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Can the most “classical-like” of all quantum states, namely the Schrödinger coherent state of a harmonic
oscillator, exhibit nonclassical behavior? We find that for an oscillating object initially in a coherent state,
merely by observing at various instants which spatial region the object is in, the Leggett-Garg inequality
(LGI) can be violated through a genuine negative result measurement, thereby repudiating the everyday
notion of macrorealism. This violation thus reveals an unnoticed nonclassicality of the very state which
epitomizes classicality within the quantum description. It is found that for any given mass and oscillator
frequency, a significant quantum violation of LGI can be obtained by suitably choosing the initial peak
momentum of the coherent state wave packet. It thus opens up potentially the simplest way (without
coupling with any ancillary quantum system or using nonlinearity) for testing whether various recently
engineered and sought after macroscopic oscillators, such as feedback cooled thermal trapped nanocrystals
of ∼106–109 amu mass, are indeed bona fide nonclassical objects.
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Introduction.—Ever since the advent of quantum
mechanics (QM), a perennial intriguing question has been
how to reconcile classical features of the macroworld with
the description of the microworld provided by QM, in other
words, to what extent the principles of QM can be
extrapolated to the macrodomain. In this context, the
coherent states of a linear harmonic oscillator (LHO)
introduced by Schrödinger [1] have a unique significance
in embodying classical behavior within the quantum
description: the peak of such a coherent state nonspreading
wave packet (satisfying the position-momentum minimum
uncertainty product) follows classical dynamics of an
isolated LHO, while such states also emerge as the stable
states of a LHO under decoherence [2]. On the other hand,
central to the classical world view is the notion of
“realism,” viz. that at any instant, irrespective of measure-
ment, a system is in a definite one of the available states for
which all its observable properties have definite values. It
should therefore be of interest to investigate whether the
Schrödinger coherent state gives rise to a testable incom-
patibility with this notion of realism even in the macro-
scopic domain, thereby displaying nonclassicality of a
system that has a well-defined classical description and
is prepared to be in a most classical-like of all quantum
states.
For the study of the aforementioned possibility, we

invoke the Leggett-Garg inequality (LGI) [3–5] that can
be regarded as a temporal analogue of Bell’s inequality (BI)
in terms of the time-separated correlation functions corre-
sponding to successive measurement outcomes for a

system. Apart from realism, an additional ingredient for
obtaining LGI, replacing the locality condition underlying
BI, is the notion of noninvasive measurability (NIM),
which means assuming that it is possible to determine
which of the states the system is in, without affecting the
system’s subsequent behavior. Thus, if the condition of
NIM is satisfied by adopting a suitable measurement
procedure (this is explained later), the testing of LGI
would enable a scrutiny of the notion of realism itself in
the form defined above. The finding of this paper is that
even a macroscopic LHO in a coherent state can be made to
repudiate the everyday notion of realism by violating
the LGI based on suitable spatial measurements that satisfy
NIM.
While the original motivation that led to LGI was for

testing the possible limits of QM in the macroscopic
regime, e.g., in terms of suitable experiments involving
the rf-SQUID device [6], in recent years, a primary aim has
been the certification of nonclassical behavior [7,8] in
varied discrete variable microscopic quantum systems:
solid-state qubits [9,10], nuclear spins [11], photons
[12], electrons [13], oscillating kaons and neutrinos [14],
qubit-oscillator hybrid systems [15], and atoms hopping in
a lattice [16]. However, none of these systems have a well-
defined classical description. There has not yet been any
study for a system that possesses both quantum and
classical descriptions, such as an isolated LHO which is
uncoupled to qubits or nonlinearities.
In order to apply LGI to a LHO, we consider a spatial

dichotomization of the harmonic well: coarse-grained

PHYSICAL REVIEW LETTERS 120, 210402 (2018)

0031-9007=18=120(21)=210402(6) 210402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.210402&domain=pdf&date_stamp=2018-05-25
https://doi.org/10.1103/PhysRevLett.120.210402
https://doi.org/10.1103/PhysRevLett.120.210402
https://doi.org/10.1103/PhysRevLett.120.210402
https://doi.org/10.1103/PhysRevLett.120.210402


measurement of a type that would determine which one of
the halves of the well the oscillating particle is in at any
given instant, without providing any further information
about the position of the particle, as shown in Fig. 1. This
type of measurement is similar to the kind of spatial
measurement used in a recent realization of the violation
of LGI in a multiple coupled well structure [16] and
likewise, satisfies NIM. Although a number of experiments
have tested LGI, only two to date [10,16] have claimed to
have satisfied the condition of NIM by implementing what
is called the negative result measurement (NRM) procedure
(to be explained later in the context of our example), and
thereby can claim to have scrutinized the notion of realism.
However, whether such violation of realism in the macro-
scopic domain is possible for a system with a classical
description is yet to be investigated.
LGI and the notion of NRM.—In the one-dimensional

LHO example considered in this paper, the temporal
evolution involves oscillation between two states, one of
which corresponds to the particle being found within, say,
the negative half of the region (x ¼ 0 to x → −∞) which
we call state 1, while state 2 pertains to the particle being
found within the positive half (x ¼ 0 to x → þ∞). LetQðtÞ
be an observable quantity such that at any instant, it takes a
value þ1ð−1Þ depending on whether the system is in the
state 1(2). Now, consider a set of runs starting from the
identical initial state such that on the first subset Q is
measured at times t1 and t2, on the second at t2 and t3, on
the third at t3 and t4, and on the fourth at t1 and t4 (here

t1 < t2 < t3 < t4). From such measurements, one can
obtain the temporal correlations Cij ≡ hQðtiÞQðtjÞi.
Then, adapting in this context, the standard argument
leading to a Bell-type inequality with the measurement
times ti playing the role of apparatus settings, the following
consequence of the assumptions of realism and NIM is
invoked. For sets of runs corresponding to the same initial
state, an individual QðtiÞ is taken to have the same definite
value (þ1 or −1), irrespective of the pair QðtiÞQðtjÞ in
which it occurs; i.e., the value of QðtiÞ in any pair does
not depend on whether any prior measurement has
been made on the system. Consequently, the combination
½Qðt1ÞQðt2Þ þQðt2ÞQðt3Þ þQðt3ÞQðt4Þ −Qðt1ÞQðt4Þ� is
always þ2 or −2. If all these product terms are replaced by
their respective averages over the entire ensemble, assum-
ing the principle of induction [5], the following LGI is
obtained:

C≡ C12 þ C23 þ C34 − C14 ≤ 2: ð1Þ

The above is, thus, a testable inequality imposing realist
constraints on the time-separated correlation functions.
Now, to explain how the notion of NIM can be satisfied
by invoking NRM, let us consider the case in which
Q is measured at t1, followed by at t2, corresponding to
the determination of the correlation function C12 ¼
Pþþðt1; t2Þ − Pþ−ðt1; t2Þ þ P−−ðt1; t2Þ − P−þðt1; t2Þ
where Pþþðt1; t2Þ is the joint probability of finding the
particle in the state 1 at both the instants t1 and t2, similarly,
for Pþ−ðt1; t2Þ; P−−ðt1; t2Þ; P−þðt1; t2Þ. Note that the der-
ivation of LGI requires essentially the first measurement of
each such pair to satisfy NIM. This can be ensured through
the NRM procedure by arranging the measuring setup
so that if, say, the probe is triggered, one can infer
Qðt1Þ ¼ þ1, while if it is not, Qðt1Þ ¼ −1; thereby the
probe being untriggered provides information about the
value ofQ ¼ −1, although there is no interaction occurring
between the probe and the measured particle; NIM is, thus,
satisfied. Now, if the results of those runs are only used for
which Qðt1Þ ¼ −1, followed by the measurement of Q at
t2, discarding the results of the rest runs, these results can
be used for determining the joint probabilities P−þðt1; t2Þ
and P−−ðt1; t2Þ. Similarly, for determining the other two
joint probabilities Pþ−ðt1; t2Þ and Pþþðt1; t2Þ, the meas-
uring setup can be inverted. In this way, one can determine
all the two-time correlation functions occurring in the LGI
by ensuring NIM (using NRM) for the first measurement of
any pair. Thus the experiment takes place as independent
sets of runs on identically prepared systems with two
measurements during each run whose outcomes are corre-
lated. Each of these set of runs is chosen at random from the
entire ensemble and if such a set is sufficiently large, by
invoking the fair-sampling assumption, the measurement
results obtained for each set can be taken as the fair
representative of the entire ensemble, thereby enabling use

FIG. 1. Setup for testing the violation of macrorealism for an
object in a coherent state in a harmonic well. A probe beam,
shown as applied to the greyed circular region, illuminates one
half of a harmonic well. If no light is scattered using this probe
beam, it is concluded that the object must be on the unilluminated
half of the well. These outcomes constitute an ideal negative
result measurement as the probe has not interacted with the object
corresponding to these outcomes. Two-time correlation functions
computed using such outcomes then provide a loophole-free
violation of macrorealism.
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of the joint probabilities thus measured for determining
each correlation function occurring in Eq. (1). The violation
of LGI thus obtained would then repudiate the notion
of realism in the sense defined earlier because, as Leggett
[3–5] has argued, the realist statement that the particle has a
definite one of the available states at any instant is hard to
justify if the state’s evolution can be affected by the NRM
procedure. It is, therefore, necessary to invoke the NRM
procedure in order to ensure NIM for achieving loophole-
free verification of LGI that can be regarded as a clear test
of realism. Next, we proceed to discuss the specifics of our
example.
LGI using the LHO Schrödinger coherent state.—Let us

consider the following initial Gaussian wave function
peaked at x ¼ 0,

ψðx; t ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ffiffiffiffiffiffi

2π
p

σ0

s

exp

�

−
x2

4σ20
þ ip0x

ℏ

�

; ð2Þ

with the initial momentum expectation value p0, and the
width σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ℏ=ð2mωÞ�p

where ω is the angular frequency
of oscillation. It is well known that under the LHO
potential, the above ψðx; 0Þ evolves into ψðx; tÞ (whose
detailed expression is given in Supplemental Material [17]),
whence the probability density is given by

jψðx; tÞj2 ¼
ffiffiffiffiffiffiffi

mω

ℏπ

r

exp

�

−mω
ðx − p0

mω sinωtÞ2
ℏ

�

; ð3Þ

which oscillates without spreading or changing shape,
while its peak follows classical motion, and ΔxΔp ¼
ℏ=2 at all instants. Such a wave packet is known as the
Schrödinger coherent state—a much-discussed remarkable
example of a quasiclassical state in quantum mechanics. In
order to apply LGI in this context, we consider coarse-
grained measurement of a type that determines at any
instant whether the oscillating particle is in the region
between x → −∞ and x ¼ 0 (yielding the measurement
outcome þ1) or is in the region between x ¼ 0 and
x → þ∞ (yielding the measurement outcome −1). Such
a measurement can be represented by the localization
operator Ô ¼ R

0
−∞ jxihxjdx − R∞

0 jxihxjdx, which has two
eigenstates

R

0
−∞hxjψijxidx and

R

∞
0 hxjψijxidx correspond-

ing to the eigenvalues þ1, −1, respectively. We later
comment on the feasibility of measuring an operator close
to Ô. Now, note that the probability of obtaining the
outcome þ1ð−1Þ for such a measurement at the instant,
say, t1, is given by

P�ðt1Þ ¼
1

2

�

1 ∓ erf

�hxðt1Þi
ffiffiffi

2
p jσtj

��

; ð4Þ

where the error function erfðt1Þ ¼ ð2= ffiffiffi

π
p Þ R t1

0 expð−z2Þdz
and σt1 ¼ ðiℏ sinωt1 þ 2mωσ20 cosωt1Þ=2mωσ0.

Next, given the result of the above measurement at the
instant t1 to beþ1ð−1Þ, obtained using the NRM procedure
(its suggested empirical implementation in this case is
discussed later), the subsequent time evolution of the
postmeasurement state is subjected to a measurement at
an instant, say, t2. For this latter measurement, the condi-
tional probability of obtaining the outcome þ1, contingent
upon the outcomeþ1ð−1Þ obtained for the measurement at
the earlier instant t1, is

P�=þðt1; t2Þ ¼
Z

0

−∞
jψPM

� ðx; t2Þj2dx; ð5Þ

while such a conditional probability for the outcome −1 at
the instant t2 is of the form

P�=−ðt1; t2Þ ¼
Z

∞

0

jψPM
� ðx; t2Þj2dx; ð6Þ

where ψPM
� ðx; t2Þ is the time-evolved form of the post-

measurement state that has evolved up to the instant t2
(whose expression is given in Supplemental Material [17]).
Results.—Using Eqs. (4)–(6), for suitable choices of the

relevant parameters, one can compute the QM values of the
joint probabilities Pþþðt1; t2Þ, Pþ−ðt1; t2Þ, P−−ðt1; t2Þ,
P−þðt1; t2Þ and evaluate the temporal correlation function
C12. Similarly, the other temporal correlation functions
C23,C34,C14 occurring in LGI of the form (1) can be
calculated. In our setup, the key parameters are m, p0,
and ω. Suitably choosing the values of m, p0, ω while
taking the temporal intervals to be the same, i.e.,
t2 − t1 ¼ t3 − t2 ¼ t4 − t3 ¼ Δt, and by numerically inte-
grating the relevant integrals occurring in Eqs. (4)–(6), the
key results of the quantitative studies are presented in
Table I. Here it needs to be mentioned that for given values
of m, p0, and ω, by varying the choices of the time interval
Δt and the first instant of measurement t1, it is found that
the maximum value of C on the lhs of the inequality (1) is
attained whenΔt is chosen within the neighborhood of T=4
or 3T=4, and t1 is slightly larger than 0 or is within the

TABLE I. Taking the angular frequency of oscillation
ω ¼ 2 × 106 Hz, for various values of mass m, different choices
of the initial peak momentum p0 (initial peak velocity v0) of the
coherent state wave packet are indicated for which the respective
QM values of the lhs (C) of the LGI inequality (1) are computed.
The corresponding values of the constant width (σ0) of the
coherent state wave packet and the classical amplitude (ACl) of
oscillation are given.

mðamuÞ σ0ðmÞ p0ðkgm=sÞ v0ðm=sÞ AClðmÞ C

103 3.9 × 10−9 3.3 × 10−23 2 × 10 10−5 2.58
106 1.2 × 10−10 3.3 × 10−21 2.0 10−6 2.5
1010 1.2 × 10−12 3.3 × 10−21 2 × 10−4 10−10 2.7
1020 1.2 × 10−17 3.3 × 10−15 2 × 10−8 10−14 2.65
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neighborhood of T=2, where T is the time period of
oscillation. Note that for computing all the results we have
chosen the same values of Δt¼2.4×10−6 s (close to 3T=4)
and t1 ¼ 1.5 × 10−6 s (close to T=2) with ω ¼ 2 × 106 Hz
(this value of ω is close to the value 100 kHz—1 MHz for
optically levitated oscillating masses). We now proceed to
summarize the results.
(a) It is found that while for the initial peak momentum

p0 ¼ 0, LGI is always satisfied, by appropriately choosing
p0, it is possible to obtain a significant amount of QM
violation of LGI for any m corresponding to a given ω, and
this violation can be maximized over Δt and t1 (as per the
choices ofΔt and t1 mentioned above). This is illustrated in
Table I where the maximum obtained values of C are given
for different sets of values of the relevant parameters while
the m is varied from 10 to 1020 amu. Note that appreciable
QM violations of LGI ðC > 2Þ are found by suitable
choices of p0 given in Table I for, say, masses up to
1010 amu, such that the respective values of the classical
amplitude of oscillation ACl ¼ p0=mω range from 10−4 to
10−10 m. If the mass is further increased to, say, 1020 amu,
it is found that in order to obtain significant QM violation
of LGI, p0 needs to be chosen such that the corresponding
ACl becomes much smaller, and the required value of v0
(initial peak velocity of the wave packet) for showing the
QM violation of LGI also becomes increasingly smaller.
Thus, although theoretically one can obtain the QM
violation of LGI for any given m and ω by suitably
choosing p0, actual testability of this violation becomes
gradually impracticable for sufficiently large mass as the
requirement to controllably impart exactly the appropriate
momentum becomes more stringent.
(b) If by keeping the parameters p0, ω fixed, one

increases the mass m, the QM violation of LGI is found
to gradually diminish, and eventually for sufficiently large
mass, LGI is satisfied; i.e., C < 2.
(c) For given values of m and ω, if p0 is increased, the

corresponding ACl is also increased, the QM value of C is
found to be gradually decreasing, and eventually C < 2 for
appropriately large p0.
The results discussed above, therefore, serve to highlight

the efficacy of LGI in not only revealing an earlier
unnoticed nonclassicality of the oscillator coherent state,
but also in exploring the extent to which such a nonclassical
feature persists for masses larger than the typical micro-
sopic masses.
Experimental tests of nonclassicality of macro-objects.—

In recent years, an active experimental field has opened up
in the trapping and cooling nanoscale objects of masses
106 amu and above, much larger than the mass of any
object for which nonclassicality has been demonstrated to
date. However, all the schemes suggested in this area for
ascertaining whether such objects are nonclassical involve
the initial preparation of non-Gaussian states such as
Schrödinger cat states or require coupling the object to

ancillary quantum systems [15,18,19]. Can our scheme
open up a much simpler way of testing their nonclassi-
cality? Remarkable technical developments reported in
some very recent experiments [20–23] have now opened
up the way for the implementation of our scheme. For
preparation of the initial state, the center of the trap can be
suddenly displaced (as demonstrated in ion traps [24]) so
that the wave packet is centered at ACl ∼ μm. Then, after a
quarter oscillation, at x ¼ 0, the peak of the wave packet
can gain the appropriate momentum p0 required for the
LGI violation. As regards the required dichotomic meas-
urement, the mirror-based levitation procedure reported in
Refs. [20,21] should enable us to focus two optical beams
of different frequency simultaneously in the trapping
region. One will create the harmonic well and the other,
slightly off-axis, and thereby traversing only one side of the
well, will scatter off the levitated object and measure its
position. It is this measuring beam that is shown in Fig. 1 as
applied to the greyed circular region. When no scattered
light from the object is detected, we conclude that the
object is on the half where there is no beam to scatter light
from and only those outcomes are retained—this is a
loophole-free implementation of NRM as no probe inter-
acts with the object for the retained outcomes. We consider
two illustrative cases: (i) a nano-object of 106 amu trapped
by laser fields that generate a harmonic well of ω ∼MHz
[25] (from Table I, it is seen that in this case, for example,
C ¼ 2.5 with ACl ∼ μm) and (ii) an ionized nano-object of
109 amu trapped in an ion trap of ω ∼ 100 Hz [22,26] (for
this case we have estimated that C ¼ 2.7 for ACl ∼ μm).
Damping and decoherence in both the cases are negligible
in the experimental time scale of 1=ω so that the time
evolution is well approximated by the unitary dynamics as
used in our treatment [18,27]. A primary criterion is to be
able to differentiate reasonably sharply the presence of
mass on the left or on the right half of the harmonic well in
implementing the measurement of the operator Ô in a
detection window of duration ≪ 1=ω, so that the measure-
ments can essentially be regarded as instantaneous. This
detection time window corresponds to the duration for
which the measurement beam, illuminating one half of the
well, is on—such control of pulse durations has been
demonstrated in recent squeezing experiments [20]. The
positions can be detected with extremely high spatial
resolution by means of photodiodes using the interfero-
metric (phase sensitive) detection of light scattered from the
objects [20,23,28]. Within the detection time window of
duration ≪1=ω, this technique enables the detection of
positions of the aforementioned masses in their correspond-
ing traps with sub-Angstrom resolutions (much sharper
than the spread σ0). Note that it has been shown [29] that
the QM violation of LGI is retained for a significant
unsharpness of the observable measured, where the idea
of unsharpness is considered in conformity with the
definition of unsharp measurement given in terms of
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positive-operator valued measure (POVM) elements com-
prising projection operators mixed with white noise [30].
On the other hand, the numerical results presented in
Supplemental Material note III [17] serve the purpose of
showing that the QM violation of LGI is extermely robust
to the left and right spatial halves not being precisely
distinguished; in particular, the QM violation of LGI
persists as long as the blurring of the line separating the
left-right spatial half measurements is less than the classical
amplitude of oscillation ACl. Moreover, as is clear from the
numerical results presented in Supplemental Material note
IV [17], the predicted LGI violation persists even if the
initial state is a mixed thermal state of the center of mass of
the trapped object with lower than 104 phonons (i.e., as hot
as 0.1 K for a MHz trap), which is quite standard to prepare
by cooling [20,22,23,31–36]. Strikingly, the better the fine
control one can acquire on trap displacements or momenta,
the larger the mass for which LGI violation can be
observed, thus offering an avenue for extending the test
of the limits of quantum behavior to the macroscopic
domain. In practice, larger m requires lower ω in order to
have σ0 larger than the feasible precision of position
measurements, and this in turn extends the time scale of
the experiment. When this would exceed the typical
decoherence time (1–10 ms for levitated objects), our
calculations would need to be modified to include the
decoherence effects.
Concluding remarks.—In a nutshell, our work provides a

means for testing the everyday notion of macrorealism for
the first time in a loophole-free way for a macroscopic
system having a classical analogue. This provides an
alternative means for probing themacrolimit of the quantum
world that differs from current methods in that it does not
require prior preparation of any highly nonclassical state.
We have shown how a system such as the quantumharmonic
oscillator, which has a well-defined classical analogue, can
be made to violate LGI through suitable spatial measure-
ments even when the initial state is the most classical of all
states—namely, the Schrödinger coherent state. Moreover,
the violation is quite robust—it can be observed for mixed
thermal states as well as for significant blurring of the
distinction between left-right measurements of the spatial
observable. Further, since the LGI violation for an isolated
oscillator is in itself yet unexplored, this should also beworth
testing even in the microdomain with trapped ions, using
electromagnetic fields in cavity and circuit QED.
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