relapse			1.52)	
6 month death in CR	8%	1%	3.57 (1.36-	0.009
			9.42)	
5 yr cumulative incidence of death in	11%	6%	1.75 (0.83-	0.14
CR			3.70)	
5 yr survival post relapse	19%	30%	1.17 (0.81-	0.4
			1.70)	
5 yr OS censored at SCT	57%	66%	1.34 (0.87-	0.18
			2.06)	

Table 2: Clinical Outcomes by Treatment Arm

		Random	nisation	
Type of Care	Course	Everolim us	Control	p-value
Neutrophil recovery (median	2	28	29	0.4
From start of course	3	29	27	0.08
Platelet recovery (median	2	38	29	0.006
From start of course	3	42	36	0.10
Blood (mean units)	2 3	4.6 6.3	5.0 6.1	0.08 0.5
Platelets (mean units)	2 3	5.1 6.4	3.7 5.5	0.009 0.4
Antibiotics (mean days)	2	10.2	7.7	0.002
	3	12.5	10.8	0.14
Hospitalisation (mean days)	2	25.2	22.3	0.02
	3	24.8	23.5	0.3
Hospitalisation (median days)	2	25.5	23	
	3	25	24.5	

Table 3: Recovery and Supportive Care in Everolimus Randomisation

† Logrank test. * Wilcoxon test

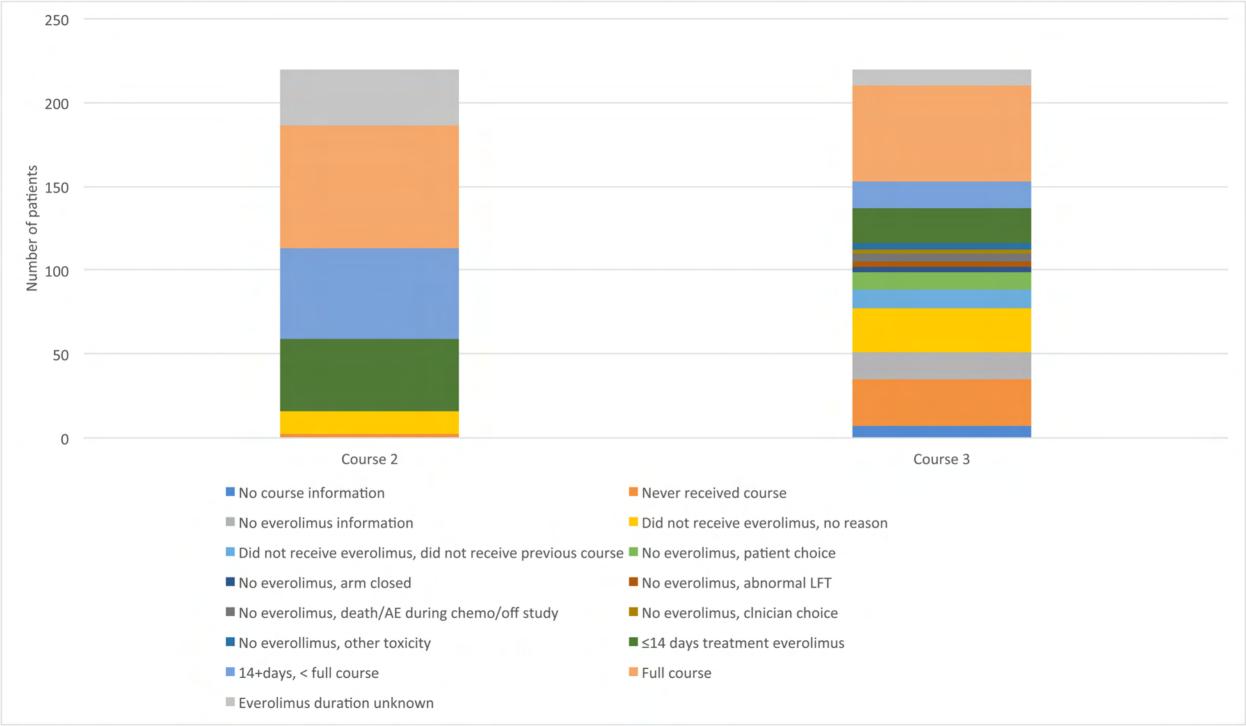
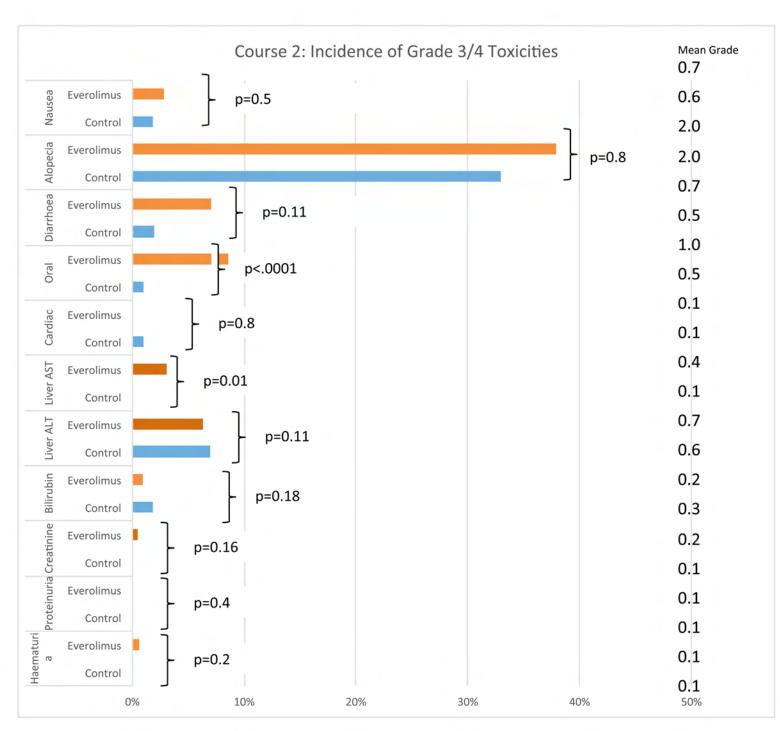

Figure Legends:

Figure 1: CONSORT diagram


Figure 2: Compliance with treatment

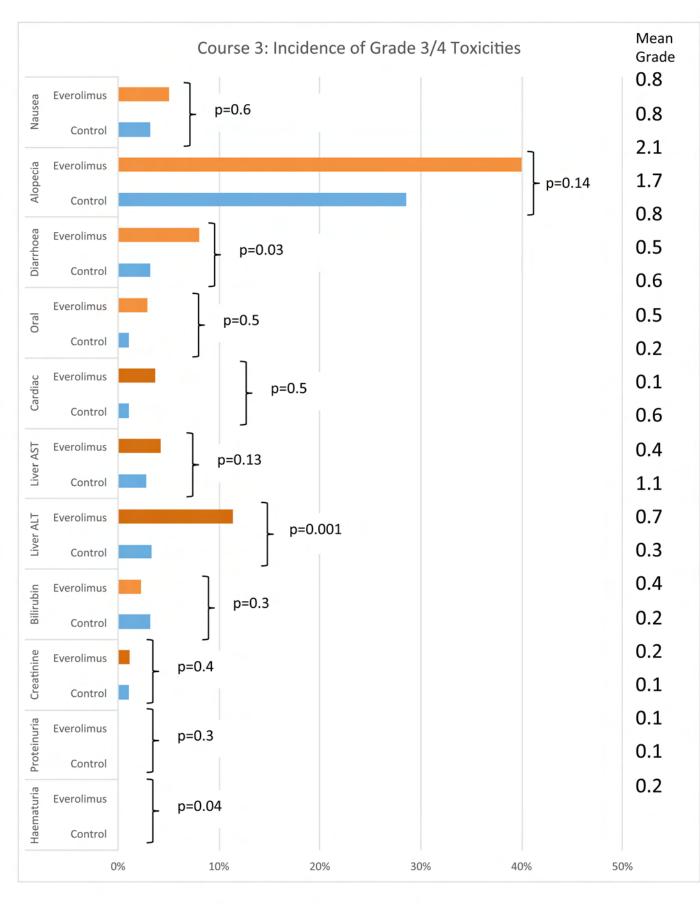
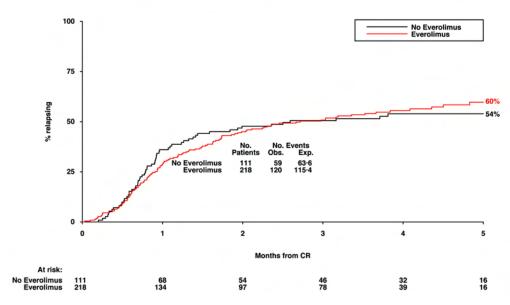
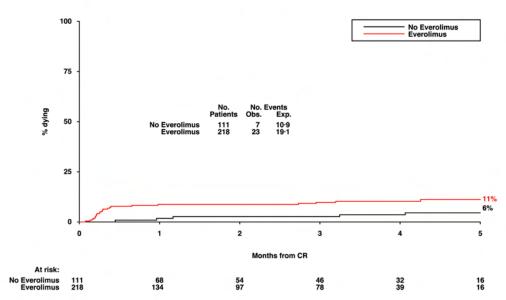
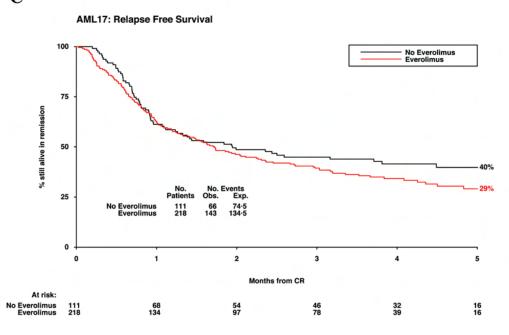

Figure 3 Toxicity associated with treatment in courses 2 and 3. A) Course 2; B) Course 3 of treatment

Figure 4: Relapse, Death in Remission, Relapse Free Survival and Overall Survival within the Everolimus Randomisation: A) Cumulative Incidence of Relapse; B) Cumulative Incidence of Death in Remission; C) Relapse Free Survival; D) Overall Survival

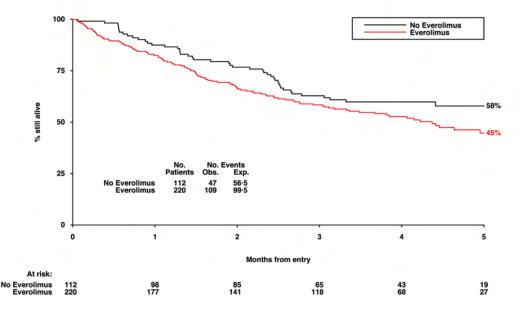

Α

B

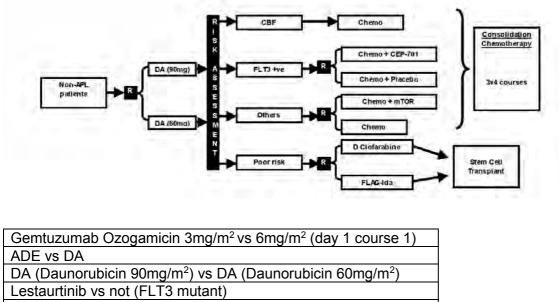

AML17: Cumulative incidence of Relapse


B

A



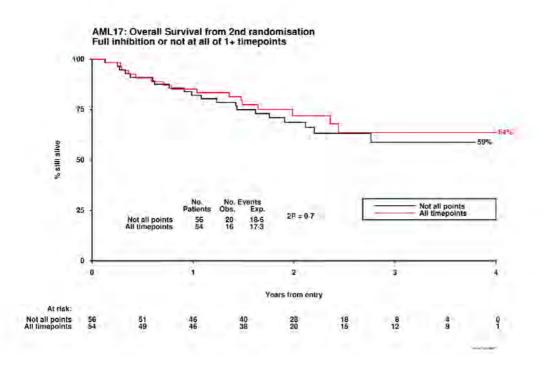
С

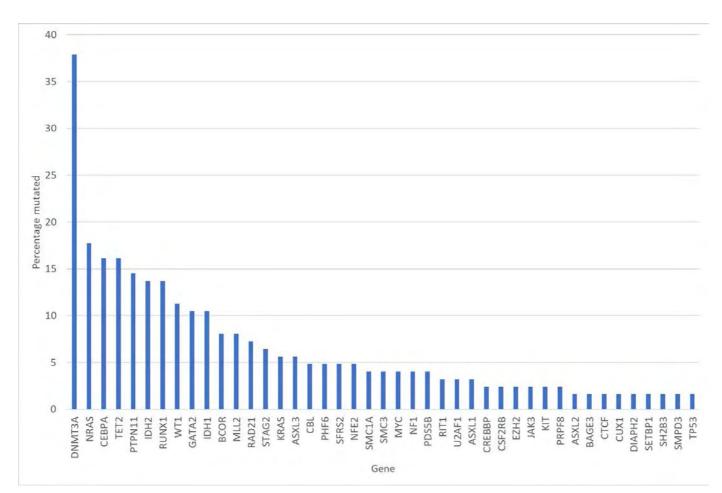

D

AML17: Overall Survival

Supplemental Figure 1: Randomisations Addressed in AML17

Protocol Version 7




Everolimus vs not (courses 2-4) 3 vs 4 courses in total (if not high risk)

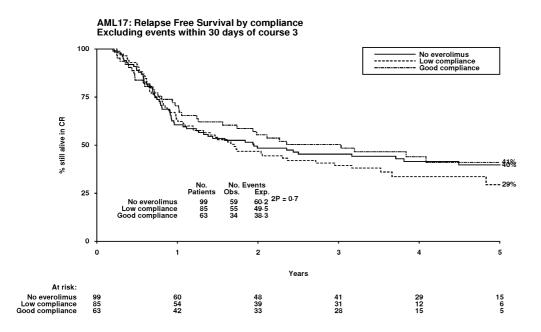
FLAG-Ida vs Daunorubicin/Clofarabine

Supplementary Figure 2: Plasma Inhibitory activity (PIA) Measurement.

The protocol requested, with patient agreement, the collection of blood samples pre-dose on day 14 of each course of everolimus treatment. To assess mTOR inhibitory activity, 400µl patient plasma was incubated in triplicate with 5x10⁵ HEL cells for 1h at 37°C in a humidified incubator with 5%CO₂. The approach was similar to those reported for other inhibitory assays.¹⁸ A standard curve of phospho-S6 ribosomal protein (pS6-RP) PIA versus everolimus concentration was generated by spiking healthy volunteer plasma with everolimus that produce clinically-relevant concentrations ranging from 1 to 200ng/ml. In this context an estimate of plasma inhibition of phospho-S6 ribosomal protein (p S6-RP) in response to patient plasma was measured in cell lysates by immunoblotting and ELISA. The results were expressed as a percentage reduction of pS6-RP inhibitory activity compared to the maximum inhibition achieved by a 200ng/ml everolimus concentration which was run in parallel along with a no drug control.

Supplementary Figure 3: Resolution of Sanger data with AML17 mTOR randomisation (n=124)

Mutations in the following genes were found in only one patient and are not shown in the graph:


ATRX	ERCC2	KIAA1267	PTEN	SMG1
CBFB	FBXW7	LUC7L2	PTPRF	STAG1
CBLB	GATA1	MED12	SF1	U2AF2
CBLC	KDM6A	MYH11	SF3B1	ZRSR2
CSF3R	1	1	I	1

Supplementary Figure 4: Stratified analysis of Relapse Free Survival. A) Demographics; B) Mutation status (minimum 10 mutant patients with RFS data)

A)

		Events/	Patients Control	(O-E)	stics Var.	O.R. & Everolimus)		
By age:								
Age 15-29		16/33	8/15	0.2	5.4			
Age 30-39		23/34	11/17	-0.7	7.1			1.04 (0.45, 2.42)
Age 40-49		38/58	13/31	7.8	11.9	-		0.90 (0.43, 1.88)
Age 50-59		56/73	25/37	4.2	18.5	_		1.92 (1.09, 3.40)
Age 60-69		10/20	9/11	-2.5	4.2		<u> </u>	1.25 (0.79, 1.98)
· _								0.55 (0.21, 1.44)
	Subtotal:	143/218	66/111	8-9	47.1	•		1.21 (0.91, 1.61) 2P = 0⋅2; NS
lest for het	terogeneity between su nd between subgroups	bgroups: $\chi_4^2 = 5.9$; P = 0 : $\chi_1^2 = 0.1$; P = 0.8; NS	·2; NS					
By sex:								
emale		72/116	43/69	-0.1	26.8		-	1.00 (0.68, 1.45)
Aale		71/102	23/42	8.7	20.8		┝╼┱──	1.52 (0.99, 2.33)
	Subtotal:	143/218	66/111	8-6	47.6	-	₽	1.20 (0.90, 1.59
est for het	erogeneity between su	ubgroups: $\chi_1^2 = 2.1$; P = 0	1; NS					2P = 0.2; NS
By WBC:								
NBC 0-9.9)	95/136	40/64	7.3	30.2	-	┼╋╌╴	1.27 (0.89, 1.82)
NBC 10-49		34/61	17/34	2.4	12.0			
NBC 50-99		8/15	6/9	-1.4	3.1		<u> </u>	1.23 (0.70, 2.16)
VBC 100+		6/6	3/4	1.2	2.2			0.63 (0.21, 1.95)
	Subtotal:	143/218	66/111	9-5	47.5		$\mathbf{\Phi}$	1.22 (0.92, 1.63
fest for het	terogeneity between su nd between subgroups	bgroups: $\chi_3^2 = 1.6$; P = 0. $\chi_3^2 = 0.1$; P = 0.8; NS	-7; NS					2P = 0·2; NS
By WHO P								
-	ce Status 0	112/176	51/87	6.5	37.1	_		
						_		1.19 (0.86, 1.64)
Peformance		27/37	12/19	2.0	8.7			1.26 (0.65, 2.45)
	Status 2	3/4	2/3	-0.1	1.1			0.93 (0.15, 5.78)
Performanc Performanc	ce Status 3+	1/1	1/2	0.5	0.5			1.42 (0.08, 24.66)
Performanc	ce Status 3+ Subtotal: terogeneity between su	1/1 143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. ; $\chi_1^2 = 0.0$; P = 1.0; NS	66/111	0·2 8-6	0:5 47:5		Ą	1.42 (0.08, 24.66) 1.20 (0.90, 1.59 2P = 0.2; NS
Performand Test for het Test for trei By diagnos	ce Status 3+ Subtotal: terogeneity between su nd between subgroups	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1.	66/111			-	₽	1.20 (0.90, 1.59
Performance Fest for het Fest for treis By diagnoside Novo	ce Status 3+ Subtotal: terogeneity between su nd between subgroups	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS	66/111 0; NS	8-6	47.5		₽	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.88, 1.59)
Performance Test for het Test for treis By diagnos Ne Novo Secondary	te Status 3+ Subtotal: terogeneity between su nd between subgroups sis:	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. ; $\chi_1^2 = 0.0$; P = 1.0; NS 130/202	66/111 •0; NS 60/102	8-6 7-2	47.5 43.3		₽ ₽	1.20 (0.90, 1.59 2P = 0∙2; NS
Performance Test for het Test for treis By diagnos le Novo Secondary	te Status 3+ Subtotal: terogeneity between su nd between subgroups sis:	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1 : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5	66/111 •0; NS 60/102 1/3	8-6 7-2 0-9	47.5 43.3 1.2		€ ■	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26)
Performance Test for het Test for tree By diagnos de Novo Secondary digh risk M	ee Status 3+ Subtotal: terogeneity between su nd between subgroups sis: DS Subtotal:	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11	66/111 •0; NS 60/102 1/3 5/6 66/111	8-6 7·2 0·9 0·3	47-5 43:3 1:2 3:2	- 	€ 	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.88, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59
Performance Test for het Test for tren By diagnose le Novo Secondary ligh risk M Test for het	ee Status 3+ Subtotal: terogeneity between su nd between subgroups sis: DS Subtotal:	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. ; $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218	66/111 •0; NS 60/102 1/3 5/6 66/111	8-6 7·2 0·9 0·3	47-5 43:3 1:2 3:2		€ 	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59
Performance Test for het Sy diagnose le Novo Secondary digh risk M Test for het Sy induction	ee Status 3+ Subtotal: terogeneity between su nd between subgroups sis: DS Subtotal: terogeneity between su on therapy:	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. ; $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218	66/111 •0; NS 60/102 1/3 5/6 66/111	8-6 7·2 0·9 0·3	47-5 43:3 1:2 3:2	- 	€ 	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.88, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS
Performance Test for het Test for tree By diagnose le Novo Secondary digh risk M Test for het By induction NDE alone	ee Status 3+ Subtotal: erogeneity between su nd between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand)	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0.	66/111 •0; NS 60/102 1/3 5/6 66/111 •8; NS	8-6 7·2 0·9 0·3 8-4	47-5 43·3 1·2 3·2 47-7		€	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS
Performance Test for het rest for het Sy diagnos le Novo Secondary digh risk M Test for het Sy induction NDE alone NDE alone	ee Status 3+ Subtotal: terogeneity between su nd between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand)	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0. 7/13	66/111 •0; NS 60/102 1/3 5/6 66/111 •8; NS 4/7	8-6 7·2 0·9 0·3 8-4	47-5 43·3 1·2 3·2 47-7 2·6	· 	₽	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66)
erformance in the set for het iest for tree iest for tree iest for tree iest for het igh risk M iest for het igh nuction DE alone DE Alone DE Alone DE Alone	ee Status 3+ Subtotal: terogeneity between sub nd between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29	66/111 •0; NS 60/102 1/3 5/6 66/111 •8; NS 4/7 8/14	7·2 0·9 0·3 8·4 0·2 1·1	43·3 1·2 3·2 47·7 2·6 6·0	· · · ·	₽ 	1.20 (0.90, 1.55 2P = 0.2; NS 1.18 (0.88, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 326) 1.19 (0.90, 1.55 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61)
Performance Test for het Test for tree By diagnose le Novo Secondary digh risk M Test for het By induction DE Alone ADE Alone ADE + GO SADE + GO	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) Sing 6mg	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26	66/111 60; NS 60/102 1/3 5/6 66/111 7/14	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2	43·3 1·2 3·2 47·7 2·6 6·0 5·2		A	1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58)
erformanc est for het est for tren e Novo econdary ligh risk M est for het by induction DE Alone DE Alone DE Alone CDE + GO A + GO 30 A + GO 40 A + GO	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) Sing 6mg mg	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1: : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14	8-6 7-2 0-9 0-3 8-4 0-2 1-1 2-2 3-2	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13.52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.06 (1.25, 7.43)
Test for het Test for het Sy diagnos le Novo Secondary ligh risk M Test for het Sy inductic ADE alone ADE + GO (3) DA + GO (3) DA + GO (3) DA + GO (6)	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 3·2 5·4 1·5	43:3 1:2 3:2 47:7 2:6 6:0 5:2 6:4 4:8 5:7			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.55 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94)
Performance Test for het Test for trent By diagnose le Novo Secondary digh risk M Test for het By induction DE alone ADE alone ADE 4 GO ADE + GO ADE + GO ADE + GO ADE + GO ADE + GO ACO A + GO ACO A + GO ACO ACO ACO ACO ACO ACO ACO AC	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) Sing 6mg mg	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1: : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24 18/22	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8			1.20 (0.90, 1.59 2P = 0.2; NS 1.16 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50)
Fest for het rest for het rest for tren By diagnosi de Novo Secondary High risk M Fest for het By induction ADE alone ADE alone ADE + GO 3 ADE + GO 3 ADA + GO 30 ADA + GO 60 MARCH AND A A (60mg)	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg mg – protocol 7	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 3·2 3·4 1·5 -2·4	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.36, 1.44) 1.20 (0.90, 1.60)
Fest for het Secondary High risk M Fest for het Secondary High risk M Fest for het Sy induction DE alone ADE + GO 3 DA + GO 3 DA + GO 30 DA + GO 30 D	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal:	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1: : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111	8-6 7-2 0-9 0-3 8-4 0-2 1-1 2-2 3-2 5-4 1-5 -2-4 -2-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8			$\begin{array}{c} 1.20 \ (0.90, 1.59 \\ 2P = 0.2; \ NS \\ \hline \\ 1.18 \ (0.88, 1.59) \\ 2.17 \ (0.35, 13.52) \\ 1.10 \ (0.37, 3.26) \\ 1.19 \ (0.90, 1.59 \\ 2P = 0.2; \ NS \\ \hline \\ 1.20 \ (0.54, 2.66) \\ 1.53 \ (0.65, 3.61) \\ 1.65 \ (0.76, 3.58) \\ \hline \\ 3.06 \ (1.26, 7.43) \\ 1.29 \ (0.57, 2.94) \\ 0.72 \ (0.35, 1.50) \\ 0.74 \ (0.38, 1.44) \\ \end{array}$
Performanc Fest for het Fest for tren By diagnos de Novo Secondary digh risk M Fest for het ADE alone ADE alone ADE 4 GO ADE	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg - protocol 7 - protocol 7 Subtotal: terogeneity between su	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111	8-6 7-2 0-9 0-3 8-4 0-2 1-1 2-2 3-2 5-4 1-5 -2-4 -2-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.36, 1.44) 1.20 (0.90, 1.60)
erformanc erformanc est for het est for tren y diagnos e Novo econdary ligh risk M est for het y inductie DE Alone DE Alone DE AO DE AO DE GO A GO	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal: terogeneity between su 1 status:	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111	8-6 7-2 0-9 0-3 8-4 0-2 1-1 2-2 3-2 5-4 1-5 -2-4 -2-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8			1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13,52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.38, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS
rest for het rest for het rest for tren rest for tren rest for het rest for het	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal: terogeneity between su 1 status:	143/218 abgroups: $\chi_3^2 = 0.1$; P = 1: ; $\chi_1^2 = 0.0$; P = 1:0; NS 130/202 4/5 9/11 143/218 abgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 abgroups: $\chi_7^2 = 9.2$; P = 0:	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111 -2; NS	7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 1·5 -2·4 -2·6 8-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.38, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS 1.10 (0.56, 2.15)
Performance Fest for het fest for tren By diagnose le Novo Secondary digh risk M Fest for het By induction ADE + GO G ADE + GO G ADE + GO G ADE + GO G ADA + GO G ADA + GO G AA + GO G CO AA + GO G AA + GO G CO AA + GO C CO AA + CO A	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal: terogeneity between su 1 status: CR MRD– CR MRD– CR MRD +	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0. 24/43	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111 -2; NS 14/24	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 1·5 -2·4 -2·6 8-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8 8·6			1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.88, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.36, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS
Performance Fest for het Fest for tren By diagnose de Novo Secondary digh risk M Fest for het By induction ADE + GO G ADE + GO G Confirmed C Confirmed C	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between su on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal: terogeneity between su 1 status: CR MRD– CR MRD– CR MRD +	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0. 24/43 47/63	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111 -2; NS 14/24	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 -2·6 8-6 8-6	47-5 43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8 8·6 13·6			1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.26, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.36, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS 1.10 (0.56, 2.15) 1.65 (0.97, 2.82) 0.87 (0.23, 3.22) 1.35 (0.91, 2.01)
Performance Fest for het Fest for tren By diagnos de Novo Secondary digh risk M Secondary digh risk M Est for het ADE alone ADE ALON	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between sub on therapy: (not rand) 3mg 6mg mg – protocol 7 – protocol 7 Subtotal: terogeneity between su 1 status: CR MRD CR MRD CR MRD + ssion Subtotal:	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1: : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0: 24/43 47/63 4/8 75/114 ibgroups: $\chi_2^2 = 1.3$; P = 0	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 7/14 8/14 7/14 8/14 7/14 8/14 7/12 13/19 16/21 66/111 -2; NS 14/24 14/24 5/9 33/57	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 1·5 -2·4 -2·6 8-6 8-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8 8·6 13·6 2·2			1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13,52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.38, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS 1.10 (0.56, 2.15) 1.65 (0.97, 2.82)
Performance Fest for het Fest for tren By diagnos de Novo Secondary digh risk M Secondary digh risk M Est for het ADE alone ADE ALON	se Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between sub on therapy: (not rand) 3mg 6mg mg - protocol 7 - protocol 7 Subtotal: terogeneity between su 1 status: CR MRD- CR MRD + ssion Subtotal: terogeneity between su	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1: : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0: 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0: 24/43 47/63 4/8 75/114 ibgroups: $\chi_2^2 = 1.3$; P = 0	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 7/14 8/14 7/14 8/14 7/14 8/14 7/12 13/19 16/21 66/111 -2; NS 14/24 14/24 5/9 33/57	8-6 7·2 0·9 0·3 8-4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 1·5 -2·4 -2·6 8-6 8-6	43·3 1·2 3·2 47·7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8 8·6 13·6 2·2			1.20 (0.90, 1.59 2P = 0.2; NS 1.18 (0.86, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.26, 7, 43) 1.29 (0.57, 2.44) 0.72 (0.35, 1.50) 0.74 (0.36, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS 1.10 (0.56, 2.15) 1.65 (0.97, 2.82) 0.87 (0.23, 3.22) 1.35 (0.91, 2.01)
Performance Fest for het Fest for tren By diagnos de Novo Secondary High risk M Fest for het By induction ADE alone ADE al	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between sub on therapy: (not rand) 3mg 6mg mg – protocol 7 Subtotal: terogeneity between su 1 status: CR MRD– CR MRD– CR MRD + ssion Subtotal: terogeneity between subgroups	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0. 24/43 47/63 4/8 75/114 ibgroups: $\chi_2^2 = 1.3$; P = 0. : $\chi_1^2 = 0.1$; P = 0.8; NS	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111 -2; NS 14/24 14/24 5/9 33/57 -5; NS	7·2 0·9 0·3 8·4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 -2·6 8·6 0·8 6·8 -0·3 7·3	47-5 43:3 1:2 3:2 47:7 2:6 6:0 5:2 6:4 4:8 5:7 7:2 8:8 46:8 8:6 13:6 2:2 24:4			1.20 (0.90, 1.59 2P = 0.2; NS 2.17 (0.35, 13,52) 1.10 (0.37, 326) 1.19 (0.90, 1.59 2P = 0.2; NS 1.07 (0.31, 3,62) 1.20 (0.54, 2,66) 1.53 (0.65, 3,61) 1.65 (0.76, 3,58) 3.05 (1.25, 7,43) 1.29 (0.57, 2,94) 0.72 (0.35, 1,50) 0.74 (0.38, 1,44) 1.20 (0.90, 1,60 2P = 0.2; NS 1.10 (0.56, 2,15) 1.65 (0.97, 2,82) 0.87 (0,23, 3,22) 1.35 (0,91, 2,01 2P = 0.1; NS 1.19 (0.90, 1,59
Performance Test for het Test for het Sy diagnos le Novo Secondary digh risk M Secondary digh risk M Test for het Sy induction DE Alone DE Alone DE Alone DE Alone DE Alone DE Alone DE Alone A (GOmg) DA (GOmg) Confirmed Sy course Confirmed Lot in remise Test for het	ee Status 3+ Subtotal: terogeneity between subgroups sis: DS Subtotal: terogeneity between sub on therapy: (not rand) 3mg 6mg mg – protocol 7 Subtotal: terogeneity between su 1 status: CR MRD– CR MRD– CR MRD + ssion Subtotal: terogeneity between subgroups	143/218 ibgroups: $\chi_3^2 = 0.1$; P = 1. : $\chi_1^2 = 0.0$; P = 1.0; NS 130/202 4/5 9/11 143/218 ibgroups: $\chi_2^2 = 0.4$; P = 0. 7/13 19/29 17/26 19/24 18/22 19/26 20/37 24/41 143/218 ibgroups: $\chi_7^2 = 9.2$; P = 0. 24/43 47/63 4/8 75/114 ibgroups: $\chi_2^2 = 1.3$; P = 0. : $\chi_1^2 = 0.1$; P = 0.8; NS	66/111 -0; NS 60/102 1/3 5/6 66/111 -8; NS 4/7 8/14 7/14 8/14 3/10 7/12 13/19 16/21 66/111 -2; NS 14/24 14/24 5/9 33/57 -5; NS	7·2 0·9 0·3 8·4 0·2 1·1 2·2 3·2 5·4 1·5 -2·4 -2·6 8·6 0·8 6·8 -0·3 7·3	47-5 43·3 1·2 3·2 47-7 2·6 6·0 5·2 6·4 4·8 5·7 7·2 8·8 46·8 8·6 13·6 2·2 24·4 47·8			1.20 (0.90, 1.55 2P = 0.2; NS 1.18 (0.88, 1.59) 2.17 (0.35, 13.52) 1.10 (0.37, 3.26) 1.19 (0.90, 1.55 2P = 0.2; NS 1.07 (0.31, 3.62) 1.20 (0.54, 2.66) 1.53 (0.65, 3.61) 1.65 (0.76, 3.58) 3.05 (1.25, 7.43) 1.29 (0.57, 2.94) 0.72 (0.35, 1.50) 0.74 (0.38, 1.44) 1.20 (0.90, 1.60 2P = 0.2; NS 1.10 (0.56, 2.15) 1.65 (0.97, 2.82) 0.87 (0.23, 3.22) 1.35 (0.91, 2.01 2P = 0.1; NS 1.19 (0.90, 1.59 10.0 Irol

		Events/F Everolimus	Patients Control	Statis (O-E)	stics Var.	O.R. & 95% Cl (Everolimus : Control)	
/ FLT3 ITD):						
ild type		130/197	57/100	9-7	42-7	┼┳╌	1.25 (0.93, 1.69
utant		6/8	1/1	-0.7	0.2		0.03 (0.00, 2.21
	Subtotal:	136/205	58/101	8-9	43-0	◆	1.23 (0.91, 1.6 2P = 0.2; NS
st for hete	rogeneity between subgroup	os: $\chi^2_1 = 2.9$; P = 0.09					
NPM1c:		07/400	20.00	10.0	aa 5		
ild type utant		97/130 36/70	38/60 19/39	10·0 0·5	30·5 12·6		1.39 (0.97, 1.98 1.04 (0.60, 1.81
	Subtotal:	133/200	57/99	10-6	43-1		
et for hoto	rogeneity between subgroup	as: 22 - 0.7: P - 0.4: NS					1.28 (0.95, 1. 2P = 0.1; N
FLT3 TK		s. x ₁ = 0.7, P = 0.4, NS					
ild type		133/202	57/99	9.4	43.0	┼┳╌	1.25 (0.92, 1.68
itant		3/3	1/2	0.2	0-9		1.71 (0.22, 13.5
	Subtotal:	136/205	58/101	9.9	43.9		1.25 (0.93, 1. 2P = 0.1; N
st for hete	rogeneity between subgroup	es: $\chi_1^2 = 0.1$; P = 0.8; NS					
DNMT3A	λ:	a. 110					
ild Type utant		31/49 21/31	14/29 6/15	4-1 4-0	10·7 6·2		1.47 (0.81, 2.67
	Subtotal:	52/80	20/44	8-1	16-9		1.62 (1.00, 2.6
st for hete	rogeneity between subgroup	os: $\chi^2_1 = 0.3$; P = 0.6; NS					2P = 0.05
NRAS:		•					
ild Type utant		44/67 8/13	18/36 2/8	5·9 2·6	14-4 2-5		1.50 (0.90, 2.52 2.87 (0.82, 9.95
	Subtotal:	52/80	20/44	8-5	16-9	\sim	1.65 (1.02, 2.
st for hete	rogeneity between subgroup	s: χ ² = 0.9: P = 0.3: NS					2P = 0.04
CEBPA:							
ild Type utant		44/69 8/11	17/35 3/9	5·5 2·9	14·1 2·5		1.48 (0.88, 2.48
	Subtotal:	52/80	20/44	8-4	16.6		3.30 (0.94, 11.5 1.66 (1.03, 2.)
—			20/44	0.4	10.0		2P = 0.04
TET2:	rogeneity between subgroup	$S; X_1 = 1.3; P = 0.2; NS$					
ild Type		44/69	17/35	5-8	14-1		1.51 (0.89, 2.54
utant		8/11	3/9	2.4	2.7		2.41 (0.73, 7.91
-	Subtotal:	52/80	20/44	8-2	16-8		1.63 (1.01, 2.6 2P = 0.05
	rogeneity between subgroup	os: $\chi^2_1 = 0.5$; P = 0.5; NS					
y PTPN11: ild Type	:	46/68	17/38	8-9	15-1		1.81 (1.09, 3.00
utant		6/12	3/6	-0.5	1.9		0.91 (0.22, 3.74
	Subtotal:	52/80	20/44	8-7	17-0		1.67 (1.04, 2.6 2P = 0.03
est for hete	rogeneity between subgroup	os: $\chi^2_1 = 0.8$; P = 0.4; NS					
y IDH2: ild Type		44/68	18/39	6-8	14-8		
utant		8/12	2/5	1.5	2.2	-	1.58 (0.95, 2.64 1.95 (0.52, 7.31
	Subtotal:	52/80	20/44	8-3	17-0		1.63 (1.01, 2.0 2P = 0.04
st for hete	rogeneity between subgroup	os: $\chi_1^2 = 0.1$; P = 0.8; NS					
RUNX1:		42/20	1720	7.1	14-3		
utant		43/69 9/11	17/39 3/5	0.7	2.4		1.64 (0.98, 2.75
	Subtotal:	52/80	20/44	7.8	16.7		1.60 (0.99, 2.5 2P = 0.06
est for hete	rogeneity between subgroup	s: X ² ₁ = 0·1; P = 0·8; NS					2P = 0.06
y WT1:							
ild Type utant		47/73 5/7	16/37 4/7	8·2 0·6	14-7 2-2		1.75 (1.05, 2.92 1.33 (0.35, 4.98
	Subtotal:	52/80	20/44	8-8	16.9		1.69 (1.05, 2.7 2P = 0.03
	rogeneity between subgroup	os: $\chi^2_1 = 0.1$; P = 0.7: NS					2P = 0.03
est for hete							
y GATA2:		49/74 3/6	17/37 3/7	7-5 0-7	15·3 1·2		1.63 (0.99, 2.69
y GATA2: 'ild Type		52/80	20/44	8-2	16.5		1.79 (0.31, 10.46 1.64 (1.01, 2.6
/ GATA2: ild Type	Subtotal:						1.64 (1.01, 2.6 2P = 0.04
y GATA2: ild Type utant							
y GATA2: ild Type utant est for hete	Subtotal: rogeneity between subgroup						
GATA2: Id Type Itant st for hete IDH1: Id Type		s: % ² ₁ = 0.0; P = 0.9; NS 48/71	17/40	9.9	15.5	_ _	
GATA2: Id Type Itant st for hete IDH1: Id Type	rogeneity between subgroup	es: X ² ₁ = 0·0; P = 0·9; NS 48/71 4/9	3/4	-0.9	1.4		0.52 (0.10, 2.67
st for hete IDH1: Id Type IDH1: Id Type Itant	rogeneity between subgroup Subtotal:	ss: χ ⁰ ₁ = 0·0; P = 0·9; NS 48/71 4/9 52/80					0.52 (0.10, 2.67
y GATA2: IId Type utant est for hete y IDH1: IId Type utant est for hete	rogeneity between subgroup	ss: χ ⁰ ₁ = 0·0; P = 0·9; NS 48/71 4/9 52/80	3/4	-0.9	1.4		1.89 (1.15, 3.10 0.52 (0.10, 2.67 1.69 (1.05, 2. 2P = 0.03
y GATA2: III Type utant west for hete y IDH1: iIII Type utant west for hete y BCOR: iIII Type	rogeneity between subgroup Subtotal:	$x_{1}^{2} = 0.0; P = 0.9; NS$ $48/71$ $4/9$ 52/80 s; $x_{1}^{2} = 2.2; P = 0.1; NS$ $49/75$	3/4 20/44 17/39	-0•9 8-9 8•6	1·4		0.52 (0.10, 2.67 1.69 (1.05, 2.7
y GATA2: Ild Type utant stor hete y IDH1: ild Type utant stor hete y BCOR:	rrogeneity between subgroup Subtotal: rrogeneity between subgroup	s: $\chi_1^2 = 0.0$; P = 0.9; NS 48/71 4/9 52/80 s: $\chi_1^2 = 2.2$; P = 0.1; NS 49/75 3/5	3/4 20/44 17/39 3/5	-0·9 8-9 8·6 0·1	1·4 17·0 15·4 1·5		0.52 (0.10, 2.67 1.69 (1.05, 2. 2P = 0.03 1.74 (1.06, 2.87 1.06 (0.21, 5.30
GATA2: Id Type itant IDH1: Id Type itant St for hete BCOR: Id Type	rogeneity between subgroup Subtotal:	$x_{1}^{2} = 0.0; P = 0.9; NS$ $48/71$ $4/9$ 52/80 s; $x_{1}^{2} = 2.2; P = 0.1; NS$ $49/75$	3/4 20/44 17/39	-0•9 8-9 8•6	1·4		0.52 (0.10, 2.6 1.69 (1.05, 2. 2P = 0.03

