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Abstract— Following the increasing popularity of the mobile
ecosystem, cybercriminals have increasingly targeted mobile
ecosystems, designing and distributing malicious apps that steal
information or cause harm to the device’s owner. Aiming to
counter them, detection techniques based on either static or dy-
namic analysis that model Android malware, have been proposed.
While the pros and cons of these analysis techniques are known,
they are usually compared in the context of their limitations
e.g., static analysis is not able to capture runtime behaviors, full
code coverage is usually not achieved during dynamic analysis,
etc. Whereas, in this paper, we analyze the performance of
static and dynamic analysis methods in the detection of Android
malware and attempt to compare them in terms of their detection
performance, using the same modeling approach.

To this end, we build on MAMADROID, a state-of-the-art de-
tection system that relies on static analysis to create a behavioral
model from the sequences of abstracted API calls. Then, aiming
to apply the same technique in a dynamic analysis setting, we
modify CHIMP, a platform recently proposed to crowdsource
human inputs for app testing, in order to extract API calls’
sequences from the traces produced while executing the app
on a CHIMP virtual device. We call this system AUNTIEDROID
and instantiate it by using both automated (Monkey) and user-
generated inputs. We find that combining both static and dynamic
analysis yields the best performance, with F -measure reaching
0.92. We also show that static analysis is at least as effective
as dynamic analysis, depending on how apps are stimulated
during execution, and investigate the reasons for inconsistent
misclassifications across methods.

I. INTRODUCTION

In today’s digital society, individuals rely on smart mobile
devices and “apps” for a plethora of social, productivity,
and work activities. Inevitably, this makes them valuable
targets for cybercriminals, thus, more and more malware are
developed every year exclusively targeting mobile operating
systems [10] and, given its market share [33], Android in
particular. Compared to desktop malware, malicious apps pose
new threats as attackers might be able to, e.g., defeat two-
factor authentication of banking systems [37] or continuously
spy on victims through their phone camera or microphone [36].

As a result, the research community has proposed a number
of techniques to detect and block Android malware based
on either static or dynamic analysis. With the former, the
code is recovered from the apk, and features are extracted
to train machine learning classifiers; with the latter, apps are
executed in a controlled environment, usually on an emulator
or a virtual device, via a real person or an automatic input
generator such as Monkey [17]. In particular, a few approaches
have been recently proposed aiming to improve accuracy of

malware detection. (1) Behavioral Modeling: Mariconti et al.’s
MAMADROID [25] builds from static analysis, a behavioral
model of malware samples, relying on the sequences of
abstracted API calls; this yields higher accuracy than state of
the art, while also providing higher resilience to API changes
and reducing the need to re-train models. (2) Input Generators:
previous work [4, 8, 23] has introduced input generators that
aim to mimic app usage by humans, more effectively than the
standard Android pseudorandom input generator (Monkey),
thus improving the chances of triggering malicious code
during execution. (3) Hybrid Analysis: by combining static
and dynamic analysis, hybrid analysis has been used to try
and get the best of the two worlds, typically, following two
possible strategies. One approach is to use static analysis to
gather information about the apps under analysis (e.g., intent
filters an app listens for, execution paths to API calls, etc.) and
then ensuring that all execution paths of interest are triggered
during the dynamic analysis stage [8, 38]; in the other, features
extracted using static analysis (e.g., permissions, API calls,
etc.) are combined with those from dynamic analysis (e.g., file
access, networking events, etc.), and used to train an ensemble
machine learning model [21, 22].

Motivation. Overall, despite a large body of work propos-
ing various Android malware detection tools, the research
community’s stance on whether to use static or dynamic
analysis primarily stems from the systems limitations and the
vulnerabilities to possible evasion techniques faced by each
approach. For instance, static analysis methods that extract
features from permissions requested by apps often yield high
false positive rates, since benign apps may actually need
to request permissions classified as dangerous [14], while
systems that perform classification based on the frequency
of API calls [1] often require constant retraining; moreover,
reflection and dynamic code loading can be used to evade static
analysis based detection. On the other hand, the accuracy of
dynamic analysis is greatly dependent on whether malicious
code is actually triggered during test execution, and in general
dynamic analysis often does not scale. Nonetheless, we still
lack a deep understanding of the advantages and disadvantages
of each method in terms of simple detection performance.

Roadmap. In this paper, we aim to fill this research gap by
addressing the following research questions: (1) Can we extend
malware detection techniques based on behavioral modeling
(in static analysis, as per MAMADROID [25]) to dynamic



analysis? (2) How do different malware analysis methods
(i.e., static, dynamic, and hybrid analysis) compare to each
other, in terms of detection performance, when the same
technique is used to build malware detection models? Why?
(3) Does having humans test apps during dynamic analysis
improve malware detection compared to pseudorandom input
generators such as Monkey [17]?

Aiming to answer these questions, we first of all modify
CHIMP [2], a platform allowing to crowdsource human inputs
to test Android apps, to support building a behavioral model
based malware detection system (as per MAMADROID [25]).
That is, we use the same approach as MAMADROID to extract
sequences of abstracted API calls from the traces produced
while executing the app in a virtual device (instead of the apk).
We call this system AUNTIEDROID and instantiate it by using
both automated (Monkey) and user-generated inputs. Then,
we evaluate each analysis method, using the same modeling
approach (i.e., a behavioral model relying on Markov chains
built from the sequences of abstracted API calls), the same
features, and the same machine learning classifier.
Contributions. Overall, we make several contributions. First,
we introduce AUNTIEDROID, a virtual device that extends
CHIMP [2] and allows for the collection of the method traces
(from which features are extracted) produced by an app when
executed. Second, we build and evaluate a hybrid system
combining behavioral-based static and dynamic analysis fea-
tures. Finally, we compare the different methods, showing
that hybrid analysis performs best and that static analysis is
at least as effective as dynamic analysis.

II. RELATED WORK

A. Static Analysis
Android malware detection based on static analysis aims to

classify an app as malicious or benign by relying on features
extracted from the app’s apk, i.e., its source code. Techniques
presented in [14, 18, 32] build features from the permis-
sions requested by the apps, leveraging the fact that malware
often tend to request dangerous/unneeded permissions. This
approach, however, might be prone to false positives, as
benign apps might also request dangerous permissions [14].
Moreover, since Android 6.0, the permission model allows
users to grant permissions at run-time, when they are required,
thus some dangerous permissions might never actually be
granted (in fact, app developers often request permissions that
are never used [16]). Drebin [5] combines several features
extracted from the apps’ manifest as well as disassembled code
to train a classifier. Alas, techniques based on decompiled code
can be evaded using dynamic code loading, reflection, and the
use of native code [28, 30].

Other tools rely on API calls. DroidAPIMiner [1] performs
classification based on the API calls more frequently used by
malware. However, due to changes in the Android API, as well
as the evolution of malware, this requires frequent retraining
of the system as new APIs are released and new types of
malware are developed. Deprecation and/or addition of API

calls with new API releases is quite common, and this might
prompt malware developers to switch to different API calls.

Also based on static analysis is MAMADROID [25], which
uses behavioral models built from the sequences, rather than
the frequency, of API calls. Specifically, it operates by charac-
terizing the transitions between different API calls, involving
the following four stages: (1) It extracts the call graph of
an app, i.e., the control flow graph of the API calls in the
apk; (2) It parses the call graph as sequences of API calls,
which are abstracted to one of two modes, to either their
“family” or package names. In package mode, an API call
is abstracted to its package name using the list of around
338 packages from the Android and Google APIs, whereas
in family mode, to the google, java, javax, android,
xml, apache, junit, json, or dom families. Obfuscated and
developer specific API calls are abstracted to obfuscated
and self-defined, respectively; (3) Next, it models the
sequences of (abstracted) calls as Markov chains, and extracts
as features, the transition probabilities between states; and
finally (4) it trains a machine learning classifier geared to label
samples as benign or malicious.

MAMADROID achieves high detection accuracy (up to
0.99 F1-score), and preserves it for longer periods of time
compared to [1], as it builds models that are more resilient
to API changes and malware evolution. In this paper, for
the static analysis part, we build on MAMADROID, re-using
the source code publicly available from [26], to perform and
compare malware detection using a behavioral model built
from API sequences, while using both static, dynamic and
hybrid analysis (see Section IV).

B. Dynamic Analysis
Dynamic analysis based techniques attempt to detect mal-

ware by capturing the runtime behavior of an app, targeting
either generic malware behaviors or specific ones.

DroidTrace [39] uses ptrace (a system call often used by
debuggers to control processes) to monitor selected system
calls, allowing to run dynamic payloads and classify their
behavior as, e.g., file access, network connection, inter-process
communication, or privilege escalation. Canfora et al. [7]
extract features from the sequence of system calls by executing
apps on a VM, while Lageman et al. [20] models an app’s
behavior during execution on a VM using both system calls
and logcat logs. CopperDroid [35] uses dynamic analysis to
reconstruct malware behavior by observing executed system
calls. While CrowDroid [6], a client running on the device,
captures system calls generated by apps and sends them to a
central server, which builds a behavioral model of each app.
Whereas, we build a behavioral model of each app from the
sequences of API calls invoked (rather than whether an API
was invoked or not) during execution of the apps.

C. Hybrid Analysis
A few tools combine static and dynamic analysis, e.g.,

by using the former to analyze an apk and the latter to
determine what execution paths to traverse, or by combining
features extracted using both static and dynamic analysis.
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Fig. 1: High-level overview of AUNTIEDROID. An apk sample is run
in a virtual device, using either Monkey or human. Then, the APIs
called during execution are parsed and used for feature extraction.
Finally, the app is classified as either benign or malicious.

Andrubis [22] is a malware analysis sandbox that dynamically
builds a behavioral profile of an app using static (permissions,
services, package name etc.) and dynamic features (read-
ing/writing to files, sending SMS etc.). Note that, although we
perform method tracing, similar to Andrubis, we use a virtual
device and allow humans (and not only Monkey) to test the
apps, as the latter perform a random sequence of actions/events
which do not necessarily reflect how humans use the apps and
may not trigger certain malicious code. Also, we build the
behavioral profile of the apps from all API calls observed in
the method traces, rather than selected APIs.

Marvin [21] uses features from both static and dynamic
analysis to award malice scores (ranging from 0 to 10) to an
app and classify as malware apps with scores greater than
5, while CuriousDroid [8], an automated user interface (UI)
interaction for Android apps, integrates Andrubis [22] as its
dynamic module in order to detect malware. It decomposes
an app’s UI on-the-fly and creates a context-based model
generating series of interactions that aim to emulate real
human interaction. IntelliDroid [38] introduces a targeted input
generator that integrates with TaintDroid [13] aiming to track
sensitive information flow from a source (e.g., a content
provider such as contact list database) to a sink (e.g., network
socket). It allows the dynamic analysis tool to specify APIs
to target and generates inputs in a precise order that can be
used to stimulate the Application Under Analysis (AUA) to
observe potential malicious behavior.

Since there are several entry points into an Android app
(e.g., via an activity, service, and broadcast), dynamically
stimulating an AUA is usually done using tools like Monkey
or MonkeyRunner, or humans. Targeted input generation tools
such as CuriousDroid and Intellidroid aim to provide an
alternative stimulation of apps that is closer to stimulation by
humans and more intelligent than Monkey and MonkeyRunner.

Finally, we refer the reader seeking more details on the
large body of work on Android malware to useful surveys of
Android malware families and detection tools in [3, 15, 34] as
well as an assessment of Android analysis techniques in [31].

III. AUNTIEDROID: BEHAVIORAL MODELING ON A
VIRTUAL DEVICE

We now present AUNTIEDROID, a system performing An-
droid malware detection based on behavioral models extracted
via dynamic analysis. Our main objective is to compare

its performance to its static analysis counterpart, i.e., MA-
MADROID [25]. In fact, we build on it, in that we again model
the sequences of (abstracted) calls as Markov chains, and use
the transition probabilities between states as features.

In order to build the behavioral model in dynamic analysis,
we modify a virtual device to allow us to capture the sequence
of API calls from the runtime execution trace of apps. We
call the resulting system AUNTIEDROID, and summarize its
operation in Fig. 1. First, we execute apps in a virtual device,
stimulated by either an automated program (Monkey) or a
human. We then parse the traces generated by the executions,
and extract features for classification. The rest of this section
presents the details of each component.

A. Virtual Device
As mentioned above, the first step in AUNTIEDROID is to

execute apk samples in a virtual device with either (i) human
users or (ii) an UI automation tool like the Monkey [17]. Our
virtual device testbed, described in detail below, builds on
CHIMP, an Android testing system recently presented in [2]
which can be used to collect human inputs from mobile apps.
CHIMP [2]. CHIMP virtualizes Android devices using the
Android-x86 platform, running behind a QEMU instance on
a Linux server. Although it uses an x86 Android image,
CHIMP actually supports two application binary interfaces
(ABI), i.e., both ARM and x86 instruction sets are supported.
Once running, the virtualized device can be stimulated by
either a locally running automated tool (e.g., Monkey), or the
UI can be streamed to a remote browser, allowing real humans
to interact with it. CHIMP can be used to collect a wide range
of data (user interactions, network traffic, performance, etc.)
as well as explicit user feedback; however, for the sake of
AUNTIEDROID, we modify it to generate and collect run-time
traces, i.e., the call graph of an app’s interactive execution.
Modifications to CHIMP. To effectively monitor malware
execution, we substantially modify CHIMP from the prototype
presented in [2], which was primarily designed to enable large-
scale, human testing of benign apps. In fact, the original pro-
totype supports code instrumentation via a Java code coverage
library called EMMA, unfortunately, EMMA requires an app’s
source code to be instrumented, which is often not accessible
for closed-source apps such as those analyzed in our work.
Therefore, we modify CHIMP to get access to debug level
run-time information from un-instrumented code. Note that
in Android, each app runs on a dedicated VM which opens
a debugger port using Java’s Debug Wire Protocol (JWDP).
As long as the device is set as debuggable (ro.debuggable
property), we can connect to the VM’s JWDP port to activate
VM level method tracing.

We also have to activate tracing: in Android, one can
either use Android’s Activity Manager (AM) or the DDM
Service. Both end up enabling the same functionality – i.e.,
startMethodTracing on dalvik.system.VMDebug and
android.os.Debug – but through different approaches. That
is, AM (via adb am) exposes a limited API that eventually
reaches the app via Inter-Process Communication (IPC), while
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the DDM Service (DDMS, as used by Android Studio) opens
a connection directly to the VM’s debugger, providing fine
grain control over the tracing parameters. We choose the
second approach since it is parameterizable, allowing us to
set the trace buffer size, which by default (8MB) can only
hold a few seconds of method traces. Hence, we implement a
new DDM Service in CHIMP, using the ddmlib library [11]
to communicate with the VMs and activate tracing. Our
DDM service multiplexes all tracing requests through a single
debugger and we further modify the ddmlib tracing methods
to dump traces to the VM file system, and set the trace buffer
size to 128MB. However, apps tested on the virtual device
can generate more than 128MB of traces, thus, we add a
background job that retrieves and removes traces from the
VMs every 30s. Besides preventing the tracing buffer from
filling up, this lets us capture partial traces for apps that might
crash during stimulation.

B. App Stimulation
As mentioned, to stimulate the AUA, we use both Monkey

and humans.
Monkey [17]. Monkey is Android’s de-facto standard UI
automation tool used to generate inputs. In AUNTIEDROID,
“Monkeys” (i.e., more than one Monkey instance) are de-
ployed on the same machine that the virtual devices are
running on. We set Monkeys to run a single app for 5 minutes
(one virtual device VM per app): each Monkey is setup to
generate events every 100ms and ignore timeouts, crashes,
and security exceptions (although we still log and process
them). Setting Monkey to generate input for 5 minutes only
should not adversely affect code coverage, as prior work [9]
reports that most input generators achieve maximum coverage
between 5 to 10 minutes. As Monkey may generate events
at a higher frequency than some apps can process, we also
re-run offending apps with a decreased rate (300ms). As
discussed in Section IV-C, some apps fail to execute, for one
of three reasons: (i) they fail to install, (ii) crash, or (iii) have
no interactive elements (e.g., background apps), as observed
through logcat and from the Monkey output itself.
Humans. In order to have real users stimulate the samples, we
recruited about 5k workers (5,030) from the Crowdflower.com
crowdsourcing platform that are “historically trustworthy”. We
let them interact with the virtual device by streaming its UI
to their browser via an HTML5 client. The client transmits
user actions back to AUNTIEDROID, which translates them to
Android inputs and forwards them to the virtual device. In
addition to the virtual device UI, user controls were provided
to, e.g., move to the next app in the testing session.

Each user was given 4 randomly selected apps from our
dataset and told to explore as much of each app’s functionality
as possible before proceeding to the next app. CHIMP already
provides heuristics to discard users with low engagement, and
we do not enforce a lower bound on the time users must spend
testing apps, since given the nature of our sample, some apps
might have limited interaction opportunities. Consequently, we
aim to have a median of at least three different users stimulate
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Fig. 2: Cumulative distribution function of the (a) number of apps
tested per tester, and (b) number times apps are tested.

each app. In Fig. 2(a) and 2(b), respectively, we plot the CDF
of the number of apps each user tests and the number of times
an app is tested. We also limit app install time to 40s to avoid
frustrating the users. We run the test sessions between August
9th and 11th, 2017 and we pay each user $0.12 per session.
Ethics. For the experiments involving humans, we have ob-
tained approval through our institution’s ethical review pro-
cess. Although we requested basic demographic data (age,
gender, country), we did not collect privacy sensitive informa-
tion, and users were instructed not to enter any real, personal
information, e.g., account details. Also note that we provided
email credentials to use when required, so that they did not
have to use their own credentials or other contact information.

C. Trace Parsing
As discussed above, our virtual device component takes

care of collecting method traces, network packets, and event
logs generated when the app is running. To parse these traces,
one could use different strategies, for instance, tracking data
flow from selected sources (e.g., the device id using the
getDeviceID() API) to sinks (e.g., a data output stream
using the writeBytes() API), or using frequency analy-
sis to derive commonly used API calls by malware (as in
DroidAPIMiner [1]).

AUNTIEDROID follows the behavioral model based ap-
proach of MAMADROID, based on the sequences of API
calls that the app performs at runtime, rather than statically
extracting it from the apk. This way, we aim to capture
different behavior when benign and malicious apps invoke API
calls. For instance, a benign SMS app might receive an SMS,
get the message body using getMessageBody() and after-
wards, display the message to a user via a view by executing,
in sequence, setText(String msg) and show() methods
of the view. A malicious app, however, might exfiltrate all
received SMSs by executing sendTextMessage() for every
message before displaying it.

To derive the API call sequences, we collect the method
traces and transform them into a call graph using dmtrace-
dump [29]. From the call graph, we then extract the se-
quences using a custom script, while preserving the number
of times an API call is executed as a multiplier in each
sequence. As discussed above, to avoid losing traces when
the trace buffer is full, we collect virtual device traces every
30s, and clear the buffer for incoming traces. Along the
same lines, we have a median of three different users run
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Fig. 3: Aggregated sequence of API calls showing the direct children
of call air.com.eni.ChefJudy030.AppEntry.onNewIntent, and
the number of times they are called (numbers on the arrow).

the same app to improve the quality of the traces gath-
ered. As a result, we aggregate the sequences of API calls
they generate for the same app into a single sequence. In
Fig. 3, we provide an example of the sequence for the API
call air.com.eni.ChefJudy030.AppEntry.onNewIntent
when aggregated from two other sequences. We do not show
the params and return type to ease presentation. Also, in some
cases Trace 1 may contain calls in a sequence that is not called
in Trace 2, hence, the aggregated trace also reflects such calls.

D. Feature Extraction
As in MAMADROID [25], which operates in one of two

modes i.e., family or package, AUNTIEDROID also abstracts
each API call in the parsed trace to its corresponding family
and package names using the Android API packages from API
level 26 and the latest Google API packages. The abstraction
allows for resilience to API changes in the Android framework
as packages are added or deprecated less frequently compared
to single API calls. It also helps to reduce the feature set size
as the feature vector of each app is the square of the number
of states in the Markov chain.

Also note that we modify MAMADROID’s method of ab-
stracting API calls: before performing abstraction to packages
or families, we first abstract an API call to its class using a
whitelist approach. We do this to avoid abstracting an API
call to the wrong package or family in case an app prefixes
its package name with one from the Android or Google APIs.

We then build a behavioral model from the abstracted
sequences of API calls by building a Markov chain that models
the sequences from which we extract features used to classify
an app as either benign or malicious. More specifically,
features are the probability of transitioning from one state (i.e.,
API call) to another in the Markov chain representing the API
call sequences in an app.

E. Classification
Finally, we perform classification, labeling an app as benign

or malware using a supervised machine learning classifier.
More specifically, we use Random Forests with 10-fold cross

validation. We choose Random Forests since it performs well
on binary classification over high-dimension feature spaces.

IV. EXPERIMENTAL SETUP

A. Overview of the experiments
As discussed in Section I, we aim to perform a comparative

analysis of Android malware detection systems based on
behavioral models, using static, dynamic, and hybrid analysis.
To this end, we perform three sets of experiments. (1) Static:
We evaluate MAMADROID, which performs Android malware
detection based on behavioral modeling in static analysis; (2)
Dynamic: We analyze the detection performance of AUN-
TIEDROID (see Section V-B), which uses dynamic analysis,
while also comparing automated input generation (Monkey)
and human-generated input; (3) Hybrid: We combine static
and dynamic analysis by merging the sequences of API calls
from both methods, once again comparing Monkey and human
based input generation.

All methods operate in one of two levels of abstraction,
i.e., API calls are abstracted to either their family or package
names. Overall, we use the same modeling technique and the
same machine learning classifier. More specifically, we use the
Random Forests classifier and in family (resp., package)
mode, we use a configuration of 51 (resp., 101) trees with
depth equal to 8 (resp., 32).

B. Datasets
Our evaluation uses two datasets: recent malware samples

and a dataset of random benign apps, as discussed below.
Benign Samples. For consistency, we opt to re-use the set of
2,568 benign apps labeled as “newbenign” in [25]. In June
2017, we re-downloaded all the apps in order to ensure we
have working apps and their latest version, obtaining 2,242
(87%) apps. We complement this list with a 33% sample of
the top 49 apps (as of June 2017) from the 29 categories listed
on the Google Play Store, adding an additional 481 samples.
Overall, our benign dataset includes a total of 2,723 apps.
Malware Samples. Our malware dataset includes samples
obtained in June 2017 from VirusShare – a repository of apps
that are likely to be malicious. More precisely, VirusShare
contains samples that have been detected as malware on
various OS platforms, including Android. To obtain only
Android malware, we check that each sample is correctly
zipped and packaged as an apk, contains a Manifest file, and
has a package name. Using this method, we gather 2,692 valid
Android samples labeled as malware in 2017 by the antivirus
engines on VirusShare. In addition, we add two more apps
(Chef Judy and Dress Up Musa) from the Google Play Store
reported as malware in the news and later removed from the
play store.1 In total, our malware dataset includes 2,694 apps.

C. Data Pre-Processing
Static Analysis. For static analysis, we re-use the source code
of MAMADROID available on bitbucket. We set a timeout
limit of six hours for call graph extraction, and are unable to

1https://goo.gl/hBjm0T and https://goo.gl/IQprtP
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Failure Benign Malware

Already installed 10 9
Contains native code not compatible with the device’s CPU 0 2
App’s dex files could not be optimized and validated 0 1
Apk could not be unarchived by Android aapt 3 4
Shared library requested by app is not available on the device 0 1
Does not support the SDK (version 4.4.2) on the device 36 6
Requests a shared user already installed on the device 0 1
Android’s failure to parse the app’s certificate 0 4
Fails to complete installation within time limit (40s) 39 23

Total: 88 51

TABLE I: Reasons why apps fail to install on the virtual device.

obtain the call graphs for 98 (3.6%) and 251 (9.3%) apps in the
benign and malware datasets, respectively. This is consistent
with experiments reported in [25], due to the timeout but also
to samples exceeding memory requirement (we allocate 16GB
for the JVM heap space).
Dynamic Analysis. During dynamic analysis, before running
the apps on the virtual device, we process them statically
using androguard2 to determine whether they have activities.
Out of the total 5,417 apps in our datasets, we find that 82
apps contain no activity. As interaction with an Android app
requires visuals that users can click, tap, or touch to trigger
events, we therefore exclude these from the samples to be
stimulated using Monkey or humans. We also remove 244
apps that do not have a launcher activity, since launching these
apps on the virtual device will have no visual effect; i.e., no
UI will be displayed to the tester. Finally, we do not include
139 apps which fail to install on the virtual device for one of
the reasons shown in Table I.
Hybrid Analysis. To obtain a hybrid detection system, we
merge the sequences of abstracted API calls (from which
we extract features) obtained using both static and dynamic
analysis. More specifically, we merge the sequences of API
calls following the same strategy used to aggregate the traces
discussed in Section III-C. Naturally, for hybrid analysis, we
use samples for which we have traces for both static and
dynamic analysis.
Final Datasets. In Table II we report, in the right-most
column, the final number of samples in each dataset, for
each method of analysis. During dynamic analysis, we fail to
obtain traces for 724 apps when stimulating with Monkey and
693 when stimulating with humans. This happens for various
reasons, and we defer further analysis to the full version of the
paper Note that the hybrid analysis method consists of samples
for which we obtain traces both statically and dynamically.

V. EVALUATION

We now present the results of our experiments, reporting de-
tection performance and, for dynamic analysis, code coverage.

A. Static Analysis
To evaluate the static analysis technique, we use a slightly

modified version of MAMADROID [25]. Also note that,
while [25] uses API level 24, we use the more recent API level

2https://github.com/androguard/androguard

Analysis Stimulator Category #Samples #Traces /
Call graphs

Static – Benign 2,723 2,625
(MAMADROID) Malware 2,694 2,443

Dynamic Human Benign 2,596 2,348
(AUNTIEDROID) Malware 2,356 1,911

Monkey Benign 2,596 2,336
Malware 2,356 1,892

Hybrid Static & Human Benign 2,596 2,235
Malware 2,356 1,708

Static & Monkey Benign 2,596 2,234
Malware 2,356 1,686

TABLE II: Datasets used to evaluate each method of analysis.

Analysis Stimulator Mode F -measure Precision Recall

Static – Family 0.86 0.84 0.88
(MAMADROID) Package 0.91 0.89 0.93

Dynamic Human Family 0.85 0.80 0.90
(AUNTIEDROID) Package 0.88 0.84 0.92

Monkey Family 0.86 0.84 0.89
Package 0.92 0.91 0.93

Hybrid Static & Human Family 0.87 0.86 0.88
Package 0.90 0.88 0.91

Static & Monkey Family 0.88 0.88 0.89
Package 0.92 0.92 0.93

TABLE III: Results achieved by all analysis methods while using
human and Monkey as app stimulators during dynamic analysis.

26. We run our experiments on the samples (2,625 benign and
2,443 malware) for which we obtain call graphs, and report the
F -measure obtained when operating in family and package
modes in the top two rows of Table III. We observe that the
latter performs slightly better, achieving F -measure of 0.91,
compared to 0.86 in the former which is consistent with the
results reported in [25]. The package mode achieves higher
F -measure than family mode as it captures the behavior of
apps at a finer granularity which reveals more distinguishing
behaviors between malware and benign apps as demonstrated
by higher precision and recall (see Table III).

B. Dynamic Analysis
Next, we report the results achieved by dynamic analysis

(i.e., using AUNTIEDROID), comparing between stimulation
performed by Monkey and humans.
Detection Performance. For Monkey, we use the dataset
shown in Table II, i.e., on 2,336/1,892 samples for be-
nign/malware. When AUNTIEDROID runs in family mode,
it achieves F -measure, precision, and recall of 0.86, 0.84, and
0.89, respectively. Whereas in package mode, it achieves F -
measure, precision, and recall of 0.92, 0.91, and 0.93, respec-
tively, as reported in Table III. When humans stimulate the
apps (2,348 benign and 1,911 malware) and AUNTIEDROID
runs in family mode, we get F -measure, precision, and recall
of 0.85, 0.80, and 0.90, respectively. Whereas when operating
in package mode, F -measure, precision, and recall go up to
0.88, 0.84, and 0.92, respectively (see Table III).

Overall, lower F -measures in all modes of operation in
dynamic analysis compared to static analysis (i.e., AUN-
TIEDROID vs MAMADROID) are due to increases in false
positives. In fact, recall is around 0.90 on all experiments,
while precision is as low as 0.80 (family mode with humans).
Code Coverage. As mentioned, the performance of dynamic
analysis tools is affected by whether malicious code is trig-
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Fig. 4: Cumulative distribution function of the percentage of code
covered in benign and malicious apps when they are stimulated by
Monkey and human.

gered during execution. Since AUNTIEDROID relies on the
sequences of API calls to detect malware, we analyze code
coverage of each app to measure how much of an app’s API
calls Monkey/humans successfully trigger. Thus, we focus on
API calls that begin with the package name of the app.

For the apps for which we obtain traces (85% and 86%,
resp., for Monkey and human), Monkey is able to trigger on
average, 20% of the API calls. In Fig. 4, we plot the cumulative
distribution function (CDF) of the percentage of code covered,
showing that for 90% of the benign apps, at least 40% of
the API calls are triggered by Monkey. Whereas with respect
to the malware samples, at least 57% of the API calls are
triggered. As for humans, we find that users are able to trigger,
on average, 14% of the API calls. Similarly, Fig. 4 shows that
at least 29% of the API calls are triggered in 90% of the
benign apps. However, with 90% of the malicious apps, 41%
of the API calls are triggered.

With both stimulators, there is a higher percentage of code
coverage in the malware apps than in benign apps. This is
due to malware apps being smaller in size compared to the
benign apps in our dataset. The mean number of API calls
in the benign and malware apps are respectively, 43,518 and
16,780. However, with respect to stimulators, Monkey is able
to trigger more code in apps compared to humans, which is
likely due to Monkey triggering more events than humans in
the time each spend testing the apps.

We also investigate the prevalence of dynamic code loading
in the wild, as it could be used for malicious purposes [28]
(e.g., to evade static analysis). Due to space limitations, we
defer findings to the full version of the paper [27].

C. Hybrid Analysis
We now report the results achieved by hybrid analysis,

comparing between stimulation performed by Monkey and
humans. Recall that only samples for which we have obtained
a trace in both static and dynamic analysis, as reported in
Table II, are merged and evaluated.

In family mode, the hybrid system, using traces produced
by Monkey, achieves an F -measure of 0.88, whereas when
using traces produced by humans, 0.87. When operating in
package mode and using Monkey, it achieves an F -measure
of 0.92, and 0.90 with humans, as reported in Table III.

Note that we do not report code coverage in hybrid analysis
because the traces from static analysis are an overestimation

(a) (b)

Fig. 5: Cumulative distribution function of the percentage of code
covered (a) when apps are stimulated by humans and Monkey, and
(b) when the correctly classified and misclassified apps are stimulated
by humans and Monkey.

of the API calls in the app. Hence, merged traces do not reflect
code covered in each app when executed.

VI. COMPARATIVE ANALYSIS

We now set out to examine and compare: (1) the detection
performance of each analysis method, i.e., detecting malware
based on a behavioral model built via static, dynamic, or
hybrid analysis, (2) the samples that are misclassified in each
method, and (3) the samples misclassified in one method but
correctly classified by another. Due to each method having
inherent limitations, it is not clear from prior work how they
compare against each other. Therefore, in this section, we shed
light on their comparisons.

A. Detection Performance
We start by comparing the results of the different analysis

methods. Recall that we have abstracted each API call to
either its family or package name, therefore, each method
operates in one of two modes. When operating in family
mode, with static analysis we achieve an F -measure of 0.86,
whereas, with dynamic analysis, we achieve F -measure of
0.86 when apps are stimulated by Monkey and 0.85 when
stimulated by humans (See Table III). In package mode, we
achieve F -measure of 0.91 with static analysis, whereas with
dynamic analysis we achieve F -measure of 0.92 when apps are
stimulated by Monkey and 0.88 when stimulated by humans
(See Table III).

The results show that static analysis is at least as effective as
dynamic analysis depending on the app stimulator used during
dynamic analysis. We believe this is because the behavioral
model used to perform detection primarily leverages API calls.
Although static analysis is not able to detect maliciousness
when code is loaded dynamically, it provides an overestimation
of the API call sequences in the apk. Consequently, all
behaviors that can be extracted from the apk are actually
captured by the static analysis classifier. On the other hand,
dynamic analysis captures only the behavior exhibited by the
samples during runtime. Hence, any behavior not observed
during runtime is not used in the decision-making of the
dynamic analysis classifier.

To verify this hypothesis, we evaluate how the percentage
of code covered differs when different app stimulators are
employed as well as in correctly classified and misclassified
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samples. From Fig. 5(a), we observe that when Monkey is
used as the app stimulator, at least 48% of the API calls are
triggered in 90% of the samples, compared to 35% when they
are stimulated by humans. Similarly, as shown in Fig. 5(b),
49% of the API calls are triggered in 90% of the samples
correctly classified when Monkey is used to stimulate apps
compared to 44% of API calls in 90% of the apps that
are misclassified. When humans are used to stimulate the
apps, 40% of the API calls are triggered in 90% of samples
that are correctly classified compared to 38% triggered in
90% of samples misclassified. As a result of better code
coverage, dynamic analysis performs better when apps are
stimulated by Monkey compared to when apps are stimulated
by crowdsourced users. Therefore, we find that, other than the
non-susceptibility to evasion techniques such as dynamic code
loading, dynamic analysis tools based on API calls may have
no advantage over static analysis based tools unless the code
coverage is improved.

However, when traces from static and dynamic analysis are
merged into a hybrid system, in family mode, we achieve
F -measure of 0.88 using Monkey compared to 0.86 achieved
by both static analysis and dynamic analysis (with Monkey)
alone. Similarly, we achieve F -measure of 0.87 when the
dynamic traces are generated with humans stimulating the
apps compared to 0.86 and 0.85 achieved respectively by static
and dynamic (humans) analysis alone. In package mode, the
hybrid system achieves F -measure of 0.92 when the dynamic
traces are produced by Monkey and 0.90 with humans. The
hybrid system outperforms the dynamic analysis system in all
modes (i.e., family and package), as it also captures behavior
not exhibited during runtime execution of the apps as a result
of the overestimation from static analysis, while it improves
static analysis as it captures frequently used API calls – a
behavior that cannot be captured by static analysis – and API
calls that are dynamically loaded.

B. Misclassifications within each analysis method
Next, we examine the samples that are misclassified in each

method of analysis, aiming to understand the differences in the
model of the correctly classified and misclassified samples. We
perform our analysis on samples that have been classified by
all three methods in package mode.

We formulate and verify the hypothesis that misclassifi-
cations are due to missing API calls that are considered
“important” by the classifiers. To this end, we select the 100
most important features used by each classifier to distinguish
between potential malware and benign samples, and evaluate
the average number of these features present in each sample.
We select the 100 most important features because it rep-
resents, at most, about 10% of the features recorded in our
experiments. Recall that a feature in our detection technique
is the probability of evoking an abstracted API call, and
transitions not evoked during the experiments have probability
of 0. The maximum number of features with probability > 0
in our dataset is 1,869 (static analysis) and the minimum is
1,022 (dynamic analysis with humans). We expect that samples

that are misclassified will have a similar number of important
features as those of the opposite class.

Therefore, using the top 100 features for each classifier,
we compare the average number of the features in the true
positives (i.e., correctly classified malware samples) to the
false negatives (malware classified as benign), as well as true
negatives to false positives.
False Positives. We also count the number of false positives
(i.e., benign samples classified as malware) in each method
of analysis, respectively, when apps are stimulated by humans
and by Monkey during dynamic analysis. With the former,
there are 215, 317, and 209 false positives, respectively, with
static, dynamic, and hybrid analysis. With the latter, we get
217, 178, and 137 false positives with static, dynamic, and
hybrid analysis. Using the top 100 features, we find that the
false positives in static analysis exhibit similar behavior to that
observed in true positives. Specifically, they have, on average,
54.12±22.65 features out of the 100 most important features,
which is similar to 59.96±19.46 in true positive samples.
The same behavior is also observed in both dynamic and
hybrid analysis irrespective of the app stimulator. In Fig. 6,
we plot the CDF of the number of features present in each
classification type for all analysis methods when humans
stimulate apps during dynamic analysis and, in Fig. 7, with
Monkey. That is, the behavioral model of the false positives
in all analysis methods is similar to that observed on the true
positives. For example, in Fig. 6(c) (hybrid analysis) 90% of
the false positives have no more than 50 of the 100 most
important features (similar to the true positives – 49/100) while
true negatives reach 86 features out of 100.
False Negatives. Again, we count the number of false neg-
atives (i.e., malware samples classified as benign) in each
analysis method, resp., when apps are stimulated by humans
and Monkey. With the former, there are 148, 151, and 153
false negatives, respectively, in static, dynamic, and hybrid
analysis, while, with the latter, we get 149, 132, and 126
false negatives. In static analysis, we find that the behavioral
model of the false negatives are similar to that observed in
the true negatives. In particular, of the 100 most important
features used to distinguish malware from benign samples,
there are, on average, 82.08±11.75 features per false nega-
tive sample. The value is more similar to the 88.91±11.31
important features per true negative sample rather than the
59.96±19.46 important features per true positive sample. The
same result is also observed in dynamic analysis irrespective
of the stimulator, and in hybrid analysis as well. Recall that, in
Fig. 6 and 7, we plot the CDF of the number of features in each
classification type when, resp., human and Monkey are used
as the stimulator during dynamic analysis; e.g., in Fig. 7(b)
(dynamic analysis), 90% of the false negative samples have 84
of the 100 features, a value more similar to 89 features (true
negatives) rather than 70 features (true positives).

C. Misclassifications across analysis methods
Next, we attempt to clarify why some samples are misclas-

sified by one method of analysis but correctly classified by
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(c) Hybrid Analysis

Fig. 6: CDF of the number of features present (out of the 100 most important features) in each classification type for all analysis methods,
with human, during dynamic analysis.

0 20 40 60 80 100
Number of Important Features

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 n

um
be

r o
f s

am
pl

es

False Positives
False Negatives
True Positives
True Negatives

(a) Static Analysis

20 40 60 80 100
Number of Important Features

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 n

um
be

r o
f s

am
pl

es

False Positives
False Negatives
True Positives
True Negatives

(b) Dynamic Analysis

0 20 40 60 80
Number of Important Features

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 n

um
be

r o
f s

am
pl

es

False Positives
False Negatives
True Positives
True Negatives

(c) Hybrid Analysis

Fig. 7: CDF of the number of features present (out of the 100 most important features) in each classification type for all analysis methods,
with Monkey, during dynamic analysis).

another. The first important difference among the methods is
the code coverage: dynamic analysis does not cover the entire
code base of an app. Moreover, stimulating with Monkey vs
humans yield different code coverage. This might result in
a few different scenarios: 1) Dynamic analysis may not have
triggered the malicious code that is captured in static analysis;
2) Static analysis may reveal sequences of API calls that are
not necessarily malicious, but characterize many malicious
apps; 3) API calls not triggered during dynamic analysis
may affect the Markov chains leading to training poisoning
or misclassification of the sample, depending on whether the
sample is part of the training or the test set.

Scenarios (1) and (2) are possible reasons why static analy-
sis correctly detects some samples and dynamic analysis does
not, while (3) refers to the opposite. Although the hybrid
system captures sequences of API calls from both static and
dynamic analysis, it actually results in completely new Markov
chains and features for training and classification. While more
accurate than the individual methods, as the features values
change (i.e., the transition probabilities), it behaves differently.

Another important factor is the presence of loops in the
code waiting for user interaction. A good example are the
games Dumb ways to die 1 & 2. These apps have “minigames”
where a user has to click several times on the right spot of
the screen at the right time. When executed, the apps enter a
loop waiting for user action, and decide the next action based
on what happened before returning to waiting for user action.
Static analysis would catch the four different outcomes (i.e.,
execution path) of the loop, i.e., wrong click, correct click, the
user won the game, the user lost the game. Dynamic analysis

would repeat the loop many times depending on the continuous
clicks of the human or of Monkey, and the user/Monkey may
never win or lose. Static analysis will record the four possible
loop paths without repeating the sequences in its traces, and
the user/Monkey may not record all the possible sequences,
but have duplicated sequences due to multiple clicks resulting
in the same outcome. All these differences characterize the
recorded traces, and therefore may result in different Markov
chains and decisions among the methods.

VII. DISCUSSION & CONCLUSION

In this paper, we analyzed different Android malware detection
analysis methods, i.e., static, dynamic, and hybrid analysis,
using a common modeling approach. Specifically, we built a
behavioral model of each sample based on the sequences of
abstracted API calls, as done by MAMADROID [25], as it
effectively captures malicious behavior even in the presence
of changes in the Android API and evolving malware. We then
introduced a dynamic analysis tool, AUNTIEDROID, which
supports app stimulation via both humans (via crowdsourc-
ing [2]) and pseudorandom input generators (Monkey). We
also slightly modified MAMADROID to first abstract an API
call to its class, before abstracting to other modes, to avoid
abstracting to the wrong package. Then, to build a hybrid
system, we merged the sequences of API calls from static and
dynamic analysis. All three methods operate in one of two
modes, i.e., family and package, based on the level of ab-
straction; in family mode, static, dynamic (human/Monkey),
and hybrid analysis, respectively, achieve F -measures of 0.86,
0.85/0.86, and 0.88. Whereas, in package mode, we achieve
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0.91, 0.88/0.92, and 0.92.
Overall, our experiments showed that hybrid analysis per-

forms best because it captures the best of static and dynamic
analysis, as it is able to capture the sequences of API calls
that are actually executed and/or dynamically loaded (from
the latter), and capture code not executed during testing due
to code overestimation (from the former). Nonetheless, static
analysis performs well overall, often better than dynamic
analysis; when looking at misclassifications across methods,
we found that those occurring in dynamic but not in static
analysis are likely due to poor code coverage, thus, the feature
vectors in dynamic analysis may not reveal features (e.g., a
chunk of benign code in repackaged samples) that characterize
malware in our dataset. Finally, we showed that dynamic
analysis performs better with Monkey than humans because
the former is able to trigger more code than the latter.

Although some characteristics peculiar to AUNTIEDROID’s
virtual device (e.g., it runs as a hardware assisted virtu-
alization) should prevent evasion by malware that tries to
circumvent emulators/virtual devices using environment vari-
ables [12, 19, 24], we plan, as part of future work, to update
it to use a virtual device that appears as close to a real device
as possible. Moreover, we intend to use input generators that
target specific behaviors of an app, so as to target certain API
calls mostly used by malware rather than trying to improve
the code coverage during dynamic analysis. Finally, we plan to
detect and measure the prevalence of malware that specifically
employs dynamic code loading as an evasion technique.
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