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Electrophysiology is entering the era of big data. Multiple probes, each
with hundreds to thousands of individual electrodes, are now capable
of simultaneously recording from many brain regions. The major chal-
lenge confronting these new technologies is transforming the raw data
into physiologically meaningful signals, that is, single unit spikes. Sort-
ing the spike events of individual neurons from a spatiotemporally dense
sampling of the extracellular electric field is a problem that has attracted
much attention (Rey, Pedreira, & Quian Quiroga, 2015; Rossant et al.,
2016) but is still far from solved. Current methods still rely on human
input and thus become unfeasible as the size of the data sets grows
exponentially. Here we introduce the t-student stochastic neighbor em-
bedding (t-SNE) dimensionality reduction method (Van der Maaten &
Hinton, 2008) as a visualization tool in the spike sorting process. t-SNE
embeds the n-dimensional extracellular spikes (n = number of features
by which each spike is decomposed) into a low- (usually two-) dimen-
sional space. We show that such embeddings, even starting from different
feature spaces, form obvious clusters of spikes that can be easily visual-
ized and manually delineated with a high degree of precision. We pro-
pose that these clusters represent single units and test this assertion by
applying our algorithm on labeled data sets from both hybrid (Rossant
et al., 2016) and paired juxtacellular/extracellular recordings (Neto et al.,
2016). We have released a graphical user interface (GUI) written in Python
as a tool for the manual clustering of the t-SNE embedded spikes and as
a tool for an informed overview and fast manual curation of results from
different clustering algorithms. Furthermore, the generated visualiza-
tions offer evidence in favor of the use of probes with higher density and
smaller electrodes. They also graphically demonstrate the diverse nature
of the sorting problem when spikes are recorded with different methods
and arise from regions with different background spiking statistics.
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1 Introduction

It is neuroscience dogma that the brain’s computational mechanics are im-
plemented by the complex dynamics of its spiking neural networks. As a
consequence, detailed knowledge of the spiking activity for as many neu-
rons as possible during behavior is seen as essential to understand how the
brain receives and transforms information. Electrophysiological methods
that record spiking activity extracellularly have been one of the most signif-
icant tools for exploring the correlations between behavior and neural ac-
tivity. Using these tools, there has been a constant drive to record from more
neurons, for longer times, from a host of brain regions, in diverse physio-
logical conditions, and from many different species. This trend was recently
accelerated by new microfabricated recording probes that extend the stan-
dard single electrode and tetrode devices (Recce and O’Keefe, 1989) with
integrated electronics to produce devices with thousands of recording sites
(Alivisatos et al., 2013; Jun et al., 2017; Raducanu et al., 2017; Ruther & Paul,
2015). The new generation of recording tools brings with it the challenge
of extracting meaningful physiological signals from the resulting (big) data
sets. In the case of extracellular probe recordings, that usually means trans-
forming the voltages measured at the electrode sites into spiking activity of
the nearby neurons. The importance of accurate spike sorting stems from
a number of ideas on how cell spiking contributes to brain functions. For
example, competent sorting is required to test for sparse coding in mem-
ory function (Chaudhuri & Fiete, 2016) or to assess the diverse responses
of neighboring cells, important in theories of concept (Rey, Ison et al., 2015)
and place cells (Redish et al., 2001).

The original attempts to spike-sort greatly benefited from the develop-
ment of the tetrode and its ability to simultaneously monitor the spiking
signal of nearby neurons from multiple locations (i.e., four) (Fee, Mitra,
& Kleinfeld, 1996; Gray, Maldonado, Wilson, & McNaughton, 1995; Wehr,
Pezaris, & Sahani, 1999). It has since become clear that dense electrode con-
figurations, in which that same neuron is detected by multiple electrodes,
generally improve sorting (Buzsáki, 2004; Lewicki, 1998). This has driven
the push for an increase in the electrode density of modern probe designs.
Today, new methodologies have evolved to work with the next generation
of multielectrode probes addressing the problem of exploding data set size
and complexity (Rey, Pedreira, & Quian Quiroga, et al., 2015; Rossant et al.,
2016). However, the basic idea of the spike-sorting pipeline remains the
same (see Figure 1A). The (filtered) data go through a process of spike de-
tection that has traditionally relied on thresholding the raw signal. The mul-
tiunit activity generated is then passed through a dimensionality-reduction
method that transforms the space-time spike matrices into a smaller set
of features. The most commonly used dimensionality-reduction techniques
for offline sorting are principal component analysis (PCA) (Harris, Henze,
Csicsvari, Hirase, & Buzsáki, 2000) and wavelet decomposition (Hulata,
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Figure 1: Graphical representation of (A) the current pipeline for spike sorting
and (B) the way t-SNE can be added as a visualization tool in this pipeline.

Segev, & Ben-Jacob, 2002; Quiroga, Nadasdy, & Ben-Shaul, 2004; Takekawa,
Isomura, & Fukai, 2010). For online sorting, geometric/spike shape meth-
ods (Gerstein & Clark, 1964; Lewicki, 1998) are mainly used. More recent
approaches even combine the two offline methods to generate an opti-
mum set of features for further analysis (Rey, Pedreira et al., 2015). Fi-
nally, a clustering method is employed to automatically group together
the spikes from an isolated single unit in the high-dimensional space of
the decomposed features. Techniques commonly used for this clustering
are k-means (Wood, Black, Vargas-Irwin, Fellows, & Donoghue, 2004), mix-
tures of gaussians based on an expectation-minimization algorithm (Wood,
Fellows, Donoghue, & Black, 2004), and template matching (Wang, Zhou,
Chen, Zhang, & Liang, 2006; Zhang, Wu, Zhou, Liang, & Yuan, 2004). An
overview of different techniques for detection, feature extraction and clas-
sification is given in Bestel, Daus, and Thielemann (2012). Methods that
are currently under development follow a different route where the event
detection, the feature extraction, and the clustering steps are realized in a
single template matching step (Pachitariu, Steinmetz, Kadir, Carandini, &
Harris 2016; Yger et al., 2018). These methods offer better parallelization ca-
pabilities and are proving very capable in handling millions of spikes aris-
ing from recordings of hundreds to thousands of channels.

In all cases, the automated clustering algorithms operate on a number of
dimensions that scale linearly with the number of channels of the recording
probe. For the more recent multichannel probes, this feature space usually
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contains hundreds of dimensions. Such multidimensional spaces make ei-
ther manual clustering, or the manual supervision and quality assurance of
the automated algorithms’ results, prohibitive. The t-SNE dimensionality-
reduction technique was designed to reduce such multidimensional data
sets to two or three dimensions in a way that visualizing them can of-
fer meaningful insight into their original high-dimensional structure (Van
der Maaten & Hinton, 2008). Embedding techniques like t-SNE transform
the position of points in a high-dimensional space to positions in a lower-
(usually 2-) dimensional space. This reduction transformation obviously re-
quires that some information is lost. Each embedding technique decides
which aspects of the original structure to keep and which to ignore. t-SNE
focuses on ensuring that the local structure (i.e., the ordering of distances
between nearby points) remains intact while it ignores the global structure
(i.e., the large distances in the t-SNE space are not representative of the
large distances in the original space). A good mental representation of how
t-SNE achieves this is to think of all points as objects connected to each other
with spring-like forces. In the original space, these forces are in equilibrium.
When the points are transferred (randomly at first) into the 2D space, the
forces between them start both pulling and pushing so that a new equilib-
rium might be reached (see Figure 1B). Points that are close in the original
space are attracted to each other until they get roughly equally close in the
2D space. At the same time, points that are far away in the original space
are repulsed by each other if they happen to find themselves close in the 2D
space. This ability of the t-SNE algorithm to repulse points that are nearby
in the 2D space but not in the original space offers a solution to the crowd-
ing problem of other embedding methods. This underlies the informative
2D plots that it generates.

In this work, we apply t-SNE to the spike-sorting process and generate
2D plots that show obvious clusters of spikes. We use two types of data
to validate our technique. The first is a ground-truth data set that comes
from paired recordings (Neto et al., 2016) with an extracellular and a juxta-
cellular probe, thus providing labels from the juxtacellularly recorded unit
within the extracellular probe’s spiking activity. The second type is a hy-
brid data set generated from the synthesis of real extracellular recorded data
with manually superimposed spikes belonging to a number of single units
(Rossant et al., 2016). In the following, we demonstrate that many of the
t-SNE-generated low-dimensional clusters represent the activity of single
units, while others group together spikes arising from a large number of
putative units and likely noise. We develop a graphical user interface (GUI)
that allows the fast visual identification of the single-unit clusters and re-
port on how accurately the manually selected clusters represent the labeled
single units. We then use the visual representations of spike clusters that
t-SNE generates to offer an overview of how the sorting/clustering dif-
ficulty increases with decreasing electrode density. We enhance the re-
sults of this density effect analysis by showing the t-SNE embedding of
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a juxtacellular-tetrode recording (Harris et al., 2000). This shows how a
small number of electrodes present issues in distinguishing between differ-
ent units. Utilizing the input agnostic nature of t-SNE, we use it to embed
the results of a template-matching algorithm (kilosort) applied to the same
ground-truth data set. We subsequently use the GUI to overview and man-
ually correct kilosort’s results. This shows that t-SNE’s 2D embedding vi-
sualization makes digesting and curating the high-dimensional output of
automated spike clustering algorithms a simple procedure. At the same
time, this visualization provides a satisfying overview of the otherwise
overwhelmingly large, high-dimensional data sets. Finally, to expand on
this last point and demonstrate the scalability of the method, we show a
t-SNE embedding from a data set of 1 million spikes collected from a state-
of-the-art CMOS probe with 908 active electrodes on which the kilosort
detected 579 putative units. We conclude with a discussion of possible ex-
tensions and future use cases of the t-SNE algorithm for sorting and visu-
alization of large-scale spike recordings.

2 Methods

2.1 Data Sets. We used four data sets (conceptually split into two
groups—one with ground-truth data sets and one with hybrid ones) to
quantitatively test the efficacy of our methods and two separate ones to
qualitatively expand on certain points that arose from the use of t-SNE
on the first four data sets. The first group of two sets consisted of record-
ings from the anaesthetized rat’s (motor) cortex (Neto et al., 2016). In these
data sets the extracellular probe’s recording was paired with a juxtacellu-
lar recording with a pipette. There were two different types of extracellular
probes used in different sessions: a 32-channel staggered array (A1 × 32-
Poly3-5mm-25s-177-CM32, NeuroNexus, U.S.A.) and a dense 128-channel
matrix developed by the collaborative NeuroSeeker project (http://www
.neuroseeker.eu). The 128-channel probe design is shown in Figure 4 and
the 32 channel design in supplementary Figure 1. From the paired record-
ing sessions available (www.kampff-lab.org/validating-electrodes), we se-
lected one from the 32-channel probe (paired data 32: PD32) and one from
the 128-channel probe (paired data 128: PD128). Those were the data sets in
which the juxtacellularly recorded neuron was close enough to the extracel-
lular probe to have its spikes easily detected on the extracellular recording
without any spike-triggered averaging.

The PD128 set, when spikes were detected with 6.5× standard deviations
threshold, consisted of 128,820 spikes. Of these, 4420 were spikes belonging
to the juxtacellularly recorded neuron (out of a total 4998 juxtacellularly
recorded spikes). These are the spikes we used in the analysis shown in
Figures 2 and 4. At 4.5 SD, it consisted of 255,026 spikes, of which 4775
were the juxtacellularly recorded ones. When the same data set was put
through the kilosort algorithm (where no detection through thresholding is

www.kampff-lab.org/validating-electrodes
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actually used), it gave back 466,313 putative spikes out of which we defined
as nonspike noise 139,073 (see section 3.4). That left 327,240 spikes (72,214
more than the 4.5 SD threshold detection). The PD32 set consisted of 73,814
spikes of which 331 belonged to the juxtacellularly recorded neuron (using
an SD of 6.5 for the detection of extracellular spikes).

For the second group of data sets, we used two hybrid data sets provided
to us by the lab of Kenneth Harris. Their construction was based on record-
ings of a 129-channel probe and the superposition of previously sorted
spikes derived from separate recordings (hybrid spikes). The details of how
these hybrid time series were constructed can be reviewed in Rossant et al.
(2016). The first data set (HD1) had 86,271 spikes with 7 hybrid spike sets
coming from different (labeled) neurons ranging in size from 432 to 26,043
spikes. The second data set (HD2) had 126,102 spikes, again with 7 groups
of labeled hybrid spikes with group sizes between 442 and 24,987.

For further exploration and understanding of the results of the t-SNE al-
gorithm on spike data, we used two more data sets. One was a juxtacellular-
tetrode paired recording (PD4) from the data sets described in Harris et al.
(2000): cell d5331. We used KlustaKwik to both detect and cluster the spikes
in this data set (with a spike detection threshold of 4.5 SD). This provided
a total of 4387 spikes, out of which 842 were also present on the juxtacel-
lular probe (99.7% of the juxtacellular spikes). The KlustaKwik clustering
algorithm generated three clusters from this data set running with default
parameters and no further manual sorting.

The last data set (NS) was from an acute rat recording utilizing a new,
very high density CMOS probe developed by the NeuroSeeker project (Ra-
ducanu et al., 2017). This NeuroSeeker probe has 1440 active electrodes,
each 20 × 20 μm square, with a 22.5 μm pitch, arranged in four columns
spanning a total area of 8000 × 100 μm2 (see Figure 6 for a schematic).
The data set used here was from an auditory, hippocampal, medial genic-
ulate nucleus implantation we conducted that used 908 active electrodes.
For spike detection and initial spike sorting, we used the kilosort algorithm,
which resulted (after cleaning of the templates that were obviously noise)
in 1,091,229 spikes and 579 templates.

2.2 t-SNE Code. For all our experiments, we used an extended version
of the GitHub available C++ t-SNE code by Van der Maatens (https://
github.com/lvdmaaten/bhtsne/). The bhtsne implementation in this
repository allows for faster computations and makes larger data sets fea-
sible through the use of the Barnes-Hut (BH) algorithm (Van der Maaten,
2014). The BH algorithm groups together distant samples into a single av-
erage sample, minimizing the number of Euclidean distance computations
the algorithm must perform. This step makes the calculation of the actual
error minimization of the 2D landscape faster and tractable for large sample
numbers (on the order of millions). Yet the calculation of the initial probabil-
ities in the multidimensional space still requires the algorithm to calculate

https://github.com/lvdmaaten/bhtsne/
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the Euclidean distances of all sample pairs, adding, for large sample num-
bers, a significant amount to the algorithm’s run time.

To speed up this part, we implemented the computation of the Euclidean
distances between all sample pairs directly on the GPU. To do this, we used
the GPU Euclidean distance implementation presented by Chang, Jones, Li,
& Ouyang (2008). This allows us to run data sets of more than 105 of spikes
on a gaming desktop (i7 CPU, Titan X GPU, 64GB RAM) in just a couple of
hours (see supplementary Table 1 about times for different numbers of sam-
ples and perplexity settings). However, storing the distances for all sample
pairs on RAM soon imposes a bottleneck on the number of samples that
can be used. For N samples, one requires 4 ∗ N ∗ N (for 32-bit floats) bits
of RAM, which translates to 40 GB for 105 spikes and to 1 TB for 0.5 ∗ 106

samples. To overcome this bottleneck, we added the possibility of calculat-
ing the pairwise distances in groups and keeping in memory only the ones
that the BH algorithm will use (populating the tree structure used in the al-
gorithm with GPU precalculated distances). This process requires a sorting
step of the distances that increases the time required but allows much larger
sample numbers to be used. For data sets that are prohibitively large and to
show that online sorting of samples is possible, we extended the algorithm
to be able to position samples on a t-SNE precomputed 2D landscape. This
is done by measuring the Euclidean distance of each new sample to the sam-
ples already passed through the t-SNE algorithm. Then the extra samples’
positions on the 2D landscape are calculated as the average of the positions
of the closest five original samples for each new sample. For spike sorting,
given that the number of spikes passed through the t-SNE algorithm offers
a complete representation of the spiking units in the recording, we show
that the algorithm correctly places the extra samples (see supplementary
Figure 2).

We also extended the Python wrapper that came with the original code
to accommodate the use of the extra parameters our C++ t-SNE function
requires and to allow the user to choose between the use of the C++ exe-
cutable or the CPU only SciPy implementation of t-SNE. The latter allows
users without access to the CUDA library, or with hardware not capable of
supporting our code, to still run a full t-SNE spike sorting session only on
CPU and fully in Python (no C++ executable is called with this option).
This option of course allows only a small number of spikes and incurs large
run times.

2.3 Spike-Sorting Pipeline. We applied the t-SNE algorithm in two
separate points of the spike-sorting pipeline (postspike detection and post-
clustering) using two different spike representation feature sets as inputs to
the algorithm. In the first instance (see the results in Figures 2, 3, and 4), the
algorithm operated on the masked PCA components of the spikes detected
as described in Rossant et al. (2016). In order to facilitate the input of these
components to t-SNE, we wrote Python code that accepts the (masked or
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not) PCA components of the detected spikes, transforms these into a data
set ready for the t-SNE algorithm, and calls the executable on it. We have
also tried using raw data or nonmasked PCA components as input to the
t-SNE algorithm but found the masked PCAs to consistently outperform
these other inputs (results not shown). The second input feature set to the
algorithm (see the results in Figure 5) was the distance to templates gener-
ated by the kilosort algorithm. In this case, the t-SNE algorithm operated
on feature vectors that measured how near or far each spike was to the set
of spike templates that kilosort generated from the data.

We also developed a minimal, and easily extensible, GUI that allows
users to visualize the results of the t-SNE algorithm and use this visual-
ization to manually sort the detected spikes. The GUI offers a number of
views and tools for manual spike sorting. These include a 2D scatter plot
of the t-SNE results with several ways to select groups of spikes directly
on the plot. A view to preview the selected group’s average time traces for
all channels. The presented data are not explicitly filtered, but the baseline
is subtracted using the first 10 samples. An autocorrelogram view of the
selected spikes with 1 ms resolution bins. A heat map view of the average
difference between the minimum and the maximum values in the spikes’
time window superimposed on the probe’s layout diagram. A way to la-
bel a selected group and store it as a cluster in a pandas structure (saved to
disk as a pickle). The GUI also allows selecting and previewing all plots for
any cluster, deleting a cluster, and previewing (color-coding) all clusters on
the t-SNE scatter plot. A number of input boxes and buttons also allow the
merging and splitting of clusters, as well as the reassignment of spikes to
different clusters.

The development of the GUI is based on the PyQtGraph Python library.
This makes further development of good-quality views as desired by in-
dividual users relatively easy and fast. At the same time, the PyQtGraph
library will struggle with a large number of points presented simultane-
ously on the t-SNE view. For the gaming desktop described, the easy-to-
work-with limit was reached at about 1 million spikes.

The Python code design was informed by the need to keep the code sim-
ple and extendable. To achieve this, we chose to implement only functions
without any obfuscating object orientation or passing data around data
structures in more complicated ways other than function arguments and
return statements. Individual functions are constructed to be self-standing
and usable outside the context of the spike-sorting work flow the code was
designed for. For example, the basic t-SNE functions can operate on any
other data of a samples × features dimensionality. The functions that pro-
duce the average spike time courses or the average heat maps of the probes
can easily be used to generate plots outside the confines of the GUI.

2.4 t-SNE Parameters and Accuracy Measurements. For spike de-
tection, we used a high- and low-detection threshold of 6.5 and 2 SD,
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respectively. We tried out a large range of t-SNE parameters (perplexity,
learning rate, theta, and number of iterations) in order to define the set that
gave us good results but did not take too long to run. For all of the results
presented here, the parameters used were perplexity 100, learning rate 200,
and theta 0.2. The theta parameter defines the angle of the cone inside which
all points are treated as a single average point by the BH algorithm. Smaller
values mean that the algorithm averages fewer points together (i.e., only
those that are far away from the central point). A value of 0.2 is consid-
ered an approximation closer to an exact solution. For the PD128 and the
HD1 sets, we ran the algorithm for 2000 iterations, and for the PD32 and
the HD2, 5000. Perplexities lower than 100 were shown to compromise the
results (inasfar as separation of clusters defined by visual inspection), while
higher numbers (we tried up to 1000) would make no obvious difference
other than adding to the run time of the algorithm. We have found that per-
plexity is a sample number-dependent measure, but for tens to hundreds
of thousands of samples (as in all our data sets), the chosen number of 100
offered the best quality versus run time balance. The fact that over a cer-
tain value, perplexity did not seem to change the quality of the embedding,
adds to the idea in the t-SNE literature that this is a stable parameter that
can vary a lot without substantially influencing the results.

Having labeled data allowed us to measure the quality of the t-SNE clus-
tering visualization as a tool for separating single units. Since the t-SNE
algorithm itself does not cluster (i.e., label) the data but only offers a 2D
embedding, we needed a way to label the spikes according to their position
in that embedding. We chose to use the density-based spatial clustering of
applications with noise (DBSCAN; Ester, Kriegel, Sander, & Xu, 1996) algo-
rithm. This provides a nonparametric way to label the embedded spikes by
clustering together samples that form denser groupings compared to their
immediate environment. We found that DBSCAN’s approach to clustering
matched most closely the human intuition of neural units corresponding to
separate groups of spikes in the 2D visualization of the t-SNE data.

Having established a method for labeling the t-SNE results, we then com-
pared the generated labels with the ground-truth information from the jux-
tacellular recordings or the hybrid spike groups. We report here the results
of three commonly used measures for such comparisons. The first is preci-
sion (or confidence or true positive accuracy)—the ratio of the true positive
samples over all positively labeled samples. True positive are the spikes
labeled by DBSCAN as part of a unit that also had either a juxtacellular
spike correspondence or the correct hybrid label. Positive are all spikes de-
fined by DBSCAN to belong to the specific single unit. The second is recall
(or sensitivity or true positive rate)—the ratio of the true positive samples
over all true samples. True are all spikes with a juxtacellular spike corre-
spondence or a specific hybrid spike label. The third is the F-factor, which
is defined as the harmonic mean of precision and recall (i.e., 2 ∗ Precision
∗ Recall/(Precision + Recall)). We also calculated the receiver operating
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characteristics (ROC) values for each label (either hybrid spike set or jux-
tacellular corresponding set) as a point on the plot of the true-positive
rate versus the false-positive rate (see supplementary Figure 3). The false-
positive rate is defined as the ratio of the false-positive samples over all
the negative samples. False positive are the spikes defined by the DBSCAN
as part of the label but not having a corresponding juxtacellular spike or a
hybrid set label. The negative spikes are all spikes not having the specific
juxtacellular or hybrid label.

3 Results

3.1 Paired Data. We ran the t-SNE algorithm (for a 2D embedding) on
the full 128,820 spikes of the PD128 set; each spike was represented as a
masked vector of 384 dimensions (128 channels ∗ 3 largest PCA components
per channel). The masking of the PCAcomponents (i.e., modulated between
0 and their full value) is described in Rossant et al. (2016). The resultant
embedding is shown in Figure 2A. The embedding generates a number of
distinct groups of spikes and a number of more diffuse clouds with vary-
ing internal densities. A spike grouping at the bottom of the figure contains
the majority of the extracellular spikes that correspond to juxtacellularly
recorded spikes (i.e., ground-truth spikes from the isolated single cell). The
figure shows that a small percentage of the spikes coming from the labeled
cell are spread throughout the entire 2D space, while the labeled cluster also
contains some spikes that are not generated by the labeled cell. For this set
of ground-truth spikes, the precision, recall, and F-factor are 0.86, 0.83, and
0.84, respectively, which translates to 14% of the ground-truth spikes not
being classified as part of the main cluster and to 17% of the main cluster
spikes being misclassified as part of the ground truth. We note here that
due to the clear isolation of this group of points from all others on the plot,
the DBSCAN labeling of this cluster is identical to any naive user’s man-
ual clustering on the same plot. That means that the errors produced are
not due to misplacement of fringe spikes due to DBSCAN’s parameters (or
different users’ biases). Both the false-positive and false-negative errors are
due to t-SNE positioning these spikes either fully inside the cluster with-
out them belonging there or far away from it although they belonged there.
One possibility for the false-negative errors (quantified by the recall mea-
sure) is that t-SNE, just like all other spike-sorting algorithms on which it
relies, cannot differentiate overlapping spikes and falsely assigns them to
separate spike groupings from the ones they should belong to.

The color coding of the samples with a corresponding juxtacellular spike
shows that the embedded cluster’s internal structure has a strong rela-
tionship with physical characteristics of the actual spikes—in this case,
their peak amplitude. The t-SNE algorithm is designed to retain the local
structure of the multidimensional space during its transformation into the
2D embedding space. That means that any correspondence between the
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Figure 2: Results of t-SNE analysis on PD128 (A) and PD32 (B). The color coding
represents the size of the juxtacellular spikes that corresponds to the extracellu-
lar ones on the t-SNE plots.

physical properties of the samples and their distances in the high-
dimensional PCA space will be retained in the subsequent embedding, at
least for the samples that are close together (i.e., the ones within a sin-
gle cluster). The 2D embedding space is easy to visualize and thus allows
quickly noticing such relationships. By simply changing the color-coding
scheme to represent different properties, one can easily browse the relation-
ships (or lack thereof) between any number of specific characteristics. For
example, color-coding the spikes according to the time they appear in the
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recording reveals that there is no correspondence between the size of spikes
and the time they were recorded (results not shown).

Having used t-SNE to generate an embedding of the data set that is infor-
mative to the spike-sorting problem, we briefly explored the possibility that
other embedding algorithms might offer an equal or even better result. We
used two variants of the locally liner embedding (LLE)—standard (Roweis
& Saul, 2000) and modified (Zhang & Wang, 2007)) methods—as well as
an isomap (Tenenbaum, Silva, & Langford, 2000) and a spectral embedding
(Belkin & Niyogi, 2003). We used all algorithms with their default parame-
ters as set in the scikit-learn implementation. All four algorithms failed to
run for the whole data set (128,000 spikes) since the scikit-learn implemen-
tation is a CPU only one that assumes data sizes in the low thousands range.
We subsampled the data set so that all the algorithms could run (maximum
allowed samples were 20,000 spikes) and run this with all four algorithms
and the t-SNE algorithm. The results of this experiment, demonstrating the
crowding problem that most of the embedding algorithms face can be seen
in supplementary Figure 4.

The clearest picture of how t-SNE operates on the data can be gained
from videos of the t-SNE process in which each frame is the result of pro-
gressive iterations of the embedding algorithm. We captured this process
for the PD128 data set in supplementary video 1. Figure 2B shows the t-SNE
embedding of the 73,814 spikes of the PD32 set. Here, the embedding gener-
ates a more homogeneous cloud with significantly fewer easy-to-delineate
groupings of spikes. The precision, recall, and F-factor for the juxtacellu-
larly labeled spikes in this case are 0.91, 0.65, and 0.76, respectively, for the
t-SNE/DBSCAN-generated cluster with the most color-coded (juxtacellu-
lar) spikes. In this case, the cluster is a fairly homogeneous one (with only
9% of the spikes not belonging to the unit it represents), but it fails to capture
a large percentage (35%) of spikes from the same unit that end up in other
groups. Also, the cluster’s internal structure shows no correspondence with
the spikes’ peak amplitude as measured by the juxtacellular electrode. We
will propose (see section 3.3) that the drop in clustering performance be-
tween the P128 and P32 embeddings is mainly due to the lower sampling
density of the extracellular space provided by the 32-channel probe.

3.2 Hybrid Data. We also used t-SNE to embed the two hybrid data
sets described in section 2.1. The results for HD1 are in Figure 3A and for
HD2 in Figure 3B. In this case, the output of the t-SNE algorithm provides
a clean visualization of the known single-unit clusters. Most clusters are
fully separated from the other clusters and contain a very small number of
spikes that do not belong to their corresponding unit. The spikes shown in
black in both sets are not hybrid spikes, but rather those that were in the
original recording (i.e., not ground truth). For HD1, all clusters have preci-
sion, recall, and F-factor of 0.99. For the HD2 set, clusters 1, 4, 5, and 7 have
precisions, recalls, and F-factors ranging between 0.95 and 0.99. Cluster 6
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Figure 3: Results of the t-SNE analysis on the hybrid data, HD1 (A) and HD2
(B). The colors represent spikes that belong to preclassified units added to the
data sets, while the black points represent spikes preexisting in the data sets and
thus do not belong to known units. The inset in panel B shows a zoom-in of the
embedding of units 2 and 3 that t-SNE does not manage to segregate.

has 0.91, 0.9, and 0.91, respectively. In the case of cluster 5, DBSCAN did
not classify as part of the unit the spikes that expand away from the main
group to the right of the cluster. Yet their proportion was small enough to
keep the recall at 0.95. The same applied to cluster 1, which was missing
the group of spikes showing at the top of the large not-ground-truth spike
grouping (black group at the left of the plot labeled “Not GT”). That group
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of spikes was also small enough in percentage that the cluster still achieved
a recall of 0.96. t-SNE failed to fully separate clusters 2 and 3 (see the inset
of Figure 3B).

In this case, the clusters’ recalls were 0.99, but their precisions were 0.44
and 0.55 with F-factors of 0.61 and 0.71, respectively. The internal structure
of their common spike group in the 2D embedding space shows that the
similarity of their spikes changes in a uniform way and that some spikes
from the two groups are quite similar, thus causing the embedding to over-
lap the two units.

As in the case of PD128, the separation of the spike groups on the t-SNE
embeddings was so clear that the DBSCAN assignment of labels was robust
to the DBSCAN’s parameters. Given this separation of groups of spikes, it
is also obvious that users trying to manually assign the spikes to different
clusters based on the t-SNE plot will come to very similar conclusions with
the automatic clustering shown here.

3.3 Probe Electrode Density and Clustering Quality. As the number of
electrodes per probe increases, it is important to understand how the den-
sity of electrodes relates to an algorithm’s ability to reliably extract and iso-
late single units. A major argument for the miniaturization of silicon probes
was the idea that more densely spaced electrodes and probes with larger
numbers of electrodes will increase spike-sorting quality by providing more
features with which to classify spikes. Here we review this argument using
t-SNE by performing embeddings of the P128 data set, originally captured
with a density of 2050 electrodes/mm2, at artificially reduced densities. This
was achieved by removing more and more channels while keeping the to-
tal coverage intact and then performing a new t-SNE embedding with each
sub-data-set. The results visually demonstrate how artificially decreasing
the probe’s density affects the sorting of the detected spikes.

We started from the PD128 set and used the manual sorting GUI we de-
veloped (see section 2) to define as many groups of spikes belonging to the
same unit. The criteria used to delineate a number of spikes as a single unit
were the following: the spikes had to be close in the t-SNE space and ide-
ally belonging to one, obvious, unique grouping (e.g., large orange cluster
at the right of the plot or yellow cluster at the bottom). If that was not the
case, the grouping had to at least be contiguous (e.g., the dark red and green
clusters at the far right and middle of the plot or the yellow and red clusters
at the left and top of the plot). The average time course of the spike on all
electrodes had to show a standard extracellularly measured action poten-
tial. The autocorrelogram of the spike times within a group had to be zero
within 1 ms of time zero (i.e., no two spikes of the group could have been
fired in a time interval sorter than 2 ms of one another). Also it had to show
large numbers of hits outside the refractory period to show that the refrac-
tory period was not a result of just a small number of spikes. Finally, the
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heat map of the group had to show a contiguous region of activation on the
probe that was compact (just a few neighboring electrodes).

Following these criteria, we labeled 90 units in the PD128. The autocor-
relograms of a few of those units (one being the unit of the juxtacellular
spikes) are shown in supplementary Figure 5. Given the extent and den-
sity of electrodes, as well as the position of the probe within cortex, this
is consistent with the number of neurons one might expect to detect in lo-
cal vicinity (fewer than 50 microns; Neto et al., 2016). Figure 4A overlays
the manually classified clusters directly on the t-SNE plot. There are three
separate groupings of spikes that we have not labeled as a single unit (the
grouping at the top of the plot and two on the right side of the plot between
the orange, yellow, blue, and green units). t-SNE in this case had clustered
together three groupings of multiunit spikes. These groupings also showed
no internal grouping that could be assigned to a single unit. Figures 4B to 4F
show the t-SNE results arising from the same data set with some electrodes
removed. From panels B to F, the number of electrodes used were 64, 32, 22,
16, and 8, respectively (denoted as blue in the figure). The color coding in
these subplots is the same as in Figure 4A and denotes the unit each spike
belongs to as defined by the above procedure. Even at 64 channels, there is
an obvious deterioration of the t-SNE clustering quality that progresses all
the way to the eight-channel data set. This deterioration can be seen from
the reduction of the number of easy-to-delineate spike groups, the increase
of the number of spikes that form part of the larger amorphous clouds, and
the mixing of the labeled spikes among the unit clusters and between the
clusters and the undifferentiated cloud structures.

In order to enhance the argument toward probes with higher density and
a larger number of electrodes, we also embedded using t-SNE the PD4 data
set. Supplementary Figure 6 shows the t-SNE embedding of these spikes
(using as features the first 10 principal components of each tetrode channel)
color-coded with both the Juxta spikes (see Supplementary Figure 6A) and
the KlustaKwik’s cluster definitions (see Supplementary Figure 6B). Given
that the extracellular probe in this case has only 4 channels one expects
the number of units contributing to the extracellular signal to be around
8 (Pedreira, Martinez, Ison, & Quian Quiroga, 2012) with a theoretical max-
imum of around 20 (Buzsáki, 2004). The KlustaKwik algorithm in our case
finds only 3 clusters, the same number as in the original work presenting
these data (Harris et al., 2000). The smaller number of units found in this
case might be due to the damaging effect of the juxtacellular electrode posi-
tioned next to the tetrode. We note also that in the only other paired tetrode,
juxta study available (Wehr et al., 1999), the tetrode signal was decomposed
in only 4 units. Supplementary Figure 6B shows that one of these clusters
contains most of the Juxta spikes but also a large number of non-Juxta ones.
t-SNE is doing a better job at identifying the Juxta spikes. More specifically,
the spike group manually selected in the blue square in supplementary Fig-
ure 6A has 1070 spikes out of which 825 are Juxta spikes (out of 842 total
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Figure 4: t-SNE embeddings of the same PD128 data set for a series of electrode
densities (the electrode configuration is shown at the top of each subplot with
blue being the used channels). The color code represents the manual sorting of
the spikes done on the full (128 channels) t-SNE embedded data set. The way the
different color groups start to break up and merge with each other over the con-
secutive electrode configurations visually depicts the increased difficulty of the
spike-sorting problem for probes with reduced densities. For the last two den-
sities (panels E and F), the electrodes are far enough from each other to ensure
that each spike is seen by only one electrode. The quality of these embeddings
makes immediately obvious the usefulness of the multiple spatially separated
channels with information about each spike.
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Juxta), while there are 17 Juxta spikes not found in that group. That gives a
precision, a recall, and an F-factor of 0.98. Nonetheless, the autocorrelogram
of supplementary Figure 6A (inset) shows that given no prior knowledge of
the Juxta spikes, a manual curator would be hard-pressed to consider this
grouping as a single unit (compare this to autocorrelogram a of supplemen-
tary Figure 5 also belonging to a Juxta spike group).

3.4 Intuitive Manual Curation of Automated Clustering. Template
matching algorithms are proving to be fast alternatives to the more classi-
cal detect, embed, and classify spike-sorting pipeline, especially for probes
with a large number of densely spaced electrodes. These algorithms itera-
tively generate templates of the spikes present and then use these templates
to detect and classify the individual spikes. The result is a list of spike tem-
plates together with the Euclidean distances of each spike to each of these
templates. Each spike is assigned to the template that matches it best (i.e.,
it has the smallest distance to). We report here how t-SNE embeds these
template distance features and how we used our GUI to sanity-check the
automatically generated results and get a broader overview of the cluster-
ing problem for a specific data set.

We ran the kilosort algorithm (Pachitariu et al., 2016) on the PD128 data
set with a maximum number of templates set to 256 (double the number
of channels on our probe). It generated 252 templates and detected 466,313
spikes. We then used the distances of each spike to all the templates as the
t-SNE input feature space (a 252-dimensional one), setting to 0 all the dis-
tances except the nearest 16 templates. The result of this t-SNE embedding
can be seen in Figure 5. The embedding shows three different types of spike
groupings. The first are a number of very tight groupings (denoted from
here on as “points”) where the spread of the entire group in both the x- and
y-axis is at least three orders of magnitude smaller than the total spread of
the embedding. The second is a linear grouping where there is an obvious
extended axis (not necessary along the x- and y-axis of the full embedding).
This axis shows a much larger spread than its perpendicular one, making
the grouping appear very elongated (denoted from here on as “lines”). The
third type of grouping has large spreads on both the x- and y-axis, no fewer
than two orders of magnitude smaller than the total t-SNE spread (denoted
here as “blobs”).

Using the manual clustering GUI, we could easily evaluate in which kilo-
sort assigned templates the spikes in the different embedding groupings
belonged and vice versa (i.e., which groupings held spikes from any sin-
gle template). From this comparison, five general categories emerged. The
first category involved groupings that were fully represented by a single
template and whose heat map and autocorrelogram both indicated a single
unit. There were 73 of these single units (SUs), out of which the majority
(49) were point groupings, 18 were line groupings, and a small minority
(7) were blobs. This category included 109,890 spikes. The second category
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Figure 5: t-SNE embedding of the results of the kilosort algorithm (distances to
templates) for the PD128 data set. Colors indicate the different categories that
the spikes fall into after using our custom GUI to manually evaluate and correct
as necessary kilosort’s spike assignments to templates. The SU labeled group-
ings represent a single unit each. The MU labeled groupings represent a single
template each but multiple units. The Noise labeled groupings represent noise
that has been picked up by kilosort as spike templates. The SUs after merges
and splits have a more complex representation, where each single unit can be
either one or more groupings and have originally belonged to one or more tem-
plates. The Unlabeled groupings represent spikes that could not be assigned to
either a single unit, a multiunit, or a noise group. The inset at the top of the
figure depicts a zoom-in (×30 magnification) to a point grouping (SU) showing
that these groupings actually comprise large numbers of spikes all embedded
very close to one another. That compactness indicates a very large similarity in
the template distance feature space and a large dissimilarity to any other spike,
so it is not surprising that they are the groupings that kilosort has assigned to
templates that represent single, easy-to-define units.

consisted of groupings that again were fully defined by a single template,
but this time the autocorrelogram (and sometimes the heat map) indicated
multiple units (MUs). There were 39 of these MUs, the majority of which
(26) were blob groupings with only a small minority being either lines (7)
or points (6). There were 134,288 spikes in this category of MUs. The third
category was represented by the three largest, semiconnected blob group-
ings in the center of the embedding and the fourth largest blob on their right.
Their spikes belonged to five templates (four for the central blob and one
for the blob on the side), and each template had its spikes grouped together
but with a large minority spread throughout other parts of the groupings.
These five templates were the most numerous, and they all showed average
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spike trains that were very small in amplitude (less than 100 μV), did not
resemble spike shapes, and were identical on all channels. We denoted this
category as noise. It had 139,073 spikes.

In the fourth category we lumped together all the cases that after split-
ting or merging of templates or moving spikes from one template to an-
other ended up with acceptable SUs (based on their average spike shape,
their probe heat map, and their autocorrelogram). We arrived at 24 SUs
with a total of 38,482 spikes. In these cases, the combined information of
where the spike lay in the embedding and in which template it belonged
to made it fairly straightforward to either appropriately merge or split tem-
plates or move spikes along templates. In some cases, a single SU would be
represented by two separate t-SNE groupings. The two groupings embed-
ded within blue ellipses in Figure 5 are an example. They represent a single
unit after the merging of two kilosort templates (with spikes mixed over
the two groupings). This unit happens to correspond to the juxtacellularly
marked spikes. The unit has 4845 spikes in it. Out of those, the 4821 spikes’
timestamps correspond to the 4998 juxtacellular time stamps within a jitter
of 1 ms. That translates to a false-positive error of 0.5% and a false-negative
error of 3.7%. In other cases, a single grouping would contain spikes as-
signed to two templates, and a merging indicated a single SU (like the or-
ange line at the bottom center of the embedding), while in others, a single
template would be represented by multiple groupings, each defining an
SU, resulting in the template’s splitting (like the two orange line groupings
at the top center of the embedding). Finally, the fifth category involved all
the spikes that we were unable to assign to any of the previous divisions
(SUs, MUs, or noise). These were spikes that showed no obvious correla-
tion between the embedding position and their template assignment. For
example, the large red blob to the top and right of the large noise blob had
14,184 spikes that kilosort had assigned to 95 separate templates (most were
templates with fewer than 10 spikes each). There was no internal structure
to the blob; the spikes of each template appeared randomly spread through-
out. The embedding of all these spikes and templates in a single grouping
made it straightforward to visualize the situation and assign all the spikes
to the unlabeled division. Supplementary Figure 7 also shows some repre-
sentative autocorrelograms for the SU, MU, and SU after merges and splits,
both depicting a case of a three templates merge and a case of a split of one
template to two units.

3.5 Using t-SNE with Very High-Density Probes. The t-SNE embed-
ding as a visualization tool for spike sorting is expected to operate best
on data sets arising from probes with high densities and large numbers of
electrodes. In order to test this hypothesis and further demonstrate the util-
ity of t-SNE embedding on very large electrophysiology data sets, we ap-
plied the algorithm to the NS data (described in section 2.1). If one were to
manually curate the results of the kilosort algorithm for this data set using
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Figure 6: t-SNE embedding of the data from an acute recording of the Neu-
roSeeker CMOS probe. (Top) A graphical description of the 8 mm long probe
with its 12 regions (G1–G12) of active electrodes. The colored bar on top of the
probe denotes the brain regions that the different parts of the probe were in-
serted into (inset on the right shows a 3D representation of the probe insertion).
Heat maps a to g under the probe show the peak-to-peak value of the average
spike of the spike groups circled on the t-SNE plot with the corresponding let-
tered eclipse. These are selected from different parts of the probe, as shown by
the arrows from the probe schematic to the heat maps. The number of active
electrodes for each spike is usually between 10 and 50, with an average of about
40. The t-SNE plot is in this case color-coded with the kilosort templates. Spike
groups a (a subthalamic unit) and f (a hippocampus unit) are two examples of
merging on the t-SNE plot 2 and 4 kilosort templates, respectively, (autocor-
relograms not shown). SN: substantia nigra; MGN: medial geniculate nucleus;
DG: dentate gyrus; CA1: cornus ammonis 1; L1–L6: layers 1–6 of the primary
auditory cortex.

existing tools, this would require looking through data residing in 2724 (908
electrodes * 3 pcs) dimensions. Figure 6 shows the result of the 2D t-SNE
embedding of these data using as features the 579 distances of each spike
to the kilosort templates.

The embedding shows a clear separation of spikes into groups with dif-
ferent geometries, very much like the embedding arising from the kilosort
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templates of the PD128 data set. The more than doubling of the number of
features (579 versus 252) and spikes (1,091,229 versus 466,313) and the eight
times increase in number of electrodes (908 versus 128) compared to the
PD128 kilosort data set have not diminished the algorithm’s ability to gen-
erate intuitive groupings of spikes. Using that embedding, it becomes very
easy to spot groups of spikes and templates that require further manual cu-
ration (like the a and f groups in Figure 6 that proved to require merging of
their respective templates) or that needed to be removed from the data set
(like the irregularly shaped group in the middle of the embedding compris-
ing of a number of templates that proved to be noise not detected during
the initial cleaning of the kilosort results).

4 Discussion

Spike sorting has experienced a dramatic evolution over the past 20 years.
It started out as a set of techniques to discriminate 5 to 10 distinct units
in a space of a few tens of features. Today, it includes strategies for label-
ing many tens to hundreds of units in large feature spaces. The number of
distinct units is expected to soon reach well into the thousands. The emerg-
ing demands of these growing data sets have inspired the development of
more capable automatic sorting algorithms. However, the manual overview
of the spike-sorting process remains an essential step of the pipeline, albeit
one that is becoming increasingly labor intensive and error prone. The prob-
lem of producing human-readable visualizations of structures that exist in
large-dimensional spaces is, of course, not unique to spike sorting but is
common in all data-intensive fields. One commonly employed strategy for
working with such data is the use of nonlinear dimensionality-reduction
methods that try to retain in their projections as much of the initial struc-
ture of the data as possible. The current state of the art in these methods
is t-SNE, which manages to project onto two or three dimensions the mul-
tidimensional data in a way that preserves its local structure and makes
the visualization of this structure both possible and intuitive. A large lit-
erature has evolved applying this technique to a diverse number of big
data problems ranging from AI (Mnih et al., 2015) to genetics (Platzer, 2013;
Xu, Jiang, Hu, & Li, 2014) and behavior (Berman, Choi, Bialek, & Shaevitz,
2014). We show here that in the case of spike sorting, using t-SNE on the
results of either a masked PCA or template matching provides a visualiza-
tion that offers a clear picture of how the individual spikes form groups in
the high-dimensional feature space. These groups directly relate to the in-
dividual units that generate the spikes, which can now be visualized and
curated in an intuitive manner or compared to the results of an automatic
clustering method. Furthermore, t-SNE allows a visual inspection of the
structural groups that different data sets of spikes contain, something that
can be achieved neither by looking at 2D plots of pairs of features within
a multidimensional space nor by any current clustering algorithm. Here
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we demonstrate that t-SNE visualization immediately reveals differences
between biological and hybrid data sets (see Figure 3), how spike-sorting
challenges accrue when each spike is represented by features generated by
fewer and fewer electrodes (see Figure 4), and how manual curation of the
output from an automated template matching procedure becomes effort-
less in a low-dimensional space (see Figure 5). We also show that using
the combined information of a spike-sorting algorithm and the position of
the spikes on the t-SNE embedding is an intuitive and useful approach to
manual curation of spike sorting, especially for data sets that arise from
hundreds to thousands of electrodes, have hundreds to thousands of puta-
tive units, and have spike counts into the millions (see Figure 6), exactly at
the regime that current methods of manual curation and data overview are
failing.

The generality of the t-SNE method also makes it applicable to data sets
that arise from diverse sources. The successful application of t-SNE to be-
havioral data (Berman et al., 2014) suggests the possibility of applying it
to data sets with a combination of spike and other electrophysiological sig-
nals (e.g., local field potentials), as well as the behavioral features occurring
during the recorded neural activity. It is thus possible that groupings in the
t-SNE visualization of such a data set could provide informative clues as
to the connection between different forms of brain activity and to behavior
itself.

We are now working on using t-SNE embeddings into three-dimensional
space to generate spatial (X,Y,Z) representations that can be explored in vir-
tual reality, thus providing a new form of access to complex data sets (see
supplementary video 2).

5 Additional Information

5.1 Software Access. A first version of the software used here can
be downloaded through the following means. In a conda environment,
do: conda install -c georgedimitriadis t_sne_bhcuda. That will install both
the Python code and the CUDA executable and will work in either Win-
dows or Linux OSes. You can grab the Python code from the PyPi reposi-
tory: https://pypi.python.org/pypi/t_sne_bhcuda/0.2.1. You can get the
C/CUDA code for the CUDA executable from the Github repository:
https://github.com/georgedimitriadis/t_sne_bhcuda.

We are currently in the process of rewriting the code so that the CUDA
part is embedded in the Python code. The release of this version 2 of the
code will also be followed by the release of the manual curation GUI. For
this and future developments, check the pypi and Github repositories or
contact the authors.
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