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Abstract 

Background 

Spatial Interaction Models have been used for decades to explain and predict flows (of migrants, 
capital, traffic, trade etc.) between geographic locations. 

Aims 

This paper will guide users through the process of fitting and calibrating spatial interaction models in 
order to understand, explain and predict internal migration flows in Australia. 

Data and methods 

Internal migration data from the Australian 2011 Census of Population and Housing, which records 
people who have moved between Greater Capital City Statistical Areas over 5-year periods, is used to 
exemplify the modelling process. The R statistical software is used to process and visualise the data 
as well as run the models.  

Results 

The full suite of Wilson’s family of spatial interaction models is fitted to the internal migration data, 
revealing that distance and origin/destination populations are some of the most important 
influencing factors affecting internal migration flows. We see whether constraining the model to 
known flows about origins and/or destinations will improve the fits and model estimates. 

Conclusions 

Spatial interaction modelling has been a tool in the box of some population geographers for a 
number of decades. However, recent advances in more forgiving programming languages such as R 
and Python now mean that this powerful modelling methodology is no longer only available to those 
who also possess advanced computer programming skills. This guide has exemplified the process of 
fitting and calibrating spatial interaction models on Australian internal migration data, but the 
methods could easily be applied to other flow data sets in other contexts.  
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1. Introduction 

In this introductory guide, you will learn how we can use spatial interaction models to model 
population flows for a variety of different purposes such as estimating unknown flows, predicting 
future patterns, understanding the drivers of those flows, or exploring the differences between the 
flows of different groups. The empirical example uses migration flows taken from the Australian 
Bureau of Statistics (ABS) 2011 Census of Population and Housing (Census), but the method is generic 
and could be used on any flow data (other population data such as commuting data or economic 
data such as flows of capital or trade, for example). The examples shown here will use the R software 
environment, and an accompanying practical walk-through guide will be referred to throughout this 
paper which can be accessed via the following link: https://rpubs.com/adam_dennett/376877. It can 
also be followed in its entirety if you would like to learn the code required for any of the models. 

1.1 What constitutes a population flow? 

In fields such as population geography and demography, the population flows of interest are usually 
low-frequency migration or residential mobility moves. Both assume some permanent change of 
residential address which can be either within a country (internal migration or residential mobility) or 
between countries (international migration). Some scholars make a clear distinction between what 
they term ‘residential mobility’ (short-distance moves, usually within settlements or regions where 
individuals may retain the same social groups or job) and ‘internal migration’ (longer distance moves, 
which may involve changing jobs and social groups). 

However, in reality this is a continuum with no clear line demarking one or the other. Most national 
censuses will simply refer to any internal move over any distance as ‘internal migration’. Depending 
on where you are in the world, the proportion of a population changing their residential address in a 
given year is around 10 per cent, with most people only moving a handful of times in their lifetime. 
These population movements can be contrasted with high-frequency flows that occur on daily or 
weekly cycles. The commute to work or school or travel to the shops, while of interest to some 
population geographers, is frequently the domain of transport planners and analysts who are 
concerned with the impact of these moves on transport infrastructure and systems. 

1.2. Population flow data 

Data related to these flows can vary. For migration, data captured by censuses or surveys tend to be 
‘transitions’ over a period of time (a year, 5 years, 10 years) with a flow recorded if there is a 
difference between residential address between the start and the end of this period (Rees 1977). 
Transition data will not record multiple moves during a period and, as such, are simpler than 
movement data which record multiple moves. Movement data can be found more commonly in 
population registers that track population changes continuously. Commuting data, while frequently 
transitions derived from census returns, are increasingly being obtained from sources such as mobile 
phone cell tower connections and apps (Erhardt and Dennett 2017). In this guide we will use census-
based transition data; however, being aware of these other sources is important, particularly in a 
world that is looking increasingly to move away from censuses. 

 

https://rpubs.com/adam_dennett/376877
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1.3. Why would we want to model population flows? 

As hinted in the introduction, there are a number of reasons for wanting to model population flows. 
In migration studies, in a number of papers by Raymer and colleagues (Raymer 2007; Raymer, Abel 
and Smith 2007; Raymer and Abel 2008) as well Abel (2010), Willekens (1999) and Dennett and 
Wilson (2013), the problem of missing or incomplete data was addressed. Pooler (1987) used similar 
models to tackle the problem of predicting migration, as did Fotheringham et al. (2001). Implicit in 
much of this modelling research is the evaluation of factors influencing the observed patterns – a 
paper by Kim and Cohen (2010) is more explicit in this regard. 

1.4. How can we model population flows? 

Population flows can be conceptualised as interactions between two entities – origins and 
destinations – which have different properties of emissivity and attractiveness (see Lee 1966 for the 
classic paper on this topic in relation to migration). The strength of interaction is a function of these 
origin and destination properties and the negative influence of the cost (frequently some measure of 
distance, but equally could be financial, time or some other cost) that might be associated with 
travelling between them. This situation is analogous to that observed by Newton when he defined 
the laws of gravity – the larger the entities interacting, the stronger the force of interaction; the 
further the distance between them, the weaker the interaction. Hence the term ‘gravity model’ has 
been used and the equation applied in studying population flows for a long time. See Zipf (1946) for 
one of the earlier applications of the model to population flows. 

Over the years, various improvements have been made to the basic gravity model. Perhaps the most 
important paper in this respect is by Wilson (1971), where he introduces the idea of ‘constraints’ 
which force the flows or interactions estimated by the model to adhere to known information about 
the system. For example, there may be data on the total number of people leaving an origin or 
arriving at a destination (or both). In the basic gravity model, the flows estimated might exceed this 
known information, which is clearly an issue. By introducing constraints, it is possible to force the 
modelled flows to correspond to this known information, significantly improving accuracy. Wilson 
called his new family of constrained models ‘spatial interaction models’. 

2. Modelling population flows in practice 

The basic theory behind spatial interaction or gravity models is not too difficult to comprehend. 
Where the challenges begin is in running a spatial interaction model in practice. In the 1970s and 
1980s, when spatial interaction modelling was being established as part of the tool kit for people 
working on spatial problems, running a model would require some fairly high-level computer 
programming knowledge. Today, however, software has advanced and more forgiving languages 
such as Python and R mean that spatial interaction models can be used as a tool by many more 
researchers.  

In this guide we will be using R, with details of the full implementation referred to in this paper found 
in an accompanying walk-through guide designed to be worked through while reading the text here. 
The guide includes all of the data and code you need to run a spatial interaction model, and can be 

https://rpubs.com/adam_dennett/376877
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accessed via the link at the beginning of this paper1. If, however, you would like to explore these 
models in Python, then Oshan (2016) has written an excellent primer that is worth reading, while 
Dan Lewis has translated a similar R walk-through of mine into Python using UK data2. For 
consistency, Oshun’s notation is adopted in this paper. 

2.1. Data 

To illustrate the modelling exercise, migration data (derived from the answer about previous 
residence 5 years ago – therefore comprising 5-year transitions) from the 2011 Census have been 
obtained. These data are at the Greater Capital City Statistical Area (GCCSA) level, which is comprised 
of 15 zones (Figure 1). 

 

 

Figure 1: Five-year migration flows between GCCSAs, 2006–2011 

Source: ABS 2011 Census. Note: Line weights indicative of volumes. 

 

  
                                                           
1 https://rpubs.com/adam_dennett/376877  
2 https://github.com/danlewis85/UCL_CASA_Urban_Simulation  

https://rpubs.com/adam_dennett/376877
https://github.com/danlewis85/UCL_CASA_Urban_Simulation
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Accompanying the migration flows are variables for each origin and destination relating to: 

• total population  

• unemployment rate 

• median weekly income  

• percentage of households living in rented accommodation. 

These variables can be used to try and explain observed migration flows or predict flows if none are 
available. A table containing origin/destination pairs, the flows between them and these origin and 
destination specific variables can be observed in Table 1 and is downloadable in the accompanying 
exercise. 

Table 1: Sample of pair-wise migration flow data with accompanying data relating to origin and destination 
characteristics  

Origin Destination Flow OrigPop DestPop Orig 
Unemp 

Dest 
Unemp 

Orig Med 
Income 

Dest Med 
Income 

Orig % 
Rented 

Dest % 
Rented 

Greater 
Sydney 

Greater 
Sydney 3,395,019  4,391,673  4,391,673  5.74 5.74 780.64 780.64 31.77 31.77 

Greater 
Sydney 

Rest of 
NSW 91,043  4,391,673  2,512,952  5.74 6.12 780.64 509.97 31.77 27.20 

Greater 
Sydney 

Greater 
Melbourne 22,605  4,391,673  3,999,981  5.74 5.47 780.64 407.95 31.77 27.34 

Greater 
Sydney 

Rest of Vic. 4,420  4,391,673  1,345,717  5.74 5.17 780.64 506.58 31.77 24.08 

Greater 
Sydney 

Greater 
Brisbane 22,874  4,391,673  2,065,998  5.74 5.86 780.64 767.08 31.77 33.19 

Greater 
Sydney 

Rest of  
Qld 27,447  4,391,673  2,253,723  5.74 6.22 780.64 446.48 31.77 32.57 

Greater 
Sydney 

Greater 
Adelaide 5,829  4,391,673  1,225,235  5.74 5.78 780.64 445.53 31.77 28.27 

Greater 
Sydney 

Rest of  
SA 795  4,391,673  368,260  5.74 5.45 780.64 522.71 31.77 26.17 

Greater 
Sydney 

Greater 
Perth 10,572  4,391,673  1,728,865  5.74 4.76 780.64 730.84 31.77 27.52 

Source: ABS 2011 Census 

 

2.2. The ‘unconstrained’ / ‘total constrained’ spatial interaction model 

2.2.1. The multiplicative modelling framework 

The classic gravity model, which estimates flows/interactions as a function of predictor variables (a 
model virtually identical to that used by Zipf), can be written as follows: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑘𝑘
𝑉𝑉𝑖𝑖
𝜇𝜇𝑊𝑊𝑗𝑗

𝛼𝛼

𝑑𝑑𝑖𝑖𝑖𝑖
𝛽𝛽            (1) 

This model can be rearranged and written in the multiplicative form more familiar from Wilson’s 
1971 paper: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑉𝑉𝑖𝑖
𝜇𝜇𝑊𝑊𝑗𝑗

𝛼𝛼𝑑𝑑𝑖𝑖𝑖𝑖−𝛽𝛽          (2) 



38 Dennett  Australian Population Studies 2 (2) 2018 

where: 

𝑇𝑇𝑖𝑖𝑖𝑖 is the transition/trip or flow, 𝑇𝑇, between origin 𝑖𝑖 (always the rows in a matrix) and destination 𝑗𝑗 
(always the columns in a matrix). If you are not overly familiar with matrix notation, the 𝑖𝑖 and 𝑗𝑗 are 
just generic indexes to allow us to refer to any cell in the matrix. 

𝑉𝑉 is a vector (a 1 dimensional matrix – or, if you like, a single line of numbers) of origin attributes 
which relate to the emissivity of all origins in the dataset, 𝑖𝑖 – this could be any of the origin-related 
variables in Table 1. 

𝑊𝑊 is a vector of destination attributes relating to the attractiveness of all destinations in the dataset, 
𝑗𝑗 – similarly, this could be any of the destination related variables in Table 1.  

𝑑𝑑 is a matrix of costs (frequently distances – hence, d) relating to the flows between 𝑖𝑖 and 𝑗𝑗. 

𝑘𝑘, 𝜇𝜇, 𝛼𝛼 and 𝛽𝛽 are all model parameters to be estimated. 𝛽𝛽 is assumed to be negative, as with an 
increase in cost/distance we would expect interaction to decrease.  

Wilson’s term for this basic gravity model is the ‘unconstrained’ model. However, 𝑘𝑘 is a constant of 
proportionality and forces all flow estimates to add up to the total number of flows observed in a 
system. This leads to this particular model being more accurately described as a ‘total constrained’ 
model, where: 

𝑘𝑘 = 𝑇𝑇
∑ ∑ 𝑉𝑉𝑖𝑖

𝜇𝜇𝑗𝑗𝑖𝑖 𝑊𝑊𝑗𝑗
𝛼𝛼𝑑𝑑𝑖𝑖𝑖𝑖

−𝛽𝛽
          (3) 

and 𝑇𝑇 is the sum of our matrix of observed flows or: 

𝑇𝑇 = ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖            (4) 

In plain language, this is just the sum of all observed flows divided by the sum of all of the other 
elements in the model. 

If we use distance as a basic measure of cost, then the simplest distance to measure is the Euclidean 
distance between the centroids of the zones for which you have data. In the accompanying walk-
through exercise, the process of generating a distance matrix from a set of GCCSA boundaries is 
demonstrated using the spdists() function in R. 

Observing equations 1 and 2 above you would be forgiven for asking how the values for the four 
parameters are known or estimated. One solution could be to simply insert some arbitrary or 
expected values as parameters. This becomes more feasible once we understand what the 
parameters are in reality: they relate to the scaling effect/importance of the variables with which 
they are associated. Most simply, where the effects of origin and destination attributes on flows 
scale in a linear fashion (i.e. for a 1 unit increase in, say, population at origin, we might expect a 1 
unit increase in flows of people from that origin; or for a halving in average salary at destination, we 
might expect a halving of migrants), then the parameter/scaling factor for our origin variable would 
equal 1, e.g.  μ = 1 and α = 1.  

In Newton’s original gravity equation the negative influence of distance is not linear. Rather, it 
follows a power law. For example, where β = -2 for a 1 unit increase in distance, we have a 1-2 (or 1) 
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unit decrease in interaction/flow. For a 2 unit increase in distance, we have 2-2 (0.25 or 1/4) of the 
interaction, for a 3 unit increase, 3-2 (0.111) of the interaction and so on. 

We can check to see if μ = 1 and α = 1 and β = -2 are a good or poor guess by looking at our data and 
plotting observed flows against each variable and seeing whether the value of these variables raise to 
these powers (Figure 2). Reviewing the three graphs at Figure 2a, 2b, 2c, it can be observed that -2 
looks like a fairly good estimate for β with the red modelled line matching quite closely the observed 
relationship between migration flows and distances. 1 also looks like a fair estimate of μ for at least 
some of the relationship between origin population and migration flows; however, it appears that 
there is little discernible visible relationship between destination median incomes and migration 
flows, so the value of α may be of little consequence. 

If we accept that these first parameter estimates are plausible, then they can be inserted into 
equation 2 to generate a first set of estimates. Such a set of estimates, where k=3.28, μ = 1, α=1 and 
β=-2, are shown in Table 2. These can be compared with the observed flows in Table 3. 

Manual inspection of the flows reveals that in some cases the estimates are not too far from the 
observed flows, but in others we can clearly see that the estimates are a long way out. Whilst it is OK 
to ‘eyeball’ small flow matrices like these, when you have much larger matrices, another solution is 
required to test the so-called ‘goodness-of-fit’. There are a number of ways to do this but two of the 
most common are to calculate the coefficient of determination (R2) or the Square Root of Mean 
Squared Error (RMSE). Anyone who has run a linear regression model before will have come across 
R2 but RMSE may be less familiar. There are other methods and they all do more-or-less the same 
thing: compare the modelled estimates with the real data and represent the degree of agreement 
with a single number. R2 is popular as it is quite intuitive and can be compared across models. RMSE 
is less intuitive, but some argue is better for comparing changes to the same model.  

Guidance on how to quickly calculate R2 and RMSE can be found in the accompanying practical guide. 
In this initial case, the R2 value is 0.18. This tells us that this first model accounts for about 18 per 
cent of the variation of flows in the system – not brilliant, but a starting point nevertheless. 

As a result, two immediate questions emerge: 

 Can we improve these estimates? 

 Can we tell which predictor variables are best? 

Fortunately, the answer to both of these questions is ‘yes’. One way that we can begin to answer 
both of these questions is through the process of model calibration. 
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(a) Distance 
Note: Red line is distance or 𝑑𝑑𝑖𝑖𝑖𝑖−𝛽𝛽 estimate where 𝛽𝛽 = -2 

 
(b) Origin population 
Note: Red line is origin population or 𝑉𝑉𝑖𝑖

𝜇𝜇estimate where 𝜇𝜇 = 1 

 
(c) Destination median income 
Note: Red line is destination median income or 𝑊𝑊𝑗𝑗

𝛼𝛼estimate where 𝛼𝛼 = 1 

Figure 2: The relationship between migration flows and three predictor variables 
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Table 2: Modelled flows from the initial total constrained gravity model with crude estimated parameters 

Origin / 
Destination 

1GSYD 

 

1RNSW 

 

2GMEL 

 

2RVIC 

 

3GBRI 

 

3RQLD 

 

4GADE 

 

4RSAU 

 

5GPER 

 

5RWAU 

 

6GHOB 

 

6RTAS 

 

7GDAR 

 

7RNTE 

 

8ACTE 

 

(all) 

 

1GSYD 0 47944 12607 15513 22050 3346 5187 3522 1012 1325 5627 7789 1386 1395 193311 322014 

1RNSW 41995 0 8089 12786 11218 3039 5467 3675 721 1008 2566 3703 1021 1138 42659 139085 

2GMEL 21972 16095 0 373099 5627 2040 13506 4665 1294 1539 15973 29621 1221 1271 62311 550234 

2RVIC 7325 6893 101083 0 2014 784 6705 1971 465 570 3652 6304 448 481 18995 157690 

3GBRI 10556 6131 1546 2041 0 3035 1256 1293 397 573 955 1259 791 771 6639 37243 

3RQLD 3002 3113 1050 1491 5688 0 1508 2718 615 1118 630 844 2101 2759 2873 29510 

4GADE 2536 3051 3788 6941 1283 821 0 5788 653 858 1300 1973 543 657 4041 34233 

4RSAU 441 525 335 523 338 379 1483 0 250 462 172 241 275 439 569 6432 

5GPER 425 346 312 414 349 288 562 839 0 4637 273 356 730 604 535 10670 

5RWAU 156 136 104 142 141 147 207 434 1299 0 81 107 523 508 190 4175 

6GHOB 478 249 778 657 169 60 226 116 55 58 0 25438 46 43 876 29249 

6RTAS 724 393 1579 1240 244 87 375 179 79 84 27825 0 65 62 1416 34352 

7GDAR 33 28 17 23 39 56 26 52 41 105 13 17 0 326 36 812 

7RNTE 42 39 22 31 49 93 41 107 44 131 15 20 417 0 47 1098 

8ACTE 13901 3502 2571 2893 997 230 594 327 92 116 742 1096 110 112 0 27283 

(all) 103586 88445 133881 417794 50206 14405 37143 25686 7017 12584 59824 78768 9677 10566 334498 1384080 

Source: ABS 2011 Census. Notes:  Greater Sydney = 1GSYD; Rest of New South Wales = 1RNSW; Greater Melbourne = 2GMEL; Rest of Victoria = 2RVIC; Greater Brisbane = 3GBRI; Rest of 
Queensland = 3RQLD; Greater Adelaide = 4GADE; Rest of South Australia = 4RSAU; Greater Perth = 5GPER; Rest of Western Australia = 5RWAU; Greater Hobart = 6GHOB; Rest of Tasmania = 
6RTAS; Greater Darwin = 7GDAR; Rest of Northern Territories = 7RNTE; Australian Capital Territory = 8ACTE  
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Table 3: Original flow data for comparison 

Origin / 
Destination 

1GSYD 

 

1RNSW 

 

2GMEL 

 

2RVIC 

 

3GBRI 

 

3RQLD 

 

4GADE 

 

4RSAU 

 

5GPER 

 

5RWAU 

 

6GHOB 

 

6RTAS 

 

7GDAR 

 

7RNTE 

 

8ACTE 

 

(all) 

 

1GSYD 0 91043 22605 4420 22874 27447 5829 795 10572 2127 1654 1984 1992 828 10658 204828 

1RNSW 53568 0 12418 13072 21289 35191 3613 1587 4999 3295 978 1885 2252 1431 15766 171344 

2GMEL 15569 11094 0 70264 13055 16164 6017 1292 10111 2570 2126 2553 2029 1004 4727 158575 

2RVIC 2528 11968 47988 0 4328 10110 3468 2217 3449 2597 667 1428 1548 721 1362 94379 

3GBRI 12333 16056 13080 4249 0 84649 3044 818 4810 1796 1388 2295 1802 905 3127 150352 

3RQLD 11629 26699 12284 7566 74412 0 3772 1758 6583 4688 1479 3086 3126 2142 3125 162349 

4GADE 5415 3517 8803 3188 5449 6178 0 25679 3831 1230 598 872 1843 927 1995 69525 

4RSAU 477 1490 1154 2439 824 2631 22020 0 1051 1354 148 429 679 484 185 35365 

5GPER 6523 4064 11721 2931 5086 7019 2625 865 0 41332 1022 1802 1305 416 1675 88386 

5RWAU 714 2241 1490 1811 1141 4333 808 982 42149 0 277 1161 1093 627 251 59078 

6GHOB 1221 998 3014 624 1307 1810 532 111 901 365 0 5019 195 113 564 16774 

6RTAS 1029 1871 2637 1647 1543 2884 658 343 1210 1028 7214 0 272 164 288 22788 

7GDAR 1237 2185 1957 1481 2763 5107 2111 641 2149 949 239 333 0 1998 824 23974 

7RNTE 406 1432 700 792 896 3018 1296 961 699 826 96 213 2684 0 229 14248 

8ACTE 7065 16829 5930 1994 5225 6968 2657 1091 2212 1110 466 480 3304 56779 0 112110 

(all) 119714 191487 145781 116478 160192 213509 58450 39140 94726 65267 18352 23540 24124 68539 44776 1384075 

Source: ABS 2011 Census 
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2.2.2. Regression modelling framework 

Calibration is the process of adjusting parameters in the model to try and get the estimates to agree 
with the observed data as much as possible. Adjusting the parameters is the sort of iterative process 
that computers are particularly good at and the goodness-of-fit statistics can be used to indicate 
when the optimum solution is found. Historically this process required a researcher with the 
requisite programming skills to write a computer algorithm to iteratively adjust each parameter, 
check the goodness-of-fit, and then start all over again until the goodness-of-fit statistic was 
maximised/minimised. There are various well-established routines that can achieve this, such as the 
Newton-Raphson algorithm, but without the necessary programming skills this can be a serious 
barrier and probably why spatial interaction modelling was the preserve of a few specialists for so 
long. 

However, since the early days of spatial interaction modelling, a number of useful developments 
have occurred. Perhaps the most important in the context of calibration is the fact that it is possible 
to turn the multiplicative model in equation 2 into an additive model. Taking the logarithms of both 
sides of equation 2, you end up with the following equation: 

ln𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑘𝑘 + 𝜇𝜇ln𝑉𝑉𝑖𝑖 + 𝛼𝛼ln𝑊𝑊𝑗𝑗 − 𝛽𝛽ln𝑑𝑑𝑖𝑖𝑖𝑖        (5) 

What we have now is a regression model. Anyone who has been introduced to regression models in 
introductory statistics classes will be aware that there are various pieces of software available to us 
to run regressions (such as R) and calibrate the parameters (or ‘estimate the coefficients’ in the 
language of statistics), so expert programming skills are no longer required. 

There are some papers that are worth reading at this point if you would like to learn more. Perhaps 
the best is by Flowerdew and Aitkin (1982). One of the key points that Flowerdew and Aitkin make is 
that the model in equation 5 (known as a log-normal model) has various problems associated with it, 
which mean that the estimates produced might not be reliable. The paper (and also Wilson’s 1971 
paper) details these issues; however, the salient point is that the way around many of these issues is 
to re-specify the model, not as a log-normal regression but as a Poisson or negative binomial 
regression model. 

The flows that spatial interaction models deal with (such as migration or commuting) relate to non-
negative integer counts (you cannot have negative people moving between places and you cannot 
normally – if they are alive! – have fractions of people moving either). As such, the probability of 
migrating or commuting is not described by a continuous (normal) probability distribution (the 
distribution which underpins the error distribution in standard linear regression models), but a 
discrete probability distribution such as the Poisson distribution or the negative binomial distribution 
(of which the Poisson distribution is a special case). 

There is a family of generalised linear models, but in the analysis of migration and other population 
flows Poisson and Negative Binomial Regression models have been used most frequently (Abel 2010; 
Congdon 1993, 1988; Crymble, Dennett and Hitchcock 2017; Flowerdew 2010, 1982; Flowerdew and 
Aitkin 1982; Shen 2017, 2015; Willekens 1999). The differences between the two are technical, but 
some, including Congdon (1993), argue that Negative Binomial models should be used over Poisson 
due to a statistical phenomenon known as overdispersal. For ease of explanation here we will 
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continue with the Poisson model, but be aware that in practice a Negative Binomial model may be 
better. 

In the migration modelling literature others, such as Raymer (Raymer 2007; Raymer, Abel and Smith 
2007; Raymer and Giulietti 2010; Rogers and Raymer 1998), have used what are described as log-
linear models. These are exactly the same as Poisson models with the distinction that Poisson models 
will usually contain both continuous and categorical predictor variables, whereas log-linear models 
will only contain categorical predictors. For a two-dimensional population flow matrix between 
origins and destinations, these categorical predictors would generally be the origin and destination 
zones – in effect we would have a two-dimensional contingency table. The analysis of contingency 
tables is well established in statistics and as such has its own lexicon. In log-linear modelling 
terminology, these origin and destination zones would be described as the ‘main’ or ‘fixed’ effects 
and are equivalent to the ‘constraints’ that will be introduced later on in this paper. 

This discussion of Poisson, log-linear and spatial interaction models is included here for the purpose 
of highlighting that in the migration modelling literature it can be particularly confusing when 
reading papers by different authors who all use very different terminology and modelling paradigms. 
Iterative Proportional Fitting (IPF) is another term that may appear when researching papers in this 
area (Lomax and Norman 2016). The salient point is that all of the models are essentially doing the 
same thing, but the papers in which they are outlined ascribe to different definitional conventions.  

How is the Poisson distribution different to a normal distribution? Aside from them describing 
different frequency/probability distributions, they behave differently for different sets of 
observations. Below are two histograms (Figure 3). The first is a random variable with a normal 
distribution, with a mean of 75 and a standard deviation of 5; the second is a histogram of Poisson 
distributed variable with the same mean (Poisson distributions have only one parameter – the 
mean). 

You will notice that they look broadly similar. However, with a Poisson distributed variable, when the 
mean (𝜆𝜆 - lambda) changes, so does the shape of the frequency distribution. As the mean gets 
smaller, and this is often the case with flow data where small flows are very likely, the distribution 
starts to look a lot more like a skewed or log-normal continuous distribution. The key point is that it 
is not a continuous distribution but a discrete (Poisson) distribution. Figure 4 plots a frequency 
distribution for a discrete variable with a small mean. The shape of the histogram is very similar to a 
positively skewed continuous distribution. 

For any system of population flows between a matrix of origins and destinations, the flows will have 
a mean value of 𝜆𝜆𝑖𝑖𝑖𝑖 which will normally be quite low and will dictate the distribution. Plotting the 
frequency distribution of migration flows between our Australian GCCSAs (excluding within-area 
flows – Figure 5), reveals a histogram which looks like a skewed normal or, more accurately, a 
Poisson distribution with a small mean. 
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(a) Random variable with a normal distribution 

 
(b) Random variable with a Poisson distribution 

Figure 3: Normal and Poisson distributions 

 

 
Figure 4: Poisson distribution with a small mean 
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Figure 5: Frequency distribution of migration flows (excluding intra-zonal flows) between GCCSAs 

 

In all of this discussion about frequency/probability distributions, it can be easy to lose track of the 
purpose for understanding all of this. Perhaps the easiest way to remind ourselves of the purpose is 
in understanding the basics of what a regression model is trying to do. At its most simple a regression 
model is nothing more than a line of best fit drawn through a cloud of observations. If we think of a 
spatial interaction model as partially representing the relationship between volume of flow and cost 
of interaction (distance), then we would expect to see a straight line between flow volumes and 
distance. Figure 2a shows that when plotting raw flows against distance, the relationship cannot be 
represented by a straight line. However, if both the flows and the distance are logged, as in equation 
5, a plot similar to the one below in Figure 6 is produced. It might not be a clear straight-line 
relationship, but there is certainly a suggestion that the blue regression line does represent the 
underlying relationship between migration flows and distance.  

 

Figure 6: Relationship between log(distance) and log(migration flows) between GCCSAs 
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Now the discussion in the previous session indicates that the 𝑦𝑦 variable in our model is not logged as 
in the graph above. However, it can still be modelled using something like the blue line if we assume 
a Poisson distribution.  

Equation 5 can now be re-specified as a Poisson regression model. Instead of the dependent variable 
being ln𝑇𝑇𝑖𝑖𝑖𝑖, it is now the mean of the Poisson distribution 𝜆𝜆𝑖𝑖𝑖𝑖 and the model becomes: 

𝜆𝜆𝑖𝑖𝑖𝑖 = exp(𝑘𝑘 + 𝜇𝜇ln𝑉𝑉𝑖𝑖 + 𝛼𝛼ln𝑊𝑊𝑗𝑗 − 𝛽𝛽ln𝑑𝑑𝑖𝑖𝑖𝑖)       (6) 

What this model says is 𝜆𝜆𝑖𝑖𝑖𝑖 (the dependent variable – the estimate of 𝑇𝑇𝑖𝑖𝑖𝑖) is logarithmically linked to 
(or modelled by) a linear combination of the logged independent variables in the model. Using 
equation 6, a Poisson regression model can be fitted to produce estimates of 𝑘𝑘, 𝜇𝜇, 𝛼𝛼 and 𝛽𝛽 – or put 
another way, we can use the regression model to calibrate our parameters. 

It is very straight forward to run a Poisson regression model in R using the glm() (Generalised 
Linear Models) function. The code to do this can be found in the accompanying guide. Delving into 
the depths of the glm() function documentation will reveal that the parameters are calibrated 
though an ‘iteratively re-weighted least squares’ algorithm. This essentially fits lots of lines similar to 
that in Figure 6 to the data until it finds the best one. It continually adjusts the parameters to 
minimise the error between the observed and expected (blue line) values using some goodness-of-fit 
measure, not dissimilar to an R2 or RMSE. Running the model will produce some output similar to 
that shown below in Box 1. 

Call: 
glm(formula = Flow ~ log(vi1_origpop) + log(wj3_destmedinc) +  
    log(dist), family = poisson(link = "log"), data = mdatasub,  
    na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-177.78   -54.49   -24.50     9.21   470.11   
 
Coefficients: 
                      Estimate Std. Error z value            Pr(>|z|)     
(Intercept)          7.1953790  0.0248852  289.14 <0.0000000000000002 *** 
log(vi1_origpop)     0.5903363  0.0009232  639.42 <0.0000000000000002 *** 
log(wj3_destmedinc) -0.1671417  0.0033663  -49.65 <0.0000000000000002 *** 
log(dist)           -0.8119316  0.0010157 -799.41 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 2750417  on 209  degrees of freedom 
Residual deviance: 1503573  on 206  degrees of freedom 
AIC: 1505580 
 
Number of Fisher Scoring iterations: 5 

Box 1: Model output including calibrate parameters from R glm() implementation of equation 6 

 

https://rpubs.com/adam_dennett/376877
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Box 1 contains various pieces of information. The ‘Call’ section at the top is the code used to run the 
model in R. Then, under the ‘Coefficients’ section, are the values for the four calibrated parameters 
in the model. In our original model, we estimated the four parameters as follows: 

𝑘𝑘 = 3.28, 𝜇𝜇 = 1, 𝛼𝛼 = 1 and 𝛽𝛽 = −2 

After fitting the Poisson model, the values for the parameters can be found in the ‘Estimate’ column. 
They change to: 

𝑘𝑘 = 7.195, 𝜇𝜇 = 0.59, 𝛼𝛼 = −0.17 and 𝛽𝛽 = −0.81 

The regression model also produces some other useful pieces of output. The p-values in the last 
column reveal that all variables have a highly (***) statistically significant influence on migration 
flows, with the z-scores (standardised coefficients) revealing that distance has the most (negative) 
influence on the model followed by origin population, with destination income only a small influence 
on the flows, and a counterintuitive one at that, with increases in destination income resulting in 
decreases in migration flows. 

In the accompanying practical guide, it is shown how these parameter values can be inserted directly 
back into equation 6 to produce a new set of estimates similar to those in Table 1. The R2 value for 
this new matrix improves to 0.32, meaning that by simply calibrating the model parameters on 
observed data, we are able to explain around 14 per cent more of the variation in the migration 
flows in our system.  

2.2. Constrained spatial interaction models 

Returning to Wilson’s (1971) seminal paper, he introduces a full family of spatial interaction models 
of which the unconstrained model is just the start. Of course, since then, there have been all manner 
of incremental advances and alternatives (Dennett and Wilson 2013; Fotheringham 1983; Pooler 
1994; Stillwell 1978). However, in this section we will concentrate on Wilson’s original family – the 
Production (origin) Constrained Model; the Attraction (destination) Constrained Model; and the 
Doubly Constrained Model – but show how the Poisson regression framework can be used as with 
the unconstrained model. 

Recalling the unconstrained/total constrained model above (Table 1), while the total flows in the 
estimates equalled the total observed flows, none of the estimates sum to the observed in-migration 
and out-migration totals (the margins of the matrix). Wilson’s real contribution to the field was in 
noticing that this unconstrained model was sub-optimal as it did not make use of all of the available 
information in the system being studied.  

Where there is a full flow matrix to calibrate parameters, then it is possible to incorporate the row 
(origin) totals, column (destination) totals or both origin and destination totals to constrain flow 
estimates to these known values. There are various reasons for wanting to do this in different flow 
modelling contexts, for example: 

a) If the researcher is interested in flows of money into businesses or customers into shops, then 
they might have information on the amount of disposable income and shopping habits of the 
people living in different areas, perhaps from loyalty card data. This is known information about 
origins and so it would be logical to constrain the estimates from a spatial interaction model to 

https://rpubs.com/adam_dennett/376877
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this known information. Other information about the attractiveness of shops and businesses 
(store size, variety/specialism of goods etc.) can then be used to estimate how much 
money/customers a new store opening in the area might make/attract or, if a new out-of-town 
shopping centre opens, how much it might affect the business of shops in the town centre. This 
is what is known in the literature as the ‘retail model’ and is perhaps the most common example 
of a Production (origin) Constrained Spatial Interaction Model. 

b) Other researchers might be interested in understanding the impact of a large new employer in 
an area on the flows of traffic in the vicinity or on the demand for new worker accommodation 
nearby. A good example of where this might be the case is with large new infrastructure 
developments like airports. For example, before the go-ahead for the new third runway at 
Heathrow Airport in London, England was given, one option being considered was a new runway 
in the Thames Estuary. If a new airport was built here, what would the potential impact on 
transport flows be in the area and where might workers commute from? This sort of scenario 
could be tested with an Attraction (destination) Constrained Spatial Interaction Model where the 
number of new jobs in a destination is known (as well as jobs in the surrounding area). The 
model could also be used to estimate where the workers will be drawn from and their likely 
travel-to-work patterns. These models are known as Land Use Transport Interaction (LUTI) 
models and have a well-established history in urban planning.  

c) Other researchers might be interested in understanding the changing patterns of commuting or 
migration over time. Data from a census provides an accurate snap-shot of migrating and 
commuting patterns, but only periodically. In these full data matrices, information about both 
the numbers of commuters/migrants leaving origins and arriving at destinations and the 
interactions between them is known. Constraining model estimates to this known information at 
origin and destination allows various things to be examined, including: 

i. the ways that the patterns of commuting/migration differ from the model predictions – 
where might there be more migrant/commuter flows than expected? 

ii. how the model parameters vary over time – for example, how does distance/cost of 
travel affect flows over time? Are people prepared to travel further or less distance than 
before? 

2.2.2. The Production Constrained Model 

Recall the unconstrained model from equation 2. A Production Constrained Model constrains 
estimates to known information about the origins and so replaces the terms 𝑘𝑘 and 𝑉𝑉𝑖𝑖

𝜇𝜇 to produce the 
following model: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝑊𝑊𝑗𝑗
𝛼𝛼𝑑𝑑𝑖𝑖𝑖𝑖−𝛽𝛽          (7) 

where: 

𝑂𝑂𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗            (8) 

and: 

𝐴𝐴𝑖𝑖 = 1
∑ 𝑊𝑊𝑗𝑗

𝛼𝛼
𝑗𝑗 𝑑𝑑𝑖𝑖𝑖𝑖

−𝛽𝛽
           (9) 
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In the Production Constrained Model, 𝑂𝑂𝑖𝑖 does not have a parameter as it is a known constraint. 𝐴𝐴𝑖𝑖  is 
known as a balancing factor and is a vector of values which relate to each origin 𝑖𝑖 which do the 
equivalent job as 𝑘𝑘 in the unconstrained/total constrained model but ensure that flow estimates 
from each origin sum to the know totals 𝑂𝑂𝑖𝑖 rather than just the overall total. 

Now at this point the 𝑂𝑂𝑖𝑖 and 𝐴𝐴𝑖𝑖  values could be calculated by hand for the sample system and the 
parameter values for the rest of the model could be guessed. However, the Poisson regression 
framework allows this to be avoided.  

The Production Constrained Model can be re-specified as a Poisson regression model in exactly the 
same way as before. Taking the logs of the right-hand side of the equation, and assuming that these 
are logarithmically linked to the Poisson distributed mean (𝜆𝜆𝑖𝑖𝑖𝑖) of the 𝑇𝑇𝑖𝑖𝑖𝑖 variable, means that 
equation 7 becomes: 

𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇𝑖𝑖 + 𝛼𝛼ln𝑊𝑊𝑗𝑗 − 𝛽𝛽ln𝑑𝑑𝑖𝑖𝑖𝑖)        (10) 

In equation 10 𝜇𝜇𝑖𝑖  is the equivalent of the vector of balancing factors 𝐴𝐴𝑖𝑖. but in regression/log-linear 
modelling terminology these can also be described as either ‘dummy variables’ or ‘fixed effects’. In 
practical terms what this means is that in the regression model 𝜇𝜇𝑖𝑖  is modelled as a categorical 
predictor3, and therefore in the Poisson regression model the numeric values of 𝑂𝑂𝑖𝑖 are ignored and 
replaced by a categorical identifier for the origin. In terms of the origin/destination migration matrix 
shown in Table 3, rather than the flow of 204,828 migrants leaving Sydney (row 1) being used as a 
predictor, simply the code ‘1GSYD’ is used as a dummy variable.  

In the accompanying practical guide the code for running this model using the glm() function in R 
is provided. Running the model will produce the following output (Box 2). There are elements of the 
model output that should be familiar from the unconstrained model: 

• The α parameter related to the destination attractiveness (in this case, median weekly 
income): -0.27 is not much different from the unconstrained model. The z-score indicates 
that this is not a very important variable in explaining variation in migration behaviours in 
Australia.  

• The β distance decay parameter: -1.23 has decreased meaning after controlling for origin 
characteristics, distance becomes more of a deterrent.  

Where the model output differs is that the intercept (𝑘𝑘) parameter has been replaced by the vector 
of dummy variables/constraints 𝜇𝜇𝑖𝑖  relating to each origin. We can see from the standard outputs 
from the model that all of the explanatory variables are statistically significant (***); the z-scores 
indicate that the rest of Queensland and Greater Sydney have greater emissivity properties than all 
other zones in the model, with factors associated with these zones more important in explaining 
migration patterns in Australia than distance, which while still important, is less important than a 
number of origin zones.  

In the accompanying practical guide there is code that allows you to create a new set of estimates by 
both plugging these values back into a multiplicative model or by using a much easier built-in 
function in glm(). Using either method will produce the set of flows shown in Table 4.   

                                                           
3 https://en.wikipedia.org/wiki/Categorical_variable  

https://en.wikipedia.org/wiki/Categorical_variable
https://en.wikipedia.org/wiki/Categorical_variable
https://rpubs.com/adam_dennett/376877
https://rpubs.com/adam_dennett/376877
https://en.wikipedia.org/wiki/Categorical_variable
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Call: 
glm(formula = Flow ~ Orig_code + log(wj3_destmedinc) + log(dist) -  
    1, family = poisson(link = "log"), data = mdatasub, na.action = 
na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-225.71   -54.10   -15.94    20.45   374.27   
 
Coefficients: 
                     Estimate Std. Error z value            Pr(>|z|)     
Orig_code1GSYD      19.541851   0.023767  822.22 <0.0000000000000002 *** 
Orig_code1RNSW      19.425497   0.023913  812.35 <0.0000000000000002 *** 
Orig_code2GMEL      18.875763   0.023243  812.12 <0.0000000000000002 *** 
Orig_code2RVIC      18.335242   0.022996  797.31 <0.0000000000000002 *** 
Orig_code3GBRI      19.856564   0.024063  825.20 <0.0000000000000002 *** 
Orig_code3RQLD      20.094898   0.024300  826.94 <0.0000000000000002 *** 
Orig_code4GADE      18.747938   0.023966  782.28 <0.0000000000000002 *** 
Orig_code4RSAU      18.324029   0.024407  750.75 <0.0000000000000002 *** 
Orig_code5GPER      20.010551   0.024631  812.43 <0.0000000000000002 *** 
Orig_code5RWAU      19.392751   0.024611  787.96 <0.0000000000000002 *** 
Orig_code6GHOB      16.802016   0.024282  691.97 <0.0000000000000002 *** 
Orig_code6RTAS      17.013981   0.023587  721.33 <0.0000000000000002 *** 
Orig_code7GDAR      18.607483   0.025012  743.93 <0.0000000000000002 *** 
Orig_code7RNTE      17.798856   0.025704  692.45 <0.0000000000000002 *** 
Orig_code8ACTE      17.796693   0.023895  744.79 <0.0000000000000002 *** 
log(wj3_destmedinc) -0.272640   0.003383  -80.59 <0.0000000000000002 *** 
log(dist)           -1.227679   0.001400 -876.71 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 23087017  on 210  degrees of freedom 
Residual deviance:  1207394  on 193  degrees of freedom 
AIC: 1209427 
 
Number of Fisher Scoring iterations: 6 

Box 2: Outputs from the production constrained model specified in equation 10 

Comparing Table 4 with Table 3, it is very easy to see the origin constraints working. The sum across 
all destinations for each origin in the estimated matrix (Table 4) is exactly the same (give or take the 
odd rounding error) as the same sum across the observed matrix (Table 3): ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗 = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑗𝑗 = 𝑂𝑂𝑖𝑖. But 
clearly the same is not true when you sum across all origins for each destination: ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 ≠ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 ≠
𝐷𝐷𝑗𝑗. Calculating the R2 value, the fit of the model has improved quite considerably: from around 0.32 
in the unconstrained model to around 0.43 in this model. The RMSE has also dropped quite 
noticeably. 

One of the advantages of singly constrained models is that once initial parameters have been 
calibrated on existing data, then changes can be made to destination variables (for origin/production 
constrained models) or origin variables (for destination/attraction constrained models) and the 
impact on flow estimates explored. For example, what would happen if average wages suddenly 
increased in an area? How would this impact migration flows to and from that area? The 
accompanying worked example demonstrates how this can be explored. 

https://rpubs.com/adam_dennett/376877
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Table 4: Modelled flows from a Production Constrained Spatial Interaction Model with parameters calibrated by a Poisson regression model 

Origin / 
Destination 

1GSYD 

 

1RNSW 

 

2GMEL 

 

2RVIC 

 

3GBRI 

 

3RQLD 

 

4GADE 

 

4RSAU 

 

5GPER 

 

5RWAU 

 

6GHOB 

 

6RTAS 

 

7GDAR 

 

7RNTE 

 

8ACTE 

 

(all) 

 

1GSYD 0 36794 19752 18516 15905 8076 10591 7248 2504 2860 11192 11454 2519 4105 53308 204824 

1RNSW 29163 0 18862 20620 13173 9548 13715 9329 2549 3032 8667 9100 2619 4543 26439 171359 

2GMEL 8501 10243 0 70950 3742 3243 10367 4685 1584 1705 11552 14147 1268 2109 14474 158570 

2RVIC 4924 6918 43838 0 2263 2050 7667 3139 961 1053 5309 6221 779 1320 7935 94377 

3GBRI 21684 22658 11852 11604 0 16555 9653 8526 3069 3722 8200 8144 3886 6207 14647 150407 

3RQLD 12057 17984 11248 11511 18128 0 12989 16188 4832 6746 7639 7664 8515 16335 10539 162375 

4GADE 4109 6714 9345 11186 2747 3376 0 9731 1895 2167 4506 4879 1403 2558 4912 69528 

4RSAU 1922 3122 2887 3130 1659 2876 6653 0 1438 2028 1780 1840 1264 2736 2017 35352 

5GPER 3930 5048 5777 5673 3533 5080 7666 8507 0 17470 4952 4882 4812 6954 4064 88348 

5RWAU 2445 3269 3387 3386 2333 3862 4775 6535 9514 0 2696 2679 4515 7196 2476 59068 

6GHOB 619 605 1485 1105 333 283 643 371 175 175 0 9840 129 201 807 16771 

6RTAS 827 829 2374 1689 431 371 908 501 225 226 12842 0 166 261 1121 22771 

7GDAR 1030 1350 1204 1198 1165 2331 1478 1948 1253 2159 950 937 0 6000 981 23984 

7RNTE 644 899 769 779 714 1716 1034 1618 695 1321 569 568 2303 0 618 14247 

8ACTE 9622 6021 6070 5386 1939 1274 2285 1373 467 523 2631 2802 433 712 0 41538 

(all) 101477 122454 138850 166733 68065 60641 90424 79699 31161 45187 83485 85157 34611 61237 144338 1313519 
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2.2.3. The Attraction Constrained Model 

The Attraction Constrained Model is virtually the same as the Production Constrained Model: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑗𝑗𝐵𝐵𝑗𝑗𝑉𝑉𝑖𝑖
𝜇𝜇𝑑𝑑𝑖𝑖𝑖𝑖−𝛽𝛽          (11) 

where: 

𝐷𝐷𝑗𝑗 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖            (12) 

and: 

𝐵𝐵𝑗𝑗 = 1
∑ 𝑉𝑉𝑖𝑖

𝜇𝜇
𝑖𝑖 𝑑𝑑𝑖𝑖𝑖𝑖

−𝛽𝛽
           (13) 

The Poisson model equation for the Attraction Constrained Model would be: 

𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇ln𝑉𝑉𝑖𝑖 + 𝛼𝛼𝑖𝑖 − 𝛽𝛽ln𝑑𝑑𝑖𝑖𝑖𝑖)         (14) 

Its implementation in R is virtually identical to the Production Constrained Model. See the 
accompanying walk-through exercise for full details of how to run these models with the sample 
dataset. Because of the similarities to the Production Constrained Model, the Attraction Constrained 
Model will not be dwelt upon here.  

2.2.3. The Doubly Constrained Model 

The final model in the Wilson (1971) family is the Doubly Constrained Model. Let’s begin with the 
formula: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝑑𝑑𝑖𝑖𝑖𝑖−𝛽𝛽          (15) 

where: 

𝑂𝑂𝑖𝑖 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗            (16) 

𝐷𝐷𝑗𝑗 = ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖            (17) 

and: 

𝐴𝐴𝑖𝑖 = 1
∑ 𝐵𝐵𝑗𝑗𝑗𝑗 𝐷𝐷𝑗𝑗𝑑𝑑𝑖𝑖𝑖𝑖

−𝛽𝛽
           (19) 

𝐵𝐵𝑗𝑗 = 1
∑ 𝐴𝐴𝑖𝑖𝑖𝑖 𝑂𝑂𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖

−𝛽𝛽
           (20) 

Astute readers will have noticed that the calculation of 𝐴𝐴𝑖𝑖  relies on knowing 𝐵𝐵𝑗𝑗 and the calculation of 
𝐵𝐵𝑗𝑗 relies on knowing 𝐴𝐴𝑖𝑖  – something of a conundrum to which the solution is elegantly described by 
Senior (1979), who sketches out a very useful algorithm for iteratively arriving at values for 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑗𝑗 
by setting each to equal 1 initially and then continuing to calculate each in turn until the difference 
between successive iterations of the 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑗𝑗 values is small enough not to matter. In the 
accompanying practical guide an algorithm to achieve this using this multiplicative framework is 
provided. However, as you will have probably guessed by now, the Poisson regression framework 
allows for the Doubly Constrained Model to be fitted very easily.  

https://rpubs.com/adam_dennett/376877
https://rpubs.com/adam_dennett/376877
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The Poisson Doubly Constrained Model takes the form: 

𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜇𝜇𝑖𝑖 + 𝛼𝛼𝑖𝑖 − 𝛽𝛽ln𝑑𝑑𝑖𝑖𝑖𝑖)         (21) 

When run in R and applied to the Australian migration data we have been using, this model will 
produce the outputs shown in Box 3. The coefficients in this version of the Doubly Constrained 
Model will look a little different. This is explained in the accompanying walk-through exercise and is 
because an intercept has been added along with reference categories for the categorical variables, as 
two factor levels are used in this model. Importantly the model estimates are not altered in any way 
by this. The reference level means that the origin and destination coefficients need to be interpreted 
in relation to a reference category. In this example, the first zone in the system is used (Sydney), with 
the direction and size of the coefficients referring to whether another origin or destination zone has 
a greater or lesser positive or negative effect on migration flows in the system when compared to 
Sydney. The estimates produced by the Doubly Constrained Model are the most accurate in the 
Wilson family of models (in this example, an R2 value of 0.87). However, there is a loss of flexibility 
when compared to the singly constrained models, as only alternatives to origin/destination 
interaction explanatory variables such as historic flows or something other than distance can be 
experimented with. The double constraints mean that origin- and destination-specific explanatory 
variables cannot be used.  

2.2.4. Further experimentation 

All of the way through this paper there has been an assumption that the distance decay parameter 
follows a negative power law. This does not have to be the case and empirically might not necessarily 
be so. In his original paper, Wilson (1971) generalised the distance decay parameter to: 

𝑓𝑓(𝑑𝑑𝑖𝑖𝑖𝑖)            (22) 

where 𝑓𝑓 represents some function of distance describing the rate at which the flow interactions 
change as distance increases. Lots of people have written about this, including Taylor (1983) and 
more recently Lovelace (2015) in a transport context. The inverse power law that has been used to 
this point is one possible function of distance; the other common one that is used is the negative 
exponential function: 

𝑒𝑒𝑒𝑒𝑒𝑒(−𝛽𝛽𝑑𝑑𝑖𝑖𝑖𝑖)           (23) 

The exact effect that the different function has on the rate of distance decay will depend on the 
value of 𝛽𝛽 as well as the function. However, Figure 7 shows how the different functions and values of 
𝛽𝛽 can combine to affect distance decay.  
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Call: 
glm(formula = Flow ~ Orig_code + Dest_code + log(dist), family = 
poisson(link = "log"),  
    data = mdatasub, na.action = na.exclude) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-93.018  -26.703    0.021   19.046  184.179   
 
Coefficients: 
                Estimate Std. Error  z value            Pr(>|z|)     
(Intercept)    20.208178   0.011308 1786.999 <0.0000000000000002 *** 
Orig_code1RNSW -0.122417   0.003463  -35.353 <0.0000000000000002 *** 
Orig_code2GMEL -0.455872   0.003741 -121.852 <0.0000000000000002 *** 
Orig_code2RVIC -1.434386   0.004511 -317.969 <0.0000000000000002 *** 
Orig_code3GBRI  0.241303   0.003597   67.091 <0.0000000000000002 *** 
Orig_code3RQLD  0.772753   0.003599  214.700 <0.0000000000000002 *** 
Orig_code4GADE -0.674261   0.004527 -148.936 <0.0000000000000002 *** 
Orig_code4RSAU -1.248974   0.005889 -212.091 <0.0000000000000002 *** 
Orig_code5GPER  0.742687   0.004668  159.118 <0.0000000000000002 *** 
Orig_code5RWAU -0.317806   0.005131  -61.943 <0.0000000000000002 *** 
Orig_code6GHOB -2.270736   0.008576 -264.767 <0.0000000000000002 *** 
Orig_code6RTAS -1.988784   0.007477 -265.981 <0.0000000000000002 *** 
Orig_code7GDAR -0.797620   0.007089 -112.513 <0.0000000000000002 *** 
Orig_code7RNTE -1.893522   0.008806 -215.022 <0.0000000000000002 *** 
Orig_code8ACTE -1.921309   0.005511 -348.631 <0.0000000000000002 *** 
Dest_code1RNSW  0.389478   0.003899   99.894 <0.0000000000000002 *** 
Dest_code2GMEL -0.007616   0.004244   -1.794              0.0727 .   
Dest_code2RVIC -0.781258   0.004654 -167.854 <0.0000000000000002 *** 
Dest_code3GBRI  0.795909   0.004037  197.178 <0.0000000000000002 *** 
Dest_code3RQLD  1.516186   0.003918  386.955 <0.0000000000000002 *** 
Dest_code4GADE -0.331189   0.005232  -63.304 <0.0000000000000002 *** 
Dest_code4RSAU -0.627202   0.006032 -103.980 <0.0000000000000002 *** 
Dest_code5GPER  1.390114   0.005022  276.811 <0.0000000000000002 *** 
Dest_code5RWAU  0.367314   0.005362   68.509 <0.0000000000000002 *** 
Dest_code6GHOB -1.685934   0.008478 -198.859 <0.0000000000000002 *** 
Dest_code6RTAS -1.454819   0.007612 -191.112 <0.0000000000000002 *** 
Dest_code7GDAR -0.308516   0.007716  -39.986 <0.0000000000000002 *** 
Dest_code7RNTE -1.462020   0.009743 -150.060 <0.0000000000000002 *** 
Dest_code8ACTE -1.506283   0.005709 -263.866 <0.0000000000000002 *** 
log(dist)      -1.589102   0.001685 -942.842 <0.0000000000000002 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 2750417  on 209  degrees of freedom 
Residual deviance:  335759  on 180  degrees of freedom 
AIC: 337818 
 
Number of Fisher Scoring iterations: 6 

Box 3: Outputs from the doubly constrained model specified in equation 21 
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Figure 7: Alternative distance decay curves for alternative values of 𝜷𝜷 and different functions 

In this particular example with these parameters and 𝛽𝛽 values, the inverse power function has a far 
more rapid distance decay effect than the negative exponential function. In real life, what this means 
is that if the observed interactions drop off very rapidly with distance, then they might be more likely 
to follow an inverse power law. This might be the case when looking at trips to the local convenience 
store by walking, for example. On the other hand, if the effect of distance is less severe – for 
example, migration across the country for a new job – then the negative exponential function with a 
small value of 𝛽𝛽 function might be more appropriate. There is no hard and fast rule as to which 
function to pick. It will just come down to which fits the data better. Following Oshan’s (2016) 
example, the accompanying walk-through exercise will allow you to explore the effect on model fits 
and predictions of fitting different distance decay functions to the distance variable.  

The final point to note is that the regression modelling framework means that adding additional 
explanatory variables into the spatial interaction model is very easy compared with the multiplicative 
framework. In the accompanying walk-through guide, in addition to variables relating to median 
income, there are variables on unemployment rate and the percentage of households living in rented 
accommodation. Experiment with these variables for origins and destinations to see whether the 
singly constrained models can be improved in any way.  

3. Conclusions  

Spatial Interaction Modelling is one of the key tools in the population geographer’s tool kit, but for 
too long has been inaccessible to researchers new to the field or without computer programming 
expertise. Recent advances in more forgiving software environments like R and Python now mean 
that with much less (although admittedly still some) effort, this powerful modelling tool can be 
accessed by more people. This guide has been designed to introduce researchers to spatial 
interaction modelling in, hopefully, an accessible way through exemplification of two modelling 
frameworks – the Wilson-esque multiplicative framework and the Poisson Regression additive 
modelling framework – and an accompanying walk-through guide.  

https://rpubs.com/adam_dennett/376877
http://rpubs.com/adam_dennett/376877
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