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ABSTRACT Building energy consumption patterns are primarily affected by building function, operation,
occupancy and thermal characteristics. A robust method of energy use pattern recognition is, therefore,
essential. Heating degree-days (HDD) are routinely used for heating energy consumption prediction and
analytics, the accuracy of which depends on how well the base temperature corresponds with the patterns
of energy use. A change-point quantile regression (CPQR) technique is proposed for better identification of
the base temperature, which is then applied in three buildings with distinct operational energy use patterns:
weekday only, weekday plus occasional weekend, and all-year operation. Compared with the conventional
regression and change-point least square (CPLS) methods, our CPQR approach determines a range of base
temperatures of corresponding energy use patterns across quantiles from 0.05 to 0.95, at an interval of 0.05.
Consequently, daily HDDs computed using the range of base temperatures of corresponding quantiles result
in more accurate predictions of heating energy consumption. CPQR improves estimation accuracy and is
more robust than CPLS because (a) it considers the whole distribution of energy consumption not just the
mean, (b) pre-processing of raw data other than the removal of anomalies is not needed, and (c) it can better
characterize the data with abnormal energy distribution. Also, CPQR-based method can better characterize
the weather dependence of energy consumption than the conventional CPLS regression.

INDEX TERMS Base temperature, building energy use pattern, change-point quantile regression, gas
consumption, heating degree-day.

I. INTRODUCTION
Buildings account for 35-40% global energy consumption
and are responsible for over 33% of global greenhouse gas
(GHG) emissions [1], [2]. Consequently, buildings are crucial
for reducing energy consumption and corresponding emis-
sions. To reduce the use of non-renewable fossil fuel (e.g.,
oil, natural gas) within buildings, twomeasures canmainly be
applied, which are (a) broadening the sources of energy and
(b) minimizing the demand for energy. The former measure
can be achieved by utilizing of renewable energy sources such
as solar, wind and geothermal energy. However, the latter

involves many aspects in which active energy technologies
are recommended to tackle the projected increase in building
energy demand, which is essential to the sustainability of our
environment.

The primary aim of sustainability related policies and
regulations related to buildings is to minimize energy con-
sumption from buildings and improve their performance
to reduce carbon footprint, whilst not compromising the
standard requirements for usage, such as occupant ther-
mal comfort. However, energy consumption in buildings is
highly linked to weather conditions. For example, without
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policy interventions, building energy use could increase by
as much as 41-87% between 2020 and 2060 in Los Angeles,
California, due to the temperature increase caused by cli-
mate change [3]. Therefore, a good understanding of the
response of building energy consumption to local climate is
of benefit to energy-efficient operation and management of
buildings. In the past several decades, researchers have
investigated ways to develop methods to reliably predict
building energy consumption, namely engineering, statisti-
cal, grey-box modeling, machine learning and artificial intel-
ligence methods [4]. According to the American Society
of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) [5] the degree-day method is one of the simplest
for energy analytics in buildings, and can be adopted for day-
to-day energy monitoring and management.

The degree-day method can be used for both building
energy prediction [6], [7] and energy management. Heating
degree-day (HDD), is a versatile measure of the impact of
the severity and duration of cold weather. It enables weather-
related analysis on the consumption of fuels such as natu-
ral gas. HDDs are a summation of the difference between
actual outdoor temperature and a ‘reference’ or ‘base’
temperature.

Appropriately determined base temperatures can help to
derive a realistic representation of building energy con-
sumption and efficiency, while inappropriate one would lead
to energy waste or uncomfortable indoor environment [8].
Therefore, the determination of appropriate base tempera-
tures is the premise of using the HDDmethod. Although there
are two widely-used official base temperatures; i.e., 15.5◦C
in the UK [9] and 18.3◦C in the USA [5], both temperatures
cannot address individual buildings well. This is because
the actual value of the base temperatures may vary widely
from one building to another, due to building characteristics,
occupant density, occupant behavior and other factors.

Currently, there are two classical methods, i.e. energy
signature method and performance line method, which
can be used to determine the base temperatures for
buildings [10]–[12]. Several research have further improved
these methods [13]–[15]. The use of the energy signature
method is growing due to the increased availability of detailed
utility bills, historical weather data and high-resolution smart
meter data [16]. Most previous studies used data from sim-
ulation, although some have adopted data from monitoring.
The data used in the past studies are often of low resolution
(e.g., daily), spanning short periods (e.g., no longer than a
year). For a robust determination of the base temperature, rich
field-measured data is still necessary to reflect what is really
happening in the building.

There are some difficulties that need to be addressed before
using rich raw data for the determination of base temperatures
of a building. First, rich raw measurement data is generally
not as tidy as simulated data or measurements over short
periods, and may contain anomalies [17]. Second, the dis-
aggregated data of occupied and unoccupied period has a
significant impact on building energy use analysis. Common

methods directly disaggregate occupied and unoccupied data
according to the day of a week or public bank holidays, and
this may lose important information. Finally, an important
assumption behind the OLS (Ordinary Least Squares) regres-
sion is that all independent variables are normally distributed.
However, building energy use data is often not normally
distributed, hence not suitable for the ordinary least square
method [18]. On the other hand, quantile regression (QR) is
a good candidate for solving the above challenges.

The definition of base temperature suggests that lin-
ear quantile regression is not robust enough to charac-
terize the relationship between energy use and ambient
temperature. We, therefore, combined the change-point
model with quantile regression, and the resulting method
is called change-point quantile regression (CPQR). The
evaluation of the CPQR method was based on sub-hourly
gas consumption measured from three case-study build-
ings located in Cardiff, UK. The work can be consid-
ered as one of the most comprehensive studies to date on
the determination of base temperatures for specific build-
ings - not only because of a full distribution picture of
base temperatures but also because of automatic identi-
fication of building energy use patterns. This work pro-
vides a demand-side lever for energy users to explore the
potential impact of ambient temperature on building energy
consumption.

The rest of the paper is structured as follows. Section II
describes the theory and related work; Section III briefly
introduces the data used to evaluate the proposed method;
Section IV details the proposed method from this study, and
Section V discusses the results from the quantile regression.
A brief conclusion about this study is given in Section VI.

II. THEORY AND RELATED WORK
Theories related to the methodology used in the paper is
discussed in this section. The theories include one of energy
signature techniques-three-parameter change-point model for
heating, daily heating degree-days (HDD) calculation and
statistical indices for regression model evaluation.

A. CHANGE-POINT REGRESSION
The change-point (CP) [19]model has been further developed
to estimate the change of patterns in a CP regression model,
which has been widely used as baseline energy signature
models for assessing energy efficiency. Furthermore, due to
its simplicity, the CP model is the most appropriate model
in terms of accuracy vs. effort spent for verification of
whole building energy consumption and estimating building
parameters [15]. In this study, therefore, the CP model has
been selected to capture the characteristics of the relationship
between dependent (e.g. building energy consumption) and
independent variables (e.g., ambient air temperature, HDD).
The best-fit change-point model from ASHRAE Inverse
Modelling Toolkit (IMT) ) [20] was used in this research
to derive regression models of building energy use. The
functional form for best-fit three-parameter change-point
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models for heating (3PH), is given in (1).

Yh = α1 + β1 (tb − X1)+ (1)

where Yh is energy use (here, gas consumption in kWh),
X1 is ambient dry bulb temperature (◦C), α1 is baseline energy
consumption or base load, the part of energy use which is
not dependent of weather conditions, β1 represents the slope
with physical meaning of total heat loss coefficient, and tb is
reference or base temperature (◦C). The (+) notation indicates
that values of the parenthetic term shall be set to zero when
it is negative. Using the three parameters heating regression
analysis can identify the breakpoint, i.e., change-point (e.g.,
the red point P shown in Fig. 1a). The 3PH model (Fig. 1a)
is appropriate for modelling building energy use that varies
linearly with an independent variable over part of its range
and remains constant over the remainder.

FIGURE 1. 3PH regression models. (a). Least-squares, (b). Quantile
regression.

B. STATISTICAL INDICES FOR MODEL EVALUATION
The statistical indices: coefficient of determination; i.e.
R-squared (R2), coefficient of variation (CV), coefficient of
variation of root mean square error (CV-RMSE) and nor-
manormalized bias error (NMBE), are commonly used to
evaluate 3PH model’s performance, i.e. its goodness-of-fit
of the predicted values against the measured value, and to
describe the statistical characteristics of the model. The four
indices used in this study were defined by (4)-(7) [16] and the
CV was calculated using (2).

CV =
SD(Yi)

Ȳi
(2)

where Yi is the i-th measured heating energy use (kWh),
SD(Yi) denotes the standard deviation of all Yi. Ŷi is the
corresponding i-th heating energy use predicted by the
model (kWh), n is the total number of data points, and Ȳ is
themean of themeasured heating energy use over the analysis
period (kWh). The greater the R2, the smaller the CV-RMSE
and NMBE, the closer the predicted values are to the actual
values. Generally, R2 > 0.7 is considered acceptable, indi-
cating confidence in the relationship. The requirement of
CV-RMSE (22.5%) and NMBE (±7.5%) for evaluating daily
model are interpolated from ASHRAE Guideline 14 [21],
which provides recommended values for evaluating monthly
and hourly base line models.

III. DATA
A. WEATHER DATA
Three candidate stations are available for South Glamorgan,
i.e. Bute Park, Rhoose and StAthan – located in CF1, CF6 and
CF64 postcode areas in Cardiff, respectively. Bute Park
(Latitude: 51.4878, Longitude: −3.18728, with World
Meteorological Organization (WMO) [22] number 037170
was chosen as the source station for this study as it is located
within 1.0 km of Cardiff City center. The average distance
between the selected buildings and the Bute Park weather
station is around 1.83 km. The Bute Park is an AWSHRLY
(Automatic Weather Station HouRLY) station that automati-
cally logs weather parameters and reports hourly [23].

B. BUILDINGS’ MEASURED ENERGY USE
Three non-domestic buildings located in Cardiff, UK, have
been selected to evaluate the proposed method. The selected
buildings represent diverse building type, such as commu-
nity, arts and leisure (CL) – clubs and community centers;
education (ED) – primary school; and health (HL) –
nursing and care homes. The maximum distance between
the weather station (Bute Park, Cardiff) and the selected
buildings is less than 3.0km. The detailed characteristics of
all case-study buildings are listed in Table 1.

TABLE 1. Case-study buildings characteristics.

According to the energy use patterns of the three buildings
above, i.e. CL, ED and HL, three types of building use pat-
terns could be defined, i.e. Pattern A, Pattern B and Pattern C.
The characteristics of three building use patterns is given
in Table 2.
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TABLE 2. Characteristics of building energy use patterns.

IV. METHODOLOGY
A. ADVANTAGES OF CPQR
The quantile regression (QR), introduced by Koenker and
Bassett [25], is different from the OLS regression on the
conditional mean. The QR offers, on a systematic level,
a more comprehensive distribution picture of the relationship
between variables than OLS [26]. In terms of HDD-based
building energy predictions, the advantages of QR are mainly
from the following aspects:

First, the QR approach can provide rich information
regarding both buildings’ energy use and weather. Hence, it
can identify energy use anomalies in system behavior (e.g.,
due to control failure or unrelated-weather occupant behav-
ior) and poor-quality data.

Second, QR offers a natural approach without unnecessary
disaggregation of unoccupied and occupied data. It uses dif-
ferent values for the regression coefficients, discussed further
(to be shown in Section C).

Third, QR does not specify any distribution for the residu-
als; therefore, it is distribution free. Accordingly, its flexibil-
ity focuses on detecting more subtle relationships between
energy use and ambient temperature, dealing with non-
normally distributed errors, robustness against outliers, and
the ability to detect heterogeneity.

Finally, the studies on base temperatures mostly focused
on the average using the conditional mean function. Unlike
classical statistical regression methods, the outcomes of QR
are not only point estimations, but a full picture of base
temperatures showing more informative knowledge under
different quantile levels.

B. CHANGE-POINT QUANTILE REGRESSION
QR is a crucial expansion of the empirical mean regres-
sion model. It provides a more accurate understanding of
the distribution between independent and dependent vari-
ables, unlike OLS that only offers mean conditional point

relationship. The detailed theory about linear quantile regres-
sion could be found in relevant literatures [26]. From the
energy signature model, we could know that linear quan-
tile regression cannot well describe the relationship between
building energy use and ambient temperature to infer base
temperatures, and therefore segmented linear quantile regres-
sion may be preferable. Using the piecewise linear quantile
regression method a more accurate range of base temper-
atures for specific buildings could be obtained, while not
like one estimated point from the OLS method. Following
previous studies on bent line quantile regression [27]–[29],
we extensively developed the change-point quantile regres-
sion (CPQR) method in this study.

Given a probability τ strictly between 0 and 1, we con-
sidered a three-parameter change-point quantile regression
model for heating (shown in Fig. 1b), which was derived
from (1).

Yi = α1 + β1 (tb − Xi)+ + zTi γ + ei i = 1, · · · , n (3)

where Yi is the i-th response, Xi is the scalar covari-
ate whose slope changes at the change-point tb, zi is a
q-dimensional vector of linear covariates with constant slopes
and ei is the error termwhose τ -th quantile is zero conditional
on (Xi, zi). γ is the effect of zi. Here, tb is an unknown
variable to be estimated. Let η = (α1, β1, γ ). Given tb, the
τ -th quantile of Yi given Xi and zi, Q(X i, zi; η) is

Q(X i, zi; η) = α1 + β1 (tb − Xi)
+
+ zTi γ i = 1, · · · , n (4)

As tb is known in (4), then, conditional on this known tb,
the best estimate η̂ of η is

η̂ (τ ) = argminη∈R2+q

n∑
i=1

ρτ [Y i − Q(X i, zi; η)] (5)

where ρτ (v) = v (τ − I (v < 0)) , 0 < τ < 1, is the
quantile regression loss function [26]. Here I (·) denotes the
indicator function.

Letting ui = max (0, tb − Xi), the quantile conditional on
tb is linear in form, that is,

Qi = Q(X i, zi; η) = α1 + β1ui + zTi γ (6)

As (6) is equivalent to (4), (6) can be

η̂ = argminη∈R2+q

n∑
i=1

ρτ (Yi − wT
i,tbη) (7)

where wi,tb = (1, ui, zi). Now we can estimate η condi-
tional on tb. As in [27], we adopted S(η̂|tb) (a function of tb)
as the following equation:

S
(
η̂ | tb

)
=

n∑
i=1

ρτ

(
Yi − wT

i,tb η̂
)
. (8)

Finally, we obtained all values of S(η̂|tb) corresponding to
all values of tb in the range ofX

′

i s. The estimated change-point
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value t̂b, the tb value at which the minimum value of S(η̂|tb)
is realized, is calculated through the following equation:

t̂b = argmin
tb

S(η̂|tb) (9)

Both asymptotic and bootstrappingmethods provide robust
results for standard errors and confidence limits for regression
coefficient estimates [30]. We used the bootstrap technique
for deriving confidence intervals (CIs) of the derivative of a
QRmodel as it was more practical [31]. The n triplets of vari-
ables (α1, tb, and β1) with replacement from {(Yi,X i, zi)|i =
1, · · · , n|}were resampled, and these bootstrap samples were
then used to re-estimate α1, tb, and β1. We calculated the
95% CIs for parameters α1, tb, and β1 using the bootstrap
method [32].

C. METHODOLOGY
The schematic diagram of our methodology for calculat-
ing base temperatures and running HDD-based energy use
prediction is illustrated in Fig. 2a. Using the method based
on CPQR, we can automatically identify the building use
patterns. In the step, data pair collection’, CPQR is robust
enough that it is not affected by outliers. Consequently, it
is free of preprocessing in spite of some abnormal points
in raw data pair. CPQR at quantiles from 0.05 to 0.95 with

FIGURE 2. Flowchart of the methodology (a) and the slopes of CPQR of
three typical buildings with corresponding energy use patterns (b-1.
Pattern A. b-2. Pattern B. b-3. Pattern C.). Note: τc is critical quantile point
dividing the period of occupied and unoccupied, namely, point of
inflection of coefficient slope line, which could be solved with
mathematical method. In the step A, CV(x) means the coefficient of
variations of series x . If τc obtained is outside of the range of [0, 1],
it means that there is no τc . Meanwhile, if the point of inflection τc
obtained is located at near lowest or highest quantile, it maybe is fake
one due to lowest or highest quantile’s abnormal impact (Generally
sampling variation will increase as the value of approaches 0 or 1 [26].).
In the step B, yh,x denotes gas consumption yh at quantile x by
change-point quantile regression (CPQR) approach. CPLS(x1, x2)
represents the regression results of regressing gas consumption between
x1 and x2 by change-point least square (CPLS) method.

0.05 quantile interval could grasp most characteristics of
the distribution variations in relationships between build-
ing energy use and weather. In all coefficients, the slope
β1, the coefficient of total thermal loss, is the most vital
since rates of change across quantiles in the slope parame-
ter estimates can be used to provide additional information.
First, the slope β1 can reflect directly the ratio relation-
ship between building energy use and weather parameters.
Second, the change in the slope β1 could help to reveal build-
ing use patterns (STEP A in Fig. 2a). There are three kinds of
variations of slope, leading to three curves for the selected
case-study buildings, i.e. linear monotonically decreasing
curve, S-curve and constant line (Fig. 2b). The coefficient
of variation of slope β1, CV(β1) with critical quantile level
τc (corresponding to point of inflection of fitting line of
scatter slope) could be used as criteria index to identify the
building use patterns (e.g. Fig. 2b-2). In the next step the base
temperatures of buildings with different use patterns would be
determined (STEP B in Fig. 2a).

For the building with building use Pattern A, the variation
of the building energy use regarding to climatic weather
looks to be uniform and continuous monotone from lower to
higher quantiles, and followed a skewed response distribu-
tion. If one or two base temperatures are used for buildings
with either energy use Pattern A or B, it would fail to compre-
hensively describe the relationship between energy use and
weather. Consequently, it is always worthy of estimating a
range of base temperatures rather than a single one when the
building follows Pattern A. However, if only one base temper-
ature is needed, the one from the median quantile regression
may be a compromising alternative tb. In contrast, build-
ings with Pattern B have a jump variation of quantile slope.
There is a critical quantile level τc dividing the energy use
into real occupied and unoccupied parts which are different
between weekdays and weekends/holidays. The real occu-
pied and unoccupied parts are the results of the rearrange-
ment of the full original period. Therefore, there were two
base temperatures, tb,occ and tb,unocc, corresponding to base
temperatures for occupied period and unoccupied period,
respectively. To reduce the risk of underestimating the base
temperature, it may be necessary to use the data exclusive
of outliers. The gas consumption of extreme quantiles, i.e.
above 0.95 quantile and below 0.05 quantile of CPQR fit line,
is seen as outliers. Different from the former two building
types as mentioned above, buildings with Pattern C indicated
homogeneous model characteristics. In this case, a homo-
geneous variance regression model associated with ordinary
least squares regression is sufficient for the building except
impact from some outliers on the regression results. Under
this condition, we focused on the median rather all quantiles
(percentiles) due to the indication of some form of homogene-
ity. Median relationship results could potentially represent a
whole general phenomenon for the relationship of gas con-
sumption and temperature. After STEPs A and B, STEP C is
for HDD based energy use prediction. Both building energy
predicted and actual results of CPLS (change-point least
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square method) based tb and CPQR (change-point quantile
regression method) based tb were provided for comparison.

V. EMPIRICAL RESULTS AND DISCUSSIONS BASED ON
CASE-STUDY BUILDINGS
According to the methodological steps defined in Fig. 2 and
prior to the degree day analysis, the base temperature was
determined by three parameter heating (3PH) based on daily
gas consumption and ambient temperature, followed by a
comparison of actual and predicted monthly energy use. For
the evaluation of final results, we implemented the above
steps with CPLS-based as well as CPQR-based approaches.
What follows in the following subsections are detailed dis-
cussions and analysis of our results.

A. CPQR ANALYSIS ON CASE-STUDY BUILDINGS
To test and validate the proposed methodology based on
Equation (3), the change-point quantile regression models
were fitted to the above three sets of data collected from
three different buildings under a full series of 19 specific
quantiles of τ , ranging from 0.05 to 0.95 with a 0.05 incre-
ment. The piecewise line patterns for the three buildings
are illustrated in Fig. 3a-c, with corresponding coefficients
presented in Fig. 3d-f, respectively. From Fig. 3 demon-
strates that the response distribution patterns vary according
to the quantile, and this reveals that different building types
have different energy use patterns during different periods.

FIGURE 3. Quantile regression (left panels a-c) and coefficients
(right panel d-f) of four-year’s data pair: gas consumption vs ambient
temperature. a and d: CL building, b and e: ED building,
c and f: HL building. Note: The effects of ambient temperature on the gas
consumption across quantiles τ covering from 0.05 to 0.95 with a
0.05 quantile interval. In the right panels, the squared blue lines show the
varying effects across quantiles, with their respective bootstrapped
confidence intervals (95%) displayed as shadowed areas. The coefficients
in subplots from upper to lower are constant (α1, base load), slope
(β1, total thermal loss coefficient) and change point (tb, base
temperature), respectively.

Particularly, the changes of the slopes at different quantile
levels reveal the heterogeneity and homogeneity of gas con-
sumption dependency on ambient temperature. Since build-
ings have different uses, a detailed analysis is conducted on
the quantile regression results of the three buildings.

For the CL building (Fig. 3a and d), the slope with respect
to daily ambient temperature was decreasing with a con-
stant monotonic speed in the change-point quantile regression
model. The ratio between the maximum and the minimum of
the slope was 2.86, with a CV of 0.22 (Table 3). It reflects
the wide gap between different quantile levels. Since the
estimated slope parameters increase with the quantile, these
estimations reflect the same increasing dispersion, or het-
eroscedasticity. This implies that the gas consumption for
upper quantiles increased more rapidly than that for lower
quantiles, due to the decrease in ambient temperature. How-
ever, there is no clear boundary between weekdays, week-
ends and holidays. From Table 2 it could be found that the
building was being used not only on weekdays, but also on
weekends and holidays. This is likely to be the reason why no
significant boundary has been observed between weekdays
and weekends/ holidays for this building type. A plausible
fact is that different day of the week has different slopes
reflecting different actions (such as thermostat settings). This
may partly reflect the heterogeneity characteristics between
gas consumption and ambient temperature. Because of this,
we did not use the OLS method to regress the relation-
ship between independent and dependent variables, as OLS
regressions are not suitable for dependent variables that have
non-normal distributions. A range of base temperature should
be recommended for the building type.

For the ED building (Fig. 3b and e), the slope with
respect to daily ambient temperature was also changing in
the change-point quantile regression model, but with a vari-
able speed. This is different from the CL building discussed
above. The ratio between the maximum and the minimum
of the slope was bigger than that of the CL building, and it
was 3.38, with a CV of 0.45 (Table 3). Similar to the CL
building, it also shows wide gaps among different quantile
levels. Furthermore, there was a quick change from a certain
quantile level (i.e. 0.40). After comparing under the same
quantile level with Fig. 3a, it was found that the quantile
level of 0.45 is likely to be the critical point that separates
weekdays and weekends/holidays. Before and after the crit-
ical quantile level, there were two different nearly constant
slopes, reflecting some form of homogeneity. Due to its
function as a primary school, the ED building consumed
more gas in occupied time (weekdays) and less in unoccu-
pied time (weekends/holidays). Another phenomenon can be
found that in some weekends and holidays the energy use
still maintained at a high level, like weekdays. The reasons
may come from two aspects. First, on weekends or holidays
there may have no person working, but the heating system
should continue to work to remain the minimum temperature
indoors. This is common for unoccupied conditions. Second,
some activities may be held during weekends and holidays
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when the heating system was running at normal set-points.
This is not a normal unoccupied holiday pattern, but an
occupied pattern. Therefore, for this type of building, two
pattern regressions should be done separately for weekdays
andweekends/holidays. Beforewe do that, we should identify
which energy use was for occupied period and which was for
unoccupied period. Using the traditional method (e.g. date)
to differentiate the occupied and unoccupied energy use is no
longer reliable. The quantile regression is a suitable one.

For the HL building (Fig. 3c and f), although the slope was
variable, the amplitude of the variation was very small, with a
CV less than 0.01 (Table 3). This means the effect of ambient
temperature on the gas consumption across the whole quan-
tile level τ from 0.05 to 0.95 was not significantly different.
It is also well-known that themedian is more robust to outliers
than the mean. Therefore, for this situation, the result under
median quantile regression could be used.

TABLE 3. Characteristics of β1 and determination of critical quantile τc .

For both CL and ED buildings, the confidence interval (CI)
of all parameters under upper quantile levels were wider than
those under lower quantile levels. This implies that there may
be other variables that have not been considered under upper
quantile levels. This alsomeans that lower quantiles of energy
use is very dependent on ambient temperature. In contrast,
the CI of β1 of the HL building was wider than those of the
CL and ED buildings. The implications are that multiple-
variables rather than ambient temperature only should be
used, though the energy use data of the HL building appeared
tidier.

B. DETERMINATION OF BASE TEMPERATURES
Due to different energy use patterns identified for differ-
ent case-study buildings, base temperatures were determined
using different methods (STEP B in Fig. 2). Prior to the
determination of base temperatures, the building energy use
patterns were identified according to statistical information
of β1 and critical quantile τc (Table 3). The determined base
temperatures with fitting equation and R2 for the three case-
study buildings have been illustrated in Fig. 4. As men-
tioned in Section IV, building energy use patterns should
be identified before the determination of base temperatures.
As an example, the CL building was identified as build-
ing use Pattern A, for which there was no clear boundary
between weekdays and weekends/holidays. The base temper-
atures (Fig. 4a and Fig. 4d) were determined as 14.9◦C and
14.5◦C using CPLS-based (R2

= 0.69) and CPQR-based
(R2
= 0.68) methods, respectively. Both R2 values were

lower than 0.70. Both mean (LS) and median (QR) regres-
sions provided measures of central tendency for the rela-
tionship. However, the median regression has the additional
advantage of not being sensitive to outliers in raw data dis-
tribution. The distribution was scattered because building
gas consumption was affected not only by ambient temper-
ature, but also other environmental parameters, such as solar
radiation, the operation of devices and occupant behavior.
Therefore, the univariate regression is not sufficient here and
multi-variable regressions are needed for the CL building.
This is outside our topic and will be addressed in future
work. For the ED building, there were two base temperatures
for different periods due to different energy use patterns.
From Fig. 4a weekends and holidays were with high gas
consumption while it was low for weekdays. This resulted in
the fact that the base temperature of weekdays (13.9◦C) was
less than that for weekends/holidays (15.1◦C). The regression
result from the energy use data duringweekends/holidayswas
biased towards the top right, which may be because of the
presence of some occupied data. Accordingly, real energy use
periods for occupied and unoccupied periods were identified
to obtain the critical quantile by the CPQR-based method.
A critical quantile τc (0.45) was identified, as shown in Fig. 5.
The results of base temperature were found to be 14.3◦C
and 13.8◦C for occupied and unoccupied periods(Fig. 4e),
respectively. The R2from the CPQR-based method (Fig. 4e)
was higher than that from the CPLS-based approach (Fig. 4b).
For the HL building, similar results (14.5◦C and 14.6◦C,
Fig. 4c and f) were obtained, which implied that both CPLS-
based method and CPQR-based method were suitable for
buildings with energy use Pattern C. We opted for CPQR as
the method is more robust to outliers in the raw data.

C. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE
WORK
The CPQR-based method proposed in the paper has its own
advantages and disadvantages. The main disadvantage of this
approach, and the reason that it was not widely used in
the past, is that it requires higher computing resources with
respect to both time and hardware. However, most current
computers can only run programs using alternative methods
in a reasonable amount of time, but not the CPQR method.
Indeed, more studies could be performed to gain insights into
the capabilities and limitations of the proposed method. First,
the above work is based on case-study buildings, hence case
specific. The universality of the method proposed should be
investigated further. Second, we should answer the question:
which parameter(s) is statistically more important for pre-
dicting building energy consumption? Energy use is known
to be associated with a wide range of subsequent weather
variations, which are usually not controllable, and is also
dependent on non-climate variables, which are often control-
lable. The multi-regression method based on CPQR energy
analysis could examine some key consumption drivers such
as solar radiation and occupant behavior for the building
with Pattern A, and be further helpful to the development
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FIGURE 4. Comparisons of base temperature determined using
CPLS-based (left panels) and CPQR-based (right panels) method for
CL building (a and d), ED building (b and e), and HL building (c and f). The
fitting model with R2 is also present in each subplot. Note: The gray
shaded area around the regression lines is the confidence interval (95%)
of the regression. Non-work days represents weekend and holidays.

FIGURE 5. Determination of critical quantile (τc ) for ED building using
CPQR method.

of predictive algorithms to estimate energy consumption and
savings.

VI. CONCLUSION
This research conducted a comprehensive investigation on
the energy use patterns in buildings, and proposed a novel
change-point quantile regression (CPQR) based method to
automatically identify building energy use patterns. Our
method offers a more comprehensive picture of suitable base
temperatures across quantiles compared to the single base
temperature obtained via the conventional method, change-
point least square (CPLS). The contribution of this paper can
be considered as threefold. First, the automated robust iden-
tification of building energy use patterns. Second, the ability
to disaggregate energy use between occupied and unoccupied

periods using CPQR can benefit building energymanagement
and optimization strategies of supervisory control, ultimately
leading to improved building performance. Third, a compre-
hensive understanding of the distribution of the relationship
between building energy use and weather could be obtained
through CPQR.
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