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a b s t r a c t 

One of the fundamental challenges in supervised learning for multimodal image registration is the lack 

of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level 

transformation from higher-level correspondence information contained in anatomical labels. We argue 

that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level 

correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure 

boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural 

network approach aims to predict displacement fields to align multiple labelled corresponding struc- 

tures for individual image pairs during the training, while only unlabelled image pairs are used as the 

network input for inference. We highlight the versatility of the proposed strategy, for training, utilising 

diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At infer- 

ence, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated 

without requiring any anatomical labels or initialisation. Several network architecture variants are com- 

pared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from 

prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a me- 

dian Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs 

of multimodal images from 76 patients were tested with high-quality anatomical labels. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multimodal image registration aims to spatially align medical

mages produced from different imaging modalities. Among many

ther medical imaging applications, this is useful in minimally- or

one-invasive image-guided procedures, in which a common strat-

gy is to fuse the detailed diagnostic information from quality pre-

rocedural images with intra-procedural imaging that is typically

estricted by the interventional requirements, such as portability,

ccessibility, temporal resolution, limited field of view and con-

rolled dosage for contrast agent or radiation. 
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Classical pairwise intensity-based image registration methods 

re in general based on optimising image similarity, a metric in-

icating how well image intensities correspond ( Hill et al., 2001 ).

owever, in many interventional applications, engineering a multi-

odal similarity metric that is sufficiently robust for clinical use

s challenging. Potential difficulties include: 1) different physical

cquisition processes may generate statistical correlation between

maging structures that do not correspond to the same anatomical

tructures, violating one of the underlying assumptions for most

ntensity-based similarity measures ( Zöllei et al., 2003 ); 2) the

patial and temporal variabilities in the intra-procedural imaging,

artly due to user-dependency ( Noble, 2016 ), is complex to sum-

arise with simple statistical properties or information-theory-

ased measures; and 3) intraoperative time constraints prevent the

se of better imaging quality as it typically requires significant
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(  
imaging or processing time, as well as the use of computationally-

intensive approaches, such as exhaustive global optimisation. 

Alternative feature-based image registration methods, when

features are extracted automatically, face similar challenges. Man-

ual anatomical feature selection for registration is user-dependent

and often costly or even infeasible intraoperatively but arguably

remains the most robust method for multimodal image regis-

tration for many intra-procedural applications ( Viergever et al.,

2016 ). Semi-automated or assisted medical image segmentation is

a promising research direction to support registration ( Wang et al.,

2017 ), but it has not yet demonstrated clinical value in fast evolv-

ing interventional applications. 

In this work, we focus on one exemplar application of inter-

ventional multimodal image registration which is to register pre-

procedural multi-parametric magnetic resonance (MR) images to

intra-procedural transrectal ultrasound (TRUS) images for prostate

cancer patients ( Pinto et al., 2011; Rastinehad et al., 2014; Sid-

diqui et al., 2015 ). Multi-parametric MR imaging ( Dickinson et al.,

2011 ), including recent development of hyperpolarised imaging

( Wilson and Kurhanewicz, 2014 ) and computational methods based

on diffusion-weighted imaging ( Panagiotaki et al., 2015 ), have

shown favourable results in diagnosing and staging prostate cancer.

This has already been recommended to form a part of a standard

clinical pathway in some countries, including the UK ( Vargas et al.,

2016 ). On the intra-procedural side, TRUS imaging is routinely used

for guiding the majority of targeted biopsies and focal therapies,

but it provides limited value in differentiating cancerous tissue

from healthy surroundings. Fusing the MR and TRUS images, can

enable accurate detection, localisation and treatment of low- to

medium-risk disease in TRUS-guided procedures ( Valerio et al.,

2015 ). However, like most other ultrasound-guided medical pro-

cedures, this represents a typical example where no robust image

similarity measure has been demonstrated. For example, anatomi-

cally different imaging structures, such as the prostate inner-outer

gland separation, a cleavage plane known as the surgical capsule,

defined on TRUS images ( Halpern, 2008 ) and the central-peripheral

zonal boundary visible on MR images, appear as being similar in

the two types of images and thus possess strong statistical correla-

tion between them. This leads to false alignment using most, if not

all, of the established intensity-based similarity measures and the

associated registration methodologies, such as the work by Rueck-

ert et al. ( Rueckert et al., 1999 ). 

To alleviate some of the aforementioned problems from both

the intensity- and feature-based methods in registration applica-

tions of this type, a class of model-to-image fusion methods have

been proposed ( Hu et al., 2012; Khallaghi et al., 2015; van de

Ven et al., 2015; Wang et al., 2016a ), in which motion models of

the prostate glands obtained from MR image are aligned to the

surface of the gland capsule automatically or semi-automatically.

These methods suffer from two limitations. First, the subject-

specific pairwise registration requires correspondent features to be

extracted from both images. We previously argued that the only

common features of the prostate gland that are consistently avail-

able from both images are the capsule surface while ad hoc land-

marks can be found on a case-by-case basis for validation purpose

( Hu, 2013 ). Indeed, the gland boundary has been the feature of in-

terest to match in most of these mentioned algorithms. Second,

partly as a result of the availability of the sparse features, some

form of a motion prior is required to regularise the non-rigid reg-

istration methods ( De Silva et al., 2017; Hu et al., 2015, 2011; Khal-

laghi et al., 2015; Wang et al., 2016b ). The learning of the motion

models is highly application-dependent and usually not generalis-

able to other medical applications or different imaging protocols

for the same application, such as pathological cases or interven-

tions with different surgical instruments. 
a  
Supervised representation learning ( Bengio et al., 2013 ), espe-

ially methods using convolutional neural networks ( LeCun et al.,

015, 1998 ), has the potential to optimise medical image repre-

entation in a regression network that predicts spatial correspon-

ence between a pair of given images, without human-engineered

mage features or intensity-based similarity measures. However,

oxel-level ground-truth for learning correspondence are scarce

nd, in most scenarios, impossible to reliably obtain from medical

mage data. Alternative methods to learn similarity measures, e.g.

 Simonovsky et al., 2016 ), also require non-trivial ground-truth la-

els and, to our best knowledge, have not been proposed for regis-

ering MR and ultrasound images. Several methods have been pro-

osed to procure large numbers of pseudo-ground-truth transfor-

ations for training, such as those from simulations ( Krebs et al.,

017; Miao et al., 2016; Sokooti et al., 2017 ), existing registration

ethods ( Rohé et al., 2017 ) or manual rigid alignment ( Liao et al.,

017 ). Recently-proposed machine-learning-based image registra-

ion methods have relied on image-similarity-driven unsupervised

earning ( Cao et al., 2017; de Vos et al., 2017; Wu et al., 2013; Yang

t al., 2017 ), meaning that these methods inherit the key short-

omings of classical intensity-based image registration algorithms. 

We argue that higher-level corresponding structures are much

ore practical to annotate reliably with anatomical knowledge.

uch labels can be used to highlight in pairs of images the same

rgans and boundaries between them, pathological regions, and

ther anatomical structures, morphological or physiological fea-

ures appearing in both images, and can serve as weak labels for

raining the prediction of lower-level voxel correspondence. More-

ver, subject-specific landmarks that are only inconsistently avail-

ble from all image pairs may also contribute to finding detailed

oxel correspondence, especially from interventional data. For in-

tance, spatial distributions of calcification scatters and water-

ased cysts are highly patient-specific (see an example in Fig. 1 ).

lthough readily identifiable in many pairs, they have mostly been

sed for validation purposes ( Hu et al., 2012; van de Ven et al.,

013; Wang et al., 2016a ). In this work, we introduce a novel

ramework which uses these anatomical labels and full image voxel

ntensities as training data, to enable a fully-automatic, deformable

mage registration that requires only unlabelled image data during

nference. 

Initial results were reported in an abstract on our preliminary

ork ( Hu et al., 2018 ). We summarise the substantially extended

ontributions contained in this paper: 1) a detailed methodology

escription for the weakly-supervised image registration frame-

ork is presented in Section 2.1 ; 2) a new efficient multiscale Dice

or weakly-supervised registration network training is described in

ection 2.2 ; 3) a novel memory-efficient network architecture is

roposed without using the previously proposed global affine sub-

etwork in Section 2.3 ; and 4) rigorous analysis comparing dif-

erent network variations and classical pairwise registration algo-

ithms are reported in Section 4 and significantly improved results

re also presented. 

. Method 

.1. A weakly-supervised image registration framework 

Given N pairs of training moving- and fixed images, x A = { x A n }
nd x B = { x B n } , respectively, n = 1 , . . . , N. On the n th image pair, M n

airs of moving- and fixed labels l A = { l A mn } and l B = { l B mn } rep-

esent corresponding regions of anatomy, m = 1 , . . . , M n . We for-

ulate the training of a neural network to predict the voxel cor-

espondence, which is represented by a dense displacement field

DDF) u n , as a weakly-supervised learning problem that maximises

 utility function indicating the expected label similarity over N
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Fig. 1. Examples of corresponding training landmark pairs used in this study, a water-filled cyst (on the left MR-TRUS image pair) and a cluster of calcification deposit (on 

the right image pair). These ad hoc landmarks are not consistently available for all patient data and have usually been identified only for validation purpose in previous 

studies. Details are discussed in Section 1 and the network training utilising these landmarks is described in Section 2 . 

Fig. 2. The upper part illustrates the training strategy of the proposed weakly-supervised registration framework (described in Section 2.1 ), where the dashed lines indicates 

data flows only required in training. The lower part depicts the resulting inference (indicated by the solid lines), i.e. registration predicting the output DDF, requiring only 

the image pair, with which the moving image may be warped to align with the fixed image (dotted lines). 
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 = 

1 

N 

N ∑ 

n =1 

1 

M n 

M n ∑ 

m =1 

J mn 

(
l B mn , y 

A 
mn 

)
(1) 

here the inner summation represents the image-level label sim-

larity, averaging a label-level similarity measure over M n labels

ssociated with the n th image pair. In this work, the label-level

imilarity is computed between the fixed label l B mn and the spa-

ially warped moving label y A mn = f T ( l 
A 
mn , u n ) with the displace-

ents u = { u n ( x A n , x 
B 
n , θ) } being predicted by the neural network

arameterised by θ, as illustrated in Fig. 2 . The network training

ims to minimise the negative utility function balanced with a

eformation regularisation �( u ) penalising non-smooth displace-
ents, weighted by a hyper-parameter α: 

ˆ = arg min 

θ

[
−J 

(
x A , x B , l A , l B ; θ

)
+ α · �( u ) 

]
(2) 

s motivated in the Introduction, we emphasize that such a loss

oes not incorporate any intensity-based similarity term which is

roven to be unreliable in our application. During training, we

se a standard stochastic K -minibatch gradient descent optimi-

ation ( Goodfellow et al., 2016 ) which requires an unbiased es-

imator of the additive batch gradients in each minibatch 

̂ ∂ J 
∂θ

=
1 
K 

∑ K 
k =1 

̂ ∂ J k 
∂θ

, k = 1 , . . . , K. To avoid the non-trivial computation of

inibatch gradients with a variable number of labels and to sim-

lify the implementation, we propose to construct such a gradi-

nt estimator by a two-stage sampling: K image pairs are sampled

niformly in the first stage, then in second stage single label pairs
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Fig. 3. Gaussian-based multiscale representation of the example labels used in the 

proposed label similarity measure. Rows illustrate different types of landmarks, 

slices from two prostate glands, a urethra and a cyst, from top to bottom; columns 

are examples of Gaussian smoothed binary labels (first column, σ = 0 ) with dif- 

ferent standard deviations, σ = 0 , 2 , 8 , 32 from left to right. The details are de- 

scribed in Section 2.2 . 
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are sampled uniformly from those associated with the previously-

sampled image pairs. With this approach, each minibatch contains

an equal number of K image-label pairs, from which 

̂ ∂ J k 
∂θ

is es-

timated. Given the first-stage-sampled image pairs, let’s consider

E 2 ( ̂
 ∂ J k 

∂θ
) = 

∂ J k 
∂θ

as the conditional expectation of the estimated gra-

dients over the label pairs sampled in the second stage. With the

first-stage expectation E 1 [ · ] over image pairs, it can be shown that

the minibatch gradients 
̂ ∂ J 
∂θ

computed from the two-stage cluster-

ing sampling is unbiased: 

E 

( ̂ ∂ J 

∂θ

)
= E 1 

[
E 2 

(̂ ∂ J 

∂θ

)]
= E 1 

[ 

E 2 

( 

1 

K 

K ∑ 

k =1 

̂ ∂ J k 
∂θ

) ] 

= E 1 

[ 

1 

K 

K ∑ 

k =1 

E 2 

(̂ ∂ J k 
∂θ

)] 

= E 1 

[ 

1 

K 

K ∑ 

k =1 

∂ J k 
∂θ

] 

= 

∂ J 

∂θ
(3)

We summarise several advantages of the proposed framework il-

lustrated in Fig. 2 . First, the modality-independent label similarity

is computed between the warped moving label and the fixed label,

neither of which are used as input to the network. Therefore, they

are not required in the inference stage, i.e. actual registration. Sec-

ond, samples of different types of labels can be fed to the training

without requiring consistent number or types of anatomical struc-

tures being labelled; and potentially very large number of labels

for each image pair can be used without increasing memory us-

age. Third, the moving and fixed images are the only inputs to the

neural network without the need to define an explicit intensity-

based image similarity measure that has to be tailored for differ-

ent modality pairs. Matching intensity patterns will be learned by

the network trained to optimise for latent label correspondence.

Fourth, different regularisation terms can be added, such as bend-

ing energy ( Rueckert et al., 1999 ), L 1 - or L 2 -norm of the displace-

ment gradients ( Fischer and Modersitzki, 2004; Kumar and Dass,

2009; Vishnevskiy et al., 2017 ), in addition to the network archi-

tectural constraints. 

2.2. Multiscale dice for measuring label similarity 

Direct use of classical overlap metrics between binary anatomi-

cal labels, such as those based on Dice, Jaccard and cross-entropy,

are not appropriate for measuring label similarity in the context

of image registration. For example, they do not consider the spa-

tial information when two foreground objects do not overlap. All

of them approach extreme values, becoming invariant to the dis-

tance between the objects. Our initial work reported to use a

cross-entropy with a heuristic label smoothing approach based

on re-weighted inverse distance transform ( Hu et al., 2018 ). The

warped labels were approximated by interpolating pre-computed

label maps, as the distance transform is neither differentiable nor

efficient to compute in each iteration. 

Here, we propose an alternative label similarity measure based

on a multiscale Dice. The soft probabilistic Dice ( Milletari et al.,

2016 ) S Dice has been shown to be less sensitive to class imbalance

in medical image segmentation tasks ( Sudre et al., 2017 ). Between

two labels a = { a i } and b = { b i } , a i , b i ∈ [0, 1], S Dice is given as fol-

lows: 

S Dice ( a , b ) = 

2 

∑ I 
i =1 a i · b i ∑ I 

i =1 a i + 

∑ I 
i =1 b i 

(4)

where, i = 1 , . . . , I, over I image voxels. Given the pair of binary

labels l B 
k 

= { ( l B 
k 
) 

i 
} and y A 

k 
= { ( y A 

k 
) 

i 
} in a training minibatch. To bet-

ter capture spatial information between labels, the proposed mul-

tiscale Dice is defined as: 

J k = 

1 

Z 

∑ 

σ

S Dice 

(
f σ

(
l B k 

)
, f σ

(
y A k 

))
(5)
here, f σ is a 3D Gaussian filter with an isotropic standard de-

iation σ . In this work, the number of scales Z is set to 7, with

∈ {0, 1, 2, 4, 8, 16, 32} in mm. f σ=0 is equivalent to filtering with

 Dirac delta function, meaning that an unfiltered binary label at

riginal scale is also included when averaging S Dice values. An il-

ustration of the multiscale filtering on the anatomical labels are

rovided in Fig. 3 . The proposed Gaussian filtering based multiscale

oss metric is differentiable and, if required, can be efficiently eval-

ated on-the-fly after non-rigid warping and necessary data aug-

entation. 

For comparison, the proposed multiscale approach is also

dapted with a classification loss using a negative cross-entropy:

 CE ( a , b ) = 

I ∑ 

i =1 

2 ∑ 

c=1 

p c ( a i ) log p c ( b i ) (6)

here p c represents the class probabilities between the

oreground- and background classes, c = { 1 , 2 } . A numerically

table implementation clipping extreme input probabilities can be

sed in this case. 

We summarise several technical considerations in designing the

roposed label similarity measure in Eq (5) : 1) it has the ef-

ect of penalising high confidence binary predictions, similar to

he label-smoothing regularisation approaches ( Pereyra et al., 2017;

zegedy et al., 2016 ); 2) from a classification perspective, it fur-

her improves the gradient balance between foreground- and back-

round classes over voxel samples in training, as a result of re-

ucing the difference between the expected class probabilities

 Lawrence et al., 2012 ); 3) it provides non-saturating gradients

rom anatomical labels, especially for those with smaller volumes,

ue to the high variance spatial smoothing at larger scales; 4) it is

ighly efficient to compute with recursive and separable convolu-

ion kernels. 
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Fig. 4. Illustration of the proposed registration network architecture. 
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.3. Network architecture 

As shown in our preliminary work ( Hu et al., 2018 ), a global

ub-network predicting an affine transformation can be combined

ith a jointly-trained local sub-network predicting a local DDF,

n order to overcome the practical difficulty in propagating the

radients from the deformation regulariser to regions with less

upporting label data. In this work, we describe a new architecture

tilising a single network to predict displacement summed over

ifferent resolution levels. The lower-level displacement sum-

ands provide global information, similar to that of the global

ub-network but without significant memory usage by the global

ub-network. These approaches are compared in Section 3.2 . 

Following our previous work in segmenting prostate gland

rom TRUS images ( Ghavami et al., 2018 ) and the prior art for

earning optical flow ( Ilg et al., 2017 ), the network is designed as a

D convolutional neural network with four down-sampling blocks,

ollowed by four up-sampling blocks. As illustrated in Fig. 4 , the

etwork is more densely connected than the U-Net proposed for

mage segmentation ( Ronneberger et al., 2015 ) and also has less

emory requirement, featuring three types of previously proposed

ummation-based residual shortcuts, 1) four summation skip

ayers shortcutting the entire network at different resolution levels

 Yu et al., 2017 ), 2) eight standard residual network shortcuts

umming feature maps over two sequential convolution layers

 He et al., 2016 ), and 3) four trilinear additive up-sampling layers

re added over the transpose-convolution layers ( Wojna et al.,

017 ). 

The benefits of deeper supervision using denser connections

ave been shown in computer vision tasks ( He et al., 2016; Huang

t al., 2016; Lee et al., 2015; Szegedy et al., 2015 ) and medi-

al image analysis ( Dou et al., 2017; Garcia-Peraza-Herrera et al.,

017; Gibson et al., 2017a ). Besides the thoroughly applied resid-

al shortcuts described above, we introduce summation-based skip

ayers to the displacement space across different resolution lev-
ls s 0-4 . As sketched in the lower part of Fig. 4 , each side of the

p-sampling blocks extends to a node to predict a trilinear-up-

ampled displacement summand δ1-4 at levels s 1-4 , after an addi-

ional convolution layer added to a bias term, without batch nor-

alisation or standard nonlinear activation. These summands, with

he size of the output DDF, are then added to the summand δ0 at

he input image resolution level s 0 , to predict a single output DDF.

Physically parametrised global transformations such as rigid

nd affine models are sensitive to network initialisation, as in

raining spatial transformer networks ( Jaderberg, 2015 ). To a lesser

egree, the registration networks predicting displacements suffer

he same problem. The design of these summand nodes allows

andom initialisation with zero mean and a small variation on

he convolution weights and bias (on the displacement skip lay-

rs) with controlled magnitude of the initial DDFs, such that the

arped labels generate meaningful initial gradients. The trilinear

ampling provides bounded nonlinear activation between linear

onvolutions. 

The described additive displacement skip layers are more ef-

cient to compute and, potentially, easier to train, comparing

o composing displacements at different levels or concatenating

arped input images ( Ilg et al., 2017; Yu et al., 2016 ), both requir-

ng resampling. It is noteworthy that the described four displace-

ent skip layers are determined by the network up-sampling lev-

ls, therefore are independent to the choice of scales in the label

imilarity measure above-described in Section 2.2 , which evaluates

he loss with respect to the single output DDF. 

As illustrated in Fig. 4 , the first feature maps begin with n 0 

nitial channels, successively doubles the number of channels and

alves the feature map size with the down-sampling blocks, and

ice versa with the up-sampling blocks. Each of these blocks con-

ists of two convolution- and batch normalisation (BN) layers

ith rectified linear units (relu). 3D down- and up-sampling are

chieved respectively by max-pooling (maxpool) and transpose-

onvolution (deconv) layers, both with strides of two. All convo-
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lution layers have 3 × 3 × 3 kernels, except for 7 × 7 × 7 kernels

used in the first convolution layer to ensure sufficient receptive

field. 

3. Experiments 

3.1. Data 

A total of 108 pairs of T2-weighted MR and TRUS images

from 76 patients were acquired during SmartTarget ® clinical tri-

als ( Donaldson et al., 2017 ). Each patient had up to three image

data sets due to the multiple procedures he entered, i.e. biopsy

and therapy, or multiple ultrasound volumes acquired at the be-

ginning and the conclusion of a procedure according to the therapy

trial protocol ( “SmartTarget: BIOPSY,” 2015 ; “SmartTarget THER-

APY,” 2014 ). Using a standard clinical ultrasound machine (HI-

ISION Preirus, Hitachi Medical Systems Europe) equipped with a

bi-plane (C41L47RP) transperineal probe, a range of 57–112 TRUS

frames were acquired in each case by rotating a digital transper-

ineal stepper (D&K Technologies GmbH, Barum, Germany) with

recorded relative angles covering the majority of the prostate

gland. These parasagittal slices were then used to reconstruct a 3D

volume in Cartesian coordinates ( Hu et al., 2017 ). Both MR and

TRUS images were normalised to zero-mean with unit-variance

intensities after being resampled to 0.8 × 0.8 × 0.8 mm 

3 isotropic

voxels. 

From these patients, a total of 834 pairs of corresponding

anatomical landmarks were labelled by two medical imaging re-

search fellows and a research student using an in-house voxel-

painting tool on the original image data, and all were verified by

second observers including a consultant radiologist and a senior

research fellow. Prostate gland segmentations on MR images were

acquired as part of the trial protocols ( Donaldson et al., 2017 ).

The gland segmentations on TRUS images were manually edited

based on automatically contoured prostate glands on original TRUS

slices ( Ghavami et al., 2018 ). Besides full gland segmentations for

all cases, the landmarks include apex, base, urethra, visible le-

sions, junctions between the gland, gland zonal separations, vas

deference and the seminal vesicles, and other patient-specific point

landmarks such as calcifications and fluid-filled cysts (see also

Figs. 1 and 3 for examples). The label pairs used in this study in-

clude 108 (12.9%) pairs of gland segmentations, 213 (25.5%) apex or

base pairs, 214 (25.7%) corresponding structures on zonal bound-

aries, 37 (4.4%) on urethra and 262 (31.4%) patient-specific regions

of interest such as calcification sediments and cysts, with an av-

erage volume of 0.39 ± 0.21 cm 

3 and a range of [0.13, 18.0] cm 

3 

excluding the gland segmentations. The landmark annotation pro-

cess took more than 200 h. The anatomical labels, represented by

binary masks, were resampled to the sizes and resolutions of the

associated MR or TRUS images, and were re-grouped for training

(described in Section 2.1 ) and for validation in a cross-validation

scheme described in Section 3.3 . 

3.2. Implementation and network training 

The described methods were implemented in TensorFlow 

TM 

( Abadi et al., 2016 ) with a trilinear resampler module and a

3D image augmentation layer adapted from open-source code in

NiftyNet ( Gibson et al., 2017b ). Re-implementation of all the net-

works reported in the experiment are available as part of NiftyNet

(niftynet.io). Each image-label pair was transformed by a random

affine transformation without flipping before each training itera-

tion for data augmentation. Each network was trained with a 12GB

NVIDIA 

® Pascal TM TITAN Xp general-purpose graphic process unit

(GPU) for 48 h on a high-performance computing cluster. 
.2.1. The proposed baseline network and variants 

Without extensively searching and refining the hyper-

arameters, which could systematically underestimate the re-

orted generalisation error, an empirically configured “Baseline”

etwork was trained using the Adam optimiser starting at a learn-

ng rate of 10 −5 , with a minibatch of 4, four full-sized image-label

uartets. The deformation regularisation weight was set to α = 0 . 5

etween the bending energy and the multiscale Dice, described in

ection 2 . The weight decay was not used. Initial number of chan-

els for feature maps was set to n 0 = 32. All network parameters

ere assigned initial values using Xavier initialiser ( Glorot and

engio, 2010 ), except for the final displacement prediction layers

o allow controlled initial outputs as discussed in Section 2.3 .

hese convolutional kernel and bias parameters were initialised

o zeros for the results reported in this paper. We refer to the

etwork trained with these hyper-parameters as the “Baseline”

etwork, for comparing with the networks using different hyper-

arameters. Except for each of the hyper-parameter of comparison,

hese configurations were kept fixed in the following networks. 

Two variants of the proposed “Baseline” network loss func-

ion are compared, training with 1) a multiscale cross-entropy, de-

cribed in Section 2.2 (“Baseline-msCE”), instead of the multiscale

ice, or 2) replacing the bending energy with an average L 2 -norm

f the displacement gradients (“Baseline-L 2 ”). 

Although one of the advantages of the proposed label similar-

ty measure in Eq. (5) is computational efficiency when required

n-the-fly, pre-computing Gaussian filtered labels before training,

ay further accelerate training. Therefore, a baseline network us-

ng label maps pre-filtered at different scales (“Baseline-preFilt”)

as trained, while the Dice metrics were evaluated directly on the

esampled multiscale label maps during training. 

To validate the proposed network architecture, the “Baseline”

etwork was trained with only the displacement δ0 predicted at

he input image resolution level s 0 , i.e. without displacement sum-

ands δ1-4 at resolution levels s 1-4 (“Baseline- δ0 ”, illustrated in

ig. 5 b). This is similar to the “Local-Net” proposed in our prelimi-

ary work ( Hu et al., 2018 ). Furthermore, previous work suggested

hat, regularised displacements predicted at finest level may not be

ecessary ( Dosovitskiy et al., 2015 ). Therefore, the “Baseline” net-

ork was also trained with all the displacement summands ex-

ept for the one at level s 0 , that is a network with displacement

ummed over the outputs at levels s 1-4 (“Baseline- δ1-4 ”, illustrated

n Fig. 5 c). For both networks, the down- and up-sampling blocks

emain the same. 

.2.2. Comparison with the previous networks of Hu et al. (2018) 

A “Global-Net”, illustrated in Fig. 6 , was proposed to predict an

ffine transformation using the same learning framework described

n Section 2.1 . A “Composite-Net” was proposed to compose the

utput DDFs from the “Global-Net” and the “Local-Net”, as illus-

rated in Fig. 7. The details of the compared “Global-Net” and the

Composite-Net”, are described in Hu et al. (2018) . A direct com-

arison to the previously reported numerical results may be un-

air due to the difference in data sets and the associated train-

ng strategy. For example, the results reported in this paper are

ased on substantially more anatomical labels verified by second

bservers (described in Section 3.1 ) without the less-frequently-

ampled “low-confidence” labels ( Hu et al., 2018 ). In the interest of

 direct comparison between different network architectures, the

Global-Net” and the “Composite-Net” were re-trained using the

ame multiscale Dice as the “Baseline” networks, with a smaller

tarting learning rate of 10 −6 to avoid otherwise frequently en-

ountered divergence (due to the sensitivity of the output displace-

ents to the affine parameters). A 24GB NVIDIA 

® Quadro TM P60 0 0

PU card was used to train the “Composite-Net” that needs more

han 12GB GPU memory for the same minibatch size. 
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Fig. 5. Illustration of the configuration variants for the output displacement summation used in the proposed baseline networks. a is adopted in the “Baseline” network 

using all the nodes δ0-4 ; b is in the “Baseline- δ0 ” network using only the prediction at the input image resolution level s 0 ; c represents the output configuration in the 

“Baseline- δ1-4 ” network without the prediction at the finest s 0 level. 

Fig. 6. Illustration of the previously proposed “Global-Net”. The “Global-Net” shares the same architecture (using independently learnable parameters) as the four down- 

sampling blocks of the “Local-Net”. The details are described in Hu et al. (2018) . 

Fig. 7. Illustration of the inference part of the previously proposed “Composite-Net”, combining a “Global-Net” with a “Local-Net”. The details are described in Hu et al. (2018) . 
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results and are summarised in Section 4.4 . 
.3. Cross-Validation 

All the numerical results reported in this paper were based on

 12-fold patient-level cross-validation for each network. In each

old, test data from 6–7 patients were held out while the data from

he remaining patients were used in training. Two measures are

eported in this study: centroid distance error between centres of

ass is computed from each pair of the warped and fixed labels;

he target registration error (TRE) is defined as root-mean-square

n these distance errors over all landmark pairs for each patient.

 Dice similarity coefficient (DSC) is the overlap between the bi-

ary warped and fixed labels representing prostate glands. These

wo independently-calculated metrics on left-out test data directly

elate to the clinical requirements in the registration-enabled guid-

nce, avoiding surrounding healthy or vulnerable structures and

ocating regions of interest. Paired Wilcoxon signed-rank tests at

ignificance level αH = 0.05 were used to compare medians of the

ross-validation results between the networks. Confidence inter-

als (CIs) were also reported in cases where the obtained p-values

re larger than αH . The cross-validation scheme ensures all the

natomical landmarks (details described in Section 3.1 ) are inde-

endently tested in different folds without being used in training. 

.4. Comparison with pairwise image registration methods 

As discussed in Section 1 , generic pairwise registration algo-

ithms were generally found to perform poorly in registering MR
nd TRUS images for this application, which has in turn motivated

any application-specific methods, such as prostate motion mod-

lling and intraoperative rigid initialisation, e.g. ( De Silva et al.,

017 ). To confirm this observation on the same data set in

his work, a set of non-linear registrations were tested using

 GPU-enabled open-source algorithm ( Modat et al., 2010 ). The

-splines free-form deformation regularised by bending energy

 Rueckert et al., 1999 ), weighting being set to 0.5 for compari-

on, was optimised with respect to three intensity-based similarity

easures, normalised mutual information (NMI), normalised cross-

orrelation (NCC) and sum-of-square differences (SSD). In addition

o directly applying the registration without any initial alignment,

wo simple global initialisation methods, an automatic rigid reg-

stration minimising the same similarity measures and a manual

nitialisation matching the gland centroids, were also tested. A to-

al of 972 registrations were run on GPU using the data set de-

cribed in Section 3.1 . The TREs and DSCs were computed with

ll the other default configurations kept as the same for compar-

son. These results aim to demonstrate typical performances us-

ng pairwise intensity-based registration algorithms for this mul-

imodal MR-to-TRUS prostate imaging application. Methods with

ubstantial customised adaptations (discussed in Section 1 ), such

s spatial initialisation (manual or automated) or statistical motion

odelling, were also compared quantitatively based on published
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Table 1 

Summary of the cross-validation results for the networks described in Section 3.2 . The medians in bold numbers indicate statistically significant deviation from 

the “Baseline” network. 

Networks TRE in mm DSC % 

Median Percentiles [10th, 25th, 75th, 90th] Median Percentiles [10th, 25th, 75th, 90th] 

Baseline 3.6 [1.6, 2.3, 6.5, 10.0] 0.87 [0.77, 0.82, 0.89, 0.91] 

Baseline-msCE 6.1 [1.8, 3.3, 9.0, 13.2] 0.88 [0.77, 0.83, 0.90, 0.93] 

Baseline-L 2 4.8 [1.7, 2.7, 7.7, 11.6] 0.82 [0.68, 0.76, 0.86, 0.88] 

Baseline-preFilt 3.9 [1.6, 2.4, 7.0, 10.2] 0.86 [0.74, 0.81, 0.88, 0.90] 

Baseline- δ0 4.5 [1.9, 2.8, 7.5, 11.3] 0.84 [0.72, 0.79, 0.87, 0.89] 

Baseline- δ1-4 4.2 [1.5, 2.4, 6.6, 10.4] 0.86 [0.74, 0.82, 0.89, 0.90] 

Global-Net 5.8 [2.3, 3.8, 8.6, 12.0] 0.77 [0.62, 0.69, 0.82, 0.84] 

Composite-Net 4.7 [2.3, 3.3, 7.5, 10.5] 0.82 [0.68, 0.78, 0.86, 0.87] 

Fig. 8. Tukey’s boxplots of the cross-validation results obtained from the networks described in Section 3.2 . The numerical results are also summarised in Table 1 . 
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4. Results 

4.1. “Baseline” performance 

Approximately four 3D registrations per second can be per-

formed on the same GPUs. The “Baseline” network achieved a me-

dian TRE of 3.6 mm on landmark centroids with first and third

quartiles being 2.3 and 6.5 mm, respectively. A median DSC of 0.87

on prostate glands was obtained from the same networks with

first- and third quartiles being 0.82 and 0.89. More detailed results

are summarised in Table 1 and illustrated in Fig. 8 . Example slices

from the input MR and TRUS image pairs and the registered MR

images are provided in Fig. 9 for qualitative visual assessment of

the registration results based on the test data. 
.2. Variants of the “Baseline” network 

Considering the “Baseline” network was trained with respect

o the loss function based on multiscale Dice, it is interesting

hat replacing the multi-scale Dice with cross-entropy (i.e. us-

ng “Baseline-msCE” network) had a significantly worse TRE ( p-

alue < 0.001 ), but a better binary (single-scale) DSC result ( p-

alue = 0.046 ). This may suggest that the superior class balance was

onveyed by the multiscale Dice as discussed in Section 2.2 . Thus,

he bias towards labels having larger volumes, such as the prostate

lands producing the DSC results, is lessened. The “Baseline-L 2 ”

sing a different deformation regularisation produced poorer gen-

ralisation ability, both in terms of TRE ( p-value = 0.049 ) and DSC

with both p-values < 0.001 ), although it is intended to demonstrate
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Fig. 9. Example image slices from three test cases, 1, 2 and 3. Rows a, b and c contain slices from original MR images (visually closest slices chosen manually for comparison), 

equidistant slices from the warped moving MR images using the proposed “Baseline” network, and the corresponding fixed TRUS images, respectively. 
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o  
he suitability to use different forms of regularisation without ex-

essively tuning each hyper-parameter in this experiment. 

It may be of practical importance to report that pre-computing

he label filtering did not have a negative impact on TRE

 p-value = 0.458, CI = [ −1.433, 0.634] ) or on DSC ( p-value = 0.498,

I = [ −0.009, 0.030] ). However, the “Baseline-preFilt” is faster to

rain. Depending on the implementation of the online filtering

nd the parsing of the additional pre-computed labels, an approxi-

ately 25% gain in training time was achieved in our experiments

sing pre-computed labels. 
The “Baseline” network outperformed the “Baseline- δ0 ” net-

ork predicting the local displacement only at the finest input

mage resolution level, with p-value = 0.034 and p-value = 0.003 ,

or comparing TREs and DSCs, respectively. This improvement was

onsistently achieved during the experiments with different net-

ork hyper-parameters. On the other hand, the “Baseline- δ1-4 ”

ithout predicting displacement at finest resolution level per-

ormed competitively, consistent with the conclusions from the

revious work ( Dosovitskiy et al., 2015 ) that prediction at the

riginal resolution level does not necessarily improve the ac-
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Fig. 10. Inspection of the warped MR images and network-predicted DDFs from 

three test cases, 4, 5 and 6: The first (I) rows (grey-scaled) display the warped in- 

tensity images; the second (J) rows (orange-scaled) plotted the determinants of the 

Jacobian; the third- (D) and fourth (G) rows (yellowed- and blue-scaled) plotted the 

magnitudes of the displacement vectors and the L2-norms of the displacement gra- 
curacy. It produced TREs and DSCs with no statistically signif-

icant difference than those from the “Baseline”, p-value = 0.477

(CI = [ −1.342, 0.735]) and p-value = 0.316 (with a CI of [ −0.011,

0.023]) , respectively. Furthermore, using the “Baseline” network

without the trilinear additive up-sampling layers, described in

Section 2.3 , resulted in a significantly higher median TRE of 6.4 mm

( p-value < 0.001 ). 

4.3. Comparison results with the previous networks of Hu et al. 

(2018) 

The TREs and DSCs from the “Baseline” network are signifi-

cantly better than those from “Global-Net” which only models the

affine transformation (both p-values < 0.001 ). This clearly demon-

strates the efficacy of the deformable registration in this applica-

tion. Comparing to the previously proposed “Composite-Net” archi-

tecture, not only the GPU memory to train the “Global-Net” can

be spared, but also improvement in generalisation was observed

from the proposed network, in terms of both TRE and DSC (both

p-values < 0.001 ). 

Because a relatively large weight α = 0 . 5 in Eq. (2) was used in

this multimodal application, negative Jacobian determinants were

not found in any of the DDFs predicted by the trained networks.

For further inspection of the deformation fields, we plotted the

determinants of the Jacobian, the magnitudes of the displacement

vectors and the L 2 -norms of the displacement gradients, as illus-

trated in the rows of Fig. 10 , J, D and G, respectively. For example,

the “Baseline” (left columns), “Baseline- δ0 ” (middle columns) and

an illustrative network trained with small regularisation weight

α = 0 . 01 (right columns) produced DDFs with visibly increasing

variance. Both standard deviations and numerical ranges of these

three quantities increase in the same order consistently. Negative

Jacobian determinants also appeared as the regularisation weight

decreases to α = 0 . 01 , implying that physically implausible defor-

mation may exist in the illustrative example without appropriate

regularisation. 

4.4. Comparison with pairwise registration methods 

For the comparison with the pairwise registrations described

in Section 3.4 , we report that all 9 median TREs are larger than

24 mm and none of the DSC medians are higher than 0.77. Di-

rect application of the intensity-based registration result in me-

dian TREs ranging 26.7–35.0 mm, with and without the rigid ini-

tialisation, for all three similarity measures. Manually aligning

the prostate gland centroids immediately led to a median TRE

of 19.6 mm with a median DSC of 0.79, without further registra-

tion. With the manual centroid-alignment as initialisation, regis-

trations using NMI, NCC and SSD produced higher median TREs

of 20.6, 24.7 and 25.6 mm, with lower median DSCs of 0.77, 0.67

and 0.65, respectively. The results are also summarised and com-

pared with other previously proposed methods in Table 2 , with an

initial median TRE of 34.8 mm before registration. These inferior

performances appear much worse than the results summarised in

Table 1 and those from previous application-specific methods, e.g.

( De Silva et al., 2017; Hu et al., 2012; Khallaghi et al., 2015; Sun

et al., 2015; van de Ven et al., 2015; Wang et al., 2016a ). It should

clearly indicate the nontrivial difficulties for these general-purpose

intensity-based algorithms in this multimodal registration applica-

tion. 

For the same application, the previous studies validated on pa-

tient data reported an expected-TRE range of 1.4–2.8 mm, ( De Silva

et al., 2017; Hu et al., 2012; Khallaghi et al., 2015; van de Ven

et al., 2015; Wang et al., 2016a ). These results were based on

smaller sample sizes (ranging from 8 to 29 cases) with signifi-

cant variations, for example, an individual-TRE range of 0.8–8.0 mm

dients, respectively. Three columns contain results from three networks, the “Base- 

line” (left column), “Baseline- δ0” (middle column) and an illustrative baseline net- 

work trained with small regularisation weight α = 0 . 01 , respectively. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 



Y. Hu et al. / Medical Image Analysis 49 (2018) 1–13 11 

Table 2 

Summary of the results from the intensity-based nonrigid image registrations and those from other previous studies, described in Section 4.4 . 

Registration Method Expected TRE in mm No. of Cases Initialisation Method 

Initial 34.8 (median) 108 n/a 

After centroid-alignment 19.6 (median) 108 n/a 

FFD with NMI ∗ 20.6 (median) 108 Gland centroids 

FFD with NCC ∗ 24.7 (median) 108 (from prostate gland/surface estimates) 

FFD with SSD ∗ 25.6 (median) 108 

Hu et al., 2012 2.4 (median) 8 Manual landmarks 

Khallaghi et al., 2015 2.4 (mean) 19 Gland centroids 

van de Ven 2015 2.8 (median) 10 Rigid surface registration 

Sun et al., 2015 1.8 (median) 20 Manual landmarks 

Wang et al., 2016a 1.4 (mean) 18 Rigid surface registration 

De Silva et al., 2017 2.3 (mean) 29 Learned motion model 

∗ The registration results included here are from simplified experiments on our data. It reflects a baseline performance of the compared intensity-based 

methods without application-specific adaptation, such as initialisation method, registration parameters and other similarity measures. 
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 van de Ven et al., 2015 ) was reported. Although intensity-based

egistration has also been adopted for this application, they usu-

lly rely on customised optimisation and/or manual initialisation.

or instance, a previous study ( Sun et al., 2015 ) reported a me-

ian TRE of 1.8 mm on 20 patients, using a dual optimisation with

odality independent neighbourhood descriptor after an initiali-

ation method based on six manual landmarks from expert ob-

ervers for each registration. Our method is fully automated with-

ut requiring any initialisation, pre- or intra-procedural segmen-

ation, once the registration network is trained. One of the latest

evelopments also reported an automated initialisation based on

redicting rigid prostate motion ( De Silva et al., 2017 ), but all the

ther approaches still require either manual (partial) segmentation

f the TRUS images or manual initialisation in order to obtain ro-

ust registrations. None of these methods reported a faster regis-

ration execution time than the sub-second performance with the

roposed registration network. 

. Discussion 

In this work, we demonstrated the feasibility of non-iterative

rediction of voxel correspondence from unlabelled input images,

sing training image pairs with only sparse annotations. The pro-

osed method targets a wide range of clinical applications, where

utomatic multimodal image registration has been traditionally

hallenging due to the lack of reliable image similarity measures

r automatic landmark extraction methods. 

The use of sparse training and validation labels to predict and

valuate dense correspondence raises interesting open questions.

he sparse training landmark pairs cannot independently repre-

ent voxel-level dense correspondence for an individual case. This

s commonly addressed by application-independent deformation

moothness penalty in pairwise methods. Our architecture enables

he regularised DDF to be implicitly learned from samples of la-

ent dense correspondences, with the presented results suggest-

ng that the population-trained application-specific regularisation

mproves the registration accuracy on unseen landmarks. For val-

dation of dense correspondence, in the absence of ground-truth

orrespondence maps for real patient data, using sparse landmarks

as become standard practice, interpreting independent landmark

isalignments as samples of the dense registration error, e.g. ( De

ilva et al., 2017; Hu et al., 2012; Khallaghi et al., 2015; van de Ven

t al., 2015; Wang et al., 2016a ). All these studies adopted the same

alidation strategy based on available anatomical landmarks within

r around prostate glands (described in Section 3.1 ), which have

een shown to represent a spatial distribution relevant to the clin-

cal localisation and targeting applications. Although MR and TRUS

rostate images have limited number of salient corresponding fea-

ures (approximately eight landmark pairs per image were anno-

ated in this work), pooling these samples across 108 cases has en-
bled us to measure sub-millimetre accuracy differences with sta-

istical significance. In practice, reliably finding substantially more

aired corresponding anatomies has been proven challenging for

xperienced clinicians and researchers. Therefore, it is our opinion

hat further improvement in registration performance in terms of

ore accurate prediction of voxel correspondence may resort to

ncreasing number of image/subject pairs or better regularisation

trategy containing prior knowledge of the application-specific de-

ormation, rather than increasing the number of landmarks per im-

ge pair. 

In this work, we propose the multiscale Dice in Eq. (5) be-

ause of its ability to balance the inter-class gradient difference,

iscussed in Section 2.2 , although the cross-entropy loss has an

rguably more interpretable probability formulation for the weak

oxel-level correspondence ( Hu et al., 2018 ). Methods with weight-

ng strategies such as generalised Dice ( Sudre et al., 2017 ) and

eighted cross-entropy ( Ronneberger et al., 2015 ) did not seem to

urther improve the results in our application, probably due to the

ighly constrained outputs in the registration task. It is also in-

eresting that some training labels overlap with each other, such

s the gland segmentations and those defined within the prostate

lands. Further quantitative analysis may be interesting to reveal

he effect of these overlaps on registration performance. We en-

isage that, instead of heuristic weight-balancing to improve per-

ormance metrics, future investigation shall focus on risk analy-

is ( Elkan, 2001 ) for specific applications to quantitatively optimise

he utilities of the registration, such as those associated with clin-

cal risks. 

The DDFs, also discussed in Section 4.3 , were predicted with-

ut explicitly enforced topology preservation, due to the relatively

eavy regularisation required in this application. However, in ap-

lications where larger numbers of landmarks can be identified

easibly and larger deformations are clinically plausible, the net-

ork may be adapted, e.g. to penalise Jacobian-based regulariser,

n seeking highly accurate registration. Furthermore, the final dis-

lacement field in our proposed network could also be represented

y a composition of outputs δ0-4 , instead of the proposed sum-

ation. It is computationally more expensive and potentially more

ensitive to learning rate and initialisation, but may predict mean-

ngful DDF components at different resolution levels, for instance,

or allowing multi-level sparsity regularisation ( Schnabel et al.,

001; Shi et al., 2012 ). 

Whilst the reported cross-validation results were based on in-

ependent landmarks unseen in training, we would like to note

hat a limitation in the validation is that a sizable data set com-

letely unseen to the methodology development was not avail-

ble to test the generalisation ability conclusively. This is why we

esort to cross-validation and did not pursue exhaustive hyper-

arameter tuning. For example, the weight of bending energy was
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fixed among the baseline networks but was only set empirically

after a limited number of trial runs on partial data set. Unbiased

model searching methods for small- to medium sized training data

remain an interesting future research direction. 

In summary, we have introduced a registration framework that

is flexible enough to utilise different neural network architec-

tures, deformation regularisers, and anatomical features with var-

ied sizes, shapes and availabilities, and to match input image in-

tensity patterns. The trained network enables a fast and fully-

automatic multimodal image registration algorithm using only in-

put image pair. Registration results are reported from a validation

on 108 labelled intraoperative prostate image pairs. Future research

aims to investigate the generalisation of the proposed method to

data from different centres and to a wider range of applications. 
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