
Modelling correlated binary variables: an

application to lower urinary tract symptoms

William Barcella∗ and Maria De Iorio

Department of Statistical Science, University College London, UK

James Malone-Lee

Department of Medicine, University College London, UK

February 24, 2018

Abstract

We present a semi-parametric model for time-evolving vectors of correlated bi-

nary variables. We introduce continuous latent variables which are discretised to

obtain the sampling model. We assume the distribution of the latent variables to

be an infinite mixture of distributions with weights that vary across some covariate

space and with mean and covariance matrix being component-specific. This distri-

bution includes also an autoregressive term that captures the time evolution of the

latent variables and therefore of the binary observations. The proposed method is

motivated by the study of lower urinary tract symptoms observed at subsequent

attendance visits. In particular, we evaluate the temporal dependence among the

symptoms controlling for the presence of urinary tract infection. The results show

that the most recurrent symptoms are stress incontinence and voiding, which are

also the most related with presence of pyuria, the best biomarker of infections.

Furthermore, we observe that the correlation among symptoms changes over time.

The pair of symptoms which appear to be the most correlated are pain and voiding.

Keywords: Bayesian nonparametric regression; Dependent generalised Dirichlet process;

Correlated binary variables; Dynamic Probit model; Multivariate Probit model.
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1 Introduction

Lower urinary tract symptoms (LUTS) represent a group of signs which appear as the

consequence of a number of possible diseases: from neurological problems, to anxiety

and urinary tract infections (UTI). These symptoms are commonly classified into four

categories: urgency symptoms, sudden urge to urinate; stress incontinence symptoms,

episodes of incontinence caused by stressing the bladder; voiding symptoms, problems

in voiding the bladder; and pain symptoms, pain while urinating or when the bladder

is full. LUTS affect a large proportion of the population, especially elderly people, and

they contribute significantly to the costs of the health systems. In fact, the diseases that

lead to the presence of LUTS can often become chronic, as such requiring expensive and

time consuming treatments. A relevant example is represented by UTI.

In this work we investigate the temporal evolution of LUTS as recorded at subsequent

clinic attendance visits. We do so accounting for covariates and for correlations among

symptoms. In particular, we are interested in controlling for the presence of pyuria in

the urine, which is the best biomarker for UTI, in order to obtain robust estimates of

the parameters which govern the temporal evolution of the symptoms. For this purpose

we analyse a dataset recording the presence of at least one symptom in each of the

four categories of LUTS via binary indicators in 1015 patients at 4 different attendance

visits. Data have been collected at the Lower Urinary Tract Service Clinic (Whittington

Hospital, London, UK). Furthermore, at each attendance visit indicators for the presence

of pyuria have been also recorded together with the age of the patients.

From a statistical point of view, the task above can be framed in terms of modelling

correlated binary variables, where the correlation is among symptoms. The problem of

modelling correlated binary variables is frequent in applications and a number of different

solutions have been proposed in the literature. One of the most common strategies

involves the introduction of continuous latent variables, which are related to the binary

variables via thresholds. The success of this class of models is given by the possibility

of including complex structures in the latent variables whose distributions are chosen to

facilitate posterior inference. Examples are represented by the Probit and Logit models

(Albert and Chib, 1993), for which multivariate extension are available (Ashford and

Sowden, 1970; Chib and Greenberg, 1998; O’brien and Dunson, 2004; Chen, 2004). In

this chapter we focus on the Probit model, which involves Gaussian latent variables

discretised at 0: positive and negative values of the latent variables correspond to 1 and

0 at binary level, respectively.

When covariates are available, they can be accommodated in the mean of the latent

variables using simple linear regression, which facilitates the interpretation of covariate

effect. This simple structure can be generalised also when the latent variable is multivari-

ate, i.e. when the objective is to model vectors of binary variables. This can be achieved
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by imposing a seemingly unrelated regressions (SUR, Zellner, 1962) structure on the latent

variables. SUR involves a set of univariate regression models with distinct parameters,

but correlated error structure. Once again, time dependence can be incorporated in the

model through autoregressive components within the latent variable distributions. An

example for univariate binary time series is the work by Giardina et al. (2011).

Recently, assumptions on the latent variables distribution have been relaxed by intro-

ducing nonparametric distributions (see Jara et al., 2007). These often involve Dirichlet

process mixture (DPM) models (Lo, 1984). DPM model consists in convoluting a kernel

density indexed by some parameter with a Dirichlet process (DP; Ferguson, 1973, An-

toniak, 1974; Sethuraman, 1991) distributed discrete random measure. DPM of latent

distributions have been employed to model vectors of binary variables (Jara et al., 2007)

and univariate binary time series (Di Lucca et al., 2013). In this setting covariates can

be included as fixed regression effects (as shown in Jara et al., 2007) in all mixture com-

ponents favouring the interpretability of the regression coefficients or within the weights

of the mixture components modelling jointly the latent variables and the covariates (see

DeYoreo et al., 2015). Other related solutions can be found for multicategorical dis-

crete outcomes, e.g. Kottas et al. (2005) and DeYoreo and Kottas (2017a). A relevant

contribution for this work is in DeYoreo and Kottas (2017b), where a model for time

series of univariate ordinal categorical variables is proposed including covariate informa-

tion through an appropriate model and capturing the time evolution via a time-evolving

version of the dependent Dirichlet process (DDP, MacEachern, 1999 and 2000).

In this work we propose a model for LUTS which employs latent variables, whose

distributions are assumed to be semi-parametric. Risk factors for LUTS and a lagged

latent components are included in the latent variables distribution via a SUR model,

where the different levels of SUR are indexed to the different symptoms. Intercepts

of the regressions and the covariance matrix included in the joint distribution of the

error terms are assumed to be component-specific in an infinite mixture model where

the mixture weights vary (and are correlated) across different pyuria states and for first

visits and follow-ups. This produces the effect of a non-linear regression of the pyuria and

visit indicators on the mean and covariance matrix of the latent variables. In this way

we are able to achieve more robust estimates for the other linear regression coefficients

included in the model, especially for the autoregressive coefficients, in a fashion similar

to what has been described by Papageorgiou et al. (2015). The results of the data

analysis highlight the different behaviours of the symptoms, both in terms of correlations

with other symptoms and in terms of recurrence of symptoms. A relevant connection

has been found between the presence of pyuria and the probability of observing voiding

symptoms, which in turn is highly correlated with stress incontinence and pain symptoms.

In addition, correlations between pairs of symptoms do not seem constant for all patients

and in some case they are affected by the presence of pyuria.
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The rest of the work is organised as follows. In Section 2 we present the detail of the

proposed model, while in Section 3 we describe a Markov chain Monte Carlo (MCMC)

algorithm for sampling from the posterior distributions of the parameters. The results of

the application on the LUTS data are shown in Section 4. We conclude with a discussion

in Section 5.

2 A semi-parametric model for binary variables

We consider a study involving N patients, for which a D−dimensional binary vector is

recorded at T subsequent time points. We denote the collection of all binary records with

Y , an array having dimensions N ×D × T . Let yi,d,t and yi,t denote a single entry and

a row of binary variables of Y corresponding to patient i at time t, respectively.

2.1 Dynamic multivariate Probit model

We model Y introducing an array of correlated continuous latent variables, which we

denote with Z, having entries zi,d,t ∈ R and such that:

yi,d,t = 1 if and only if zi,d,t ≥ 0.

Given the condition above, we can write the likelihood of Y as

Pr(Y | Θ) =

∫ ∏
{yi,d,t=1}

I[0,+∞)(zi,d,t)
∏

{yi,d,t=0}

I(−∞,0)(zi,d,t)F (dZ | Θ),

where IA(z) is an indicator function taking value equal to 1 if z is contained in A and

F (Z | Θ) is the joint distribution of Z, parameterised by Θ.

We recall that T represents the time dimension of Y and we assume for the density

of F (Z | Θ), which we denote by f(Z | Θ), the following factorisation

f(Z | Θ) =
N∏
i=1

{
f(zi,1 | Θi,1)

T∏
t=2

f(zi,t | zi,t−1,Θi,t)

}
, (2.1)

where zi,t = (zi,1,t, . . . , zi,D,t), i.e. the row of Z corresponding to the i−th patient at

time t. The latter equation imposes a Markov structure to the distribution of the latent

variables, which directly determines the distribution of Y .

A computationally convenient assumption is to assume f(·) to be a multivariate Nor-

mal distribution. This has a number of implications. First, for any given time t, the

probability of observing yi,t can be calculated as an integral under a multivariate Normal

distribution, as in multivariate Probit models. Secondly, the Markov structure assumed

in (2.1) can be easily accommodated within the model using appropriate autoregressive
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terms. Furthermore, covariates can be easily included in the model. Finally, the Normal

assumption simplifies the calculations, allowing the use of standard algorithms, such as

the one proposed by Albert and Chib (1993), for posterior inference.

LetX denote an array of dimensionN×P×T , containing records of P time-dependent

covariates. We write xi,t to indicate the row of X corresponding to the i−th patient at

time t. Recalling (2.1), we specify the following distribution for the latent variable at

time 1:

f(zi,1 | Θi,1 = (αi,1,Λ,Σi,1)) = ND(zi,1 | αi,1 + Λx′i,1,Σi,1), (2.2)

where ND(·) is the D−dimensional Normal distribution, αi,1 is a vector of intercepts of

length D and Λ is a D × P matrix of regression coefficients. Similarly, we specify the

following transition density for t = 2, . . . , T :

f(zi,t | zi,t−1,Θi,t = (αi,t,Λ,Γ,Σi,t)) = ND(zi,t | αi,t + Λx′i,t + Γz′i,t−1,Σi,t), (2.3)

where Γ is a D ×D matrix containing the autoregressive coefficients.

The model described above is connected to the SUR model in that at a time point,

given all parameters and lagged latent components, the distributions above imply D

distinct regression on the means of the latent variables. The latter are linked together

via the error distributions governed by the covariance matrix Σi,t.

Λ and Γ are assumed to be constant across time. This simplifies the interpretability of

the coefficients. In particular, simple Bayesian hypothesis testing on temporal dependence

among the binary variables can be performed and this is an important requirement for

our motivating application. However, extensions including temporal dependent versions

of the matrices of coefficients Λt and Γt can be easily specified.

2.2 Nonparametric prior model

The quantitiesαi,t and Σi,t characterise the baseline probability of observing yi,t. We want

to employ a prior distribution which is flexible enough to capture possible heterogeneity

across patients at different time point.

Let us introduce an additional array of covariates, U . This is an N × R × T array,

where ui,t is a row of U which encodes the information about the i−th patient at time

t, such as treatment arm, risk group and other common indicators which may evolve

overtime. This is not uncommon in biostatistics when clinicians classify patients into

different classes of risk for developing a specific disease based on clinical history and

individual characteristics.

We include via a flexible model the information contained in U in the baseline prob-

ability of yi,t. Using an approach similar to the one employed in mixed-effect modelling,
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we assume each group defined by U to have a specific random prior distribution as follows

(αi,t,Σi,t) | Gui,t ∼ Gui,t ,

where Gui,t is a discrete distribution of the form

Gui,t =
∞∑
h=1

wh,ui,tδα∗h,Σ∗h , (2.4)

where, for each ui,t,
∑

hwh,ui,t = 1, and δa denotes a unit point mass at a. The use of

such random prior distribution implies that the latent variable density can be written as

f(zi,t | zi,t−1,Λ,Γ, Gui,t) =

∫
f(zi,t | zi,t−1,Λ,Γ,αi,t,Σi,t)dGui,t(αi,t,Σi,t)

=
∞∑
h=1

wh,ui,tND(zi,t | α∗h + Λx′i,t + Γz′i,t−1,Σ
∗
h),

which is an infinite location-scale mixture of multivariate Normal distributions, having

weights which vary according to the components in ui,t.

Specifying a prior of Gui,t is equivalent to finding suitable prior distributions for the

collection of the weights, wh,ui,t , and for the locations, α∗h and Σ∗h.

Starting from the weights, we need a stochastic process prior indexed at various

levels of ui,t, whose realisations are distributions over an infinite dimensional simplex.

Furthermore, it is desirable to borrow strength across the different groups of observations

implied by U . Barcella et al. (2016) introduce the dependent generalised Dirichlet process

(DGDP), a process over collections of distributions which can be considered an extension

of the DDP. We opt for using the same idea of the DGDP also here, but we will mention

alternative solutions in Section 5. DGDP assumes a particular stick-breaking process

prior for the weights of (2.4) where w1,ui,t = v1,ui,t and

wh,ui,t = vh,ui,t
∏
l<h

(1− vl,ui,t), for h = 2, 3, . . .

and

v1,ui,t , v2,ui,t , . . . | µ, φ ∼ Beta(vh,ui,t | φµ(ui,t), φ(1− µ(ui,t))),

for all possible values of ui,t. In the latter equation, φ is a positive parameter and

µ(·) is random mean function which maps into the interval (0, 1). Here we assume that

µ(ui,t) = logit−1(µui,t), where µ is a vector of unknown real parameters, but alternative

mean functions can be included. The almost sure discreteness of DGDP realisations

imposes a clustering structure of the attendance visits: observations sharing the same

value of α∗h and Σ∗h can be interpreted as a cluster. Compared to DDP (which will
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in principle produce an equivalent clustering of attendance visits), DGDP allows extra

flexibility in the distribution of the clusters especially in terms of number and size of

clusters, due to the richer parameterisation of the DGDP compared to the traditional

DDP.

Independently from the generation of the weights, the locations, which are shared

among the Gui,t for different values of ui,t, are generated as follows. We first assume

α∗h ∼ ND(mD, σ
2
αID), for h = 1, 2, . . .

while Σ∗h requires likelihood identifiability conditions imposed by the thresholding of the

latent variables. In order to avoid over-restrictive constraints on the covariance matrix,

we follow the works by Jara et al. (2007) and Pourahmadi (1999) where the conditional

variances are constrained. We write Σ∗−1
h = L∗

′

h IDL
∗
h, where L∗h is a lower triangular

matrix, with ones on the diagonal and unconstrained values on the non-zero entries. Let

ν∗h be the vector of free parameters in L∗h, such that ν∗h has Dν = D(D−1)/2 components,

we assume

ν∗h ∼ NDν (mDν , σ
2
νIDν ), for h = 1, 2, . . .

In this work we assume shared locations for all ui,t following the argument discussed in

Hatjispyros et al. (2015), who show that when constructing dependent random measures

this construction with varying weights can lead to random measures with arbitrary degree

of proximity. However, a possible extension can include covariate dependent locations, in

this case requiring the use of suitable stochastic process priors indexed by the covariates.

2.3 Prior distribution specification

The model described above requires the specification of prior (and hyperprior) distribu-

tions for the remaining unknown parameters. Let λd,p and γd,d′ denote a single entry in

matrix Λ and Γ, respectively. We assume for d and d′ = 1, . . . , D and p = 1, . . . , P

λd,p
iid∼ N(λ | mλ, σ

2
λ)

γd,d′
iid∼ N(γ | mγ, σ

2
γ).

The hyperprior distributions for the values of µ and φ are set as follows

µ ∼ NR(µ | mµ, σ
2
µIR)

φ ∼ Gamma(φ | aφ, bφ),

where the latter is a Gamma distribution with expectation aφ/bφ. The choice of these

prior distributions is mainly motivated by computational reasons.
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3 Posterior inference

Posterior inference can be performed using MCMC methods. For the model described

in Section 2, samples from posterior distribution of the parameters can be approximated

using a Metropolis-within-Gibbs algorithm, using a finite approximation of the nonpara-

metric prior distribution in (2.4) up to H atoms. This strategy is usually referred to as

blocked Gibbs sampler (Ishwaran and James, 2001). A summary of the main steps of the

algorithm can be found in Appendix A. Different alternatives have been discussed in the

literature to determine a value of H when the random distribution follows a DP or more

general processes. See, for example, Ohlssen et al. (2007) and Ishwaran and Zarepour

(2000). A simple strategy that can be adapted to the case of DGDP consists in checking

that the expectation and variance of the weight wH,u are adequate for the values of µ and

φ explored by the MCMC. Truncating the stick-breaking prior to a finite number of com-

ponents H reduces model complexities and simplifies the construction of the algorithm

for posterior inference, also allowing the use of softwares for Bayesian inference such as

JAGS. An alternative approach for posterior sampling which does not involve an approx-

imation of the nonparametric prior is based on the slice sampling algorithm described in

Kalli et al. (2011) and Walker (2007).

4 Application: Lower Urinary Tract Symptoms

In this section we present background information, exploratory analysis and results of the

application of the model described in the previous sections to the study of the evolution

of LUTS.

4.1 Dataset

The dataset employed in the analysis contains information about 1015 female patients

affected by LUTS, who have attended at four subsequent visits the Lower Urinary Tract

Service Clinic (Whittington Hospital, London, UK). At each attendance visit the follow-

ing information is collected: the date of the visit, the age of the patient, the presence

of urgency symptoms (binary), presence of voiding symptoms (binary), presence of pain

symptoms (binary), presence of stress incontinence symptoms (binary), and the count of

white blood cells (WBC) in a sample of urine.

The most frequently observed symptom is urgency, which affects 72.32% of the pa-

tients at the first attendance visit and in 61.77% at follow-up visits. The least frequent

symptom is stress incontinence, which is observed in 37.14% of first visits and in 34.93%

of follow-ups. Pain and voiding symptoms are observed in 54.68% and 40.00% of the first

visits and 44.83% and 34.93% of the follow-ups, respectively.
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WBC counts are used to assess the presence of pyuria, which is considered the best

biomarker for UTI. While evidence has been collected that relates a WBC count larger

than or equal to one to the presence of infection, the threshold of ten WBC in a urine

sample is the sensitivity of common dipstick tests used to assess the presence of pyuria.

Following these thresholds we generate two binary indicators from WBC and we refer to

them as mild pyuria in the case of 1 ≤ WBC ≤ 9, and to severe pyuria for WBC ≥ 10.

These indicators can be interpreted in terms of severity of the infection: in fact, large

WBC counts indicate a high degree of inflammation, and thus may lead to complications.

Mild pyuria has been observed in 17.86% of the attendance visits, while severe pyuria has

been recorded in 18.74% of the cases. Considering the first attendance visits exclusively,

these become 18.62% and 21.97%, respectively.

The average number of days between attendance visits is approximately 91 days (stan-

dard deviation equal to 143.22), where the shortest period is observed between the first

two visits with an average of 85 days (standard deviation equal to 147.58) and the longest

one is recorded between the last two visits with an average of 95 days (standard deviation

equal to 135.07). Finally, the age of the patients at first attendance visits is on average

54, with a sample standard deviation of 17.27.

In terms of treatment regimes, all patients have been treated with a combination of

antimuscarinic and bladder retaining after the first attendance visits until the fourth one.

Furthermore, patients diagnosed with mild and severe pyuria have been treated with

antibiotics.

4.2 Data pre-processing and choice of hyperparameters

We denote the array containing information on the presence of the symptoms as Y ,

which has dimension 1015× 4× 4 (corresponding to the number of patients, the number

of symptoms and the number of attendance visits, respectively), and contains binary

observations. The symptoms recorded in a row yi,t of Y are abbreviated as U, P, S, and

V, standing for urgency, pain, stress incontinence and voiding symptoms, respectively.

Consequently, in the following paragraphs the indexes d and d′ take value in {U,P, S,V}.
We denote with X the array containing information about the age of the patients

and the time in days from the first attendance visits for all subsequent visits. In this

application we only consider the age at the first attendance visits instead of the age when

each attendance visit takes place. Therefore, X has dimension 1015×2×4 corresponding

to the number of patients, the number of covariates and the number of attendance visits.

Across attendance visits, the first covariate (Age) remains constant, while the second one

(Days) has entries equal to zero for the first attendance visits. For each attendance visit,

the two covariates have been centred and rescaled to have mean and variance equal to 0

and 1, respectively.
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We include as covariates in U the indicators for mild and severe pyuria as well as

an indicator for first attendance visits and intercept terms. U is then an array with

dimension 1015 × 4 × 4. Consequently, considering the row vectors ui,t of U and all

possible values they can take, we can identify six groups of attendance visits which are

all observed in the data set.

Both X and U are used as covariates, however their effect on the latent variables

are different. In particular, the effect of U is non-linear via the intercepts α and the

covariance matrix Σ. On the other hand, the entries of X, similarly to the autoregressive

terms, affect the mean of latent variables linearly. The decision of which covariates to

assign to U and to X is driven by the specific application. In particular, U captures the

natural clustering of the observations based on the levels of the UTI and first attendance

visits and follow-ups.

We set the following hyperparameter values: mα = 0D (where 0a denotes a vector

with a components all equal to zero); mν = 0Dν ; mλ = mγ = mµ = 0; σ2
α = σ2

ν =

σ2
λ = σ2

γ = 100; σ2
µ = 1; aφ = bφ = 1. We use the algorithm described in Section 3 for

posterior inference. This requires the specification of a truncation level H for the DGDP

and we set it equal to 20. We initialise the algorithm drawing random values from the

prior distribution of each parameter and we run the algorithm for 50 000 iterations, after

a burning period of 10 000, and we save every tenth sample. Convergence of MCMC has

been assessed using trace plots and autocorrelation.

4.3 Results

Before discussing the results of the application, we notice that the marginal probability

of observing a certain symptom is equal to

Pr(yi,d,t = 1 | αi,d,t,λd,γd, σi,d,t, zi,t−1) = Φ

(
αi,d,t + λdx

′
i,t + γdz

′
i,t−1

σi,d,t

)
,

where λd and γd are rows of Λ and Γ, respectively. This shows that αi,d,t controls the

baseline probability of the symptom d at visit t, together with σi,d,t, the square root of

the d–th diagonal component of Σi,t. When the covariates xi,t and zi,t have components

equal to zero, the sign of αi,d,t determines if the probability of observing the symptoms is

larger than 0.5, which happens when the parameter is positive. The dependence among

symptoms can be evaluated computing the conditional distributions of components of the

latent vector, i.e. p(zi,d,t | zi,−d,t, . . .), where zi,−d,t is obtained removing zi,d,t from zi,d,t.

We discuss posterior inference for the parameters of the proposed model distinguishing

between the individual effects, αi,t and Σi,t, and the shared effects (i.e. shared among all

patients), Λ and Γ.
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Individual effects

We first consider the posterior distribution of the vector αi,t. The discrete prior distri-

bution induces ties among the values αi,t of different patients. This implies that we can

cluster patients at time t based on the unique values α∗h and Σ∗h, i.e. two patients sharing

the same value of α∗h and Σ∗h belong to the same cluster. This is a crucial aspect of the

proposed modelling strategy both in terms of the ability to capture the heterogeneity in

the data and the interpretability of the results as the clustering of the observations can

provide further insight into the phenomenon under investigation.
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Figure 1: Posterior density of αi,d,t, d = {U,P, S,V}, when t is the first attendance visit,
for different pyuria levels.

Figure 1 shows the posterior distribution of the intercepts for the patients at first

attendance visits for different levels of pyuria. The difference between the posterior

densities for the patients without pyuria and those with mild or severe pyuria is evident.
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On the other hand, densities corresponding to patients showing mild and severe pyuria

are similar. In particular, the presence of pyuria (either mild or severe) leads to higher

posterior mean for the latent variables associated with pain and voiding symptoms. The

opposite happens for urgency and stress incontinence symptoms, for which the presence

of pyuria reduces the mean of the associated latent variables. The largest effect of pyuria

is observed for voiding symptoms.
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Figure 2: Posterior density of αi,d,t with d = {U,P, S,V} and t = 2, 3, 4, for different
pyuria levels.

For all attendance visits after the first one the posterior densities are presented in

Figure 2. Recall that patients after the first attendance visit have all been treated for

LUTS. In this case the posterior expectations of αi,d,t’s are all negative for the cases with

no and mild pyuria which show almost identical posterior distributions. Differently, the

presence of severe pyuria strongly affects the posterior densities of αi,d,t: positive marginal
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posterior expectations are observed for urgency, pain and voiding symptoms.

We now discuss the results for the parameters representing the the entries of the

covariance matrix, i.e. Σi,t, which are also subject-specific. Our focus on the posterior

distribution of the correlations’ coefficients, which can be easily computed from Σi,t.

Similarly to αi,t, the posterior distributions of these coefficients are indexed by the values

of ui,t. Given that we are including in our model four symptoms, we have six pairwise

correlations, which vary across different pyuria levels and between first attendance visits

and follow-ups. The posterior density estimates for each correlation are reported in Figure

3 which shows the correlations estimated at first attendance visits and follow-up visits

for different pyuria levels. On the y-axis, we show correlations between different pairs of

symptoms, which are denoted by their initial letter.
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Figure 3: Posterior densities of the correlation between different pairs of latent variables
(corresponding to different symptoms) at first attendance visit (top panels) and at follow-
up visits (bottom panels), for no pyuria (left panels), mild pyuria (central panels) and
severe pyuria (right panels).

The covariate that has the strongest impact on these posterior distributions is the

indicator of first attendance visit. This can be seen by comparing the densities associated

to each pair of symptoms in Figure 3, where the top panels correspond to the first visit

attendance and the bottom ones to follow-ups. Obviously, part of the difference may be

due to the fact that correlations for follow-up visits are estimated using a larger number

of observations compared to those at first attendance visits. In some cases the posterior

expectation of the correlations move toward zero after the first visit attendance (S & U
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and S & P). In the other cases, we notice a positive increase of the correlation values (P

& U and V & P).

In order to show the advantages of the proposed method in terms of estimating the

correlations among symptoms, we compare the results above with those obtained fitting

a multivariate version of the parametric Probit model. In its traditional formulation,

a Probit model allows covariates to affect the probability of the binary outcomes only

through a regression model placed on the mean of the latent variable distribution, whereas

the covariance matrix governing the correlations among the latent variables is assumed

to be constant. Given the latter assumption, this model cannot detect different levels of

correlations among the binary variables for different covariate levels.
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Figure 4: Posterior densities of the correlation between latent variables, estimated using
a parametric multivariate Probit model.

In Figure 4, we show the posterior distributions of the correlation between the latent

variables using a parametric Probit model. We focus on the pairs of latent variables

corresponding to S & P, P & U and S & U. For the first pair of symptoms the estimated

posterior distribution is located around -0.1, with a 95% credible interval that does not

contain 0. This finding is in contrast to what can be seen in Figure 3, where negative

correlation around -0.5 is displayed for the combination of covariates corresponding to
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the first visit attendance and no pyuria, while for all other levels of pyuria, independently

from the visit number, the posterior distribution of the correlation is around 0. Similarly,

the posterior distribution of the correlation of P & U in Figure 4 has 95% credible in-

terval containing 0 while the corresponding distributions in the nonparametric model are

centred at either negative values for no pyuria at first attendance visit or positive values

for all levels of pyuria at follow-up visits. Moreover, both the parametric and nonpara-

metric model estimate posterior distributions for the correlation of S & U concentrated

on positive values, but the nonparametric model better accounts also for heterogeneity

in the patient population estimating bimodal posterior distributions (see for example the

results for severe pyuria into follow-up visits). This comparison highlights the ability of

the proposed model to capture different patterns in the correlations of the latent variables

which depend on covariate levels, leading to a deeper understanding of the problem and

often to different conclusions from the parametric Probit model.

Shared effects

We now discuss the estimated posterior distributions of the parameters shared by all

patients.

Table 1: Summary of the posterior distributions of γd,d′ , with d referring to the latent
dependent variables of the d-th symptoms and d′ to the latent independent variables of
the d′-th symptoms. Effective Sample Size (ESS) is reported in the last column.

mean sd 2.5% 25% 50% 75% 97.5% ESS
γU,U 0.74 0.04 0.67 0.72 0.74 0.76 0.82 5000
γU,P 0.02 0.03 -0.04 -0.00 0.02 0.04 0.08 5431
γU,S 0.10 0.02 0.06 0.09 0.10 0.12 0.15 4683
γU,V -0.09 0.02 -0.12 -0.10 -0.09 -0.07 -0.06 5000

γP,U -0.03 0.03 -0.09 -0.05 -0.03 -0.01 0.03 5000
γP,P 0.70 0.03 0.65 0.69 0.70 0.72 0.76 6280
γP,S -0.06 0.02 -0.10 -0.08 -0.06 -0.04 -0.01 4216
γP,V 0.01 0.01 -0.02 -0.00 0.01 0.02 0.04 5000

γS,U -0.03 0.03 -0.10 -0.05 -0.03 -0.01 0.04 5000
γS,P 0.03 0.04 -0.04 0.00 0.03 0.05 0.10 4925
γS,S 0.84 0.04 0.78 0.82 0.84 0.87 0.93 5000
γS,V 0.05 0.02 0.01 0.03 0.05 0.06 0.08 5000

γV,U -0.13 0.04 -0.23 -0.16 -0.13 -0.10 -0.06 4673
γV,P -0.01 0.05 -0.10 -0.05 -0.02 0.01 0.09 5000
γV,S 0.05 0.03 -0.01 0.03 0.05 0.06 0.10 5229
γV,V 0.78 0.03 0.71 0.76 0.78 0.80 0.83 5000

In Table 1, posterior summaries for each entry of the matrix Γ have been reported.

These parameters capture the autoregressive effects of the latent variables for each symp-
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tom and are assumed to be time-invariant. We also assume that the latent variable of

each symptom at a specific attendance visit is affected by the values of the latent variables

of all symptoms at the previous attendance visit. In this way we want to control for the

temporal interaction among symptoms.

We begin considering the autoregressive effects, i.e. the parameters governing the

dependence between the latent variables at subsequent time points, namely γU,U , γP,P , γS,S

and γV,V . The posterior distributions of these parameters are concentrated on positive

values and the largest posterior expectations are estimated for stress incontinence and

voiding. Pain symptoms instead appear to be the least recurrent having the smallest

posterior mean. All posterior 95% credible intervals for these parameters do not contain

zero.

On the contrary, cross-effects, i.e. the parameters governing the dependence between

different symptoms at subsequent attendance visits, are often centred around zero (con-

sidering posterior 95% credible intervals). Exceptions are γU,V , γV,U , γP,S which show a

negative effect. Instead, γU,S and γS,V show positive effect.

Table 2: Summary of the posterior distributions of λd,m, with d = {U, P, S, V } referring
to the symptoms and m = {Age,Days} to different covariates. Effective Sample Size
(ESS) is reported in the last column.

mean sd 2.5% 25% 50% 75% 97.5% ESS
λU, Age 0.07 0.02 0.03 0.06 0.07 0.09 0.12 5000
λP, Age -0.13 0.02 -0.18 -0.15 -0.13 -0.12 -0.09 5000
λS, Age 0.02 0.03 -0.04 -0.00 0.02 0.04 0.07 5000
λV, Age -0.00 0.03 -0.07 -0.02 -0.00 0.02 0.06 5000

λU, Days 0.06 0.03 0.01 0.04 0.06 0.08 0.12 4410
λP, Days 0.06 0.02 0.01 0.04 0.06 0.07 0.10 5000
λS, Days 0.06 0.03 -0.00 0.04 0.06 0.08 0.11 5000
λV, Days 0.05 0.04 -0.02 0.02 0.05 0.07 0.12 5000

Table 2 reports posterior summaries for the regression coefficients of Age and Days.

The former has a positive effect on the probability of observing urgency symptoms, while

negative effect on the probability of observing pain symptoms. Posterior 95% credible

intervals for stress incontinence and voiding symptoms are centred around zero.

The period in days from the first visit attendance increases the probability of observing

urgency and pain symptoms while it has no evident effect on stress incontinence and

voiding symptoms considering 95% credible intervals which contain zero.

Predictive inference

We summarise the main results described in previous sections in Figure 5.

This depicts different trajectories of the marginal probability of observing the different
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Figure 5: Marginal predictive probability for the four categories of symptoms at four
subsequent attendance visits. We consider patients having for all four visits either no
pyuria (solid lines) or mild pyuria (dashed lines) or severe pyuria (dotted lines).

categories of symptoms over time, using predictive distributions. We derive numerically

the predictive distribution over the trajectories fixing Age equal to the mean observed

value, as well as the mean value of Days. We then explore the probabilities for symptoms

for the three groups of patients: no pyuria, mild pyuria and severe pyuria for all four the

attendance visits.

The trajectories for all symptoms are decreasing over time, the only exception being

voiding symptoms in patients with no pyuria where after a decrease in probability at the

second attendance visit, the probability of observing symptoms slightly increase during

the last two attendance visits. The group of symptoms which is mostly affected by the

presence of pyuria is voiding, followed by pain. Both urgency and stress incontinence

symptoms are less affected by the presence of pyuria. In particular, while in general both
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mild and severe pyuria increase the probability of observing stress incontinence symptoms,

mild pyuria decreases the probability of observing urgency symptoms and severe pyuria

initially decreases the probability of observing urgency symptoms compared to the case of

no pyuria, but this probability increases over the subsequent attendance visits, relatively

to no pyuria patients.

Finally, although the predictive distributions show decreasing trajectories for almost

all symptoms, it is hard to conclude on the effectiveness of the treatments administered

to the patients. This is because this study include a single treatment arm and it has been

designed to collect information only about dependence among symptoms across time and

the relation of symptoms with the degree of infection.

5 Discussion

In this work we propose a method for modelling vectors of correlated binary variables

evolving over time. The motivation for this work comes from a study of time evolving

records of LUTS and connected risk factors. Similarly to a traditional Probit model,

we assume the binary variables to be distributed as a discretised version of continuous

latent variables. We assume the latent variables to be generated from an infinite mixture

model, with weights that vary across a covariate space. Moreover, the time evolution of

the symptoms is modelled using autoregressive and cross-effect terms.

This specification induces very flexible distributions for vectors of binary variables

while allowing the user to maintain clear interpretation of the parameters of interest.

Since the resulting model is a mixture of Gaussian distributions, covariates can be ac-

commodated in the mean of each mixture component as regression terms, as well as

autoregressive components.

At the latent variable level, the proposed model can be considered a nonparametric

version of a mixed-effect model, where the mixing distributions depends on some covari-

ate level. The choice of the stochastic process prior for the mixing distribution should

reflect the type of information we want to include from covariates and the available prior

information. In this work we choose the DGDP, for its flexibility and the possibility

of including an ANOVA model in the stick-breaking process of the weights. However,

when the covariates are continuous the use of DGDP leads to over-parameterised mod-

els, suggesting the use of alternative stochastic process priors. Examples are the Probit

stick-breaking (Rodriguez and Dunson, 2011), logit stick-breaking (Ren et al., 2011) and

kernel stick-breaking (Dunson and Park, 2008).

The results of the data analysis show that the different levels of pyuria strongly

affect the probability of observing the symptoms, particularly voiding symptoms which

seem to be the most probable group of symptoms to activate in case of infection. The

effect of pyuria on the symptoms correlations is instead less clear and varies for different
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pairs of symptoms. In order to evaluate the temporal dependence among symptoms we

summarise the posterior distribution of the autoregressive coefficients and we find that

the most recurrent symptoms appear to be stress incontinence and voiding. We also

evaluate cross-effects among symptoms occurring at subsequent times, finding strong

relationships between voiding and urgency symptoms and between urgency and stress

incontinence symptoms.

The MCMC algorithm for posterior inference in implemented in JAGS through R

using the the package R2jags. For the dataset under analysis and with the parameter

settings specified in the paper, the MCMC algorithm takes approximately 15 hours to

run on a desktop computer with an Intel i-7 processor. Alternatively, the algorithm

described in Appendix A could be implemented in a low level programming language,

leading to considerable gains in computational speed. This is especially advised when

larger datasets are involved. Finally, the proposed model formulation has been introduced

for dealing with vectors of binary variables observed at different observation times which

are assumed to be the same for all individuals, since in our application patients are visited

in four occasions. However, the same model formulation can be easily extended to include

sequences of binary vectors with heterogenous number of observations across patients.

A Blocked Gibbs sampler for posterior inference

In this appendix we summarise the main parts of the blocked Gibbs sampler algorithm

discussed in Section 3 for posterior inference of the proposed model.

i) Sample Z given all other parameters. In the proposed model there are N × D ×
T latent variables, which can be resampled sequentially starting at t = 1 using

the algorithms for binary Probit models described in Albert and Chib (1993) and

Holmes and Held (2006).

ii) Sample Λ given all other parameters. These parameters are shared by all i =

1, . . . , N and t = 1, . . . , T and can be resampled directly from the full conditionals.

iii) Sample Γ given all other paramters. These parameters are shared by all i = 1, . . . , N

and t = 2, . . . , T and can be resampled directly from the full conditionals.

iv) Sample {(αi,t,Σi,t),∀i, t} given all other parameters. This step is based on a finite

truncation of the process in (2.4), that include only a large enough number H of

atoms, which we denote with GH
ui,t

. For details on the finite approximation of (2.4)

see the work in Barcella et al. (2016). Then, the full conditional follows:

Pr((αi,t,Σi,t) = (α∗h,Σ
∗
h) | . . .) ∝ wh,ui,tf(zi,t | α∗h,Σ∗h, . . .), for h = 1, . . . , H.
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v) Sample GH
ui,t

for all values of ui,t given all other parameters. This step consists

of resampling the locations {(α∗h,Σ∗h), h = 1, . . . , H} and the weights {wh,ui,t , h =

1, . . . , H and all ui,t}. For location parameters, full conditionals can be derived

using the likelihood of the observations associated to each location and the prior

distribution of αh and Σh (see Jara et al., 2007). Sampling the weights requires the

joint distribution of the weights (marginally for each ui,t) which follow a generalised

Dirichlet distribution (Connor and Mosimann, 1969). We augment the parameter

space with clustering indicators si,t taking value in {1, . . . , H}. si,t denotes which

location of GH
ui,t

the observation (i, t) is assigned to in step iv). It is to show that the

si,t follow a Multinomial distribution for si,t, which is conjugate to the generalised

Dirichlet distribution, allowing easy determination of the full conditional of the

weights.

vi) Sample (µ, φ) given all other parameters. This step requires a Metropolis scheme

for sampling from the following full conditional

p(µ, φ | . . .) ∝
∏
u

p(wu | µ, φ)p(µ, φ),

where wu = (w1,u, . . . , wH,u) and p(wu | µ, φ) is the generalised Dirichlet distribu-

tion.

References

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response

data. Journal of the American statistical Association, 88(422):669–679.

Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian

nonparametric problems. The Annals of Statistics, 1:1152–1174.

Ashford, J. and Sowden, R. (1970). Multi-variate probit analysis. Biometrics, 26(3):535–

546.

Barcella, W., De Iorio, M., Favaro, S., and Rosner, G. L. (2016). Dependent generalised

Dirichlet process priors for the analysis of acute lymphoblastic leukaemia. Biostatistics,

In press.

Chen, M.-H. (2004). Skewed link models for categorical response data, pages 131–151.

Chapman and Hall/CRC.

Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika,

85(2):347–361.

20



Connor, R. J. and Mosimann, J. E. (1969). Concepts of independence for proportions

with a generalization of the Dirichlet distribution. Journal of the American Statistical

Association, 64(325):194–206.

DeYoreo, M. and Kottas, A. (2017a). Bayesian nonparametric modeling for multivariate

ordinal regression. Journal of Computational and Graphical Statistics, In press.

DeYoreo, M. and Kottas, A. (2017b). Modeling for dynamic ordinal regression relation-

ships: an application to estimating maturity of rockfish in california. Journal of the

American Statistical Association, In press.

DeYoreo, M., Kottas, A., et al. (2015). A fully nonparametric modeling approach to

binary regression. Bayesian Analysis, 10(4):821–847.

Di Lucca, M. A., Guglielmi, A., Müller, P., and Quintana, F. A. (2013). A simple class

of Bayesian nonparametric autoregression models. Bayesian Analysis, 8(1):63–88.

Dunson, D. B. and Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika,

95(2):307–323.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals

of Statistics, 1(2):209–230.

Giardina, F., Guglielmi, A., Quintana, F. A., and Ruggeri, F. (2011). Bayesian first

order auto-regressive latent variable models for multiple binary sequences. Statistical

Modelling, 11(6):471–488.

Hatjispyros, S. J., Nicoleris, T., and Walker, S. G. (2015). Dependent random

density functions with common atoms and pairwise dependence. arXiv preprint

arXiv:1510.07153.

Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and

multinomial regression. Bayesian Analysis, 1(1):145–168.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors.

Journal of the American Statistical Association, 96(453):161–173.

Ishwaran, H. and Zarepour, M. (2000). Markov chain Monte Carlo in approximate Dirich-

let and beta two-parameter process hierarchical models. Biometrika, 87(2):371–390.
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