
HIGHLIGHTED ARTICLE
| INVESTIGATION

A Bayesian Approach for Analysis of Whole-Genome
Bisulfite Sequencing Data Identifies

Disease-Associated Changes in DNA Methylation
Owen J. L. Rackham,*,1 Sarah R. Langley,*,1 Thomas Oates,†,1 Eleni Vradi,‡,1

Nathan Harmston,* Prashant K. Srivastava,§ Jacques Behmoaras,** Petros Dellaportas,††,‡‡,2

Leonardo Bottolo,‡‡,§§,***,2 and Enrico Petretto*,†,2

*Duke-National University of Singapore Medical School, 169857, Singapore, †Medical Research Council, London Institute of
Medical Sciences, Imperial College London, W12 0NN, §Division of Brain Sciences, Faculty of Medicine, and **Centre for

Complement and Inflammation Research, Imperial College London, SW7 2AZ, United Kingdom, ‡Department of Statistics, Athens
University of Economics and Business, GR10434, Greece, ††Department of Statistical Science, University College London, SW7 2AZ,
United Kingdom, ‡‡The Alan Turing Institute, London, NW1 2QR, United Kingdom, §§Department of Medical Genetics, University

of Cambridge, CB2 0QQ, United Kingdom, and ***Medical Research Council Biostatistics Unit, Cambridge Institute of Public
Health, CB2 0SR, United Kingdom

ABSTRACT DNAmethylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility remains
to be fully understood. Here, we present a novel Bayesian smoothing approach (called ABBA) to detect differentially methylated regions (DMRs)
fromwhole-genome bisulfite sequencing (WGBS). We also show how this approach can be leveraged to identify disease-associated changes in
DNA methylation, suggesting mechanisms through which these alterations might affect disease. From a data modeling perspective, ABBA has
the distinctive feature of automatically adapting to different correlation structures in CpG methylation levels across the genome while taking
into account the distance between CpG sites as a covariate. Our simulation study shows that ABBA has greater power to detect DMRs than
existing methods, providing an accurate identification of DMRs in the large majority of simulated cases. To empirically demonstrate the
method’s efficacy in generating biological hypotheses, we performedWGBS of primary macrophages derived from an experimental rat system
of glomerulonephritis and used ABBA to identify .1000 disease-associated DMRs. Investigation of these DMRs revealed differential DNA
methylation localized to a 600 bp region in the promoter of the Ifitm3 gene. This was confirmed by ChIP-seq and RNA-seq analyses, showing
differential transcription factor binding at the Ifitm3 promoter by JunD (an established determinant of glomerulonephritis), and a consistent
change in Ifitm3 expression. Our ABBA analysis allowed us to propose a new role for Ifitm3 in the pathogenesis of glomerulonephritis via
a mechanism involving promoter hypermethylation that is associated with Ifitm3 repression in the rat strain susceptible to glomerulonephritis.
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ONE of the most important epigenetic modifications di-
rectly affecting DNA is methylation, where a methyl

group is added toa cytosinebase in theDNAsequence creating
5-methylcytosine. High-throughput sequencing techniques,
such as whole-genome bisulfite sequencing (WGBS), now
allow for genome-wide methylome data to be collected at
single-base resolution (Harris et al. 2010). However, the chal-
lenge remains how to accurately identify DNA methylation
changes at the genome-wide level, and also account for the
complex correlation structures present in the data. While it is
still not fully understood how DNA methylation affects gene
expression, it has been shown that, depending on the location
of the modification, it can either have a positive or negative

effect on the level of expression of genes (Gutierrez-Arcelus
et al. 2013). How methylation patterns are regulated is com-
plex, and a full understanding of this process requires eluci-
dating the mechanisms for de novo DNA methylation and
demethylation, as well as the maintenance of methylation
(Chen and Riggs 2011). However, the majority of functional
methylation changes are found in methylation sites where
cytosines are immediately followed by guanines, known as
CpG dinucleotides (Ziller et al. 2011). These are not posi-
tioned randomly across the genome, but tend to appear in
clusters called CpG islands (CpGI) (Deaton and Bird 2011). It
has been also shown that there are concordant methylation
changes within CpGI, and in the genomic regions immediately
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surrounding CpGI (also known as CpGI shores or CpGS).
These “spatially correlated” DNA methylation patterns tend to
be more strongly associated with gene expression changes than
themethylation changes occurring in other parts of the genome
(Gutierrez-Arcelus et al. 2015). The correlation of methylation
levels between CpG sites is also highly dependent on their ge-
nomic context, varying greatly depending on where in the ge-
nome they are located (Zhang et al. 2015). For computational
convenience, the dependence of methylation patterns between
CpG sites is sometimes ignored by methods for differential
methylation analysis. Alternatively, a simplified estimation of
the correlation of methylation levels between neighboring
CpG sites (Bell et al. 2011) based on a user-defined parameter-
ization of the degree of smoothing is introduced. These strate-
gies might not be appropriate across different experimental
scenarios, and, instead, we propose an automatic probabilistic
smoothing procedure of the average methylation levels across
replicates (hereafter methylation profiles).

Beyond the initial univariate analysis ofmethylation changes
at each individual CpG (for instance, using the Fisher’s exact
test), the focus has shifted recently to identifying differentially
methylated regions (DMRs), since coordinated changes in CpG
methylation across genomic regions are known to impart the
strongest regulatory influence. With this aim, a number of tools
have been proposed to detect DMRs fromWGBS data. Typically,
these methods normally take one of two approaches: either
model thenumberofmethylated/unmethylated readsusingabi-
nomial, negative-binomial distribution or discrete distributions
with an overdispersion parameter) such as MethylKit (Akalin
et al. 2012), MethylSig (Park et al. 2014), and DSS (Feng et al.
2014). Alternatively, in order to account for the correlation of
methylation profiles between neighboring CpG sites, a smooth-
ing operator is applied in tools like BSmooth (Hansen et al.
2012), BiSeq (Hebestreit et al. 2013), DSS-single (Wu et al.
2015)—reviewed in Robinson et al. (2014) and Yu and Sun
(2016b). Methods based on spline- (Hansen et al. 2012), and
kernel- (Hebestreit et al. 2013) generally perform well in
practical applications. However, their results, and the
identification of the DMRs depend on the choice of the
smoothing parameters values, e.g., window size or kernel
bandwidth, a feature that makes them less general, and
prone to perform unequally when the default parameters

values are changed. In these cases, smoothing parameters
tuned by time-consuming sensitivity analysis based on different
parameterizations is usually recommended, although this strat-
egy is rarely applied in real data analyses. Other approaches,
e.g., metilene (Jühling et al. 2015), propose segmentation algo-
rithms to detect DMRs between single/groups of replicates
without making any model assumption about the data gen-
erating mechanism, and are less dependent on parameter
definition. Furthermore, several other algorithms have been
introduced, e.g., MOABS (Sun et al. 2014), Lux (Äijö et al.
2016), and MACAU (Lea et al. 2015), showing that bisulfite
sequencing data analysis is an active area of research.

To address this dependence on parameterization, and the
subsequent lack of generality, we propose a fully Bayesian
approach: approximate Bayesian bisulfite sequencing analysis
(ABBA). ABBA is designed to smooth automatically the un-
derlying—not directly observable—methylation profiles and
reliably identify DMRs while borrowing information verti-
cally across biological replicates and horizontally across
correlated CpGs (Figure 1). We highlight that this fully
Bayesian specification is not adopted by previous DMR de-
tection techniques, owing to the computational overhead of
the inferential procedure. We address the high computa-
tional demands by utilizing a highly efficient inferential
tool (Rue et al. 2009) for Bayesian models (see below, and
Materials and Methods). To demonstrate the benefits of
adopting ABBA over existing approaches, we report a com-
prehensive simulation study, where we benchmarked ABBA
against five commonly used alternative methods (Fisher Ex-
act Test, BSmooth, MethylKit, MethylSig, and DSS), consid-
ered a proposed new one (metilene), and assessed the effect
of a different biological and experimental conditions (by
varying parameters related to data integrity and quality of
the signal) on the performance of each method. The results
from this benchmark clearly indicate that ABBA is the best
performing method, being both robust to changes in factors
affecting data quality (e.g., sequencing coverage and errors
associated with the methylation call), and level of noise in
methylation signal. To benchmark our proposed method on
a real dataset, we generated new WGBS data in macrophages
from an established rat model of glomerulonephritis (Aitman
et al. 2006) and control strain, and used ABBA for the genome-
wide identification of DMRs. An additional comparison per-
formed with the best alternative method (arising from the
simulation study) showed that ABBA has increased power
to detect changes in DNA methylation involving genes and
pathways relevant to glomerulonephritis. Furthermore, this
comparison exemplifies how the DMR results obtained by
alternative approaches depend heavily on the choice of rele-
vant smoothing parameters (e.g., window size used in DSS).
We also integrated the DMR results of ABBA with transcrip-
tion factor binding site analysis, RNA-seq and ChIP-seq data
generated in the same system, and, in this, we revealed a pre-
viously unappreciated role for the Ifitm3 gene in the pathogen-
esis of glomerulonephritis, providing a proof-of-concept for
real data applications of the ABBA approach.
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Materials and Methods

Below, we report the key aspects of the latent Gaussianmodel
and Integrated Nested Laplace Approximation (INLA). The
interested reader can also refer to Rue and Martino (2007)
and Rue et al. (2009).

Latent Gaussian model

A latent Gaussian model (LGM) can be described by a three-
stage hierarchical model

yijxi; u � pðyijxi; uÞ; (1)

xju � N
�
mðuÞ;Q21ðuÞ�; (2)

u � pðuÞ; (3)

where yi; i ¼ 1; . . . ; n; are the observed values, x is an n-
dimensional vector of latent variables, and u is p-dimensional
vector of model parameters. (1) is the observations equation,
and describes the probabilistic model for each observation con-
ditionally on the latent variable xi and themodel parameters u;
(2) is the latent Gaussian field equation, with the latent variables
distributed as a p-dimensional normal distribution, with mean
vectormðuÞ; and a sparse precisionmatrixQðuÞ: Both quantities
can depend on the model parameters vector, u; whose distribu-
tion is described in the parameter equation (3). The Gaussian
vector, x, exhibits a particular conditional dependence
(or Markov) structure which is reflected in its precision
matrix QðuÞ:
Integrated nested Laplace approximation

INLA is a computational approach to perform statistical inference
for LGM. It provides a fast and accurate alternative to exact
Markov chain Monte Carlo (MCMC) (Gilks et al. 1996), and
other sampling-based methods such as Sequential Monte Carlo
(SMC) (Doucet et al. 2001). They become prohibitively compu-
tationally expensive when the length of the sequence considered
is too long, resulting in infeasible run times. The INLA solution,
with a mix of Laplace approximations (Tierney and Kadane
1986) and numerical integrations offers a pragmatic inferential
tool to fit LGMs, and it provides answers in hours, whereas
MCMC requires days. The INLA inferential procedure consists
of three steps:

1. Compute the approximation to the marginal posterior
pðujyÞ and byproduct to pðujjyÞ; j ¼ 1; . . . ; p;

2. Compute the approximation to pðxijy; uÞ; i ¼ 1; . . . ; n;
3. Combine 1 and 2 above, and compute the approximation

to the marginal posterior pðxijyÞ:

ABBA model

Based on LGM, the ABBA model can be described by a three-
stage hierarchical model:

yigr
���pigr � Binomial

�
nigr;pigr

�
; (4)

logit
�
pigr

����s2
g � N

�
mig;s

2
g

�
(5)

mig

���r2ig � N
�
mi21;g; r

2
ig

�
(6)

s22
g � Gamð0:1; 0:1Þ (7)

r2ig ¼ r2g

���pi2 pi21

��� with  r22
g � Gamð0:1; 0:1Þ (8)

(4) is the first part of the observations equation, where
i ¼ 1; . . . ;m denotes the CpG, g ¼ 1; 2 the group (e.g., case
and control group), and r ¼ 1; . . . ;R the experimental repli-
cate. yigr; nigr; and pigr are the observed number of methyl-
ated reads, the read depth, and the proportion of methylation
for the ith CpG site, gth group, and the experimental replicate,
respectively. (5) is the second part of the observations equation,
and it describes a random effect across the experimental repli-
cates, with a specific variance s2

g for each group. In (5), logitðzÞ
indicates the logit transformation, logitðzÞ ¼ log

�
1=ð12 zÞ�:

The observation Equation (5) assumes that the methylation
proportions are drawn from the same distribution within each
group, but are different between groups.

Equation (6) is the latent Gaussian field (LGF) equation.
The dependence of the DNA methylation pattern between
CpGs is modeled as a nonstationary random walk of order 1,
RW(1): mig follows a normal distribution, with mean mi21;g
[defined in the ði2 1Þth CpG], and variance r2ig; which is
specific for each CpG and group. Equations (5) and (6)
highlight an important feature of the ABBA model that it
is able to model vertically the information contained in the
replicates by a random effect model and horizontally the
information about the CpG methylation levels correlation
by a LGF.

Themodel is completedby specification in (7) and (8) of the
random effect and LGM prior precision, i.e., the inverse of the
variance. For computational convenience, we introduce a CpG
site spacing and decompose r2ig into r2g jpi 2 pi21j; where r2g is
the global smoothing parameter specific for each group
that needs to be estimated, and pi and pi21 are the chro-
mosomal locations of two consecutive CpG sites. This
implies that the correlation between mig and mi21;g depends
on the distance between the two consecutive CpG sites,
and, in particular, it decreases as this distance increases,
in keeping with empirical evidence reported in Bell et al.
(2011), Zhang et al. (2015), and in our real data set (see
Supplemental Material, Figure S1). With this formulation,
only s2

g and r2g need to be estimated for each group. It also
implies a sparse precision matrix QðuÞ for the LGF in (2),
making the overall inferential process efficient.

Finally, noninformative priors are assigned to the precision
parameters s22

g and r22
g ; which are distributed as a gamma

density with mean 1 and variance 10 (default INLA values).
Sensitivity analysis on the gamma density parameterization
shows no departure from the results obtained using the
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default values. See Table S1 for details on the posterior den-
sity of s22

g and r22
g under INLA default and alternative pa-

rameterization on selected simulated examples.
When a single replicate is available, since s2

g ¼ 0; (4) and
(5) simplify to

yigjpig � Binomial
�
nig;pig

�
;

logit
�
pig

� ¼ mig:

While some methods for DMR detection (Feng et al.
2014; Wu et al. 2015), allow for overdispersion
by assuming a beta-binomial model, (4) and (5)
imply a logistic-normal model. After integrating

out (6),
R
N
�
logitðpigrÞ

��mig;s
2
g

�
N
�
migjmi21;g; r

2
ig

�
dmig ¼

N
�
logitðpigrÞ

��mi21;g;s
2
g þ r2ig

�
; it can be shown that

marginally

V
�
Yig

���s2
g ; r

2
ig

�
� nigpig

�
12pig

�
3 1þ

�
s2
g þ r2ig

��
nig 2 1

�
pig

�
12pig

�	 

;

where pig [ expðmigÞ=½1þ expðmigÞ�: The above equation
illustrates that, a priori, the marginal degree of variability
per CpG site under the ABBA model is the variance of the

binomial model multiplied by an overdispersion factor that
depends on the combined effect of s2

g ; the replicates variabil-
ity, and r2ig; the variance of the unobserved methylation pro-
file. When a single replicate is available, the overdispersion
depends only on r2ig:

ABBA algorithm

The ABBA algorithm consists of two steps:

1. Compute the approximation to the marginal posteriors of
s2
g ; the variance of the random effect, and r2g ; g ¼ 1; 2 the

smoothing parameters; given the model specification
r2ig ¼ r2g jpi 2 pi21j; it is also possible to derive themarginal
posteriors of r2ig;

2. Compute the approximation to marginal posteriorpðmigjyÞ;
where y ¼ ðyigrÞi¼1;...;n;g¼1;2;r¼1;...;R; then themarginal poste-
rior of the unobserved methylation profile pðpigjyÞ is
obtained by using the inverse logit transformation of mig;

z[ exp logitðzÞ� �.h
1þ exp logitðzÞ� �i

:

Global differential methylation and false discovery rate
(FDR) calculation

ABBA inference about DMRs is based on the posterior meth-
ylation probability (PMP) pðpigjyÞ and the posterior differ-
ential methylation probability (PDMP) pðpi1jyÞ2pðpi2jyÞ:
The posterior mean methylation probability EðpigjyÞ summarizes

Figure 1 ABBA model. ABBA estimates
the unobserved methylation profiles,
i.e., the DNA average methylation levels
across replicates, of two groups from
WGBS data (blue diamonds and red
stars). (A) A random effect accounts for
the variability of experimental replicates.
At each CpG, the methylation probabil-
ity difference is the difference between
the methylation profile of the two groups
(blue and red dots). (B) The methylation
profiles of each group are smoothed by
a latent Gaussian field that probabilis-
tically connects them (dotted lines). In
particular “Smoothing scenario 1” shows
that if a large spacing (distance) between
two consecutive CpGs (CpG:A and CpG:
B) exists, the methylation profile at CpG:B
does not depend on the previous one at
CpG:A (blue dotted line). The opposite
happens in “Smoothing scenario 2”
where the methylation profile at CpG:D
is largely influenced by the previous one
at CpG:C (red dotted line) despite some
high levels of methylation (red stars),
which are treated by ABBA as outliers.
The degree of the smoothing, i.e., the
correlation between DNA methylation
profiles, is controlled automatically by the
marginal variance of the Latent Gaussian
Field (blue and red vertical bars): the cor-

relation is higher (lower) when the variance is small (large). On the other hand, the variance decreases as the distance between neighboring CpGs’ decreases
(Smoothing scenario 2) while it increases as the distance increases (Smoothing scenario 1).
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the information contained in the PMP, and is used to define the
posterior mean differential methylation between two groups,
di ¼ Eðpi1jyÞ2Eðpi2jyÞ: Once the LGF has been integrated

out by INLA inferential process, pðpigjyÞ; i ¼ 1; . . . ; n; and, in
turn dis, becomemarginally independent. This allows the straight-
forward application of a nonparametric FDR procedure without

Figure 2 Benchmarking results.
(A) ROC curves for selected com-
binations of parameters: (i) s0 = 0.1,
Dmeth = 30%, r = 1, average
read depth per CpG of 103,
d = 0; (ii) s0 = 0.3, Dmeth =
30%, r = 3, average read depth
per CpG of 103, d = 0; (iii)
s0= 0.2,Dmeth = 70%, r = 2, av-
erage read depth per CpG of 303,
d = 0; (iv) s0 = 0.1, Dmeth =
70%, r = 1, average read depth
per CpG of 303, d = 5%; (v)
s0= 0.2,Dmeth = 30%, r = 2, av-
erage read depth per CpG of 103,
d = 10%; (vi) s0 = 0.3, Dmeth =
70%, r = 3, average read depth
per CpG of 303, d = 10%. For
each of this combination of pa-
rameters, the corresponding best
method based on its pAUC is indi-
cated in the benchmark grid below.
In (i) and (iv), ROC curves are re-
ported only for the methods that
can analyze WGBS data generated
from one biological sample. (B)
Global snapshot of the method’s
performance across 216 simulated
datasets. A given combination of
parameters is indicated by a square
in the benchmark grid, and, for
each square, we calculated the
pAUC for each method and deter-
minedwhichmethod had the over-
all best pAUC (i.e., pAUCmethod_1 .
pAUCmethod_2). Colors in the bench-
mark grid indicate which method
had the best performance. When
pAUC of two methods are similar
(61%) we report the colors of both
methods (e.g., black and red colors
in the same square indicate similar
performance of ABBA and DSS).
The six selected combination of
parameters for which the ROC
curves are reported in (A) are indi-
cated within the benchmark grid:
(i–vi). All ROC curves are reported
in Figure S5, Figure S6, and Figure
S7. (C) For the three best perform-
ing methods (ABBA, DSS, and
BSmooth), we report the percent-
age of simulated scenarios in which
each method resulted to be the
best based on the pAUC compari-
son. “Tie” indicates the proportion
of simulated scenarios in which the
pAUCs of any two methods were
similar (i.e., pAUCs 61%), and it
was not possible to single out a sin-
gle best performing approach.
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the burden of correlated signals. To distinguish between the null
distribution (no differential methylation) and the alternatives, we
fit a mixture of three truncated normal densities

di � p2N½21;1�
�
u2; j

2
2

�þ p0N½21;1�
�
u0; j

2
0
�

þ pþN½21;1�
�
uþ; j2þ

�
; (9)

where N½21;1� is a normal density truncated between ½21; 1�;
p2;p0;pþ 2 ð0; 1Þ with p2 þ p0 þ pþ ¼ 1 are the mixing
weights of the “negative” differentially methylated, no differ-
entially methylated, and “positive” differentially methylated
with respect the control group, respectively, u2; u0; uþ are the
unknown centers of the differentially methylated groups, and
j22; j

2
0; j

2
þ are the unknown variances. Under the null hypoth-

esis, we set u0 ¼ 0: For identifying the components ofmixture
model, we also impose the condition p0 $p2 þ pþ; under

the assumption that the large majority of CpG sites are not
differentially methylated.

Although the choice of a three component mixture model
works well in real data examples (see Figure S2), this as-
sumption can be relaxed. For instance, as suggested in Sun
and Cai (2009), the non-null distribution f1 can have more
than two components. This allows a better fitting of the tails
of distribution of dis and the identification of more than two
differentially methylated groups. For instance the choice of
the number of components can be based on Bayesian Infor-
mation Criterion (BIC). However, this requires running the
FDR procedure several times for each choice of the number of
components. Another possibility that is less computationally
intensive relies on the approximation of f1 by using a non-
parametric Gaussian kernel density estimation (Kuan and
Chiang 2012).

Figure 3 ABBA analysis of WGBS in rat macrophages. (A) CpG-based annotation 1004 DMR between WKY and LEW macrophages showing signif-
icantly higher proportions of CpGI and CpGS than those that would be expected by chance (P-value , 0.009 for CpGI, and P-value, 0.001 for CpGS,
respectively, obtained by 1000 randomly sampled datasets of 1004 CpG-matched regions). (B) Proportions of DMRs in different genomic features of
overlapping genes. Feature annotation was retrieved from UCSC genome browser (RN4). (C) KEGG pathway enrichment for the genes overlapping with
DMRs. Only significant pathways are reported (FDR , 1%). (D) Enrichment for the TFBS within the DMRs was when compared to CG matched regions
of the genome (FDR , 0.05). (E) RNA-seq analysis in WKY and LEW macrophages shows lack of Ifitm3 expression in WKY rats. (F) Percentage
methylation at each CpG in WKY (crosses) and LEW (plus), and smoothed average methylation profiles by ABBA. The pink box highlights the significant
DMR identified by ABBA (FDR , 5%). (G) ChIP-seq analysis for JunD in LEW.LCrgn2 (LEW*), and WKY macrophages identified a single region with
differential binding of JunD (P-value , 0.05, Sign Diff row, black box). Units on the y-axis refer to relative ChIP-seq coverage with respect to the
control. This region overlapped with two (out of four) JunD binding sites motifs identified within the gene promoter (6500 bp around the TSS). ABBA
DMR, differentially methylated region identified by ABBA. TSS, transcription start site. * P-value , 0.05, *** P-value , 0.001.
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Maximum likelihood estimates of (9) are obtained by the
EM algorithm (Dempster et al. 1977), taking particular care
to avoid localmaxima in the likelihood surface by running the
EM algorithm from different starting points. Using the EM
algorithm, the posterior probability of a CpG site belonging
to each of the three components is

Pðzi ¼ “2 ”Þ¼ p2N½21;1�
�
di; u2; j22

�
C

;

Pðzi ¼ “0”Þ¼ p0N½21;1�
�
di; 0; j20

�
C

;

Pðzi ¼ “þ ”Þ¼ pþN½21;1�
�
di; uþ; j2þ

�
C

with
C ¼ p2N½21;1�ðdi; u2; j22Þ þ p0N½21;1�ðdi; 0; j20Þ þ pþN½21;1�
ðdi; uþ; j2þÞ:

Similarly to Broët et al. (2004), for a constant t; we define
the estimated FDRðtÞ as

dFDRðtÞ ¼
P

i2I2
Pðzi ¼ “0”ÞþP i2Iþ

Pðzi ¼ “0”Þ
n2 þ nþ

(10)

where I2 ¼ i : di # 2 t ;gf Iþ ¼ i : di $ t ;gf n2 ¼ #ðI2Þ
and nþ ¼ #ðIþÞ: Equation (10) defines the global FDR as
the average local FDR which, for posterior probabilities, is
defined as 12 Pðzi ¼ “2 ”Þ2 Pðzi ¼ “þ ”Þ ¼ Pðzi ¼ “0”Þ:
Finally, the constant t is chosen such that FDR ðtÞ# FDR:

In summary, the FDR procedure for ABBA consists of two
steps:

1. Fit a mixture of truncated normal densities with three
components on the dis values; obtain the posterior
probability that each di belongs to each of the three
components;

2. Calculate the constant t, such that FDR ðtÞ# FDR for a de-
sired level of FDR.

For computational efficiency, ourFDRprocedure canbe runon
each chromosome separately and then the results can be
aggregated at the genome-wide level (Efron 2008). Besides
the computational speed, this strategy does not assume the
existence of a global methylation level difference between
the two conditions that may not hold in practice. The sepa-
rate-class model (Efron 2008), can be used to combine sep-
arate chromosome-wide FDRs.

WGBS data simulation

WGBS data have a number of intrinsic characteristics that can
vary depending on the cell-types/tissue complexity being
studied, or on technical issues related to the sequencing. In
order to assess which method is the most robust for analyzing
WGBS data, it is important that changes in each of these
characteristics are taken into account. Here, we take advan-
tage of our previously published WGBS-data simulator

(Rackham et al. 2015) that allows us to generate unbiased
benchmarking datasets with several varying parameters.
Wherever possible, we will refer to the notation used in
Rackham et al. (2015); the parameters are the following:

1. Number of replicates—the parameter r was set to vary
between r ¼ 1; 2; 3 within each group;

2. Average read depth—at each CpG site for all replicates
and groups, the number of reads nigr; i ¼ 1;⋯;m and
g ¼ 1; 2; is simulated using a Poisson distribution with
average read depth l: The parameter lwas set to be either
10 or 30 reads on average per CpG site;

3. Level of noise—the parameter s0 controls the level of noise
added the probability of methylation at each CpG site for
all replicates and groups, and simulates the measurement
error resulting from the sampling of DNA segments during
sequencingpirg ¼ logit21ðlogitðprgÞ þ eiÞ;where prg is the
global probability of methylation of the binomial (emis-
sion) distribution based on the real dataset analyzed [see
details in Rackham et al. (2015)], and ei � Nð0; s0Þ;
i ¼ 1; . . . ;m: s0 was set to vary between 0.1, 0.2 and 0.3
to model different level of noise. To calibrate the value of
s0; Table S2 provides a Monte Carlo estimation of the
effect of different values of the noise level on pirg:

4. Methylation probability difference—the parameter Dmeth
reported in Rackham et al. (2015) as “phase difference”
controls the magnitude of the difference between the
probabilities of methylation in each group, and was set
to vary between 20, 30, 50, and 70%. This difference is
obtained on CpG sites where both case and control samples
share the same methylated status (methylated or unmethy-
lated), by adding a given value to the probability in either
cases or controls. The total length of the sequencewhere this
difference appears in no greater than 5% (WGBSSuite de-
fault value) of the total length of the simulated region.

5. We also considered an additional parameter d (not avail-
able for modeling in WGBSSuite), which introduces a fur-
ther error associated with the methylation call. After
selecting at random with a given probability d a CpG site
in the gth group for all replicates, we switch its methyla-
tion status between the two groups. In our simulation
study, the parameter d has been varied from 0, to 0.05,
to 0.1.

Toperform thebenchmarking,wegeneratedfive replicates
of 5000 CpGs for each combination of the above parameters.
The resulted in a total of 216 benchmarking datasets (three
cases for the number of replicates, two cases for the average
read depth, three cases for the level of noise, four cases for the
methylation probability difference, and three cases for the
parameter d), which are replicated five times (5,400,000
CpGs in total) to assess theMonte Carlo average performance
for each combination of parameters. In these datasets, the
size of the differentially methylated regions has amedian size
of 15 CpGs (see Figure S3). The proportion of differentially
methylated CpGs cannot exceed 20% of all CpGs (i.e.,�1000
CpGs).
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Receiver operator curve (ROC) construction
for benchmarking

In order to generate the ROC curve, the performance is
calculated CpG-wise. For a given DMR, detection of each of
the CpG contained within is considered as a true positive,
while CpGs that are not detected are considered false neg-
atives.Outside of theDMR, the opposite criteria is applied.We
choose this assignment criteria rather than callingdetectionof
a each DMR since it provides a useful quantification of the
extent eachDMRis capturedbyeach technique; for instance, if
one technique correctly identifies all the CpGs in a DMR, the
method is deemed to perform better than an approach that
identifies correctly only 80% of the CpGs within the same
DMR.

WGBS data preprocessing for ABBA

To run ABBA efficiently at the genome-wide level, we took
advantage of a cluster-computing environment that enables
parallel computation, and with this aim we preprocessed the
WGBSdata as follows. After the rawWGBSdatawere aligned,
we removed CpG sites where ,50% of the samples contain
reads. Next, we split theWGBS data into chunks such that the
distance between the last CpG site in one chunk and the first
CpG in the next chunk is .3000 bp. It has been previ-
ously shown that the correlation of DNA methylation levels
between CpG sites decreases dramatically after 400 bp
(Zhang et al. 2015), so splitting the data in this way implies
a particular conditional dependence structure in our data
defined by a sparse block-diagonal precision matrix QðuÞ;
where each block corresponds to a WGBS chunk. Chunks
were then analyzed in parallel in a cluster-computing envi-
ronment. We calculated the time required by ABBA to ana-
lyze chunks of different length (that span from 100 CpGs
to 15,000 CpGs) on a single machine, with 20 2.3-GHz
hyper-threaded cores and 32 GB of RAM, and found that
the computational time (seconds) scales with the chunk
length (NCpG, number of CpG sites) following the power func-
tion: time (seconds) = 0.0045 NCpG

1.3985 (R2 = 0.997).
Depending on the genome length and data dimensionality,
a complete WGBS analysis ABBA might require days (e.g., it
took �2 weeks to analyze WGBS data in the rat). The total
computational time of ABBA analysis can be significantly
shortened by splitting the genome into smaller chunks, and
then assembling the result. The results provided by the
“whole-genome” ABBA analysis, and “smaller-chunks” ABBA
analyses are highly consistent, with no differences in the
distribution probabilities obtained with and without splitting
the genome into chunks (Figure S4). Scripts for the preprocess-
ing step are embedded within ABBA at http://abba.systems-
genetics.net/.

WGBS of rat macrophages

Bone-marrow derived macrophages (BMDM) were isolated
fromWKYandLEWrat strains.WGBS librarieswere produced
as follows: 6 mg of genomic DNA was spiked with 10 ng of

unmethylated cl857 Sam7 lambda DNA (Promega, Madison,
WI), and sheared using a Covaris System S-series model
S2. Sheared DNA was purified, and then end-repaired in a
100 ml reaction using NEBNext End Repair kit (New England
Biolabs, Beverly, MA) incubated at 20� for 30 min. End-
repaired DNA was next A-tailed using NEBNext dA-tailing
reaction buffer and Klenow Fragment (also New England
Biolabs) incubated at 37� for 30 min, and then purified with
the MinElute PCR purification kit (Qiagen) in a total final
elution volume of 28 ml. Illumina Early Access Methylation
adapter oligos (Illumina) were then ligated to a total of 25 ml
of the A-tailed DNA sample using NEBNext Quick Ligation
Reaction Buffer and Quick T4 DNA ligase (both New England
Biolabs) in a reaction volume of 50 ml. This mixture was
incubated for 30 min at 20� prior to gel purification. Bisulfite
conversion of 450 ng of the purified DNA library was
achieved using the Epitect Bisulfite kit (Qiagen) in a total
volume of 140 ml. Samples were incubated with the follow-
ing program: 95� for 5 min, 60� for 25 min, 95� for 5 min,
60� for 85 min, 95� for 5 min, and 60� for 175 min, and
then 33 repeat of 95� for 5 min and 60� for 180 min and
held at 20�. Treated samples were then purified as per the
manufacturer’s instructions. Adapter bound DNA fragments
were amplified by a 10-cycle PCR reaction and then purified
using Agencourt AMPure XP beads (Beckman Coulter) before
gel extraction and quantification using the Agilent Bioana-
lyzer 2100 Expert High Sensitivity DNA Assay. Then, libraries
were quantified using quantitative PCR, then denatured into
single stranded fragments. These fragments were then am-
plified by the Illumina cluster robot, and transferred to the
HiSequation 2000 for sequencing. WGBS reads were aligned
and filtered according to a previously published pipeline (see
Johnson et al. 2012, 2014). Briefly, reads were preprocessed
by in silico conversion of C bases to T bases in read 1, and G
bases to A bases in read 2, followed by clipping of the first
base from each read. Preprocessed reads were aligned to the
rat reference genome (RGSC3.4) using BWAversion 0.6.1 (Li
and Durbin 2009), with 39 end quality trimming using a Q
score cutoff of 20. Converted and clipped reads 1 and 2 were
mapped to two in silico converted versions of the reference
sequence, first with Cs converted to Ts to allow forward
strand mapping, and second with Gs converted to As to allow
mapping of reverse strand. Aligned reads were filtered by
removal of clonal reads, reads with a mapping quality
of ,20, reads that mapped to both in silico converted for-
ward and reverse strands, and reads with an invalid mapping
orientation. We obtained 79.9 billion “mappable” bases
across both rat strains, with 13.53 (average) coverage in
the Lew strain and 17.63 (average) inWKY, where the great-
est depth of coverage was observed within CpG islands.

Despite ABBA being able to detect methylation changes at
all genomic locations, we focused only on those methylation
changes that occur at CpG sites, and considered CpG sites
where at least four out of the eight samples contain reads
(resulting in a total of 14,976,632 CpG sites genome-wide in
BMDM from WKY and LEW rats). DMRs were called with
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ABBA (see above) using a 5 CpG minimum, a 33% or greater
difference in methylation, and a 5% FDR threshold. Genomic
region annotations and Ensembl gene IDs for the rat reference
genome 4 (rn4), were downloaded from the UCSC genome
browser. Significant over-representations of genomic fea-
tures (intron, exons, etc.) were determined empirically from
1000 randomly sampled length, and GC-matched regions per
DMR. The genes overlapping with DMRs were further anno-
tated and tested for enrichment in Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways using WebGestalt
(Wang et al. 2013).

Identification of enriched transcription factor binding site
(TFBS) motifs within the DMRs identified by ABBA was
performed using HOMER (Heinz et al. 2010). HOMER was
used to scan for motifs obtained from the JASPAR 2014 data-
base (Mathelier et al. 2014). Threshold used for motif iden-
tification was a P-value of 1024. Enrichments were calculated
by comparing the motifs present in the DMRs against a large
set of background sequences (N ¼ 106) corrected for CpG
content.

RNA-seq and ChIP-seq analysis of rat macrophages

RNA-seq data from BMDM in WKY and LEW strains were
retrieved from Rotival et al. (2015), and reanalyzed in the
context of WGBS analysis reported here. Briefly, total RNA
was extracted from BMDM at day 5 of differentiation in
three WKY rats and three LEW rats using Trizol (Invitrogen).
Total RNA (1 mg) was used to generate RNA-seq libraries
using TruSeq RNA sample preparation kit (Illumina, Little
Chesterford, UK). Libraries were run on a single lane per
sample of the HiSequation 2000 platform (Illumina) to gen-
erate 100 bp paired-end reads. An average depth of 72 M
reads per sample was achieved (minimum 38 M). RNA-seq
reads were aligned to the rn4 reference genome using
tophat2. The average number of mapped was 67 M (mini-
mum 36 M) corresponding to an average mapping percent-
age of 93%. Sequencing andmapping were quality controlled
using the FastQC software. Gene-level read counts were com-
puted using HT-Seq-count (Anders et al. 2015) with “union”
mode, and genes with ,10 aligned reads across all samples
were discarded prior to analysis leading to 15,155 genes.
Differential gene expression analysis between WKY and
LEW BMDMs was performed using DESeq2 (Love et al.
2014), and significantly differentially expressed genes were
reported at the 5% FDR level. Visualizations of the expression
levels with gene structure were createdwith DEXSeq (Anders
et al. 2012).

ChIP-seq data from BMDM isolated from the WKY and
WKY.LCrgn2 congenic strains (in which the LEW Crgn2 QTL
was introgressed onto the WKY background) were retrieved
from Hull et al. (2013) and Srivastava et al. (2013) and rean-
alyzed with respect to the Ifitm3 locus. This congenic model
(WKY.LCrgn2) has been extensively studied in previous stud-
ies, where it has been shown that JunD expression levels are
significantly higher in WKY when compared with the con-
genic (Hull et al. 2013), and that the canonical binding of

AP-1 is significantly greater in WKY compared to WKY.
LCrgn2 (Behmoaras et al. 2008). Briefly, ChIP was performed
with a JunD antibody (Santa Cruz sc74-X), and a negative
IgG control (sc-2026). Single read library preparation, and
high throughput single-read sequencing for 36 cycles was
carried out on an Illumina Genome Analyzer IIx and sequenc-
ing of the ChIP-seq libraries was carried out on the high
throughput Illumina Genome Analyzer II. Initial data pro-
cessing was performed using Illumina Real Time Analysis
(RTA) v1.6.32 software (equivalent to Illumina Consensus
Assessment of Sequence and Variation, CASAVA 1.6) using
default settings. Quality filtered reads were then realigned to
the rn4 using the Burrows Wheeler Alignment tool v0.5.9
(BWA). Read ends were trimmed if Phred-scaled base quality
scores dropped to ,20. For the ChIP-seq analysis presented
in Figure 3G, differences in JunD binding were assessed only
within a 700 bp region spanning the Ifitm3 gene promoter,
which included the 600 bp-long DMR identified by ABBA at
this locus. ChIP-seq differences were assessed by means of
Fisher’s exact test on the ChIP-seq counts (normalized for
library size) in WKY LCrgn2 and LEW strains, respectively,
using a sliding window of 50 bp. This locus-specific analysis
identified a single 50 bp window with differential JunD
binding with FET P-value, 0.05 that overlapped with JunD
TFBS motifs identified by HOMER (see above).

Data availability

ABBA is implemented as a Perl/R program, which is avail-
ablewith instructions for download at http://abba.systems-
genetics.net/ or via http://www.mrc-bsu.cam.ac.uk/software/
bioinformatics-and-statistical-genomics/. The data are available
on Gene Expression Omnibus (GEO), https://www.ncbi.nlm.
nih.gov/geo/, under the accession number GSE84719.

Results

We employ a fully Bayesian approach (a Bayesian structured
generalized mixed additive model with a latent Gaussian
field), which models the random sampling process of the
WGBS experiment (the number ofmethylated/unmethylated
reads distributed as non-Gaussian response variable), and
where all the unknown quantities are specified by probability
distributions. To perform inference, ABBA takes advantage of
INLA (Rue et al. 2009), a new inferential tool for latent
Gaussian models. INLA provides approximations to the pos-
terior distribution of the unknowns. These approximations
are both very accurate and extremely fast to compute com-
pared to established exact sampling-based methods such as
MCMC (Gilks et al. 1996) or SMC (Doucet et al. 2001). Our
new proposed algorithm ABBA is therefore the combination
of an approximate inferential procedure with a fully Bayesian
model tailored for bisulfite sequencing analysis.

ABBA calculates the PMP at each CpG site based on an
estimate of the posterior probability of a smoothed unob-
served methylation profile. It also identifies DMRs at a spec-
ified FDR by contrasting PMPs across the whole-genome
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between two groups, e.g., cases and controls. Several intrinsic
features of WGBS data are incorporated into ABBA: for in-
stance, the variability in DNA methylation between the (ex-
perimental) replicates within each group is modeled through
a random effect with a specific within-group variance (Figure
1A). The correlation of DNA methylation patterns is encoded
in the latent Gaussian field equation, which reflects the
neighborhood structure of the model, and automatically
adapts to the changes in the underlying data. In particular,
the a priori correlation between neighboring CpGs’ methyla-
tion profiles depends on the distance between them, as it
decreases as this distance increases (Figure 1B). Rather than
relying on a user-defined value to parameterize it (e.g., kernel
bandwidth or window size), or fixing it by an automatic pro-
cedure (for instance through an empirical Bayes approach),
ABBA assigns a prior distribution to the parameters of the
latent Gaussian field equation, thus fully accounting for the
uncertainty about these quantities. This specification is key in
our model, since the data-adaptivity of the degree of smooth-
ing conforms better to the data than assuming fixed values.
All of these features allow our model to adjust routinely to
real-world scenarios, providing an automatic way to describe
the WGBS data without requiring any user-defined parame-
ters (Yu and Sun 2016b). Full technical details of the ABBA
algorithm can be found in theMaterials and Methods section.

We benchmarked ABBA and compared it against recently
proposedmethods [MethylKit (Akalin et al. 2012), MethylSig
(Park et al. 2014), DSS/DSS-single (Feng et al. 2014; Wu
et al. 2015), simply DSS hereafter, BSmooth (Hansen et al.
2012), metilene (Jühling et al. 2015), and the univariate
Fisher’s exact test (FET)]. All methods were run using their
default parameterization, and, for the FET, we pooled data
from different replicates. To ensure a fair comparison, we
used WGBSSuite (Rackham et al. 2015) to generate a large
number of diverse datasets that were independent of the un-
derlying statistical models of ABBA and of the other methods.
Briefly, we simulated in silico datasets to assess the perfor-
mance of each method under several scenarios, which reflect
differences in data integrity, and the quality of the signal that
can occur as a result of biological and experimental phenom-
ena. The parameters considered were the following: the
number of replicates within each group (r), the average read
depth per CpG, the level of noise variance (s0), the methyla-
tion probability difference between the two groups (Dmeth),
and the switching of methylation status of CpG sites between
the two groups (d) (see Materials and Methods for details).
For each simulated case, we generated five replicates, and
compared the accuracy of the CpGs called as being contained
within DMRs by each technique with the true simulated
DMRs. To quantitatively assess the performance of ABBA
with respect to competing methods, we evaluated false-
positive and false-negative rates of CpG sites, and generated
ROC curves. We focused on the partial area under the ROC
curve (or pAUC) at a specificity of 0.75. The pAUC is consid-
ered to be more practically relevant than the area under the
entire ROC curve (Ma et al. 2013), since, in typical genomics

studies, only the features identified at very low false positive
rates are selected for further biological validation.

All results of the benchmark are detailed in Figure S5,
Figure S6, and Figure S7. Figure 2A shows representative
ROC curves from a specific combination of parameters, while
in Figure 2B we summarize the performance over all combi-
nations of parameters by displaying the best performing
method based on its pAUC. Specifically, in Figure 2B, the
color code in the “benchmark grid” indicates the best per-
forming method for each of the 216 simulated scenarios.
For instance, in Figure 2A, the top left panel (i) shows the
ROC curves for all methods considered under a simulated
dataset with s0 = 0.1, Dmeth = 30%, r = 1, average read
depth per CpG of 103, and d = 0. For this combination of
parameters, we compared the pAUC of each approach, which
shows that ABBA is the best performingmethod. Accordingly,
in Figure 2B, the square in the grid that represents this pa-
rameter set [indicated by (i) in the figure] is colored black
(ABBA). Examples of other ROC curves for specific combina-
tions of parameters are reported in Figure 2A, i–vi, and the
corresponding best performing methods are indicated in Fig-
ure 2B. In some simulated cases (e.g., with high levels of
d ¼ 10%) the ROC curves, and corresponding pAUC, do not
distinguish unambiguously the best performing method (e.g.,
Figure 2A, vi). In these cases when the pAUC of two methods
are very similar (61%), we report the colors of bothmethods,
e.g., black and red colors in the same square to indicate sim-
ilar performance of ABBA and DSS (Figure 2B). For the meti-
lene approach (Jühling et al. 2015) (which was run using its
default parametrization), we noticed that ROC curve analysis
was not suitable to compare its performancewith othermeth-
ods. Specifically, for metilene, we found that it was not pos-
sible to assess both specificity and sensitivity across the wide
range of DMRs and scenarios simulated in our study. Repre-
sentative examples for the ROC curves obtained by running
metilene (and other approaches) on the simulated data are
provided in Figure 2A and in Figure S8.

Considering all 216 simulated datasets, and comparing the
pAUCs obtained by each approach across all combinations of
parameters, ABBA (black) proved to be the best performing
method in 139 (64%) cases (Figure 2, B and C). The two
other competitive methods were DSS and BSmooth, which
were the best performing approach only in 26 (12%) and
22 (10%) simulated cases, respectively (Figure 2, B and C). In
28 (13%) cases, different methods showed very similar per-
formance (i.e., pAUCs 61%), and, in 17 simulations, ABBA
and DSS showed comparable performance. Looking at the
detailed ROC curves reported in Figure S5, Figure S6, and
Figure S7, we notice that, while ABBA was the best method
across all simulations (Figure 2C), its performance dimin-
ished for simulated datasets, with a very small methylation
probability difference between the two groups. In particular,
for most of the simulated scenarios with Dmeth = 20%,
BSmooth showed very good and robust performance,
while DSS was consistently the best performing method
when r = 1 and Dmeth = 20%, Figure 2B. However, we
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highlight that such small differences in DNA methylation
(i.e., Dmeth # 20%) are unlikely to have an important bi-
ological effect, and the most commonly observed effect sizes
for DMR range between 20 and 40%, as previously reported
(Ziller et al. 2015). In the range Dmeth $ 30%, ABBA was
the best performing method in 132 (81%) simulations, while
DSS was the best performing method only in 10 (6%) simu-
lated cases, and, notably, BSmooth was never the best single
performing method (BSmooth showed similar performance
of ABBA in only one simulated case) (Figure 2B).

Specific observations have to be addressed when high
levels of errors due to the switching of methylation status
of CpG sites between the two groups have been simulated. In
these scenarios, it was more difficult to single out a method
that outperforms all competing approaches. However, when d
was as high as 10% (i.e., 1 in 10 CpGs is misclassified as
unmethylated or vice versa), we observed that ABBA was
the best singlemethod in 33 (46%) of 72 simulated scenarios,
whereas DSS and BSmooth performed as the best method in
16 (22%) and 7 (10%) cases, respectively, and, in other
10 cases, ABBA and DSS have comparable performance.
The latter was more apparent when large probability differ-
ences between the two groups were simulated (Dmeth = 50
or 70%).

We then explored whether nonhomogeneous, spatially
correlated, read depth has an effect on the performance of
ABBA. In order to capture spatially correlated readdepth from
real data,we sampled5000contiguousCpGs fromWGBSdata
(generated in rat macrophages, see below and Materials and
Methods for details), and then varied other parameters (r and
Dmeth) using WGBSSuite as described above. In these “data-
derived” simulated datasets, the read depth was correlated
with the distance between CpGs (Figure S9A). The results of
the benchmark using read depth taken from real data were
very similar to those obtained using read depth simulated by
means of a Poisson distribution (see Materials and Methods).
Regardless of whether “data-derived” or “Poisson-simulated”
read depth was used in our simulations, ABBA was the best
performing method to recall DMRs (representative examples
are reported in Figure S9B). While heterogeneous levels of
read depth impact on the single base probability of methyla-
tion, the hierarchical model underlying ABBA borrows infor-
mation across the sequence analyzed, it turns out that ABBA
posterior estimates are less sensitive to different levels of the
read depth.

Taken together, our simulation study shows that, while
individual approaches can be very powerful in detecting
DMRs under specific scenarios (notably, DSS with r = 1 and
BSmooth with Dmeth = 20%), their performance can vary
(and drop) significantly for different choices of the para-
meters tested in our simulations (at least within the parame-
ter-space considered here). In contrast, we show that, on the
whole, ABBA is the best performing method across a large
number of parameters’ combination tested, and accurately
identifies DMRs in the large majority of simulated cases (Fig-
ure 2C). Specifically, ABBA’s performance was the highest in

the detection of biologically meaningful changes in DNAmeth-
ylation (Dmeth $ 30%), and when little or no error due to
random switching of methylation status of CpG sites between
the two groups is present in the data.

DNA methylation is emerging as a major contributing
factor in several human disorders (Zoghbi and Beaudet
2016), including important autoimmune diseases like sys-
temic lupus erythematosus (SLE) (Wu et al. 2016). For in-
stance, differential DNAmethylation analysis in CD4+ T cells
in lupus patients compared to normal healthy controls iden-
tified several genes with known involvement in autoimmu-
nity (Jeffries et al. 2011). Here, to illustrate the practical
utility of ABBA for differential methylation analysis in dis-
ease, we generated WGBS data in an established experimen-
tal rat model of crescentic glomerulonephritis (CRGN)
(Aitman et al. 2006). In this model, we and others have pre-
viously shown that susceptibility to CRGN is mediated by
macrophages (Behmoaras et al. 2008; Page et al. 2012);
therefore, we assayed CpG methylation at single-nucleotide
resolution by WGBS in primary macrophages derived from
Wistar Kyoto (WKY) and Lewis (LEW) isogenic rats (two
strains discordant for their predisposition to develop CRGN).
We used ABBA to carry out genome-wide differential DNA
methylation analysis in primary bone-marrow derived mac-
rophages (BMDM) derived from the disease-prone rat strain
(WKY, r = 4) and control strain (LEW, r = 4)—see Mate-
rials and Methods for additional details on WGBS data gen-
eration and processing. Briefly, in our ABBA analysis of the
macrophagemethylome, we used the following (default) set-
tings: a minimum of five CpG, and at least 33% difference in
DNA methylation between the disease and control macro-
phages to identify DMRs. This choice was motivated and
supported by data on the local topology of CpG sites in the
methylome, showing that the vast majority of the CpG clus-
ters are in the range of 1–11 CpGs (Lövkvist et al. 2016), and
to increase true positive rate in our DM analysis, following
previous assessment and recommendations for methylation
analysis using WGBS data (Ziller et al. 2015).

Using an FDR cutoff of 5%, ABBA identified 1004 DMRs
genome-wide, with 1.07% falling within an annotated CpGI,
and 6.78% within an annotated CpGS (Figure 3A). For com-
parative purposes, we also used DSS (since this method per-
formed very similarly to ABBA in several simulated cases,
Figure 2) to identify DMRs genome-wide, which resulted in
only 207 regions with significant differential methylation
(uncorrected P-value threshold = 1023, using the default
parameters of DSS). Of the 1004 DMRs identified by ABBA,
427 overlapped with annotated genes (Table S3), and there
was a significant enrichment for DMRs occurring within 1 kb
of the gene boundaries (P-value , 0.001), within exons (P-
value , 0.05), and within introns (P-value , 0.05; Figure
3B). The genes that are within 1 kb of a DMR were enriched
for pathways relevant to the pathophysiology of CRGN, in-
cluding MAPK signaling (Ryan et al. 2011), Phosphatidylino-
sitol signaling (Wu et al. 2014) and Fc gamma R-mediated
phagocytosis (Page et al. 2012) (Figure 3C). For comparison,
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the 207 DMRs identified by DSS overlapped with 45 genes
(Table S4), which were enriched only for RNA degradation
and metabolic pathways. The analysis of real WGBS data by
DSS highlighted how the choice of parameters (in this case
related to the size of the moving average window in the
smoothing procedure) can affect the results. Since the win-
dow size in DSS is a user-defined parameter, we performed
the analysis with DSS using three different windows (50,
100, and 1000 bp) in addition to the default window size
of 500 bp. Each of the fourwindow sizes identified a different
number of DMRs, which overlap with different genes (Figure
S10A), and have varying distributions of DMR lengths (Fig-
ure S10, B–E). The genes identified by DSS when a window
of 50 bp is used showed no significant enrichment for path-
ways, while the results obtained for 100 bp and 1000 bp
windows showed a significant enrichment for RNA degrada-
tion. These analyses highlight how the arbitrary choice of
parameters related to the degree of smoothing can affect
greatly the results of a genome-wide DM analysis as well as
the downstream annotation of the genes overlapping with
DMRs. In contrast, ABBA automatically adapts to different
correlation structures in DNA methylation levels across the
genome without requiring any user-defined parameters re-
lated to the smoothing procedure.

As DNA methylation can affect gene expression by inter-
fering with transcription factor (TF) binding, we performed
a TFBS analysis of the DMRs (Figure 3D). This revealed sig-
nificant enrichment for several TFs, including the ETS tran-
scription factors family and a number of proteins that make
the AP-1 TF complex (JUNB, FOS, JUN, and JUND), which
have been previously linked with CRGN (Raffetseder et al.
2004; Behmoaras et al. 2008). To further investigate the po-
tential effect of the changes in DNAmethylation identified by
ABBA, we carried out differential expression (DE) analysis in
macrophages fromWKY and LEW rats by RNA-seq (seeMate-
rials and Methods for details). The list of DE genes [n = 910,
Benjamini–Hochberg (BH)-corrected P-value , 0.05] was
crosschecked with the genes impacted by DMRs (above),
identifying 48 genes with both significant differential meth-
ylation and DE (Table S5). We observed the “textbook”
model describing DNA methylation regulating transcription
via the promoter region (i.e., hypermethylation in the pro-
moter associated with transcriptional repression, see below),
as well as widespread methylation changes in the genes body
and 39UTR associated with both gene repression and activa-
tion. The genes with concordant promoter hypermethylation
and transcriptional repression, Ifitm3, Ydjc, and Cd300Ig
were investigated in more detail since the gene’s promoter
is a key regulatory region where the effect of DNA methyla-
tion is more clearly understood. We found the biggest change
in mRNA expression was in interferon induced transmem-
brane protein 3 (Ifitm3), with mRNA from this gene being
almost undetected in unstimulated WKY macrophages (Fig-
ure 3E). This observation is consistent with the differential
methylation status of the promoter of Ifitm3, where the WKY
rats had higher levels of methylation than the LEW rats

(Figure 3F). To further support the identification of differen-
tial methylation at the Ifitm3 gene, we checked whether
other methods identified the same DMR. While MethylSig
failed to identify significant DMR and BSmooth identified
a large and unspecific genomic area as differentially methyl-
ated, DSS provides highly consistent results with ABBA, iden-
tifying differential methylation at the same region at the
Ifitm3 gene promoter (Figure S11).

We have previously shown that the JunD (AP-1) transcrip-
tion factor is a major determinant of CRGN in WKY rats
(Behmoaras et al. 2008), and others have shown that AP-1
is methylation sensitive (Ogawa et al. 2014). Therefore we
scanned the DMR (spanning 600 bp) for canonical JunD
binding site motifs, and identified four putative regions in
the promoter region of Ifitm3 (Figure 3G). In addition, we
reanalyzed ChIP-seq data for a JunD transcription factor in
BMDM derived from WKY and a congenic strain from LEW
(see Materials and Methods for details). This analysis identi-
fied significant differences in JunD binding between WKY
and the LEW-congenic strain that overlapped with two of
the four TFBS identified at the Ifitm3 promoter (Figure
3G). The combined evidence provided by our ABBA analysis
and RNA-seq/ChIP-seq data therefore suggests that the effect
of DNA methylation of the Ifitm3 gene promoter in WKY rats
(prone to develop CRGN) may be restricting the binding of
transcription factors such as JunD, and, as a consequence, the
gene is almost not expressed,1 tags per million in unstimu-
lated macrophages of WKY rats.

Discussion

As the cost of genome sequencing technologies continues to
drop, it will soon become commonplace to perform compre-
hensive methylome analyses, using WGBS or other high-
throughput techniques that allow the unbiased genome-wide
quantification of DNA methylation at a single base-pair res-
olution. However, high-resolution data generation is only the
first step toward the identification of genomic loci, and even-
tually genes with altered methylation levels associated with
a given disease, phenotype, or developmental stage. The
number of DNA methylation datasets available in the public
domain is expected togrow; therefore, it becomesnecessary to
provide the scientific community with analytical tools for
a reliable and reproducible identification of differential meth-
ylation, and facilitate large epigenome-mapping projects and
epigenome-wide association studies (Bock 2012).

Beyondstatistical power considerations specifically related
to sample size (Rakyan et al. 2011) or interpretability of
epigenome-wide association studies (Birney et al. 2016),
our ability to identify accurately changes in DNAmethylation
localized to specific genomic loci (genes) is also influenced by
multiple factors inherently correlated to data quality. These
include the within-group heterogeneity, the level of noise, the
presence of known genetic covariates (Zhang et al. 2015),
and nongenetic confounding factors (e.g., batch effects), as
well as features such as sequencing depth (Ziller et al. 2015),
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or errors due incomplete bisulfite conversion (Genereux et al.
2008). Therefore, any analytical tool that can account for all
these factors will reduce the number of false positives, max-
imizing the sensitivity, and calling the regions of interest (i.e.,
differentially methylated) as accurately as possible. With this
in mind, we designed a differential methylation analysis tool
(ABBA) that is robust to different experimental and technical
variables (see Figure 2), and that adapts automatically to the
varying genomic context and local topology of CpG sites af-
fecting methylation levels. In particular, the automatic adap-
tation to different correlation structures in CpG methylation
levels (without requiring user-defined parameters about the
degree of smoothing), as well as the ability of modeling its
decay as a function of the genomic distances between CpGs
allow ABBA to adapt routinely to methylation changes that
occur with different scales and at nonuniform rates across the
genome. The importance of the genomic context in the meth-
ylome, and the local topology of CpG sites have been recently
investigated, showing, among other features, that methyla-
tion at small CpG clusters is more likely to induce stable
changes in DNA methylation (Lövkvist et al. 2016).

From a user’s perspective, ABBA treats WGBS-seq data in
a general way with no specification of parameters related to
the level of data smoothing (such as window size or kernel
bandwidth), thus allowing for a great deal of automation.
This also facilitates the WGBS analysis when the values of
the parameter settings (that may greatly affect the accuracy
of DM identification) are not known. Our fully Bayesian ap-
proach can also be easily modified to include covariates and
nongenetic confounding factors through random effects, be-
yond the replicates level. It also allows the specification of
covariates that are informative about themethylation profiles
by adding prior biological information to the linear predictor
mig in Equation (6). While these alterations can be made in
our model with a simple modification of the code, and with
negligible further computational costs, nonparametric smooth-
ing techniques [spline- (Hansen et al. 2012), kernel- (Hebestreit
et al. 2013), and moving average-based smoothing (Feng et al.
2014)] do not possess the same straightforward flexibility, nor
do alternative approaches based on Hidden Markov Models
(Kuan andChiang 2012; Sun and Yu 2016; Yu and Sun 2016a).

Our extensive simulation studies (Figure 2) and differ-
ential DNA methylation analysis in glomerulonephritis
(Figure 3) showed that ABBA is a powerful approach for
the identification of DMRs from WGBS single-base pair reso-
lution methylation data. While individual methods such as
BSmooth (Hansen et al. 2012) or DSS (Feng et al. 2014; Wu
et al. 2015) showed a very good power to detect DMRs under
specific scenarios and conditions, ABBA retained a high degree
of robustness of the results with respect to a wider range of
factors (parameters) affecting WGBS data integrity and qual-
ity, including sequencing coverage, number of replicates, or
different noise structures. This is particularly appealing in
cases when considerable efforts have been expended to-
ward generation of large-scale WGBS data from heteroge-
neous systems, e.g., the ENCODE project (Bernstein et al.

2012), and data quality can vary across experimental condi-
tions and laboratories. As proof of concept of ABBA’s application
to real data analysis, we used an established experimental
model system of glomerulonephritis (Aitman et al. 2006) to
identify changes in DNA methylation associated with disease.
In this, we employed ABBA to analyze �15 million CpG sites
genome-wide in primary bone-marrow derived macrophages
derived from WKY and LEW rats, and identified .1000 signif-
icant DMRs at 5% FDR level. A comparative analysis using DSS
(the most competitive approach from our simulation study) did
not provide the same level of biological insight both in terms of
significant pathway enrichments, and in robustly identifying
DMRs across user-defined parameters. To highlight this point,
we showed how the results of DSS were greatly affected by the
choice of the window size.

Furthermore, we have shown how integrating the DMR
results provided by ABBA with other “omics” data (RNA-seq
and ChIP-seq generated in the same experimental system),
enabled us to generate new hypotheses for the mechanism
underpinning the disease, revealing a candidate gene (Ifitm3)
for the susceptibility to glomerulonephritis. These findings on
Ifitm3 in rat glomerulonephritis merit further discussion. Ifitim3
has a known role in viral resistance, a central part of innate
immunity, and is inducible by both interferon (IFN) types I
and II (Everitt et al. 2012). Notably, type II IFN signaling has
been implicated in the pathogenesis of nephrotoxic nephritis,
and other “planted” antigen models of CRGN (Kitching et al.
2004), although DNA methylation has not previously been ex-
amined in this context. With regards to type I IFN, recent ge-
nome-wide DNA methylation analysis of T-cells, B-cells, and
monocytes has shown that patients with SLE, a frequent au-
toimmune cause of CRGN, have severe hypomethylation near
to genes involved in type I IFN signaling (Absher et al. 2013).
In addition, DNA methylation alterations in IFN-related
genes, including Ifitm3, have been previously observed and
proposed to contribute to the pathogenesis of other autoimmune
diseases such as primary Sjögren’s syndrome (Gottenberg et al.
2006). Regarding the role of Ifitm3, it has been shown to directly
interact in vivo and in vitro, with osteopontin, a matricellular
protein whose transcription is mediated by the AP-1 TF family
(El-Tanani et al. 2010). Furthermore, osteopontin has been also
previously associated with SLE (Rullo et al. 2013), and ANCA-
associated vasculitis (Lorenzen et al. 2010)—another frequent
cause of CRGN. Therefore, our ABBA analysis of WGBS data in
primary macrophages from a rat model of CRGN allowed us to
propose an AP-1-mediated role for Ifitm3 in glomerulonephritis.
While a role for IFN-signaling genes in autoimmune disease has
been previously suggested, our findings on methylation alter-
ation of the Ifitm3 gene associated with glomerulonephritis in
the rat might suggest future directions for the study of the path-
ogenesis, and to develop treatments of CRGN.

In awider context, the role of methylation is dependent on
the location with respect to the gene body and regulation
functions. Methylation in a CpGI-depleted promoter, such as
the promoter region of Ifitm3 gene [according to UCSC ge-
nome browser (RN4)], is associated with repression that
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maybe due to interference with transcription factor binding.
Conversely, methylation in the gene body is positively asso-
ciated with active transcription as methylation can be caused
by transcriptional elongation (Schübeler 2015). Methylation
within a gene body can also act as an insulator for repetitive
and transposable elements or distal intronic enhancers, on
which the methylation would have no regulatory effect on
the gene in which it resides (Jones 2012). Given the com-
plexity of these regulatory functions of methylation, the abil-
ity of our approach to accurately identify changes in DNA
methylation that are localized to specific regions is likely to
facilitate our understanding of the complex relationships be-
tween methylation and gene regulation. As exemplified by
our integrative analysis of the Ifitm3 locus, we anticipate that
the ABBA results for differential DNA methylation should be
integrated with additional transcriptional and epigenetic
data in order to better define hypotheses on specific regula-
tory mechanisms.

In summary, we show how ABBA provides a flexible and
user-friendly automatic framework for the identification of
differential methylation that is robust across a wide range of
experimental parameters—an approach that we have also
applied to identify changes in macrophage DNA methylation
in glomerulonephritis.
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