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Abstract—With the evolution of cloud computing, FPGAs are
involved in the data centers thanks to their high performance
and logic reconfigurable features. To efficiently make use of
data center resources, recent rack scale architecture tends to
disaggregate data center resources. This paper proposes the
Synchronizing Network wide Function Reconfiguration (SNFR)
protocol that aims to synchronize the reconfiguration of coherent
functions on disaggregated FPGA resources deployed across the
network. The associated protocol processor is implemented. The
synchronized reconfiguration is captured by the Xilinx debug core
and network traffic analyzer. The experimental section shows that
the protocol processor can support maximum 9 Gbps traffic and
introduces additional latency ranged from from 0.1 µs to 0.21µs.

I. INTRODUCTION

Cloud computing has become a significant part of our
daily lives, thanks to its Internet-scale services, such as web
search engine and e-mail. Data centers have been established
to support the rapidly growing cloud computing services.
Common data center infrastructures include a number of
servers interconnected by a network. To efficiently make use of
data center resources, recent rack scale architectures propose
to disaggregate computing resources [1]. The resource disag-
gregation suggests that each server main board contains only
a unique type of computing resource. When interconnected by
the network, these servers along with its associated resources
can be as a single logical hardware platform to support cloud
applications.

Due to the feature of parallel processing and reconfigura-
tion, FPGA usually performs as a programmable accelerator
alongside the processor. Recent FPGA technologies such as
high-level synthesis and partial reconfiguration require more
FPGA resources in the high performance computing. Frame-
works have been proposed to manage the FPGA resources
in the traditional data center [2]. As a next step, the FPGA
resources can also be directly attached to the network and
become disaggregated resources in data centers. However, real-
time reconfiguration of coherent functions; functions that are
highly related to each other, for example, encoder/decoder and
compressor/decompressor, on disaggregated FPGA resources
becomes a big challenge, because propagating reconfiguration
requests to multiple FPGAs through network is hard to syn-
chronize due to the unpredictable network latency.

This paper proposes a method to enable synchronized
reconfiguration of coherent functions on network-attached
disaggregated FPGA resources. The main contributions of this
paper are:

• A network protocol named Synchronization of Network
wide Function Reconfiguration (SNFR) is proposed. The
SNFR packets are able to carry information for the
reconfiguration of multiple network-attached FPGAs.

• The processor for the SNFR protocol is implemented. It
is able to perform seamless function reconfiguration on
disaggregated FPGA resources.

A reconfiguration process over 10 Gbps Ethernet traffic has
been demonstrated. The reconfiguration is captured by Xilinx
debug core and traffic analyzer. The influence of the proposed
SNFR protocol processor on the latency is measured. The
protocol processor is able to supports maximum total of 9
Gbps traffic (out of which 8.1 Gbps correspond to regular
data flows and 0.9 Gbps represent SNFR flows).

The rest of the paper is organized as follows: Section
II introduces the related work about the disaggregation and
reconfiguration of FPGA resources in data centers. Section
III motivates the synchronization of coherent function recon-
figuration on disaggregated FPGA resources. The proposed
SNFR protocol and the associated protocol processor are
introduced in section IV. The proposed reconfiguration method
is demonstrated in section V. Section VI concludes this paper.

II. BACKGROUND
With the evolution of cloud computing, FPGAs get more

involved in high performance computing due to its high
performance and logic configurable architecture. Researchers
in [3] [4] propose to integrate the FPGA resource management
with existing data center resource manager. Moreover, high
level synthesis is suggested in [5] to bridge the FPGA design
with software data center controller and further reduce the
deployment and design complexity. FPGA resource disaggre-
gation has also been suggested in [6]. By attaching FPGAs
directly to the network, J. Weerasinghe et. al enables the
deployment of large-scale independent FPGA resources in the
data center [6].

Furthermore, researchers have reported methods to manage
the reconfiguration process of the FPGA resources. For exam-
ple, L. Pezzarossa et. al proposed to manage the FPGA in a



time-division-multiplexing manner [7]. Interfaces of reconfig-
urable regions are controlled by a predefined scheduler. The
reconfiguration can happen in high frequency manner in this
approach, because the time slots when deploying functions
are very short (thousands of clock cycles). However, as this
approach is developed for single chip reconfiguration, it is
designed based on a unique global clock and time-predictable
FPGA components. However, in the data center environment,
synchronized global clock can result in additional cost and
predicting the timing of every component will be difficult. On
the other hand, another approach to manage the reconfiguration
process of FPGA resources through resource controller of data
centers has also been investigated. OpenStack [8] is adopted
to schedule the reconfiguration of FPGA resources. FPGA
devices are virtualized and partitioned into many partially
reconfigurable regions and the reconfiguration process is man-
aged by a kernel virtual machine [9] [10] [11]. The resource
allocation of these approaches cannot meet the dynamic re-
quirement of reconfigurable computing, as the reconfiguration
process takes longer time and introduces downtime.

A protocol processor that synchronizes the reconfiguration
of coherent functions across multiple network-attached disag-
gregated FPGA resources is proposed in this paper. It ensures
seamless function reconfiguration on network flows without
downtime.

III. MOTIVATION

This section motivates the synchronization of coherent func-
tion reconfiguration on disaggregated FPGA resources. The
idea of the proposed SNFR protocol is also briefly introduced.

Fig. 1. Reconfiguration of FPGA functions on single chip and in data center.

The difference between the reconfiguration on single chip
and across disaggregated resources throughout the data center
is shown in Fig.1. The reconfiguration process on single chip
is triggered locally through duplicated signals in RTL design.
The time when reconfiguration request arrives at the FPGA
resource is accurately counted in clock cycles and can be

predicted by simulation tools. However, in the data center
environment, the reconfiguration request is encapsulated in the
packet and is transferred through the data center network. The
latency of the request is hard to predict because it might be
affected by the network congestion and routing strategy.

Fig. 2. An example for network wide coherent function reconfiguration.

The unknown latency in the data center environment can
result in downtime when coherent functions are being re-
configured. An example that the unpredictable latency of the
reconfiguration request leads to unexpected failure state is
shown in Fig.2. The hardware platform is composed of two
network attached FPGAs. The network data flow is firstly
encoded in FPGA1. It is then forwarded over network switches
to FPGA2 and decoded. The reconfiguration aims to switch
from the initial encoder1/decoder1 to encoder2/decoder2. Due
to the unknown latency of the reconfiguration request, the
system may jump into failure state where the encoder and
decoder of the data flow do not match.

Fig. 3. The solution to synchronize the reconfiguration of coherent FPGA
functions on disaggregated FPGA resources.

A method to synchronize the reconfiguration of coherent
functions on disaggregated FPGA resources in data center en-
vironment is proposed in this paper as shown in Fig.3. A SNFR
packet is inserted in the data flow by the source node/server.
This SNFR packet carries the information of reconfiguration



for all the FPGAs on the path of the flow. The SNFR packet
will go through all the FPGAs in the path together with the
data flow. When a SNFR packet reaches a FPGA, the data flow
is buffered. The information of reconfiguration for the current
FPGA is extracted from the SNFR packet, so that the function
on the current FPGA is reconfigured accordingly. Then the
SNFR packet and the data flow are released and are forwarded
to the next FPGA after processing by the on-chip functions.
As shown in Fig.3, coherent functions on different FPGAs
are reconfigured at the same location of the data flow (The
location of the inserted SNFR packet).

IV. IMPLEMENTATION

The implementation of the system to synchronize the func-
tion reconfiguration is shown in this section. Especially, the
proposed SNFR network protocol and its associated protocol
processor is introduced.

A. Overall architecture of the reconfigurable FPGA system

A reconfigurable network on chip platform is introduced in
[12]. As shown in Fig.4.(a) right, it is composed of a 10 Gbps
Ethernet interface, several partial reconfigurable regions, an
on chip interconnect and a SNFR protocol processor. Network
flows can be forwarded from 10 Gbps Ethernet interface
to reconfigurable regions to enable reconfigurable pipelined
data stream processing/acceleration. To change the connection
between reconfigurable regions at run time, the port map
of the on chip interconnect is dynamic and can be updated
through memory mapped AXI interface. The SNFR protocol
processor is located between the 10 Gbps Ethernet interface
and the on chip interconnect. It is able to identify the inserted
SNFR packets from regular packets, buffer/release the traffic

and update the port map of the interconnect according to the
information of reconfiguration provided by the SNFR packets.

B. The proposed protocol for coherent function reconfigura-
tion

The detailed architecture of the protocol processor is shown
in Fig.4.(a) left. It is composed of FIFO, FIFO controller,
protocol processing unit and master AXI4 interface. Data flows
received from 10 Gbps Ethernet interface are sent to the FIFO
directly. When the FIFO controller detects a SNFR packet, it
acknowledges the FIFO to start buffering the traffic and it also
acknowledges the protocol processing unit to start extracting
information of reconfiguration from the SNFR packet. The
address and data information are extracted from the SNFR
packets by the protocol processing unit. The extracted data and
address information are then transferred to the master AXI4
interface to handle the memory mapped AXI4 handshake and
update the routing table of the on chip interconnect. When the
AXI4 master receives successful responds for all the transfers,
the protocol processing unit notifies the FIFO controller to
release the traffic.

The proposed packet data structure to support the syn-
chronized reconfiguration is shown in Fig.4.(b). The SNFR
packet is encapsulated in the IP packet and is identified by
the protocol field of the IP protocol. The definition of each
field of the SNFR protocol is listed below:

• Offset: 64 bits. This field marks the starting point where
the current protocol processing unit should extract data
and address information.

• ADD: 32 bits. If it is not 0xFFFF FFFF, this value should
be transferred to the memory-mapped AXI interface as an

Fig. 4. The proposed system that synchronize the reconfiguration of coherent disaggregated FPGA functions. a) The overall system and the detailed architecture
of the protocol processor. b) the proposed protocol to carry the reconfiguration information



address. If it is 0xFFFF FFFF, the protocol processing
unit should stop extracting data and address.

• DATA: 32 bits. The data that should be transferred to the
memory-mapped AXI interface.

Fig. 5. The brief description of the behavior of the protocol processing unit.
The start location depends on the value of the offset. When the process is
finished, the current processing unit will update the offset value to make it
point at the start location for the next FPGA.

The behavior of the protocol processing unit is shown
in Fig.5. When a SNFR packet is received, the protocol
processing unit will extract the value of address and data from
the location pointed by the offset. The end of the extraction
is marked by a specific address value 0xFFFF FFFF. When
the extraction of address and data is finished, the processing
unit should update the offset value to the location of next
pair of address and data. Then the SNFR packet will be sent
in the received order followed by the regular packets to the
next FPGA. The new offset will be checked by the next
FPGA, and the information for the previous FPGA can be

skipped. It should be pointed out that one SNFR packet carries
the reconfiguration information (address and data) for all the
FPGAs in the path. The address field with value 0xFFFF FFFF
cut the packet into many segments. Each segment is for the
reconfiguration of one FPGA in the path.

The detailed state machine of the protocol-processing unit
is shown in Fig.6. When a SNFR packet is received and the
traffic is buffered, the processing unit first checks the offset of
the SNFR packet. Then it sets the read address of the BRAM to
the offset value to read the first pair of address and data. The
value of the address is checked: if it is not 0xFFFF FFFF,
then the read address will be incremented to read the next
pair of address and data. If the address is 0xFFFF FFFF,
the processing unit then updates the offset field of the SNFR
packet to make it point to the address and data for the next
FPGA. The SNFR packet and the traffic is released in the next
state, so the SNFR packet with the new offset can be sent to
the next FPGA in the path.

V. EXPERIMENT AND RESULT

This section describes the experiment conducted to demon-
strate the synchronized reconfiguration on disaggregated
FPGA resources. The reconfiguration of the network is cap-
tured by the FPGA Xilinx debug core and the traffic analyzer.
The influence of SNFR packets on the latency of regular data
flows is also measured. The FPGA platform in the experiment
is the ZCU102 Ultrascale+ MPSoC with part number xczu9eg-
ffvb1156-2-i-es2. The resource utilization of the protocol
processor is shown in table I.

TABLE I
THE RESOURCE UTILIZATION OF THE PROTOCOL PROCESSOR

Component Flip Flop LUT BRAM

FIFO 202 1059 6

FIFO control 174 568 0

Protocol processing unit 305 358 0

AXI master 286 148 1

Total 967 2133 7

A. Demonstration of the synchronized reconfiguration
The experimental set up and the reconfiguration process are

shown in fig.8. Two FPGAs are set up and are connected

Fig. 6. The sate machine of the protocol processing unit.



Fig. 7. The captured reconfiguration process. a) The state machine of the protocol processing unit captured by Xilinx debug core. b) The reconfiguration of
output port monitored by the external traffic analyzer.

through 10 Gbps Ethernet interfaces. On each FPGA, a system
is set up with an on chip interconnect, two reconfigurable
regions (f1(x) and f2(x)) and the protocol processor. Packet
counters are deployed in each reconfigurable region to record
the number of packets received by this region. The traffic is
generated and analyzed by the traffic analyzer. A 9 Gbps traffic
with random packet size is generated to represent the regular
data flow in the data center network. Every 5 seconds, one
SNFR packet is generated. The generated SNFR packets makes
the data flow to continuously switch between the following two
states:

• f1(x) at FPGA1, f4(x) at FPGA2, FPGA2 forward traffic
to output1.

Fig. 8. The demonstrated reconfiguration process.

• f2(x) at FPGA1, f3(x) at FPGA2, FPGA2 forward traffic
to output2.

We use the Xilinx debug core to monitor the state machine
of the processing unit, and the valid signals of both regions as
shown in Fig.7.(a). The reconfiguration process starts when a
SNFR packet is received. To ensure data loss free operation,
the SNFR packet is only processed when the traffic is com-
pletely buffered. We also use the traffic analyzer to monitor the
output of FPGA2 as shown in Fig.7.(b). The traffic is detected
at output1 in the initial state. After reconfiguration, the traffic
from output1 cannot be detected and traffic from output2 is
received instead.

B. Influence from the SNFR processor
The influence of the proposed protocol on the latency of

the regular data flows is also measured as shown in Fig.9.
To reconfigure disaggregated FPGA resources, SNFR packets
should be inserted into the regular data flows. In this exper-
iment, we insert the SNFR packets with different rates and
measure the data rate vs latency chart to analyze the influence
of the SNFR packets. It should be pointed out that the SNFR
packet is responsible to change the state of the network, so
higher SNFR packet rate means the network reconfiguration
take places at higher frequency. As shown in Fig.9, the SNFR
packet will only influence the traffic when the data rate of
regular data flows is higher than 6 Gbps. The data rate can
reach up to 0.9 Gbps, so it is able to reconfigure the FPGA
resource at high rates. The protocol processor can also support
high throughput. It is able to work at 9 Gbps data rate (8.1
Gbps regular data flows plus 0.9 Gbps SNFR flows).

The relationship between data rate of SNFR flows and how
dynamic the network is can be represent in equation 1. The
parameter is described as follows:



Fig. 9. The latency influence of the protocol processing.

• r: The data rate of SNFR flows.
• p: Every time unit, the total number of times to change

the map of ports of the on-chip interconnect on all the
FPGAs in the path.

• H: The size of Header.
• FPS: Frame per second.

r = 8× p+ FPS ×H (1)

The term 8× p represents the actual size of data in the SNFR
flows to carry the reconfiguration information. To update the
map of one port of the on-chip interconnect, total 8 bytes are
required (4 bytes for data and 4 bytes for address). The term
FPS×H represents the size of data occupied by the network
header.

Otherwise, if the average packet size of the traffic is given,
we can use equation 2 to represent the relationship between
the dynamic of network and the data rate of SNFR flows

• S: Average packet size.

8× p = r ×
(
1− H

S

)
(2)

The term
(
1− H

S

)
represents the ratio of actual size of data

for reconfiguration information over the total size of data.
if we assume a SNFR flow encapsulated in standard IP over

Ethernet packet (H = 34 bytes) at data rate of 100 mbps
(r = 100 mbps) with random packet size ranging from 64
bytes to 1518 bytes, and with average packet size 791 bytes
(S = 791 bytes), according to equation 2, it is possible to
change the map of port of the on-chip interconnect around
1.5 million times every second (p ≈ 1.5 × 106). It should
be pointed out that the 1.5 million times is the total number
of updates of port map on all the associated FPGA devices
in the network. For example, the 1.5 million updates can be
performed on a single FPGA device every second. Or they

can be performed on 1.5 million FPGA devices and once per
second per device.

VI. CONCLUSION

The evolution of data center architecture tends to disag-
gregate data center resources. This paper proposes a method
for the disaggregation of FPGA resources in the data center.
The motivation to synchronize the reconfiguration of coherent
functions on disaggregated FPGA resources is explained. A
network protocol named SNFR to synchronize the reconfigura-
tion is proposed in this paper. The associated protocol proces-
sor is implemented. The synchronized function reconfiguration
process on disaggregated FPGA resources is demonstrated.
The reconfiguration is captured by the Xilinx debug core and
external traffic analyzer. The implemented protocol processor
is able to support a high data rate traffic of up to 9 Gbps
Ethernet traffic (8.1 Gbps for regular flows and 0.9 Gbps for
SNFR flows).
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