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Abstract: Purpose: Most approaches for quantitative susceptibility mapping (QSM) are based on a 

forward model approximation that employs a continuous Fourier transform operator to solve a 

differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim 

of this study was to reduce such errors using an alternative dipole kernel formulation based on the 

discrete Fourier transform and discrete operators. Methods: The impact of such an approach on forward

model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation 

both with synthetic phantoms and in vivo MRI data. 

Results: The discrete kernel demonstrated systematically better fits to analytic field solutions, and 

showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency 

responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the 

use of the proposed discrete kernel resulted in error reduction and increased sharpness. Conclusion: 

This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. 

The impact on small or narrow structures such as the venous vasculature might by particularly relevant 



to high-resolution QSM applications with ultra-high field MRI – a topic for future investigations. The 

proposed dipole kernel has a straightforward implementation to existing QSM routines.

Keywords: forward model, inverse problem, magnetic susceptibility, MRI phase, iron mapping, 

venography, ultra-high field MRI



1 Introduction

Quantitative susceptibility mapping (QSM) has attracted considerable interest for its ability to probe 

local magnetostatic properties of biological tissue and for its unique dynamic range1. QSM’s value 

chiefly lies on its sensitivity to non-heme iron, myelin and calcium content as well as venous-oxygen 

saturation levels and hemosiderin burden resulting from cerebral hemorrhages and microbleeds2. QSM 

has therefore been proposed as a useful biomarker for the study of brain aging3,4 and diseases of the 

central nervous system such as multiple sclerosis5,6,7, Alzheimer’s disease8, Parkinson’s disease9,10,11,12, 

amyotrophic lateral sclerosis13 and degeneration with brain iron accumulation14, where disrupted iron 

homeostasis, demyelination, calcification, vascular lesions and/or chronic impairment of oxygen 

metabolism might play relevant mechanistic roles in disease pathogenesis and progression.

Susceptibility maps can be inferred from the phase of the gradient-recalled echo (GRE) signal, which, 

in turn, is proportional to the local reaction field emanating from magnetic susceptibility differences 

between substances. Inferring susceptibility sources from phase offsets, however, is not a trivial 

problem. Magnetic susceptibility has long been studied from a quantum mechanics standpoint15, yet in 

an MRI context, source-to-field (forward) models are only a recent development, e.g. via discretization 

of the heat equation with finite differences or applying integral methods such as Green's function. Such 

approaches, however, are computationally intensive, thus they are logistically unfit for clinical 

purposes. The first fast-solving forward method was proposed by Salomir et al. (2003)16, who 

employed the Fourier transform to solve the associated differential equation. Subsequently, Marques 

and Bowtell (2005)17 used an integral approach applying the Fourier transform to Green's function, 

resulting in an analogous approximation, which also enabled a direct estimation of magnetic field 

offsets from an arbitrary susceptibility distribution by way of a 3D convolution operation with a 

magnetic dipole kernel. To date, such forward model remains to be the gold standard; although notably,

such formulation is known to suffer from digitization errors due to aliasing in the vicinity of abrupt 

magnetic susceptibility variations18.

Early attempts to solve the field-to-source (i.e. inverse) problem for QSM faced a major limitation: the 

dipole kernel approximation has zero-valued coefficients across a double-conical surface in k-space, 

the so-called “magic cone”. Therefore, direct inversion leads to divisions by zero for such frequency 

coefficients, which generate highly undesirable reconstruction artifacts. Truncated approximations 



improve the situation; however, such an approach also results in QSM inversions prone to streaking 

artifacts and noise amplification19. Consequently, field-to-source problems have been recently 

reformulated as an optimization problem with its functional usually comprising two terms, a data 

fidelity and a regularization term. The data fidelity term minimizes the error between the forward 

model and the MRI measurements based on a known phase noise distribution. Regularization 

constrains the impact of the zero-valued kernel coefficients, typically by promoting sparsity to the 

gradient of the computed solution. To date, a large proportion of technical QSM studies have focused 

on the development of novel regularization strategies, leading to substantial improvements in artifact 

reduction and noise management20. In the present note, however, we focused on the forward model and 

proposed an alternative dipole kernel formulation based on the discrete Fourier transform, aiming to 

reduce high-frequency aliasing in the fidelity term. We evaluated the impact of such an approach on 

forward model calculations and QSM inversions using both synthetic and in vivo MRI data.

2 Material and methods

2.1 Theory

It is well-known that the following differential equation can be obtained from the magnetostatic 

Maxwell equations21:

Eq. (1)

where hobj,z is the demagnetizing (or reaction) field due to local magnetizations, χ is the spatial 

distribution of susceptibility sources, H0 is the applied (or main) magnetic field and  is the 

Laplacian operator.

Several strategies are suitable to solve Eq. (1), e.g. finite-difference, finite-element, spectral or 

variational methods22. Spectral methods, such as those used to derive the conventional continuous 

dipole kernel, would be preferred in an idealized scenario of regular geometries and smooth transitions.

However, they might be less useful for studying biological tissue where strong and sharp susceptibility 



variations often occur. Alternatively, finite-element approaches are very flexible and precise, but they 

are computationally expensive making them impractical for QSM. As a trade-off, in the present study 

we propose the use of discrete Laplacian operators resulting from 3D finite-differences to define (i) the 

convolution kernel as a 3x3x3 cube:

,  

and (ii) the second derivative along the z axis as a 1x1x3 vector, i.e.:

 ,

where * denotes a 3D convolution operation.

The new equation system can be solved using relaxation (multigrid) methods, rapid solvers or direct 

matrix methods. Notably, the latter—more accurate in theory— are impractical for large MRI 

reconstruction matrices. Relaxation methods, in contrast, are fast but they only yield approximated 

solutions that might be vulnerable to artifacts. Alternatively, in this study we propose the use of rapid 

solvers based on the discrete Fourier Transform (DFT), which are reasonably fast and more accurate 

than relaxation methods. Applying the DFT to Eq. (1) leads to:

, Eq. (2)

where Nx, Ny and Nz are the reconstruction matrix dimensions, and kx, ky and kz are integer indices. 



True k-values correspond to the argument of the cosine functions. 

Finally, the discrete forward model can be expressed as:

Eq. (3)

Let us remember the continuous solution of Eq. (1)16,17:

Eq. (4)

Using the Taylor expansion, , it becomes clear that overall 

for low frequencies the continuous and discrete kernels are analogous whereas for high frequencies, 

they differ. Figure 1 illustrates frequency responses for both kernels across several radial orientations, 

i.e. across different φ and θ polar angles. Notably, whereas continuous kernel responses are constant 

across all frequencies for any given orientation, discrete kernel responses tend to be attenuated for high 

frequencies, in essence acting as a low-pass frequency filter. This is true for most angular 

representations except for a few radial profiles. Such property is the basis for preventing aliasing 

artifacts due to frequency truncation (Gibb's or ringing artifacts) and noise amplification in the forward 

model.

--- FIGURE 1 NEAR HERE ---

2.2 Methods

2.2.1 Synthetic experiments

Continuous and discrete models were compared in two synthetic experiments using the known analytic 



solution for a sphere as the ground truth16. The nuclear magnetic induction of a sphere of radius r, 

Bnuc,sphere, can be expressed as:

Eq. (5)

where χx,y,z is the bulk magnetic susceptibility at a given voxel coordinate, χ is the constant 

susceptibility inside the sphere, and χout is the constant susceptibility outside the sphere. For 

convenience, the applied field strength, B0, was set to unity.

In the first instance, a phantom with a single sphere of varying diameter was generated. Inner and 

background susceptibilities were set to be constant at 10 and 0 parts per million (ppm), respectively. A 

second synthetic phantom consisted of eight spheres of varying diameter ranging from 3 to 17 voxels, 

arranged in a circular pattern across the XY-plane and set on a large field of view (FOV) of 256 voxels 

cubed to prevent biases in the field calculation. In this experiment, all spheres also had a constant inner 

susceptibility of 10 ppm, with the background set to 0 ppm. The composite magnetic induction field 

was calculated integrating the contributions from all spheres. The complex MR signal was then 

calculated assuming a constant unit magnitude value across the whole FOV, except for the largest 

sphere, which was set to zero magnitude. Subsequently, Gaussian noise was added to the complex data 

(complex image domain) equivalent to a peak signal-to-noise (SNR) value of 20. Susceptibility maps 

were calculated from the analytic field using a modified non-linear implementation of the non-linear 

morphology-enabled dipole inversion (MEDI) algorithm with dynamic model error reduction 

(MERIT)23-26, incorporating both continuous and discrete kernels (original MEDI toolbox available 

from http://weill.cornell.edu/mri/pages/qsm.html). Regularization weights were optimized using the L-

curve approach27. Other MEDI parameters were set to default values.

2.2.2 In vivo human experiment

A healthy subject (27 year-old female) was scanned (written consent was obtained in accordance with 

the Declaration of Helsinki) on a 7 Tesla whole body MRI system (Siemens Healthcare, Erlangen, 



Germany) using a quadrature transmit, 32-channel reception head coil (Nova Medical Inc., 

Wilmington, Massachusetts, USA). A 3D, RF-spoiled, fully-flow compensated GRE sequence was used

with an optical prospective motion correction system – correcting motion for each k-space line28, and 

the following imaging parameters: repetition time/echo time = 20/9 ms; flip angle = 10°; bandwidth = 

120 Hz/pixel; matrix dimensions 504×608×88 and voxel size 0.33x0.33x1.25 mm3. The full k-space 

acquisition gave a scan time of 17:30 minutes. 

Complex channel data were processed as follows: (i) brain mask calculation (from root sum-of-squares 

modulus combination) using BET229 with a lenient fractional threshold of 0.1; (ii) channel-wise phase 

unwrapping and harmonic phase removal using HARPERELLA30 (STI Suite v1.42 

http://people.duke.edu/~cl160), with 100×100×50 zero-padding and 200 iterations; (iii) magnitude-

weighted, HARPERELLA-normalized channel phase combination; (iv) local field estimation using the 

spherical mean value filtering method with varying spherical kernels (VSHARP without deconvolution,

also available from the STI Suite) ranging from 25 mm radius at the center of the brain to 1 mm at the 

brain boundary31; finally, (v) susceptibility inversions using continuous and discrete implementations of

the MEDI algorithm (500 iterations for the internal conjugate gradient loop and 0.05 normalized 

residual as stopping criterion). In vivo GRE data were reconstructed for a large range of regularization 

parameters to generate L-curves. Subsequently, a blind rater (J.A.-C.) was presented with a randomized

subset of QSM inversions (n=6 continuous, n=6 discrete) including L-curve based optimal 

reconstructions, which were visually rated from 1 to 5 (1-2: under-regularized; 3: optimal; 4-5: over-

regularized) for contrast with the L-curve optimization approach.

3 Results

3.1 Forward model estimation using single-sphere phantoms

The experiment illustrated in Fig. 2 revealed that model accuracy is sphere-caliber dependent. Errors 

were observed at sphere/background interfaces, most remarkably for smaller spheres (Fig. 2a and 2c). 

For large spheres, discrepancies close to FOV boundaries between analytic and both numerical models 

were greater than those at interfaces (Fig. 2b), presumably due to periodic boundary errors generated 

by the Fourier transform. A closer inspection in the vicinity of sphere interfaces (Fig. 2c and 2d) 



revealed smoother solutions with fewer over-oscillations due to aliasing for the discrete kernel, i.e. 

more accurate results overall than those for the continuous kernel. Fig. 2e illustrated that for sphere 

diameters of up to 10% (relative to the total FOV, i.e. 25 pixels), error reduction for the discrete kernel 

was at least 5%.

--- FIGURE 2 NEAR HERE ---

3.2 QSM inversion for the eight-sphere phantom

QSM estimates were systematically more accurate for all sphere calibers using the discrete kernel (Fig. 

3a). A closer inspection of the resulting QSM inversions inside the simulated spheres revealed stronger 

Gibbs ringing for the continuous kernel (Fig. 3b and 3d) than for the proposed discrete formulation (i.e.

less structured artifacts in Fig. 3c and 3e). 

--- FIGURE 3 NEAR HERE ---

3.3 QSM inversion for in vivo human data

Both human (blind rater) and automated (L-curve based) approaches agreed on the optimal QSM 

reconstruction both for continuous and discrete kernels (Fig. 4). The optimal QSM reconstruction for 

the continuous kernel is shown in Fig. 5a. The difference map between both (continuous minus 

discrete) optimal reconstructions (Fig. 5b) highlighted remnant streaking and checkerboard errors (Fig. 

5c), presumably due to the discrete kernel ability to suppress such errors. In an attempt to identify the 

origin of such differences (due to the lack of a ground truth), two additional difference maps were 

computed, continuous (5c) and discrete (5d), relative to an over-regularized (continuous) solution. 

Over-regularization attenuates the strength of streaking, yet at the expense of edge definition at the 

interface between tissues with different magnetic susceptibility. The standard deviation of the 

difference between the optimal continuous result and the over-regularized solution was approximately 

2% larger (4.54 ppb) than that for the discrete kernel (4.46 ppb). Such differential behavior can be 

explained by larger oscillations in the medium-to-large scale components, which substantiate the notion

that the optimal continuous solution includes more streaking artifacts and errors in the neighborhood of

strong susceptibility variations. 



--- FIGURE 4 NEAR HERE ---

--- FIGURE 5 NEAR HERE ---

4 Discussion

It has been suggested the current state-of-the-art continuous forward model inferred by Salomir et al., 

200316 and Marques and Bowtell, 200517 is prone to aliasing/digitization errors due to limited 

bandwidth in the MRI measurement18. To address the shortcoming, we propose the use of discrete 

Laplacian operators resulting from 3D finite-differences and the discrete Fourier transform to derive the

dipole kernel. The proposed discrete forward model showed an improvement over the continuous 

counterpart, i.e. it generated smoother results and returned more accurate field representations at sharp 

magnetic susceptibility interfaces (Fig. 2c and 2d). Such behavior was markedly noticeable for small 

synthetic spheres (Fig. 2e), whereas large-scale responses were similar for both kernels (Fig. 2b) with 

discretization-independent errors plausibly driven by the intrinsic limitations of the Fourier transform 

and its periodic boundary conditions. In theory, finite-difference operators could introduce errors; 

however, in practice, this study revealed improved performance for the proposed discrete formulation 

near sharp susceptibility boundaries where the continuity assumptions of spectral methods are often 

violated (Fig. 2). An important consequence of the proposed discretization scheme is rotational 

asymmetry around the z-axis for high-frequency kernel responses (Fig. 1). Although undesirable on 

theoretical grounds, this is often irrelevant since most susceptibility weighted MRI prescriptions are 

prescribed for resolution efficiency with anisotropic voxels1, which readily impose rotational 

asymmetries in the acquired data.

A major motivation for refining the forward model was to improve QSM inversion. We therefore 

evaluated the performance of the proposed discrete dipole kernel for susceptibility estimation using a 

3D volume containing eight spheres of different caliber. Such an experiment also yielded discrete 

kernel solutions that were consistently more accurate, independently of sphere size, as a result of the 

successful suppression of over-oscillations at sphere boundaries (Fig. 3). Reduced Gibbs ringing was 

an expected result since the proposed discrete kernel partly behaves as a low-pass frequency filter with 

a high cut-off frequency (see Fig. 1). For the inverse problem, consequently, the new kernel acts as a 

deconvolution filter. Such property might have an impact on the regularization term, as it might avoid 



excessive attenuation of true local variances often resulting from inaccurate model error compensation. 

This would also imply that Lagrange multipliers (i.e. regularization parameters) might not necessarily 

represent the same consistency/smoothing interplay for both kernel types, leading to differential L-

curve relationships and ultimately, different optimal parameters. The latter was confirmed with in vivo 

MRI data using L-curve (point of maximum curvature) and visual rating methods (Fig. 4). Most 

notably, the optimal discrete kernel solution yielded better suppression of streaking and checkerboard 

artifacts (than the optimal continuous kernel QSM) without apparent loss of anatomical detail (Fig. 5). 

The sharpening properties of the discrete kernel in the inverse problem scheme enable the use of 

stronger regularization weights, which in turn helped reduce noise and streaking artifacts without loss 

of anatomical detail.

There are certain applications, for example QSM-based venography or the study of small iron-rich 

nuclei, where the sharpening properties of the newly proposed kernel might result in relevant 

improvements to the measurement. Although this was not addressed specifically in this study, a future 

investigation is warranted. As a final note, the re-formulation of the dipole kernel is a straightforward 

implementation to existing QSM routines, which results in highly comparable processing times.

5 Conclusions

We presented a new formalism for the forward problem of estimating a local induction field from an 

arbitrary magnetic susceptibility distribution. The proposed approach uses finite-difference operators 

and the discrete Fourier transform to solve the associated differential equations. Such an approach 

yielded an alternative dipole kernel that demonstrated better fits to analytic solutions, and showed less 

over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative 

to the continuous kernel. When applied to the inverse problem, the proposed kernel generated less 

errors and streaking artifacts, suggesting QSM with kernel discretization is preferable for the study of 

small deep brain nuclei or the subtleties of the venous vasculature with ultra-high field MRI – a topic 

for future research.

This study opens the door to a new area of QSM research, where additional improvements to the 

forward model might also result from using finite elements, or from replacing the Fourier transform 



entirely by other methods to solve the associated differential equations. In addition, establishing more 

appropriate boundary conditions might also contribute to improving forward model estimates at large 

and medium scales which, in turn, may enable the prescription of reduced FOV acquisitions, or may 

circumvent the need for zero padding.
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8 Figure captions:

Figure 1. Frequency responses (Y-axes) for continuous (blue) and discrete (red) dipole kernels. X-axes 

represent integer indices around the k-space center (for a volume of 401 voxels, each side). Only 

positive indices are displayed. Each panel row represents a different φ angle; columns denote θ angles, 

in the spherical coordinate system (ISO convention).



Figure 2. Magnetic inductions across the center of the Z-axis calculated with numerical and analytic 

solutions for (a) 9-voxel and (b) 51-voxel diameter spheres. Magnified view of the sphere/background 

interface for the difference between analytic and both numerical models in (c) 9-voxel and (d) 51-voxel

diameter spherical phantoms. (e) Mean-root-square error (MRSE) ratio for continuous relative to 

discrete numerical solutions of the forward model as a function of sphere caliber.  



Figure 3. Phantom reconstructions. (a) Mean susceptibility error ratio for continuous relative to discrete

numerical solutions as a function of sphere caliber. QSM reconstruction magnified view of the 7-pixel 

diameter sphere using (b) continuous and (c) discrete kernels, along with profile plots for the mean of 

three lines in the coronal axis, same spheres, for the (d) continuous and (e) discrete kernels.

Figure 4. L-curves for in vivo MRI data using continuous (blue) and discrete (red) kernels. 



Figure 5. In vivo QSM reconstructions. (a) Axial, coronal and sagittal cuts for optimal QSM using the 

continuous kernel. (b) Difference between continuous and discrete kernel solutions. (c) Difference 

between optimal continuous solution and an over-regularized continuous solution (lambda = 150). (d) 

Difference between optimal discrete solution and the same over-regularized continuous solution. 
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