
IMA Journal of Numerical Analysis (2016) Page 1 of 29
doi:10.1093/imanum/drnxxx

A Convergent Adaptive Finite Element Method
for Electrical Impedance Tomography

BANGTI JIN†
Department of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
YIFENG XU‡

Department of Mathematics, Scientific Computing Key Laboratory of Shanghai Universities
and E-Institute for Computational Science of Shanghai Universities, Shanghai Normal

University, Shanghai 200234, P.R. China
JUN ZOU§

Department of Mathematics, The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong, P.R. China

[Received on November 11, 2015; revised on April 24, 2016]

In this work we develop and analyze an adaptive finite element method for efficiently solving electrical
impedance tomography – a severely ill-posed nonlinear inverse problem of recovering the conductivity
from boundary voltage measurements. The reconstruction technique is based on Tikhonov regularization
with a Sobolev smoothness penalty and discretizing the forward model using continuous piecewise lin-
ear finite elements. We derive an adaptive finite element algorithm with an a posteriori error estimator
involving the concerned state and adjoint variables and the recovered conductivity. The convergence of
the algorithm is established, in the sense that the sequence of discrete solutions contains a convergent
subsequence to a solution of the optimality system for the continuous formulation. Numerical results are
presented to verify the convergence and efficiency of the algorithm.

Keywords: electrical impedance tomography, a posteriori error estimator, adaptive finite element method,
convergence analysis.

1. Introduction

Electrical impedance tomography (EIT) is a diffusive imaging modality for probing internal structures
of the concerned object, by recovering its electrical conductivity/permittivity distribution from voltage mea-
surements on the boundary. One typical experimental setup is as follows. One first attaches a set of metallic
electrodes to the surface of the object, then injects an input current into the object through these electrodes,
which induces an electromagnetic field inside the object. Last, one measures the induced electric voltages
on the electrodes. The procedure is usually repeated several times with different input currents in order to
yield sufficient information about the sought-for conductivity distribution. In many applications, the physi-
cal process can be most accurately described by the complete electrode model (CEM) (Cheng et al. (1989),
Somersalo et al. (1992)). The imaging modality has attracted considerable interest in medical imaging,
geophysical prospecting, nondestructive evaluation and pneumatic oil pipeline conveying etc.
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A number of reconstruction algorithms have been proposed for the EIT inverse problem; see, e.g., Lech-
leiter et al. (2008), Adler et al. (2011), Jin et al. (2012), Jin & Maass (2012a), Lechleiter & Rieder (2006),
Winkler & Rieder (2014), Knudsen et al. (2009), Harrach & Ullrich (2013), Gehre & Jin (2014), Chow et al.
(2014), Dunlop & Stuart (2015) for an incomplete list. One prominent idea underlying existing imaging
algorithms is regularization, especially Tikhonov regularization with a smoothness or sparsity type penalty,
and they have demonstrated encouraging results with experimental data. In practice, they are customarily
implemented using the continuous piecewise linear finite element method (FEM), due to its flexibility in
handling variable coefficients and general geometry. Despite its popularity, it was only rigorously justified
recently in Gehre et al. (2014) for the CEM on either polygonal or smooth convex domains.

The accuracy of the CEM relies crucially on the use of nonstandard boundary conditions for capturing
important characteristics of the physical experiment, notably contact impedance effect. As a consequence,
around the boundary of the electrodes, the boundary condition changes from the Neumann to Robin type,
which induces weak singularity of the forward solution around the interface (Grisvard (1985)). The low-
regularity of the sought-for conductivity field, as enforced by Sobolev smoothness penalty, will possibly
also induce weak solution singularities. With a quasi-uniform triangulation of the domain, the solution sin-
gularities are not effectively resolved and the errors around electrode edges and discontinuity interfaces are
dominant, which can potentially compromise the reconstruction accuracy greatly, if done inadvertently. This
naturally motivates the use of an adaptive strategy to achieve the desired accuracy with reduced computa-
tional complexity. In this work, we shall develop a novel adaptive finite element method (AFEM) for the
EIT inverse problem and analyze its convergence.

Generally the AFEM generates a sequence of nested triangulations and discrete solutions by the follow-
ing successive loop:

SOLVE→ ESTIMATE→MARK→ REFINE. (1.1)

The key ingredient in the procedure is the module ESTIMATE, which consists of computing a posteriori
error estimators, i.e., computable quantities from the discrete solution, the local mesh size and other given
data. This has been thoroughly studied for forward problems; see, e.g., Ainsworth & Oden (2000), Verfürth
(1996). Over the past few decades, there are also many important works on the a posteriori error analysis of
PDE-constrained optimal control problems; see Hintermüller & Hoppe (2010), Hintermüller et al. (2008),
Li et al. (2002), Liu & Yan (2001), Becker & Mao (2011) for a very incomplete list. In particular, Becker
& Mao (2011) showed the quasi-optimality of the AFEM for an optimal control problem with control con-
straints. However, the behavior of inverse problems such as EIT is quite different from that of optimal
control problems due to the ill-posed nature, the presence of the data noise and high-degree nonlinearity.

The adaptive idea, including the AFEM, has started to attract some attention in the context of inverse
problems in recent years. In Becker & Vexler (2004), Beilina & Clason (2006), Beilina & Johnson (2005),
the AFEM using a dual weighted residual framework was studied for parameter identification problems, and
high order terms in relevant Lagrangian functionals were ignored. Feng et al. (2008) proposed a residual-
based estimator for state, costate (adjoint) and parameter by assuming convexity of the cost functional and
high regularity on the parameter. Li et al. (2011) derived rigorous a posteriori error estimators for re-
constructing the distributed flux under a practical regularity assumption, in the sense that like for forward
problems, the errors of the state variable, the adjoint variable and the flux are bounded from above and be-
low by multiples of the estimators. In a series of interesting works (Beilina & Klibanov (2010a,b); Beilina
et al. (2010)), Beilina et al adopted the AFEM for hyperbolic coefficient inverse problems. Griesbaum et al.
(2008) and Kaltenbacher et al. (2014) described and analyzed adaptive strategies for choosing the regu-
larization parameter in Tikhonov regularization and iterative regularization techniques, e.g., Gauss-Newton
methods. Unlike the AFEM for forward problems, for which the convergence and computational complexity
have been systematically studied (see the survey papers Carstensen et al. (2014), Nochetto et al. (2009)), the
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theoretical analysis of the AFEM for inverse problems is still in its infancy. Recently, Xu & Zou (2015b,a)
established the convergence of the AFEM for recovering the flux and the Robin coefficient. We remark that
the convergence rate and optimality of the AFEM in the context of nonlinear inverse problems are com-
pletely open, due to inherent nonconvexity of the functional, and lack of precise regularity results of the
minimizers to the nonlinear optimization problem. Nonetheless, our convergence result in Theorem 4.10
provides some theoretical justifications of the AFEM for the EIT inverse problem.

In this paper, we develop a novel AFEM for the EIT based on Tikhonov regularization with a H1(Ω)
seminorm penalty and analyze its convergence. The AFEM is of the standard form (1.1): it does not require
the interior node property in the module REFINE, and hence it is easy to implement. The derivation of a
posteriori error estimators is constructive: it lends itself to a route for convergence analysis. The analysis
relies on a limiting output least-squares problem defined on the closure of adaptively generated finite element
spaces, and it consists of the following two steps. First, the sequence of discrete minimizers is shown in
Section 4.1 to contain a subsequence converging to a solution of the limiting problem, and then the limiting
minimizer and related state and adjoint variables are proved in Section 4.2 to satisfy the necessary optimality
system of the continuous Tikhonov functional.

This work is a continuation of our prior work Gehre et al. (2014) on the FEM analysis of EIT, but
differs from the latter considerably in several aspects. The major effort of Gehre et al. (2014) was to justify
the convergence of the quasiuniform FEM approximation of the Tikhonov formulation of the EIT, and no a
posteriori error estimator and adaptive method were studied, which is the main goal of the present work. The
convergence analysis in Gehre et al. (2014) relies crucially on the W 1,q(Ω) (q > 2) regularity of the forward
solution and the density of FE spaces Vh in H1(Ω). The density does not hold generally for adaptively
generated FE spaces. Hence, the analysis in Gehre et al. (2014) does not carry over to the AFEM directly.
In this work, we shall adopt a strategy developed in Xu & Zou (2015a) for recovering the Robin coefficient
from the Cauchy data to overcome these technical difficulties. Nonetheless, there are major differences in
the analysis due to higher degree of nonlinearity of the EIT problem. In Xu & Zou (2015a), the continuity
of the parameter-to-state map from L2(Γi) to L2(Γc) plays a crucial role. For the EIT, only the H1(Ω) weak
continuity of the forward map holds (cf. Lemma 4.3), and we shall exploit the pointwise convergence of
discrete minimizers and Lebesgue’s dominated convergence theorem. This allows us to establish the H1(Ω)
convergence of discrete state variables (cf. Theorem 4.4), and thus enables us to verify that the limiting
solution also satisfies the optimality system of the continuous functional (Lemmas 4.8 and 4.9).

The rest of this paper is organized as follows. In Section 2, we describe the CEM, regularized least-
squares formulation and its necessary optimality system. The finite element discretization is described, and
an adaptive FEM algorithm for the EIT is proposed in Section 3, where a heuristic yet constructive derivation
is also provided. The convergence analysis of the adaptive algorithm is given in Section 4. Some numerical
results are given in Section 5 to illustrate its convergence and efficiency. We conclude the section with some
notation. We shall use the standard notation for Sobolev spaces, following Evans & Gariepy (1992). Further,
we use 〈·, ·〉 and (·, ·) to denote the inner product on the Euclidean space and (L2(Ω))d , respectively, by ‖ ·‖
the Euclidean norm, and occasionally abuse 〈·, ·〉 for the duality pairing between the space H and its dual
space. Throughout, the notation c denotes a generic constant, which may differ at each occurrence, but is
always independent of the mesh size and other quantities of interest.

2. Preliminaries

We shall recall in this section the mathematical model for the EIT problem and describe the reconstruc-
tion technique based on Tikhonov regularization and its necessary optimality system.
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2.1 Complete electrode model

Let Ω be an open bounded domain in Rd (d = 2,3) with a polyhedral boundary Γ . We denote the set
of electrodes by {el}L

l=1, which are line segments/planar surfaces on Γ and disjoint from each other, i.e.,
ēi ∩ ēk = /0 if i 6= k. The applied current on the lth electrode el is denoted by Il , and the current vector
I = (I1, . . . , IL)

t satisfies ∑
L
l=1 Il = 0 by the law of charge conservation. Let the space RL

� be the subspace of
the vector space RL with zero mean. Then we have I ∈ RL

� . The electrode voltage U = (U1, . . . ,UL)
t is also

normalized such that U ∈ RL
� . Then the CEM reads: given the conductivity σ , positive contact impedances

{zl}L
l=1 and input current I ∈ RL

� , find the potential u ∈ H1(Ω) and electrode voltage U ∈ RL
� such that

−∇ · (σ∇u) = 0 in Ω ,

u+ zlσ
∂u
∂n =Ul on el , l = 1,2, . . . ,L,∫

el
σ

∂u
∂n ds = Il for l = 1,2, . . . ,L,

σ
∂u
∂n = 0 on Γ \∪L

l=1 el .

(2.1)

The physical motivation behind the model (2.1) is as follows. The governing equation is derived under
a quasi-static assumption on the electromagnetic process. The second line describes the contact impedance
effect: When injecting electrical currents into the object, a highly resistive thin layer forms at the electrode-
electrolyte interface, which causes potential drops across the electrode-electrolyte interface. The potential
drop is described by Ohm’s law, with proportionality factors {zl}L

l=1. It also takes into account the fact that
metallic electrodes are perfect conductors, and hence the voltage Ul is constant on each electrode. The third
line reflects the fact that the current Il injected through the electrode el is completely confined to el itself.
The nonstandard boundary conditions is essential for the model (2.1) to reproduce experimental data within
the measurement precision; see Cheng et al. (1989) and Somersalo et al. (1992).

Due to physical constraint, the conductivity distribution σ is naturally bounded both from below and
above by positive constants. Hence we introduce the following admissible set A : for some λ ∈ (0,1), let

A = {λ ∈ H1(Ω) : λ 6 σ(x)6 λ
−1 a.e. x ∈Ω}.

The set A is endowed with the H1(Ω)-norm, in view of the H1(Ω)-seminorm regularization, cf. (2.3)
below. Further, we denote by H the product space H1(Ω)⊗RL

� with its norm defined by

‖(u,U)‖2
H = ‖u‖2

H1(Ω)+‖U‖
2.

A convenient equivalent norm on the space H is given below.

LEMMA 2.1 On the space H, the norm ‖ · ‖H is equivalent to the norm ‖ · ‖H,∗ defined by

‖(u,U)‖2
H,∗ = ‖∇u‖2

L2(Ω)+
L

∑
l=1
‖u−Ul‖2

L2(el)
.

Proof. The lemma is a folklore result in the EIT community, and we provide a proof only for completeness.
It is easy to verify that ‖(u,U)‖H,∗ indeed defines a proper norm. It suffices to show the following two
inequalities: there exist c1,c2 > 0 such that

c1‖(u,U)‖H 6 ‖(u,U)‖H,∗ 6 c2‖(u,U)‖H.

The second inequality follows from the Cauchy-Schwarz inequality and trace theorem. We show the first
inequality by contradiction. Assume the contrary. Then there exists a sequence {(un,Un)} ⊂ H such that
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‖(un,Un)‖H = 1 and ‖(un,Un)‖H,∗ < n−1. Then there exists a convergent subsequence, also denoted by
{un}, to some u∈H1(Ω) weakly in H1(Ω). By the compact embedding of H1(Ω) into L2(Ω), the sequence
{un} converges to u in L2(Ω). Further, by construction, ‖∇un‖L2(Ω) 6 n−1. Thus {un} converges to u in
H1(Ω), and u = c in the domain Ω for some c ∈ R. By trace theorem and Sobolev embedding theorem,
{un} converges to u in L2(Γ ). Since ‖un−Un

l ‖L2(el)
< n−1, {Un

l } converges to the trace of u on el for each
l = 1,2, . . . ,L, i.e., the limit U = c(1, . . . ,1)T . Now the condition U ∈ RL

� implies U = 0, c = 0 and u ≡ 0.
Consequently, un→ 0 in H1(Ω) and Un→ 0 in RL, which contradicts the assumption ‖(un,Un)‖H = 1. �

The weak formulation of the model (2.1) reads: find (u,U) ∈H such that

a(σ ,(u,U),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H, (2.2)

where the trilinear form a(σ ,(u,U),(v,V )) on A ×H×H is defined by

a(σ ,(u,U),(v,V )) = (σ∇u,∇v)+
L

∑
l=1

z−1
l (u−Ul ,v−Vl)L2(el)

,

where (·, ·)L2(el)
denotes the L2(el) inner product. By Lemma 2.1, for any σ ∈A , the bilinear form a(σ , ·, ·)

is continuous and coercive on the space H. Hence, by Lax-Milgram theorem, for any fixed σ ∈A and given
contact impedances {zl}L

l=1 and current I ∈ Σ L
� , there exists a unique solution (u,U) ≡ (u(σ),U(σ)) ∈ H

to (2.2), and it depends continuously on the input current pattern I. Since σ ∈ A , one can deduce that
u ∈W 1,q(Ω) for some q > 2 (Jin & Maass (2012a)). See also Jin & Maass (2012a), Gehre et al. (2014) and
Dunlop & Stuart (2015) for various continuity results of (u,U) with respect to the conductivity σ .

REMARK 2.2 Alternatively, one can formulate a proper variational formulation of the CEM (2.1) on the
quotient space Ḣ= (H1(Ω)×RL)/R, with the norm defined by

‖(u,U)‖Ḣ = inf
c∈R

(‖u− c‖2
H1(Ω)+‖U− c‖2)1/2.

Then the bilinear form a(σ , ·, ·) is continuous and coercive on the space Ḣ; see Somersalo et al. (1992)
for details. It differs from the preceding one in the grounding condition: in the choice H, the grounding is
enforced by the zero mean condition U ∈ RL

� .

2.2 Tikhonov regularization

The inverse problem is to reconstruct the conductivity σ from noisy measurements Uδ of the exact
electrode voltage U(σ†), corresponding to one or multiple input currents, with a noise level δ :

‖Uδ −U(σ†)‖6 δ .

It is severely ill-posed in the sense that small errors in the data can lead to very large deviations in the recon-
structions. Hence, some sort of regularization is beneficial, and it is incorporated into imaging algorithms,
either implicitly or explicitly, in order to yield physically meaningful images. One prominent idea behind
many existing imaging algorithms is Tikhonov regularization, which minimizes the following functional

min
σ∈A

{
J(σ) = 1

2‖U(σ)−Uδ‖2 + α

2 ‖∇σ‖2
L2(Ω)

}
, (2.3)

and then takes the minimizer as an approximation to the true conductivity σ†. The first term in the functional
J integrates the information in the data Uδ . For notational simplicity, we consider only one dataset in the
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discussion, and the adaptation to multiple datasets is straightforward. The second term imposes a priori
regularity assumption (Sobolev smoothness) on the expected conductivity σ . The scalar α > 0 is known as a
regularization parameter, and controls the tradeoff between the two terms (Ito & Jin (2015)). Problem (2.3)
has at least one minimizer, and it depends continuously on the data perturbation (Jin & Maass (2012a)). The
convergence of the Tikhonov minimizer to σ† as the noise level δ tends to zero was shown in Jin & Maass
(2012a), if the true conductivity σ† ∈H1(Ω), and also a convergence rate O(δ 1/2) was given under suitable
source condition as δ → 0, both under a proper choice of regularization parameter α .

Following the standard adjoint technique (see, e.g., Ito & Kunisch (2008)), we introduce the following
adjoint problem for (2.2): find (p,P)≡ (p(σ),P(σ)) ∈H such that

a(σ ,(p,P),(v,V )) = 〈U(σ)−Uδ ,V 〉 ∀(v,V ) ∈H. (2.4)

Then it can be verified that the Gâteaux derivative of J(σ) at σ ∈A in the direction µ is given by

J′(σ)[µ] = (α∇σ ,∇µ)− (µ∇u(σ),∇p(σ)).

Then the minimizer σ∗ to problem (2.3) and the respective forward solution (u∗,U∗) and the adjoint solution
(p∗,P∗) satisfies the following necessary optimality system:

a(σ∗,(u∗,U∗),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H,

a(σ∗,(p∗,P∗),(v,V )) = 〈U∗−Uδ ,V 〉 ∀(v,V ) ∈H,

α(∇σ
∗,∇(µ−σ

∗))− ((µ−σ
∗)∇u∗,∇p∗)> 0 ∀µ ∈A ,

(2.5)

where the variational inequality at the last line corresponds to the box constraint in the admissible set A .

3. Adaptive finite element method

Now we describe the finite element method (FEM) for discretizing problem (2.3), derive the a posteriori
error estimator and develop a novel adaptive algorithm, which uses a general marking strategy and thus is
easy to implement. The convergence analysis of the algorithm will be presented in Section 4.

3.1 Finite element discretization

To discretize the problem, we first triangulate the domain Ω . Let T be a shape regular triangulation of
the polyhedral domain Ω consisting of closed simplicial elements, with a local mesh size hT := |T |1/d for
each element T ∈ T , which is assumed to intersect at most one electrode surface el . On the triangulation
T , we define a continuous piecewise linear finite element space

VT =
{

v ∈C(Ω) : v|T ∈ P1(T ) ∀T ∈T
}
,

where the space P1(T ) consists of all linear functions on the element T . The space VT is also used for
approximating the potential u and the conductivity σ . The use of piecewise linear finite elements is popular
since the problem data, e.g., boundary conditions, have only limited regularity.

Now we can describe the FEM approximation. First, we approximate the forward map (u(σ),U(σ))∈H
by (uT ,UT )≡ (uT (σT ),UT (σT )) ∈HT ≡VT ⊗RL

� defined by

a(σT ,(uT ,UT ),(vT ,V )) = 〈I,V 〉 (vT ,V ) ∈HT , (3.1)
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where the (discretized) conductivity σT lies in the discrete admissible set

AT = {σT ∈VT : λ 6 σT 6 λ
−1 a.e. Ω}= A ∩VT .

Then the discrete optimization problem reads

min
σT ∈AT

{
JT (σT ) = 1

2‖UT (σT )−Uδ‖2 + α

2 ‖∇σT ‖2
L2(Ω)

}
. (3.2)

Due to the compactness of the finite-dimensional space AT , it is easy to see that there exists at least one min-
imizer σ∗T to problem (3.1)-(3.2) (see, e.g., Gehre et al. (2014)). The minimizer σ∗T and the related forward
solution (u∗T ,U∗T ) ≡ (u∗T (σ∗T ),U∗T (σ∗T )) ∈ HT and adjoint solution (p∗T ,P∗T ) ≡ (p∗T (σ∗T ),P∗T (σ∗T )) ∈
HT satisfies the following necessary optimality system

a(σ∗T ,(u∗T ,U∗T ),(vT ,V )) = 〈I,V 〉 ∀(vT ,V ) ∈HT ,

a(σ∗T ,(p∗T ,P∗T ),(vT ,V )) = 〈U∗T −Uδ ,V 〉 ∀(vT ,V ) ∈HT ,

α(∇σ
∗
T ,∇(µT −σ

∗
T ))− ((µT −σ

∗
T )∇u∗T ,∇p∗T )> 0 ∀µT ∈AT ,

(3.3)

which is the discrete analogue of (2.5). Like in the continuous case, it is straightforward to verify that the
discrete solutions (u∗T ,U∗T ) and (p∗T ,P∗T ) depend continuously on the input current pattern I, i.e.,

‖(u∗T ,U∗T )‖H,∗+‖(p∗T ,U∗T )‖H,∗ 6 c(‖I‖+‖Uδ‖), (3.4)

where the constant c can be made independent of α .

3.2 Adaptive algorithm

Now we can present a novel AFEM for problem (2.2)-(2.3). First we introduce some notation. Let
T be the set of all possible conforming triangulations of the domain Ω obtained from some shape-regular
initial mesh T0 by the successive use of bisection. We call T ′ ∈ T a refinement of T ∈ T if T ′ can be
obtained from T by a finite number of bisections. The collection of all faces (respectively all interior faces)
in T ∈ T is denoted by FT (respectively F i

T ) and its restriction on the electrode ēl and Γ \∪L
l=1 el by

F l
T and F c

T , respectively. The scalar hF := |F |1/(d−1) denotes the diameter of a face F ∈FT , which is
associated with a fixed normal unit vector nnnF in Ω with nnnF = nnn on the boundary Γ . Further, we denote by
DT (respectively DF ) the union of all elements in T with non-empty intersection with an element T ∈ T
(respectively F ∈FT ).

REMARK 3.1 Our convergence analysis covers any bisection method that ensures that the family T is uni-
formly shape regular during the refinement process, i.e., shape regularity of any T ∈T is uniformly bounded
by a constant depending only on the initial mesh T0 (Nochetto et al., 2009, Lemma 4.1), and thus all con-
stants only depend on the initial mesh T0 and given data but not on any subsequent mesh. Such bisection
methods include in particular newest vertex bisection in two dimensions (Mitchell (1989)) and the bisec-
tion of Kossaczký (1995) in three dimensions. Note that no interior node property is enforced between two
consecutive refinements by bisection in our AFEM.

For the solution (σ∗T ,u∗T ,U∗T , p∗T ,P∗T ) to problem (3.3), we define two element residuals for each ele-
ment T ∈T and two face residuals for each face F ∈FT by

RT,1(σ
∗
T ,u∗T ) = ∇ · (σ∗T ∇u∗T ),

RT,2(u∗T , p∗T ) = ∇u∗T ·∇p∗T ,
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JF,1(σ
∗
T ,u∗T ,U∗T ) =


[σ∗T ∇u∗T ·nnnF ] for F ∈F i

T ,

σ∗T ∇u∗T ·nnn+(u∗T −U∗T ,l)/zl for F ∈F l
T ,

σ∗T ∇u∗T ·nnn for F ∈F c
T ,

JF,2(σ
∗
T ) =

{
[α∇σ∗T ·nnnF ] for F ∈F i

T ,

α∇σ∗T ·nnn for F ∈F l
T ∪F c

T ,

where [·] denotes the jumps across interior faces F . Then for any collection of elements MT ⊆ T , we
introduce the following error estimator

η
2
T (σ∗T ,u∗T ,U∗T , p∗T ,P∗T ,MT ) := ∑

T∈MT

η
2
T (σ∗T ,u∗T ,U∗T , p∗T ,P∗T ,T )

:= ∑
T∈MT

η
2
T ,1(σ

∗
T ,u∗T ,U∗T ,T )+η

2
T ,2(σ

∗
T , p∗T ,P∗T ,T )+η

2
T ,3(σ

∗
T ,u∗T , p∗T ,T ),

(3.5)

where the three components η2
T ,i, i = 1,2,3, are defined by

η
2
T ,1(σ

∗
T ,u∗T ,U∗T ,T ) := h2

T‖RT,1(σ
∗
T ,u∗T )‖2

L2(T )+ ∑
F⊂∂T

hF‖JF,1(σ
∗
T ,u∗T ,U∗T )‖2

L2(F),

η
2
T ,2(σ

∗
T , p∗T ,P∗T ,T ) := h2

T‖RT,1(σ
∗
T , p∗T )‖2

L2(T )+ ∑
F⊂∂T

hF‖JF,1(σ
∗
T , p∗T ,P∗T )‖2

L2(F),

η
2
T ,3(σ

∗
T ,u∗T , p∗T ,T ) := h4

T‖RT,2(u∗T , p∗T )‖2
L2(T )+ ∑

F⊂∂T
h3

F‖JF,2(σ
∗
T )‖2

L2(F).

We defer the derivation of the a posteriori error estimator ηT (σ∗T ,u∗T ,U∗T , p∗T ,P∗T ,MT ) to Section 3.3
below. The notation MT will be omitted whenever MT = T . Note that the estimator ηT depends only
on the discrete solutions (σ∗T ,u∗T ,U∗T , p∗T ,P∗T ) and the given problem data (e.g., impedance coefficients
{zl}L

l=1), and all the quantities involved in ηT are computable. Further, the regularization parameter α

enters the estimator only through the face residual JF,2(σ
∗
T ). It will be shown in Section 4.2 that this error

estimator is sufficient for the convergence of the resulting adaptive algorithm.
Now we can formulate an adaptive algorithm for the EIT inverse problem, cf. Algorithm 1. Below we

indicate the dependence on the triangulation Tk by the iteration number k in the subscript.

Algorithm 1 Adaptive finite element method for EIT
1: Specify a shape regular initial mesh T0, and set k := 0.
2: (SOLVE) Solve problem (3.1)-(3.2) over Tk for the minimizer (σ∗k ,u

∗
k ,U

∗
k ) ∈ Ak×Hk and the adjoint

solution (p∗k ,P
∗
k ) ∈Hk; see (3.3).

3: (ESTIMATE) Compute the error estimator ηk(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ) by (3.5).

4: (MARK) Mark a subset Mk ⊆Tk with at least one element T̃ ∈Tk with the largest error indicator:

ηk(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k , T̃ ) = max

T∈Tk
ηk(σ

∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ,T ). (3.6)

5: (REFINE) Refine each element T in Mk by bisection to get Tk+1.
6: Set k = k+1, and return to Step 2, until a certain stopping criterion is fulfilled.

REMARK 3.2 The solver in the module SOLVE can be either a (projected) gradient descent method or
iteratively regularized Gauss-Newton method, each equipped with a suitable step size selection rule.
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REMARK 3.3 Assumption (3.6) in the module MARK is fairly general, and it covers several commonly used
collective marking strategies, e.g., maximum strategy, equidistribution, modified equidistribution strategy,
and Dörfler’s strategy (Siebert, 2011, pp. 962). Our convergence analysis in Section 4 covers all these
marking strategies. In the module MARK, one may also consider separate marking. The motivation is to be
able to neglect data oscillations, which have no importance for sufficiently fine meshes. Numerically, this
adds little computational overheads, since the module SOLVE is the most expensive step at each iteration.

Last, we give an important geometric observation on the mesh sequence {Tk} and a stability result on
error indicators ηk,1(σ

∗
k ,u
∗
k ,U

∗
k ), ηk,2(σ

∗
k , p∗k ,P

∗
k ) and ηk,3(σ

∗
k ,u
∗
k , p∗k) given in Algorithm 1. Let

T +
k :=

⋂
l>k

Tl , T 0
k := Tk \T +

k , Ω
+
k :=

⋃
T∈T +

k

DT , Ω
0
k :=

⋃
T∈T 0

k

DT .

That is, the set T +
k consists of all elements not refined after the k-th iteration while all elements in T 0

k
are refined at least once after the k-th iteration. Clearly, T +

l ⊂ T +
k for l < k. We also define a mesh-size

function hk : Ω → R+ almost everywhere by hk(x) = hT for x in the interior of an element T ∈ Tk and
hk(x) = hF for x in the relative interior of an edge F ∈Fk. It has the following important property in the
region of Ω involving marked elements (Siebert, 2011, Corollary 3.3).

LEMMA 3.4 Let χ0
k be the characteristic function of Ω 0

k . Then limk→∞ ‖hkχ0
k ‖L∞(Ω) = 0.

The next result gives preliminary bounds on the a posteriori error estimators. Note that only the constant
c for the estimator ηk,3 depends on the regularization parameter α , via the face residuals JF,2(σ

∗
k ), and all

the constants can be naturally made independent of α , if desired.

LEMMA 3.5 Let the sequence of discrete solutions {(σ∗k ,u∗k ,U∗k , p∗k ,P
∗
k )} be generated by Algorithm 1. Then

for each T ∈Tk with its face F , there hold

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )6 c(‖∇u∗k‖2

L2(DT )
+hF‖u∗k−U∗k,l‖2

L2(F∩el)
),

η
2
k,2(σ

∗
k , p∗k ,P

∗
k ,T )6 c(‖∇p∗k‖2

L2(DT )
+hF‖p∗k−P∗k,l‖2

L2(F∩el)
),

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T )6 c(h4−d

T ‖∇u∗k‖2
L2(T )‖∇p∗k‖2

L2(T )+h2
T‖∇σ

∗
k ‖2

L2(DT )
),

where el denotes the electrode intersecting with the element T ∈Tk.

Proof. We only prove the third estimate, and the first two follow analogously. By the inverse estimates and
the trace theorem, the local quasi-uniformity of Tk yields

h4
T‖∇u∗k ·∇p∗k‖2

L2(T ) 6 ch4−d
T ‖∇u∗k ·∇p∗k‖2

L1(T ) 6 ch4−d
T ‖∇u∗k‖2

L2(T )‖∇p∗k‖2
L2(T ),

∑
F⊂∂T

h3
F‖JF,2(σ

∗
k )‖2

L2(F) 6 ch2
T‖∇σ

∗
k ‖2

L2(DT )
.

�

3.3 Derivation of a posteriori error estimators

Now we motivate the a posteriori error estimator ηT defined in (3.5) underlying the module ESTIMATE
of Algorithm 1. The algorithm generates a sequence of discrete solutions {(σ∗k ,u∗k ,U∗k , p∗k ,P

∗
k )} in a sequence

of finite element spaces {Vk} and discrete admissible sets {Ak} over a sequence of meshes {Tk}. Naturally,
some arguments in the a posteriori error estimation for direct problems will be employed. We shall need
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the following results on the Lagrange interpolation operator Ik : H2(Ω)→Vk (Ciarlet (2002)) and the Scott-
Zhang interpolation operator Isz

k : H1(Ω)→Vk (Scott & Zhang (1990)) over the triangulation Tk.

LEMMA 3.6 Let ωF is the union of elements with F as a face. For any T ∈Tk and any F ∈Fk,

‖v− Ikv‖L2(T ) 6 ch2
T‖v‖H2(T ), ‖v− Ikv‖L2(F) 6 ch3/2

T ‖v‖H2(ωF )
,

‖v− Isz
k v‖L2(T ) 6 chT‖v‖H1(DT )

, ‖v− Isz
k v‖L2(F) 6 ch1/2

T ‖v‖H1(DF )
.

To motivate the error estimator ηT , we begin with two auxiliary problems: find (ũ(σ∗k ),Ũ(σ∗k ))∈H and
(p̃(σ∗k ), P̃(σ

∗
k )) ∈H such that

a(σ∗k ,(ũ,Ũ),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H, (3.7)

a(σ∗k ,(p̃, P̃),(v,V )) = 〈Ũ−Uδ ,V 〉 ∀(v,V ) ∈H. (3.8)

The first line in (3.3) is actually the finite element scheme of (3.7) over the triangulation Tk. Hence, the
standard a posteriori error analysis for forward problems can be applied. By setting vk = Isz

k v ∈Vk in the first
line in (3.3) for any (v,V ) ∈H, applying elementwise integration by parts and Lemma 3.6, there hold

a(σ∗k ,(ũ−u∗k ,Ũ−U∗k ),(v,V )) = 〈I,V 〉− (σ∗k ∇u∗k ,∇v)−
L

∑
l=1

z−1
l (u∗k−U∗k,l ,v−Vl)L2(el)

= (σ∗k ∇u∗k ,∇(Isz
k v− v))+

L

∑
l=1

z−1
l (u∗k−U∗k,l , I

sz
k v− v)L2(el)

6 c
(

∑
T∈Tk

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )

)1/2
‖v‖H1(Ω).

Taking (v,V ) = (ũ−u∗k ,Ũ−U∗k ) ∈H and using Lemma 2.1 yield

‖(ũ−u∗k ,Ũ−U∗k )‖H,∗ 6 c
(

∑
T∈Tk

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )

)1/2
. (3.9)

Further, from the first equation in (2.5) and (3.7) we find for any (v,V ) ∈H

a(σ∗k ,(u
∗− ũ,U∗−Ũ),(v,V )) = ((σ∗k −σ

∗)∇u∗,∇v)6 ‖(σ∗−σ
∗
k )∇u∗‖L2(Ω)‖∇v‖L2(Ω).

Consequently,
‖(u∗− ũ,U∗−Ũ)‖H,∗ 6 c‖(σ∗−σ

∗
k )∇u∗‖L2(Ω). (3.10)

Likewise, for (p∗− p∗k ,P
∗−P∗k ), we appeal to the second equation in the discrete optimality system (3.3)

and the auxiliary problem (3.8) to deduce

a(σ∗k ,(p̃− p∗k ,P̃−P∗k ),(v,V )) = 〈Ũ−Uδ ,V 〉−a(σ∗k ,(p∗k ,P
∗
k ),(v,V ))

= 〈Ũ−U∗k ,V 〉+ 〈U∗k −Uδ ,V 〉−a(σ∗k ,(p∗k ,P
∗
k ),(v,V ))

= 〈Ũ−U∗k ,V 〉+(σ∗k ∇p∗k ,∇(Isz
k v− v))+

L

∑
l=1

z−1
l (p∗k−P∗k,l , I

sz
k v− v)L2(el)

6 c
((

∑
T∈Tk

η
2
k,2(σ

∗
k , p∗k ,P

∗
k ,T )

)1/2
+‖Ũ−U∗k ‖

)
‖(v,V )‖H,∗,
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and further

a(σ∗k ,(p∗− p̃,P∗− P̃),(v,V )) = ((σ∗k −σ
∗)∇p∗,∇v)+ 〈U∗−Ũ ,V 〉

6
(
‖(σ∗−σ

∗
k )∇p∗‖L2(Ω)+‖U

∗−Ũ‖
)
‖(v,V )‖H,∗,

which, together with (3.9) and (3.10) and Lemma 2.1, implies

‖(p∗− p∗k ,P
∗−P∗k )‖H,∗ 6 c

((
∑

T∈Tk

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )+η

2
k,2(σ

∗
k , p∗k ,P

∗
k ,T )

)1/2

+‖(σ∗−σ
∗
k )∇u∗‖L2(Ω)+‖(σ

∗−σ
∗
k )∇p∗‖L2(Ω)

)
.

(3.11)

In view of (3.9)-(3.11), the estimators ηk,1 and ηk,2 can bound (u∗−u∗k ,U
∗−U∗k ) and (p∗− p∗k ,P

∗−P∗k )
from above up to the terms ‖(σ∗−σ∗k )∇u∗‖L2(Ω) and ‖(σ∗−σ∗k )∇p∗‖L2(Ω), which are not computable but
asymptotically vanishing, provided that σ∗k → σ∗ pointwise. This motivates our choice of a computable
upper bound for σ∗−σ∗k , upon discarding the uncomputable terms.

To bound the term ‖∇(σ∗k −σ∗)‖L2(Ω), we appeal to the variational inequalities in (2.5) and (3.3). Since
Ikµ ∈Ak for any µ ∈A ∩C∞(Ω), we deduce

α‖∇(σ∗−σ
∗
k )‖2

L2(Ω) 6 α(∇σ
∗
k ,∇(σ∗k −σ

∗))− ((σ∗k −σ
∗)∇u∗,∇p∗)

= α(∇σ
∗
k ,∇(σ∗k −σ

∗))− ((σ∗k −σ
∗)∇u∗k ,∇p∗k)

+(∇u∗k ·∇p∗k−∇u∗ ·∇p∗,σ∗k −σ
∗)

6 α(∇σ
∗
k ,∇(Ikµ−σ

∗))− ((Ikµ−σ
∗)∇u∗k ,∇p∗k)

+(∇u∗k ·∇p∗k−∇u∗ ·∇p∗,σ∗k −σ
∗)

= α(∇σ
∗
k ,∇(Ikµ−µ))− (∇u∗k ,∇p∗k(Ikµ−µ))

+(∇u∗k ·∇p∗k−∇u∗ ·∇p∗,σ∗k −σ
∗)

+α(∇σ
∗
k ,∇(µ−σ

∗))− ((µ−σ
∗)∇u∗k ,∇p∗k) := I+ II+ III.

Now Lemma 3.6 and elementwise integration by parts yield

|I|6 c( ∑
T∈Tk

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T ))

1/2‖µ‖H2(Ω) ∀µ ∈A ∩C∞(Ω). (3.12)

By the minimizing property of σ∗k for Jk(·), ‖∇σ∗k ‖L2(Ω) is bounded. Then the estimate (3.4) and the density
of A ∩C∞(Ω) in A ensure that the term III can be made arbitrarily small. For the term II, we have

|II|= |(∇u∗k ·∇p∗k−∇u∗k ·∇p∗+∇u∗k ·∇p∗−∇u∗ ·∇p∗,σ k−σ
∗)|

6 ‖∇(p∗k− p∗)‖L2(Ω)‖(σ
∗
k −σ

∗)∇u∗k‖L2(Ω)+‖∇(u∗k−u∗)‖L2(Ω)‖(σ
∗
k −σ

∗)∇p∗‖L2(Ω),

which are expected to be higher order terms. Upon discarding the uncomputable terms ‖(σ∗−σ∗k )∇u∗‖L2(Ω)

and ‖(σ∗−σ∗k )∇p∗‖L2(Ω) in (3.10)-(3.11) and the nonlinear term II, we get all computable quantities in
(3.9), (3.11) and (3.12), which are exactly the a posteriori error estimator ηk defined in (3.5). Thus we may
view it as a reliable upper bound for the error and employ it in the module ESTIMATE to drive the adaptive
refinement process. Moreover the derivation of (3.12) suggests itself a natural way to handle the variational
inequality in (2.5) in the convergence analysis, which will be presented in Section 4 below.
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4. Convergence analysis

In this section, we shall establish the main theoretical result of this work, the convergence of Algorithm
1, namely the sequence of discrete solutions {(σ∗k ,u∗k ,U∗k , p∗k ,P

∗
k )} to the optimality system (3.3) generated

by Algorithm 1, contains a subsequence converging in H1(Ω)×H×H to a solution to the optimality system
(2.5). The main technical difficulty lies in the lack of density of the adaptively generated FE space Vk in the
space H1(Ω). To overcome the challenge, the proof is carried out in two steps. In the first step (Section 4.1),
we analyze a “limiting” optimization problem posed over a limiting set induced by {Ak}, and show that the
sequence of discrete solutions contains a convergent subsequence to a minimizer to the limiting problem. In
the second step (Section 4.2), we show that the solution to the optimality system for the limiting problem
actually solves the optimality system (2.5). It is worth noting that all the proofs in Section 4.1 only depends
on the nestedness of finite element spaces {Vk} and discrete admissible sets {Ak}, and the error estimator
(3.5) and the marking assumption (3.6) are used only in Section 4.2.

4.1 Limiting optimization problem

For the sequences {Hk} and {Ak} generated by Algorithm 1, we define a limiting finite element space
H∞ and a limiting admissible set A∞ respectively by

H∞ :=
⋃
k>0

Hk (in H,∗-norm) and A∞ :=
⋃
k>0

Ak (in H1(Ω)-norm).

It is easy to see that H∞ is a closed subspace of H. For the set A∞, we have the following lemma.

LEMMA 4.1 A∞ is a closed convex subset of A .

Proof. The definition of A∞ implies its strong closedness. For any µ and ν in A∞, there exist two
sequences {µk} and {νk} ⊂

⋃
k>0 Ak such that µk→ µ and νk→ ν in H1(Ω). The convexity of the set Ak

implies {tµk +(1− t)νk} ⊂
⋃

k>0 Ak for any t ∈ (0,1). Then tµk +(1− t)νk → tµ +(1− t)ν in H1(Ω),
i.e. tµ +(1− t)ν ∈A∞ for any t ∈ (0,1). Hence A∞ is convex. Moreover, we have µk→ µ a.e. in Ω after
(possibly) passing to a subsequence, which, along with the constraint λ 6 µk 6 λ−1 a.e. in Ω , indicates that
λ 6 µ 6 λ−1 a.e. in Ω . Lastly, the fact that A∞ ⊂ H1(Ω) concludes A∞ ⊂A . �

Over the limiting set A∞, we introduce a limiting minimization problem:

min
σ∞∈A∞

{
J∞(σ∞) =

1
2‖U∞(σ∞)−Uδ‖2 + α

2 ‖∇σ∞‖2
L2(Ω)

}
, (4.1)

where (u∞,U∞)≡ (u∞(σ∞),U∞(σ∞)) ∈H∞ satisfies the variational problem:

a(σ∞,(u∞,U∞),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H∞. (4.2)

By Lemma 2.1 and Lax-Milgram theorem, the limiting variational problem (4.2) is well-posed for any fixed
σ∞ ∈A∞. The next result shows the existence of a minimizer to the limiting problem (4.1)-(4.2).

THEOREM 4.2 There exists at least one minimizer to problem (4.1)-(4.2).

Proof. It is clear that infJ∞(σ) is finite over A∞, so there exists a minimizing sequence {σn} ⊂A∞, i.e.,

lim
n→∞

J∞(σ
n) = inf

σ∈A∞

J∞(σ).

Thus, the sequence {σn} is uniformly bounded in H1(Ω), and by Sobolev embedding theorem and Lemma
4.1, there exists a subsequence, relabeled as {σn}, and some σ∗ ∈A∞ such that σn→ σ∗ weakly in H1(Ω),
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σn→ σ∗ a.e. in Ω . By taking σ∞ = σn ∈A∞ in (4.2), then (un,Un)≡ (un(σn),Un(σn))∈H∞ ⊂H satisfies

a(σn,(un,Un),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H∞. (4.3)

Then by Lemma 2.1, {(un,Un)} is uniformly bounded in H, which gives a subsequence, also denoted by
{(un,Un)}, and some (u∗,U∗) ∈H∞ such that

(un,Un)→ (u∗,U∗) weakly in H and un→ u∗ in L2(Γ ). (4.4)

We claim that (u∗,U∗) = (u∗(σ∗),U∗(σ∗)) ∈H∞. To this end, first we observe the splitting

(σn
∇un,∇v) = ((σn−σ

∗)∇un,∇v)+(σ∗∇un,∇v).

The pointwise convergence of the sequence {σn}, Lebesgue’s dominated convergence theorem (Evans &
Gariepy (1992)) and the uniform boundedness of {un} in H1(Ω) imply that

|((σn−σ
∗)∇un,∇v)|6 ‖∇un‖L2(Ω)‖(σ

n−σ
∗)∇v‖L2(Ω)→ 0.

This and the weak convergence of {un} in H1(Ω) give

(σn
∇un,∇v)L2(Ω)→ (σ∗∇u∗,∇v)L2(Ω).

Then by (4.4), we obtain
(un−Un

l ,v−Vl)L2(el)
→ (u∗−U∗l ,v−Vl)L2(el)

.

Upon taking into account these relations, we deduce

a(σ∗,(u∗,U∗),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H∞,

i.e., the desired claim (u∗,U∗) = (u∗(σ∗),U∗(σ∗)) ∈ H∞. This and the weak lower semicontinuity of the
norm imply that σ∗ is a minimizer of J∞(·) over A∞, completing the proof of the theorem. �

The preceding proof together with the uniqueness of the solution to (4.2) and the standard subsequence
argument yields the following weak continuity result.

LEMMA 4.3 Let the sequence {σk} ⊂
⋃

k>0 Ak converge to some σ∗ ∈A∞ weakly in H1(Ω) and let the so-
lution to (4.2) with σ∞ = σ∗ be (u(σ∗),U(σ∗)) ∈H∞. Then the sequence of solutions {(uk(σk),Uk(σk))} ⊂⋃

k>0Hk to (3.1) over Tk satisfies

(uk(σk),Uk(σk))→ (u(σ∗),U(σ∗)) weakly in H.

Now we analyze the limiting behavior of the sequence {(σ∗k ,u∗k ,U∗k )} generated by Algorithm 1: It
contains a subsequence converging in H1(Ω)×H to a minimizer of the limiting problem (4.1)-(4.2). This
result will play a crucial role in the convergence analysis in Section 4.2.

THEOREM 4.4 Let {Ak×Hk} be a sequence of discrete admissible sets and finite element spaces generated
by Algorithm 1. Then the sequence of discrete solutions {(σ∗k ,u∗k ,U∗k )} to problem (3.2) has a subsequence
{(σ∗km

,u∗km
,U∗km

)} converging to a minimizer (σ∗∞,u
∗
∞,U

∗
∞) to problem (4.1)-(4.2) in the sense that

σ
∗
km
→ σ

∗
∞ in H1(Ω), σ

∗
km
→ σ

∗
∞ a.e. in Ω , (u∗km

,U∗km
)→ (u∗∞,U

∗
∞) in H.
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Proof. Since the function σ ≡ 1 ∈ Ak for all k and Jk(σ
∗
k ) attains its minimum at σ∗k ∈ Ak, the sequence

{σ∗k } is uniformly bounded in H1(Ω). By Sobolev embedding theorem, there exists a subsequence {σ∗km
}

and some σ∗∞ ∈A∞ such that σ∗km
→ σ∗∞ weakly in H1(Ω), σ∗km

→ σ∗∞ a.e. in Ω . By Lemma 4.3, there exists
a subsequence of {(u∗km

,U∗km
)} such that

(u∗km
,U∗km

)→ (u∗∞(σ
∗
∞),U

∗
∞(σ

∗
∞)) weakly in H,

where (u∗∞(σ
∗
∞),U

∗
∞(σ

∗
∞)) solves (4.2) with σ∞ = σ∗∞. We claim that σ∗∞ is a minimizer to J∞ over A∞. For

any σ ∈A∞, the definition of A∞ ensures the existence of a sequence {σk} ⊂
⋃

k>0 Ak such that σk→ σ in
H1(Ω). By Lemma 4.3, the sequence of solutions (uk(σk),Uk(σk)) to problem (3.1) over Tk satisfies

(uk(σk),Uk(σk))→ (u∞(σ),U∞(σ)) weakly in H.

By the minimizing property of σ∗k to the functional Jk over Ak, there holds Jk(σ
∗
k )6 Jk(σk). Consequently,

J∞(σ
∗
∞)6 liminf

m→∞
Jkm(σ

∗
km
)6 limsup

k→∞

Jk(σ
∗
k )6 limsup

k→∞

Jk(σk) = J∞(σ) ∀σ ∈A∞.

Further, by taking σ =σ∗∞, we derive limm→∞ Jkm(σ
∗
km
)= J∞(σ

∗
∞), and thus limm→∞ ‖∇σ∗km

‖2
L2(Ω)

= ‖∇σ∗∞‖2
L2(Ω)

.

This and the weak convergence of σ∗km
in H1(Ω) shows the first assertion. It remains to show the conver-

gence of {u∗km
} in H1(Ω), which follows directly from the identity ‖∇(u∗km

− u∗∞)‖L2(Ω) → 0. Using the
discrete problem (3.1) over Tkm , the convergence of {U∗km

} and the limiting problem (4.2) imply

a(σkm ,(u
∗
km
,U∗km

),(u∗km
,U∗km

)) = 〈I,U∗km
〉 → 〈I,U∗∞〉= a(σ∞,(u∗∞,U

∗
∞),(u

∗
∞,U

∗
∞)),

By the compact embedding from the trace H1/2(Γ ) of H1(Ω) into L2(Γ ), the sequence {u∗km
} converges to

u∗∞ in L2(Γ ), and the convergence of {U∗km
} yield (σ∗km

∇u∗km
,∇u∗km

)→ (σ∗∞∇u∗∞,∇u∗∞). By the identity

‖
√

σ∗km
∇(u∗km

−u∗∞)‖2
L2(Ω) = ‖

√
σ∗km

∇u∗km
‖2

L2(Ω)−2(σ∗km
∇u∗km

,∇u∗∞)+‖
√

σ∗km
∇u∗∞‖2

L2(Ω)

and the triangle inequality, we deduce

‖∇(u∗km
−u∗∞)‖2

L2(Ω) 6 c(|(σ∗km
∇u∗km

,∇u∗km
)− (σ∗∞∇u∗∞,∇u∗∞)|+ |(σ∗km

−σ
∗
∞, |∇u∗∞|2)|

+ |(σ∗km
∇u∗km

−σ
∗
∞∇u∗∞,∇u∗∞)|) := I+ II+ III

The second term II tends to zero by the pointwise convergence of the sequence {σ∗km
} and Lebesgue’s

dominated convergence theorem (Evans & Gariepy, 1992, pp. 20). For the third term III, there holds

III6 |((σ∗km
−σ

∗
∞)∇u∗km

,∇u∗∞)|+ |(σ∗∞∇(u∗km
−u∗∞),∇u∗∞)|

6 ‖∇u∗km
‖L2(Ω)‖(σ

∗
km
−σ

∗
∞)∇u∗∞‖L2(Ω)+ |(σ

∗
∞∇(u∗km

−u∗∞),∇u∗∞)| → 0

by the weak convergence of {u∗km
} in H1(Ω) and the pointwise convergence of {σ∗km

}. The preceding three
estimates together complete the proof of the theorem. �

Next we turn to the optimality system of problem (4.1). Like in the continuous case, the optimality
condition for the minimizer (σ∗∞,u

∗
∞,U

∗
∞) and the adjoint solution (p∗∞,P

∗
∞) ∈H∞ is given by

a(σ∗∞,(u
∗
∞,U

∗
∞),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H∞,

a(σ∗∞,(p∗∞,P
∗
∞),(v,V )) = 〈U∗∞−Uδ ,V 〉 ∀(v,V ) ∈H∞,

α(∇σ
∗
∞,∇(µ−σ

∗
∞))− (∇u∗∞,∇p∗∞(µ−σ

∗
∞))> 0 ∀µ ∈A∞.

(4.5)

The next result shows the convergence of the sequence of adjoint solutions.
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THEOREM 4.5 Under the condition of Theorem 4.4, the subsequence of adjoint solutions {(p∗km
,P∗km

)} gen-
erated by Algorithm 1 converges to the solution (p∗∞,P

∗
∞) to the limiting adjoint problem in (4.5):

lim
m→∞
‖(p∗km

− p∗∞,P
∗
km
−P∗∞)‖H,∗ = 0.

Proof. The discrete version of the limiting adjoint problem (4.5) reads: find (p̃km , P̃km) ∈Hkm such that

a(σ∗∞,(p̃km , P̃km),(v,V )) = 〈U∗∞−Uδ ,V 〉 ∀(v,V ) ∈Hkm . (4.6)

By Cea’s lemma and the construction of the space H∞, we deduce

‖(p∗∞− p̃km ,P
∗
∞− P̃km)‖H,∗ 6 c inf

(v,V )∈Hkm

‖(p∗∞− v,P∗∞−V )‖H,∗→ 0. (4.7)

By taking (vkm ,Vkm) = (p̃km − p∗km
, P̃km −P∗km

) in the second equation of (3.3) and (v,V ) = (p̃km − p∗km
, P̃km −

P∗km
) in (4.6), we obtain

‖√σkm∇(p̃km − p∗km
)‖2

L2(Ω)+
L

∑
l=1

z−1
l ‖ p̃km − p∗km

− P̃km,l +P∗km,l‖
2
L2(el)

=〈U∗∞−U∗km
, P̃km −P∗km

〉+((σ∗km
−σ

∗
∞)∇(p̃km − p∗∞),∇(p̃km − p∗km

))

+((σ∗km
−σ

∗
∞)∇p∗∞,∇(p̃km − p∗km

)) := I+ II+ III.

The Cauchy-Schwarz inequality and the box constraints on σ∗km
and σ∗∞ give

|I|6 ‖U∗∞−U∗km
‖RL‖P̃km −P∗km

‖RL ,

|II|6 c‖∇(p̃km − p∗∞)‖L2(Ω)‖∇(p̃km − p∗km
)‖L2(Ω),

|III|6 ‖(σ∗km
−σ

∗
∞)∇p∗∞‖L2(Ω)‖∇(p̃km − p∗km

)‖L2(Ω),

which, together with Lemma 2.1, implies

‖(p̃km − p∗km
, P̃km −P∗km

)‖H,∗ 6 c(‖U∗∞−U∗km
‖RL +‖∇(p̃km − p∗∞)‖L2(Ω)+‖(σ

∗
km
−σ

∗
∞)∇p∗∞‖L2(Ω)).

Thanks to the convergence of {U∗km
}, the pointwise convergence of {σ∗km

} in Theorem 4.4 and (4.7), the
right-hand side tends to zero. Now the desired assertion follows from the triangle inequality and (4.7). �

4.2 Convergence of AFEM

Now we establish the main theoretical result of this work: the sequence of discrete solutions generated
by Algorithm 1 contains a convergent subsequence {(σ∗km

,u∗km
,U∗km

, p∗km
,P∗km

)}, and the limit satisfies the op-
timality system (2.5). By Theorems 4.4 and 4.5, it suffices to show that the limit {(σ∗∞,u∗∞,U∗∞, p∗∞,P

∗
∞)}

solves (2.5). Our arguments begin with the observation that the maximal error indicator over marked ele-
ments has a vanishing limit, cf. Lemma 4.6. Then we show that the sequences of residuals with respect to
(u∗km

,U∗km
) and (p∗km

,P∗km
) converge to zero weakly in Lemma 4.7. This and Theorems 4.4 and 4.5 verify the

first two lines in (2.5) in Lemma 4.8, and the variational inequality in Lemma 4.9.
First we show that the maximal error indicator over the marked elements has a vanishing limit.
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LEMMA 4.6 Let {Tk,Ak ×Hk,(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k )} be the sequence of meshes, discrete admissible sets,

finite element spaces and discrete solutions generated by Algorithm 1 and Mk the set of marked elements
by (3.6). Then for each convergent subsequence {(σ∗km

,u∗km
,U∗km

, p∗km
,P∗km

)}, there holds

lim
m→∞

max
T∈Mkm

ηkm(σ
∗
km
,u∗km

,U∗km
, p∗km

,P∗km
,T ) = 0.

Proof. We denote by T̃ the element with the largest error indicator in Mkm . Since the set DT̃ ⊂ Ω 0
km

, it
follows from Lemma 3.4 that

|DT̃ |6 c‖hkm‖
d
L∞(Ω 0

km
)
→ 0, |∂ T̃ ∩ el |6 c‖hkm‖

d−1
L∞(Ω 0

km
)
→ 0 as m→ ∞. (4.8)

By Lemma 3.5, the local quasi-uniformity of Tkm , inverse estimates, trace theorem (Evans & Gariepy, 1992,
pp. 133) and the triangle inequality, we have

η
2
km,1(σ

∗
km
,u∗km

,U∗km
, T̃ )6 c(‖∇u∗km

‖2
L2(DT̃ )

+hT̃‖u
∗
km,l−U∗km,l‖

2
L2(∂ T̃∩el)

)

6 c(‖(u∗km
−u∗∞,U

∗
km
−U∗∞)‖2

H,∗+‖∇u∗∞‖2
L2(DT̃ )

+‖u∗∞,l−U∗∞,l‖2
L2(∂ T̃∩el)

),

η
2
km,2(σ

∗
km
, p∗km

,P∗km
, T̃ )6 c(‖∇p∗km

‖2
L2(DT̃ )

+hT̃‖p∗km,l−P∗km,l‖
2
L2(∂ T̃∩el)

)

6 c(‖(p∗km
− p∗∞,P

∗
km
−P∗∞)‖2

H,∗+‖∇p∗∞‖2
L2(DT̃ )

+‖p∗∞,l−P∗∞,l‖2
L2(∂ T̃∩el)

),

η
2
km,3(σ

∗
km
,u∗km

, p∗km
, T̃ )6 c(h4−d

T̃
‖∇u∗km

‖2
L2(T̃ )
‖∇p∗km

‖2
L2(T̃ )

+h2
T̃
‖∇σ

∗
km
‖2

L2(DT̃ )
)

6 c|DT̃ |
4/d−1((‖∇(u∗km

−u∗∞)‖2
L2(T̃ )

+‖∇u∗∞‖2
L2(T̃ )

)(‖∇(p∗km
− p∗∞)‖2

L2(T̃ )
+‖∇p∗∞‖2

L2(T̃ )
)

+(‖∇(σ∗km
−σ

∗
∞)‖2

L2(DT̃ )
+‖∇σ

∗
∞‖2

L2(DT̃ )
)
)
.

The desired result follows from Theorems 4.4 and 4.5, (4.8), and the absolute continuity of the norms
‖ · ‖L2(Ω) and ‖ · ‖L2(Γ ) with respect to the Lebesgue measure. �

Now we define two residuals with respect to (u∗k ,U
∗
k ) and (p∗k ,P

∗
k ) as

〈R(u∗k ,U
∗
k ),(v,V )〉 := a(σ∗k ,(u

∗
k ,U

∗
k ),(v,V ))−〈I,V 〉 ∀(v,V ) ∈H,

〈R(p∗k ,P
∗
k ),(v,V )〉 := a(σ∗k ,(p∗k ,P

∗
k ),(v,V ))−〈U∗k −Uδ ,V 〉 ∀(v,V ) ∈H.

By definition, we have the following Galerkin orthogonality

〈R(p∗k ,P
∗
k ),(v,V )〉= 0 ∀(v,V ) ∈Hk,

〈R(p∗k ,P
∗
k ),(v,V )〉= 0 ∀(v,V ) ∈Hk.

(4.9)

To relate the limit {(σ∗∞,u∗∞,U∗∞, p∗∞,P
∗
∞)} to the optimality system (2.5), we exploit the marking assump-

tion (3.6) in Algorithm 1. The next result gives the weak convergence of the residuals to zero.

LEMMA 4.7 For the convergent subsequence {(σ∗km
,u∗km

,U∗km
, p∗km

,P∗km
)} given in Theorems 4.4 and 4.5,

there hold
lim

m→∞
〈R(u∗km

,U∗km
),(v,V )〉= 0 ∀(v,V ) ∈H,

lim
m→∞
〈R(p∗km

,P∗km
),(v,V )〉= 0 ∀(v,V ) ∈H.
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Proof. We only prove the first assertion since the second follows analogously, and relabel the index km by k.
Let Ik and Isz

k be the Lagrange and Scott-Zhang interpolation operators respectively associated with Vk. Then
by (4.9), elementwise integration by parts and Lemma 3.6, we deduce for k > l and any (ψ,V )∈C∞(Ω)×RL

�∣∣〈R(u∗k ,U
∗
k ),(ψ,V )〉

∣∣= ∣∣〈R(u∗k ,U
∗
k ),(ψ− Ikψ,0)〉

∣∣= ∣∣〈R(u∗k ,U
∗
k ),(w− Isz

k w,0)〉
∣∣

=
∣∣∣(σ∗k ∇u∗k ,∇(w− Isz

k w))+
L

∑
l=1

z−1
l ((u∗k−U∗k,l),(w− Isz

k w))L2(el)

∣∣∣
6 c ∑

T∈Tk

ηk,1(σ
∗
k ,u
∗
k ,U

∗
k ,T )‖w‖H1(DT )

= c
(

∑
T∈Tk\T +

l

ηk,1(σ
∗
k ,u
∗
k ,U

∗
k ,T )‖w‖H1(DT )

+ ∑
T∈T +

l

ηk,1(σ
∗
k ,u
∗
k ,U

∗
k ,T )‖w‖H1(DT )

)
.

where w = ψ− Ikψ . By appealing to Lemma 3.5 and (3.4), we deduce(
∑

T∈Tk\T +
l

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )

)1/2
6 c

and further by the error estimate of the interpolation operator Ik from Lemma 3.6, we arrive at∣∣〈R(u∗k ,U
∗
k ),(ψ,V )〉

∣∣6 c1‖hl‖L∞(Ω 0
l )
‖ψ‖H2(Ω)+ c2

(
∑

T∈T +
l

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T )

)1/2
‖ψ‖H2(Ω).

By Lemma 3.4, c1‖hl‖L∞(Ω 0
l )
‖ψ‖2→ 0 as l→ ∞. From T +

l ⊂ T +
k ⊂ Tk ⊂Mk for k > l and the marking

condition (3.6), we deduce

( ∑
T∈T +

l

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T ))

1/2 6
√
|T +

l | max
T∈T +

l

ηk,1(σ
∗
k ,u
∗
k ,U

∗
k ,T )6

√
|T +

l | max
T∈T +

k

ηk,1(σ
∗
k ,u
∗
k ,U

∗
k ,T )

6
√
|T +

l | max
T∈Mk

ηk(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ,T ).

Now Lemma 4.6 implies that for any fixed large l1, we can choose some k1 > l1 such that

c2( ∑
T∈T +

l

η
2
k,1(σ

∗
k ,u
∗
k ,U

∗
k ,T ))

1/2‖ψ‖2 < ε

for any positive small number ε and k > k1. Thus, we arrive at

lim
m→∞
〈R(u∗km

,U∗km
),(v,V )〉= 0 ∀(v,V ) ∈C∞(Ω)×RL

� ,

which, together with the density of C∞(Ω) in H1(Ω), gives the desired assertion. �
Next we show that the limit (σ∗∞,u

∗
∞,U

∗
∞, p∗∞,P

∗
∞) actually solves the variational equations in (2.5).

LEMMA 4.8 The solution to problem (4.5) solves the two variational equations in (2.5), i.e.,

a(σ∗∞,(u
∗
∞,U

∗
∞),(v,V )) = 〈I,V 〉 ∀(v,V ) ∈H,

a(σ∗∞,(p∗∞,P
∗
∞),(v,V )) = 〈U∗∞−Uδ ,V 〉 ∀(v,V ) ∈H.
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Proof. We prove only the first assertion, since the proof of the second is analogous. Given the convergent
subsequence {(σ∗km

,u∗km
,U∗km

, p∗km
,P∗km

)} in Theorems 4.4 and 4.5, for any (v,V ) ∈H, there holds∣∣∣a(σ∗∞,(u∗∞,U∗∞),(v,V ))−〈I,V 〉
∣∣∣6 L

∑
l=1

z−1
l

∣∣∣(u∗∞−U∗∞,l−u∗km
+U∗km,l ,v−Vl)L2(el)

∣∣∣
+
∣∣∣((σ∗∞∇u∗∞−σ

∗
km

∇u∗km
),∇v)L2(Ω)

∣∣∣+ ∣∣〈R(u∗km
,U∗km

),(v,V )〉
∣∣.

In view of Theorem 4.4 and Lemma 4.7, the first and third terms tend to zero. For the second term,

|((σ∗∞∇u∗∞−σ
∗
km

u∗km
),∇v)|6 |(σ∗∞∇(u∗∞−u∗km

),∇v)|+ |((σ∗∞−σ
∗
km
)∇u∗km

,∇v)|
6 |(σ∗∞∇(u∗∞−u∗km

),∇v)|+‖∇u∗km
‖L2(Ω)‖(σ

∗
∞−σ

∗
km
)∇v‖L2(Ω)→ 0,

by the convergence of {u∗km
}, and the pointwise convergence of {σ∗km

} in Theorem 4.4 and Lebesgue’s
dominated convergence theorem (Evans & Gariepy, 1992, pp. 20). �

Now we turn to the variational inequality in (2.5). We resort again to a density argument: we first show
the assertion over a smooth subset, and then extend it to A by a density argument.

LEMMA 4.9 The solution to the variational inequality of problem (4.5) satisfies

α(∇σ
∗
∞,∇(µ−σ

∗
∞))− (∇u∗∞,∇p∗∞(µ−σ

∗
∞))> 0 ∀µ ∈A .

Proof. Like before, we relabel the index km by k, and let Ik be the Lagrange interpolation operator associated
with Vk. Then for any µ ∈ Ã :=A ∩C∞(Ω), Ikµ ∈Ak and the discrete variational inequality in (3.3) yields

α(∇σ
∗
k ,∇(µ−σ

∗
k ))− ((µ−σ

∗
k )∇u∗k ,∇p∗k)

=α(∇σ
∗
k ,∇(µ− Ikµ))− ((µ− Ikµ)∇u∗k ,∇p∗k)

+α(∇σ
∗
k ,∇(Ikµ−σ

∗
k ))− ((Ikµ−σ

∗
k )∇u∗k ,∇p∗k)

>α(∇σ
∗
k ,∇(µ− Ikµ))− ((µ− Ikµ)∇u∗k ,∇p∗k).

(4.10)

Using elementwise integration by parts, the definition of ηk,3 and error estimates for Ik, cf. Lemma 3.6, we
deduce that for k > l, there holds∣∣∣α(∇σ

∗
k ,∇(µ− Ikµ))− ((µ− Ikµ)∇u∗k ,∇p∗k)

∣∣∣6 c ∑
T∈Tk

ηk,3(σ
∗
k ,u
∗
k , p∗k ,T )‖µ‖H2(T )

6c3

((
∑

T∈Tk\T +
l

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T )

)1/2
+
(

∑
T∈T +

l

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T )

)1/2
)
‖µ‖H2(Ω).

The Lemma 3.5, (3.4), Theorem 4.4 and Lemma 3.4 give

∑
T∈Tk\T +

l

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T )6 c(‖hl‖4−d

L∞(Ω l
0)
‖∇pk‖2

L2(Ω) ∑
T∈Tk\T +

l

‖∇u∗k‖2
L2(T )+‖hl‖2

L∞(Ω l
0)
‖∇σ

∗
k ‖2

L2(Ω))

6 c(‖hl‖4−d
L∞(Ω l

0)
+‖hl‖2

L∞(Ω l
0)
)6 c‖hl‖4−d

L∞(Ω l
0)
→ 0.

Upon noting the inclusion T +
l ⊂Tk for k > l, we deduce from the marking condition (3.6)

( ∑
T∈T +

l

η
2
k,3(σ

∗
k ,u
∗
k , p∗k ,T ))

1/2 6
√
|T +

l | max
T∈T +

l

ηk,3(σ
∗
k ,u
∗
k , p∗k ,T )6

√
|T +

l | max
T∈Mk

ηk(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ,T ).
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Appealing again to Lemma 4.6, we can choose k2 > l2 for some large fixed l2 such that when k > k2
c3(∑T∈T +

l
η2

k,3(σ
∗
k ,u
∗
k , p∗k ,T ))

1/2‖µ‖H2(Ω) is smaller than any given positive number. Hence

(α∇σ
∗
k ,∇(µ− Ikµ))− (∇u∗k ,∇p∗k(µ− Ikµ))→ 0 ∀µ ∈ Ã . (4.11)

Using the H1(Ω)-convergence of {σ∗k } from Theorem 4.4, we have

(α∇σ
∗
k ,∇(µ−σ

∗
k ))→ (α∇σ

∗
∞,∇(µ−σ

∗
∞)) ∀µ ∈ Ã . (4.12)

The convergence of {p∗k} to p∗∞ in H1(Ω) in Theorem 4.5, (3.4) and the box constraint in Ã yield

(µ∇u∗k ,∇(p∗k− p∗∞))6 c‖∇(p∗k− p∗∞)‖L2(Ω)→ 0,

and this together with Theorem 4.4 implies

(µ∇u∗k ,∇p∗k) = (µ∇u∗k ,∇(p∗k− p∗∞))+(µ∇u∗k ,∇p∗∞)→ (µ∇u∗∞,∇p∗∞) ∀µ ∈ Ã . (4.13)

By elementary calculations, we derive

(σ∗k ∇u∗k ,∇p∗k)− (σ∗∞∇u∗∞,∇p∗∞) = (σ∗k ∇u∗k ,∇(p∗k− p∗∞))+((σ∗k −σ
∗
∞)∇u∗k ,∇p∗∞)

+(σ∗∞∇(u∗k−u∗∞),∇p∗∞).

Repeating the arguments for (4.13) yields that for the first and third terms there hold (σ∗k ∇u∗k ,∇(p∗k− p∗∞))→
0 and (σ∗∞∇(u∗k−u∗∞),∇p∗∞)→ 0. The stability estimate (3.4), the pointwise convergence of {σ∗k } of Theorem
4.4 and Lebesgue’s dominated convergence theorem (Evans & Gariepy, 1992, pp. 20) show

((σ∗k −σ
∗
∞)∇u∗k ,∇p∗∞)6 c‖(σ∗k −σ

∗
∞)∇p∗∞‖L2(Ω)→ 0.

Hence
(σ∗k ∇u∗k ,∇p∗k)→ (σ∗∞∇u∗∞,∇p∗∞). (4.14)

Now by passing both sides of (4.10) to the limit and combining (4.11)-(4.14), we obtain

α(∇σ
∗
∞,∇(µ−σ

∗
∞))L2(Ω)− (∇u∗∞,∇p∗∞(µ−σ

∗
∞))L2(Ω) > 0 ∀µ ∈ Ã .

By means of the density of C∞(Ω) in H1(Ω) and the construction via a standard mollifier (Evans & Gariepy,
1992, pp. 122), for any µ ∈A there exists a sequence {µn} ⊂ Ã such that ‖µn−µ‖H1(Ω)→ 0 as n→ ∞.
Then by Lebesgue’s dominated convergence theorem (Evans & Gariepy, 1992, pp. 20), we deduce

(α∇σ
∗
∞,∇µ

n)→ (α∇σ
∗
∞,∇µ) and (µn

∇u∗∞,∇p∗∞)→ (µ∇u∗∞,∇p∗∞)

after possibly passing to a subsequence. The desired result follows from the preceding two estimates. �
Finally, by combining preceding results, we obtain the main theoretical result: the sequence of solutions

generated by the AFEM contains a subsequence converging to a solution of (2.5).

THEOREM 4.10 The sequence of discrete solutions {(σ∗k ,u∗k ,U∗k , p∗k ,P
∗
k )} generated by Algorithm 1 has a

subsequence {(σ∗km
,u∗km

,U∗km
, p∗km

,P∗km
)} converging to a solution (σ∗,u∗,U∗, p∗,P∗) to the continuous opti-

mality system (2.5) in the following sense:

‖σ∗km
−σ

∗‖H1(Ω), ‖(u
∗
km
−u∗,U∗km

−U∗)‖H,∗, ‖(p∗km
− p∗,P∗km

−P∗)‖H,∗→ 0 as m→ ∞.
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REMARK 4.11 Theorem 4.10 is only concerned with the convergence of the adaptive solution to the con-
tinuous Tikhonov solution, which is limited by the data accuracy (i.e., the noise level δ ) and regularization
parameter α . In the spirit of the classical discrepancy principle (Ito & Jin (2015)), it is unnecessary to make
the adaptive FEM approximation of the forward model far more accurate than the data accuracy. In practice,
it is advisable to terminate the refinement step when the estimator ηk falls below a multiple of the noise level
δ , however, the regularizing property (and the convergence rate) of such a procedure is still to be studied.

5. Numerical experiments and discussions

In this section, we present numerical results to illustrate the convergence and efficiency of the adaptive
algorithm. All the computations were carried out using MATLAB 2013a on a personal laptop with 6.00 GB
RAM and 2.5 GHz CPU. The setup of the numerical experiments is as follows. The domain Ω is taken to
be a square Ω = (−1,1)2. There are sixteen electrodes {el}L

l=1 (with L = 16) evenly distributed along the
boundary Γ , each of the length 1/4, thus occupying one half of the boundary Γ . The contact impedances
{zl}L

l=1 on the electrodes {el}L
l=1 are all set to unit, and the background conductivity σ0 is taken to be σ0 ≡ 1.

For each example, we measure the electrode voltages U for the first ten sinusoidal input currents, in order
to gain enough information about the true conductivity σ†. Then the noisy data Uδ is generated by adding
componentwise Gaussian noise to the exact data U(σ†) as follows

Uδ
l =Ul(σ

†)+ ε max
l
|Ul(σ

†)|ξl , l = 1, . . . ,L,

where ε is the (relative) noise level, and {ξl} follow the standard normal distribution. The exact data U(σ†)
is computed on a much finer mesh generated adaptively (and thus completely different from the one used
in the inversion), in order to avoid the most obvious form of “inverse crime”. In all the experiments, the
marking strategy (3.6) in the module MARK is represented by a specific maximum strategy, cf. Remark 3.2,
i.e., mark a minimal subset Mk ⊆Tk, i.e., the refinement set, such that

ηk(σ
∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ,Mk)> θηk(σ

∗
k ,u
∗
k ,U

∗
k , p∗k ,P

∗
k ,Tk),

with a threshold θ ∈ (0,1]. In the computation, we fix the threshold θ at θ = 0.7. For the adaptive refinement,
we employ the newest vertex bisection to subdivide the marked triangles; see Mitchell (1989) for implemen-
tation details. The discrete nonlinear optimization problems (3.1)-(3.2) are solved by a nonlinear conjugated
gradient method, where the box constraints are enforced by pointwise projection into the admissible set A
after each update, and the initial guess of the conductivity at the coarsest mesh T0 is initialized to the back-
ground conductivity σ0 = 1, and then for k = 1,2, . . ., the reconstruction on the mesh Tk−1 is interpolated to
the mesh Tk to warm start the (projected) conjugate gradient iteration for the discrete optimization problem
on the mesh Tk. Throughout the adaptive loop, the regularization parameter α in the model (2.3) is fixed
and it is determined in a trial-and-error manner, and the chosen values of α in the experiments below are
roughly of the order of the noise level δ , which is a popular a priori parameter choice; see Ito & Jin (2015)
for further discussions about parameter choice. It is an interesting research question to adapt the choice of
α with the a posterior estimator ηk within the adaptive algorithm; see Remark 4.11.

EXAMPLE 5.1 The true conductivity σ† is given by σ†(x) = σ0(x)+e−8(x2
1+(x2−0.55)2), with the background

conductivity σ0(x) = 1.

In this example, the true conductivity σ† consists of a very smooth blob in a constant background, and
the profile is shown in Fig. 1(a). The final recovered conductivity fields from the voltage measurements with
ε = 0.1% data noise are shown in Fig. 1. For both uniform and adaptive refinements, the recoveries capture



AFEM FOR EIT 21 of 29

well the location and height of the blob: it is very smooth, due to the use of a smoothness prior. Hence,
it does not induce any grave solution singularity. The recoveries by both methods are similar to each other
in terms of location and magnitude. Both suffer from a slight loss of the contrast, which is typical for EIT
recoveries with a smoothness penalty; see, e.g., Lechleiter & Rieder (2006) and Winkler & Rieder (2014)
for similar results by an iteratively regularized Gauss-Newton method.

(a) true conductivity (b) adaptive refinement (c) uniform refinement

FIG. 1. The final reconstructions by the uniform and adaptive refinements for Example 5.1 with ε = 0.1% noise in the data. The
degree of freedom is 9818 and 16641 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed at
α = 2.5×10−4.

Next we examine the adaptive refinement more closely. On a very coarse initial mesh T0, which is a
uniform triangulation of the domain Ω , cf. Fig. 2(a), the recovered conductivity tends to have pronounced
oscillations around the boundary, since the forward solution is not accurately resolved over there. In particu-
lar, the discretization error significantly compromises the reconstruction accuracy, and it induces large errors
in the location and height of the recovered conductivity. This motivates the use of the adaptive strategy. The
meshes during the adaptive iteration and the corresponding recoveries are shown in Fig. 2. The refinement
step first concentrates only on the region around the electrode surface. This is attributed to the change of the
boundary condition, which induces weak singularities in the direct and adjoint solutions. Then the AFEM
starts to refine also the interior of the domain, simultaneously with the boundary region. Accordingly, the
spurious oscillations in the recovery are suppressed as the iteration proceeds (provided that the regulariza-
tion parameter α is properly chosen). Interestingly, the central part of the domain Ω is refined only slightly
during the whole refinement procedure, and in the end, much coarse elements are used for the conductivity
inversion in these regions. This concurs with the empirical observation that the inclusion in the central part is
much harder to resolve from the boundary data. Hence, the adaptive algorithm tends to adapt automatically
to the resolving power of the conductivity (from the boundary data) in different regions.

In Fig. 3, we plot the L2(Ω) and H1(Ω) errors of the recoveries versus the degree of freedom N of
the mesh Tk for the adaptive and uniform refinement, where the recovery on the finest mesh is taken as a
respective reference solution, since the recoveries by the uniform and adaptive refinements are not necessar-
ily the same (although always close), even initialized identically. The corresponding empirical convergence
rates in L2(Ω)-norms and H1(Ω)-norms are given in Table 1. It is observed that with the same degree of
freedom, the AFEM can give much more accurate results than the uniform one (with respect to the respective
reference solution). This is also confirmed by the computing time: for the results in Fig. 1, the one by the
adaptive refinement takes about 30 minutes, whereas that by the uniform refinement takes about 80 minutes.
This is consistent with the fact that at each iteration of the algorithm, the module SOLVE is predominant,
and that the computational cost of the conjugate gradient descent algorithm is proportional to the number of
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forward and adjoint solves at each iteration and each forward/adjoint solve is determined by the degree of
freedom of the system. This shows clearly the computational efficiency of the proposed adaptive algorithm.
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FIG. 2. The recovered conductivity distributions σ∗k during the adaptive refinement, for Example 5.1 with ε = 0.1% noise. The
regularization parameter α is fixed at α = 2.5×10−4.
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FIG. 3. The L2(Ω) and H1(Ω) errors versus the degree of freedom N of the mesh, for Example 5.1 at two different noise levels, using
the adaptive refinement (solid line) and uniform refinement (dashed line).

A second example contains two neighboring smooth blobs.

EXAMPLE 5.2 The true conductivity σ† is given by σ†(x) = σ0(x)+ e−20((x1+0.7)2+x2
2)+ e−20(x2

1+(x2−0.7)2),
and the background conductivity σ0(x) = 1.

Like before, the true conductivity σ† is smooth (cf. Fig. 4(a) for the profile), and thus the smoothness
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Table 1. The empirical convergence rates O(N−r), N being the degree of freedom, of the recoveries in the L2(Ω)- and H1(Ω)-norms,
for the numerical examples, where the exponent r is presented.

ε=1e-3 ε=1e-2
Example adaptive uniform adaptive uniform

L2 H1 L2 H1 L2 H1 L2 H1

5.1 1.31 1.19 1.04 0.93 1.23 0.91 1.01 0.70
5.2 1.32 1.19 1.05 0.94 1.23 0.88 0.99 0.73
5.3 1.08 0.88 0.83 0.73 0.91 0.67 0.72 0.40

penalty is suitable. Overall, the observations from Example 5.1 remain valid: the recovered coefficient
captures very well the supports of the inclusions, and the magnitude is also reasonable. The recovery by the
adaptive algorithm is comparable with that based on uniform one, but requiring far less degrees of freedom.
However, due to the smoothing nature of the H1(Ω) penalty, the recoveries tend to be diffusive, and the
magnitude also suffers from a loss of about 20% for both uniform and adaptive refinements. Such smoothing
is well-known in EIT imaging. These drawbacks can be partially alleviated by sparsity-promoting penalty
(Jin et al. (2012), Jin & Maass (2012b)), to which it is of great interest to extend the proposed AFEM.

(a) true conductivity (b) adaptive refinement (c) uniform refinement

FIG. 4. The final reveries by the adaptive and uniform refinements for Example 5.2 with ε = 0.1% noise. The degree of freedom is
9803 and 16641 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed at α = 2.5×10−4.

We plot in Fig. 5 the meshes and recoveries at the intermediate refinement steps. At the initial stage,
the refinement mainly occurs in the region around electrode surfaces, where the weak solution singularity
appears. As the refinement proceeds, the region away from the boundary is also refined, but to a much lesser
degree, especially for the central part of the domain. In case of a very coarse initial mesh, the recovery even
fails to correctly identify the number of inclusions, but as the AFEM proceeds, the spurious oscillations
disappear, and then it can identify reasonably the locations and magnitudes of the blobs from the recoveries,
cf. Fig. 5. In Fig. 6, we show the L2(Ω) and H1(Ω) errors of the recoveries versus the degree of freedom N
of the mesh Tk for the adaptive and uniform refinement. These plots fully show the efficiency of the adaptive
algorithm, for both ε = 0.1% and ε = 1% noise; see also Table 1 for the empirical convergence rates.

Last, we consider one example with a discontinuous conductivity field.
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FIG. 5. The recovered conductivity during the adaptive refinement, for Example 5.2 with ε = 0.1% noise. The regularization parameter
is fixed at α = 2.5×10−4.
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FIG. 6. The L2(Ω) and H1(Ω) errors versus the degree of freedom N of the mesh, for Example 5.2 at two different noise levels, using
the adaptive refinement (solid line) and uniform refinement (dashed line).

EXAMPLE 5.3 The true conductivity σ† is given by σ†(x) = σ0(x) + (x1/2+ x2)χΩ ′ , where χΩ ′ is the
characteristic function of the set Ω ′ = (1/4,3/4)× (0,1/2), and the back ground conductivity σ0(x) = 1.

Since the H1(Ω) penalty imposes a global smoothness condition, it is unsuitable for recovering discon-
tinuous conductivity fields. Hence, in this example we assume that the support Ω ′ of the true conductivity
field σ† is known, and aim at determining the variation within the support using the H1(Ω ′) semi-norm
penalty. The adaptive algorithm and the convergence proof can be extended directly: the variational inequal-
ity is now defined only on Ω ′, and the estimator η2

T ,3(σ
∗
T ,u∗T , p∗T ,T ) is only for elements in Ω ′).

The numerical results for the example are presented in Figs. 7, 8 and 9. The observations from the
preceding two examples remain largely valid. The magnitude of the conductivity is slightly reduced, but
otherwise the profile is reasonable, and visually the recoveries by the adaptive and the uniform refinements
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are close to each other, cf. Figs. 7(b) and 7(c). Even though the conductivity field σ is discontinuous, the
adaptive algorithm first mainly resolves the singularity due to the change of boundary conditions, i.e., around
the boundary, cf. Fig. 8(b). As the adaptive iteration proceeds, the algorithm then starts to refine the region
near the boundary ∂Ω ′ of the subdomain Ω ′: first the part close to the boundary ∂Ω , and then the part away
from ∂Ω , cf. Figs. 8(c) and 8(d). This is consistent with the empirical observation that the further away
from the boundary, the more challenging it is to be resolved (from the boundary data), i.e., the boundary
data allows better resolving the regions close to the boundary. Hence, the solution singularity induced by the
conductivity discontinuity does not play an important role in the inversion as it was in direct problems. The
gain of computational efficiency is shown in Fig. 9: the L2(Ω)- and the H1(Ω)-errors decrease faster with
the increase of degree of freedom for the adaptive algorithm than that for the uniform refinement.

(a) true conductivity (b) adaptive refinement (c) uniform refinement

FIG. 7. The final reveries by the adaptive and uniform refinements for Example 5.3 with ε = 0.1% noise. The degree of freedom is
19608 and 33025 for the adaptive and uniform refinement, respectively. The regularization parameter α is fixed at α = 3.2×10−3.

6. Concluding remarks

In this work, we have developed a novel adaptive finite element method for the electrical impedance
tomography inverse problem, modeled by the complete electrode model. It is formulated as an output least-
squares problem with a Sobolev smoothness penalty. The weak solution singularity around the electrode
surfaces and low-regularity conductivity motivate the use of the adaptive refinement techniques. We have
derived a residual-type a posteriori error estimator, which involves the state, adjoint and conductivity es-
timate, and established the convergence of the sequence of solutions generated by the adaptive technique
that the accumulation point solves the continuous optimality system. The efficiency and convergence of the
proposed adaptive algorithm is confirmed by a few numerical experiments.

This work represents only a first step towards the rigorous adaptive finite element method for nonlinear
inverse problems associated with PDEs. There are several research problems deserving further study. First,
the proposed algorithm is only for the smoothness penalty, which is essential in the development and con-
vergence analysis of the algorithm. It is of much interest to derive and to analyze adaptive algorithms for
nonsmooth penalties, e.g., total variation and sparsity. Second, numerically one observes that the algorithm
can approximate a (local/global) minimizer of the continuous optimization well, instead of only a solution
to the necessary optimality condition. This is still theoretically to be justified. Third, the reliability and opti-
mality of the adaptive algorithm for nonlinear inverse problems are completely open, which seems not fully
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(a) 0th step (b) 4th step (c) 9th step (d) 14th step

FIG. 8. The recovered conductivity during the adaptive refinement, for Example 5.3 with ε = 0.1% noise. The regularization parameter
is fixed at α = 3.2×10−3.
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FIG. 9. The L2(Ω ′) and H1(Ω ′) errors versus the degree of freedom N of the mesh, for Example 5.3 at two different noise levels, using
the adaptive refinement (solid line) and uniform refinement (dashed line).

understood even for linear ones. The optimality issue in the context of inverse problems should be related to
the noise level. The crucial interplay between the error estimator and noise level is to be elucidated.
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