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Abstract:  

The hydrodynamic problem of a breaking wave impacting on a floating body with air bubble 

effect is modelled based on the incompressible velocity potential theory, which is solved using the 

boundary element method in the time domain. To avoid the numerical inaccuracies due to the sharp 

temporal and spatial variations of velocity and pressure at the initial stage of impact, a dual system 

is adopted. The simulation close to the impact zone is conducted in a stretched coordinate system, 

while away from the impact zone the deformation and propagation of incoming overturning wave 

is simulated in the physical coordinate system. The continuities of both pressure and velocity are 

enforced at the interface of two zones. When the impact zone is no longer small, the dual systems 

will be merged and the simulation will be undertaken in one single domain. The air bubble trapped 

between the breaking wave and the solid surface is taken into account based on the assumption that 

the trapped air undergoes an adiabatic process. An auxiliary function method is used to decouple the 

nonlinear mutual dependence of fluid loading, body motion and bubble deformation. Simulations 

are undertaken for cases related to breaking wave impact in various engineering problems, including 

a solid coastal wall, a freely floating ship cross section, a floating breakwater and a tension leg 

platform. Detailed results for pressure, free surface profile, bubble deformation and body motion 

are provided, and their physical implications are discussed. 

Keywords: breaking wave impact; trapped air bubble; floating body; dual coordinate systems; 

auxiliary function method; boundary element method. 

1. Introduction  

The breaking wave is a spectacular phenomenon in the sea. It evidently occurs when there are 

cyclones, storm surges, tsunami, etc., but it also occurs in mild sea conditions, for example, when a 

wave meets an obstacle in its path or interacts with other waves. Impact by the breaking wave can 

pose a great risk to a structure in the ocean, such as a ship, an offshore platform and a breakwater, 

due to impact produced high loading on the structure. In extreme conditions, a ship may capsize or 

break, a platform and breakwater can be damaged. Thus the safety, reliability as well survivability 

of an ocean structure in such a scenario are some of the major concerns in design. 

Fluid flow characteristics, including the spatial distribution and temporal variation of velocity, 

pressure, free surface, during the breaking wave impact are highly complex. When a wave front hits 

a solid structure, its path is suddenly blocked. The flow direction has to turn sharply, which means 

a very large acceleration and therefore a very large pressure gradient. The physical process of wave 

front impact has been demonstrated by Bagnold (1939), Nagai (1961) and Cooker and Peregrine 

(1995). Various methods have been developed to account for this physical process. Tanizawa and 

Yue (1992) assumed that the solid surface was ‘invisible’ to the liquid when the wave front arrived 
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at the wall, and the wave would pass the invisible body without any hindrance. Only when the area 

between the two intersection points of the wall with the undisturbed wave was not small, it would 

then be taken as the initial wetted surface, and the impact would start at this moment. Zhang et al. 

(1996) treated the initial impact stage as a self-similar problem. The wave front was approximated 

as an asymmetric liquid wedge, and the impact velocity was assumed to be a constant and 

perpendicular to the wall. The wave profile away from the impact was assumed to vary exponentially. 

Wu (2007a) used a stretched coordinate system method for wave front impact on a wall, and Wu 

(2007b) subsequently considered the impact by a large liquid droplet on a wall and on a solid wedge. 

Duan et al. (2009) considered the impact of a wedge shaped wave front on the corner of a coastal 

wall. The present work considers a two dimensional (2D) breaking wave impact on a floating body 

or fixed coastal wall. When the section of the structure does not change rapidly, for example near 

middle section of a slender ship, the two dimensional approximation can be used for impact in the 

beam sea, similar to the strip theory for ship motion. The result of the 2D theory is expected also to 

shed some insights into the general 3D problems. 

It is generally accepted that the kinetic properties of fluid, especially impact velocity, is the most 

influential factor for the process of breaking wave impact during impingement onto a structure. 

However, many scholars have also demonstrated that the entrapped air cavity plays a significant 

role as well in the physical process of breaking wave impact. The effect of the trapped air pocket 

was included. The air pocket was assumed to undergo rapid contraction and expansion, and therefore 

pressure and volume would change adiabatically. An early work is that by Bagnold (1939), in which 

a wave tank experiment was undertaken. He found that the shock pressure of a thin air pocket was 

much larger than that of a thick pocket, and when the thickness of air cushion exceeded half of its 

height, the shock pressure could be neglected. Hattori et al., (1994) investigated the effect of air 

bubble on wave impact pressure through an experiment. It was observed that the impact pressure 

with air bubbles was much larger than that without air bubbles. They also found that the 

characteristics of impact pressure were closely related to the trapped air bubble. The magnitude and 

frequency of pressure oscillation for the case of the thin pocket being trapped by the breaking wave 

were much larger than those corresponding to the thick air pocket. When the thick air pocket was 

trapped, the pressure measured from the sensor would reach a peak rapidly, and after that, it would 

oscillate with a decreasing amplitude due to the air pocket pulsation. Other typical experimental 

work on breaking impact includes those by Blackmore and Hewson (1984), Bullock et al. (2001), 

and Peregrine (2003). 

Earlier work on breaking wave impact is based on various approximations, such as Wagner theory 

(Wagner, 1932) and the method of matched asymptotic expansions (Cointe and Armand, 1987). 

These approximation methods have been effective for many engineering problems. However, there 

are also various limitations. A more recent work is that by Song (2015). She used the velocity 

potential theory with fully nonlinear boundary conditions on the deforming water surface. The 

trapped air bubble effect and its deformation with time were included based on the assumption of 

an adiabatic process. A dual coordinate system method was used. The stretched system (Wu, 2007a) 

was used in a small area of the impact zone at the initial stage to account for the rapid temporal and 

spatial variation, and physical system was adopted away from the impact zone. Continuity 

conditions for pressure and velocity were enforced at the interface of two regions. Simulations were 

undertaken for impact on a fixed wall with air bubble effect.   

There are other related works on breaking wave impact using both experiment and numerical 
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simulations. Manjula et al. (2015) examined the response of a slender vertical cylinder under 

breaking wave loading by a series of model experiments. The cylinder was fixed at the top but was 

left free on the bottom. Other experimental work includes those by Ma and Li (2002) for the impact 

on vertical cylinders in shallow water, Stanczak and Oumeraci (2012) on the surface erosion of a 

dike slope, and by Hu et al. (2017) on the truncated wall in a wave flume. Computational fluid 

dynamics (CFD) techniques have also played an important role in dealing with breaking impact with 

large deformations of free surface and air bubble. Bredmose et al. (2015) investigated the scaling 

and aeration effects on violent breaking water impacts with trapped air based on compressible-flow 

theory. Choi et al. (2015) solved the modified Navier-Stokes equations with wave reaction force and 

dissipation term in a dissipation zone to investigate breaking wave impact forces on a vertical 

cylinder and two inclined cylinders. Kamath et al. (2016) simulated the breaking wave impact, 

induced by the variation of water depth, on a slender cylinder in a three-dimensional numerical wave 

tank based on the open source CFD model.  

The above studies have significantly advanced our understanding regarding the characteristics of 

breaking wave impact. However, much of work with air bubble is for a fixed body. In fact, it is more 

common for wave to impact on a floating body which moves under the wave excitation. Some new 

physical features may arise due to body motion, which leads to some new challenges in the 

numerical simulation. A particular feature is that the breaking wave impact loading, the motion and 

deformation of bubble and its corresponding pressure oscillation are fully and nonlinearly coupled. 

In present work, we shall develop a two dimensional numerical technique for breaking wave impact 

on a floating body with air bubble. The incompressible velocity potential theory is used for the liquid 

flow. The neglected compressibility may be important for a very short period of time 

(Khabakhpasheva and Wu, 2007). However, during this period the momentum exchange from wave 

to body is relatively small for cases which we consider, and therefore the compressibility effect of 

liquid can be ignored. Fully nonlinear boundary conditions are adopted on the deforming free 

surface and bubble surface, which are tracked by the time stepping method. At each time step, the 

velocity potential problem is solved by the boundary element method (BEM). The dual coordinate 

systems (Song, 2015) are adopted at the early stage of impact. The auxiliary function method (Wu 

and Eatock Taylor, 2003) is used to decouple the nonlinear mutual dependence of fluid loading, 

body motion and bubble deformation. The method and numerical procedure are verified through the 

convergence study and comparison for wave impact on a fixed body, reflecting a coastal wall. 

Extensive numerical results are provided in various case studies, to account for some typical features 

related to a freely floating ship, a floating breakwater constrained by nearly horizontal cables and a 

TLP constrained by two vertical tendons. Results are analysed and their physics associated with 

breaking wave impact on floating bodies are discussed. 

2. Mathematical model and numerical procedure 

2.1. Governing equation and boundary conditions 
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Fig. 1. The sketch of the problem.  

The problem is depicted in Fig. 1 which shows an overturning wave impacting on a floating body. 

When the wave meets the body, an air bubble may be trapped between the body surface BS  and 

the inner free surface NS . The outer free surface which is open to air is denoted as FS . A Cartesian 

coordinate system O xy−  fixed in space is defined in which x -axis coincides with the still water 

level at −   and y  -axis points upwards. A body fixed system O −   is defined so that the 

origin is fixed at the rotating centre and  -axis and  -axis are perpendicular to and parallel with 

the central line of body respectively. The water density  , the acceleration due to gravity g  and 

water depth h  are used for non-dimensionalization. After non-dimensionalization, the horizontal 

and vertical velocities at the centre of gravity G  which is taken as the rotational centre are denoted 

as U   and W   respectively, and the rotational velocity about G   is   . When the fluid is 

assumed to be incompressible and inviscid, and the flow to be irrotational, the velocity potential   

whose gradient is equal to the fluid velocity can be introduced. 

The analytical solution of incoming breaking wave is taken from the Airy wave model. Based on 

the hypothesis of long wave in shallow water, the horizontal velocity ( )u x  averaged along the 

vertical direction can be written as (Cooker and Peregrine, 1990) 

0 0

1
( ) {1 tanh[ ( )]}

2
u x u x x= − + −                                            (1) 

This gives a velocity 0u−  at x =  and zero at x = − . 0x  in the equation denotes the initial 

wave centre with the largest velocity and    is the parameter which controls the slope of the 

incoming wave at the initial stage at 0x x= . Based on the Airy wave theory, the initial wave profile 

can be written as (Cooker and Peregrine, 1990) 

( )y f x=                                                                 (2) 

where 21
( ) ( ) ( )

4
f x u x u x= − +  , which varies from zero at x = −   to 2

0 0

1

4
h u u = +   at 

x = , see Fig. 2. The velocity potential I  averaged along the vertical direction between the free 

surface and the bed of the incident wave can be obtained through the integration of the velocity 

( )u x  along x  direction, and thus we have 
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
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= = − − + 
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                          (3) 

When 0x  is sufficiently far away from the body, the initial wave elevation and the total velocity 

potential on the surface can be obtained from Eqs. (2) and (3). Subsequently, the free surface 

elevation will change and velocity will be disturbed. They should be obtained from the solution of 

the governing equation with the fully nonlinear boundary conditions.  
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Fig. 2 The sketch of the initial wave profile 

Within the whole fluid domain, the total potential   which includes the incident and disturbance 

potentials satisfies the Laplace’s equation  

2 =0                                                                  (4) 

Assuming that the trapped bubble undergoes an adiabatic process, the pressure inside the bubble 

can be expressed as  

0
0 ( )

V
P P

V

=                                                             (5) 

where 0V  is the volume of air bubble when it is first trapped by an overturning wave, V  is the 

volume which varies with time after the moment of impact, and   is the heat ratio of air. The 

volume V  can be calculated through the integration of discrete nodes constituting the surface of 

air bubble. Combining Bernoulli equation with the adiabatic process inside the bubble and ignoring 

the surface tension, the dynamic boundary condition on the inner surface NS  takes the form 

2 0
0 0

1 1
( ) ( ) 1

2 2

VD
u y h P

Dt V


 

 
=   + − − − − 

 
                             (6) 

where /D Dt  is the material derivative by following a fluid particle in the Lagrangian sense, 

which is expressed with the symbol D . The dynamic boundary condition on the outer free surface 

FS  with the constant atmospheric pressure 0P  can be written as  

2

0

1 1
( )

2 2

D
u y h

Dt


 =   + − −                                           (7) 

The kinematic boundary conditions on both FS  and NS  in the Lagrangian form can be written as 

Dx

Dt x


=


，
Dy

Dt y


=


                                                    (8) 
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The impermeable boundary condition on the body surface takes the form  

( )x y y xUn Wn Xn Yn
n


=  = + + −


V n                                      (9) 

in which ( , ) ( , )G GX Y x x y y= − −   is the position vector measured from the rotating centre 

( , )G Gx y   defined in the frame O xy−  , ( , )U Y W X= − +V   is the velocity vector, and 

( ),x yn n=n  is the normal of surface pointing out of fluid domain. The boundary condition on the 

seabed can be given as  

0
n


=


                                                                (10) 

At the far field, where the disturbance is assumed to have diminished and there is only the incoming 

wave, the boundary condition can be given as  

0

0,

,

x
x

u x
x






= → − 


 = − →



                                                   (11) 

In practical simulations, the computational domain is truncated through a vertical boundary on each 

side of the body. It is chosen sufficiently away from the body to ensure that the disturbance of the 

body has not been reflected by the truncated boundary to affect the results near the body surface. 

Based on the Laplace’s equation and the above boundary conditions together with the initial 

condition, the fluid/structure interaction problem can then be solved through the boundary element 

method (BEM) combined with a time matching scheme. 

2.2. A local stretched coordinate system method for initial impact stage 
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Fig. 3. Sketch for overturning wave impacting on a floating body with infinite height (a) the wave 

profile at the moment of impact in physical system (b) the initial wave profile with the discretization 

in the stretched system and (c) the matching between the physical and stretched system. 

When the wave front hits the body surface, the contact will normally start from a single point and 
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then the wetted surface will increase rapidly. During this process, the local physical parameters such 

as pressure and velocity may experience sharp variation both temporally and spatially. To avoid 

numerical difficulties due to the extremely small wetted area at the initial stage, which requires 

extremely small elements to account for the large variation of physical parameters, a stretched 

coordinate system may be adopted within the impact zone. This has already been used previously 

in the water entry problem of a wedge (Wu et al., 2004, Sun et al., 2015, 2016). However a major 

difference is that in the previous work, the condition at the outer boundary is explicitly known. For 

example, in the case of wedge entering into calm water, the fluid at the outer boundary is assumed 

to be undisturbed. Here, the outer boundary of the stretched system is the incoming overturning 

wave which is simulated in the normal physical coordinate system. Therefore the solutions from the 

two different systems should be properly matched to enforce the flow and pressure continuity 

conditions.   

  A stretched coordinate system -O   is defined with the origin at ( , ) ( , )s sx y x y=  which is 

the point where the wave front first touches the body surface.   is in the normal direction of the 

body surface and   in the tangential direction (see Fig. 3). Without loss of generality, we assume 

that at the moment of impact   is in the direction of x . The stretched system -O   together 

with its origin ( , )s sx y  moves with the body at the horizontal velocity U , the vertical velocity 

W  and the rotational velocity   about the rotating centre G . At the moment of impact, the 

point ( , )s sx y  can be transformed as 

p G G[( )cos ( )sin ]s sx x y y  = − + −                                        (12) 

p G G[ ( )sin ( )cos ]s sx x y y  = − − + −                                      (13) 

In the frame moving with the body defined above Eq. (1), p p( , )    is subsequently time 

independent. We then define  

G G p[( )cos ( )sin ]s x x y y   = − + − −                                     (14) 

G G p[ ( )sin ( )cos ]s x x y y   = − − + − −                                   (15) 

s =                                                                 (16) 

where the stretching ratio ( )s t , which varies with time, is set as the half width of intersection line 

between incident wave crest and body surface, assuming that the incident wave would keep plunging 

as if it did not touch the wall (see Fig. 3(c)). At the moment of impact, ( )s t  is equal to the initial 

stretching ratio 0s . In Eqs. (14) and (15), the displacement of the centre of gravity G  can be 

expressed as  

0
( ) ( )

t

xq t U d =                                                         (17) 
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0
( ) ( )

t

yq t W d =                                                        (18) 

and the rotating angle   can be obtained through 

0
( ) ( )

t

t d  =                                                          (19) 

Based on Eqs. (14) and (15), we have 

cos sinx y    = +                                                    (20) 

sin cosx y    = − +                                                   (21) 

The temporal derivatives of Eqs. (14) and (15) can be given as  

G G[( )cos ( )sin ] [ ( )sin ( )cos ]
Ds Dx Dy

U W x x y y
Dt Dt Dt


   = − + − + − − + −      (22) 

G G[ ( )sin ( )cos ] [( )cos ( )sin ]
Ds Dx Dy

U W x x y y
Dt Dt Dt


   = − − + − − − + −      (23) 

Substituting Eqs. (14), (15), (20) and (21) into Eqs. (22) and (23), the kinematic boundary conditions 

in the stretched system can be transformed as  

pcos sin ( )
Ds Ds

U W s
Ds Dt




     = − − + +                              (24) 

psin cos ( )
Ds Ds

U W s
Ds Dt




     = + − − +                              (25) 

Substituting Eqs. (14), (15), (20) and (21) into the dynamic boundary conditions (6) and (7), we 

have on the inner surface  

2

0 G p p

0
0

1 1
[ ( )sin ( )cos ]

2 2

( ) 1

Ds Ds
u y s s h

Ds Dt

V
P

V




        =   + − + + + + −

 
− − 

 

        (26) 

and on the outer free surface  

2

0 G p p

1 1
[ ( )sin ( )cos ]

2 2

Ds Ds
u y s s h

Ds Dt


        =   + − + + + + −         (27) 

The increase rate / 0.5 /n yds dt n= , where n  and yn  are taken from the free surface at the 

intersection point between the undisturbed incoming wave and the body surface. Based on the 

consideration that the size of impact zone is proportional to s  and the effect of the impact decays 

exponentially away from the body (Wu, 2001), the domain in the stretched system may be truncated 

at L = . At this truncated boundary TS , the disturbance potential is assumed to have sufficiently 

decayed, and there is only the incident potential. Thus we have  

I

n n

 
=

 
                                                               (28) 

It should be noted that the normal direction of the truncated boundary in Eq. (28) are taken in the 

stretched and Cartesian coordinate systems respectively, and they are both pointing out of the fluid 
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domain of the stretched coordinate system. I

n




 on the right hand side of Eq. (28) is taken based 

on the assumption that the incident wave will propagate forward without the presence of body, and 

its normal derivative can be obtained through the linear interpolation through I  in the upper 

and lower free surfaces. 

2.3. The boundary element method 

The boundary element method (BEM) is used to solve the above boundary value problems for 

velocity potential as well the auxiliary functions defined later. Through Green’s identity, the 

Laplace’s equation in the fluid domain can be converted into an integral equation over the whole 

boundary. 

q

q

pq

q

pq )
ln

)(
)(

(ln)()( dl
n

r
q

n

q
rppA




−




=  


                                 (29) 

where ( )A p  is the solid angle at point p  on the boundary and pqr  is the distance from the field 

point p  to the source point q . Straight line elements, with variables varying linearly within each 

element, are distributed along the boundary. To perform integration over each element with nodes 1 

and 2 in Eq. (29), we define  


=

=+=
2

1

)(
i

ii uhyx rjir , 
=

=
2

1

)(
i

ii uh                                  (30) 

in which r  is the position vector from the origin O  with i  and j  being the unit vectors in the 

x  and y  directions, respectively. The shape functions are chosen as  

uuh −=1)(1
, uuh =)(2

                                                (31) 

where 0 1u  . Substituting Eqs. (30) and (31) into Eq. (29), we have 

e e2 21 1 pq

pq
0 0

1 1 1 1

( ) ln
( ) ( ) ln ( ) ( ) ( )

n

iN N
ji i i

j j j

j i j i

q r
A p p r h u l du h u q l du

n


 

= = = =

 
= −

 
       (32) 

where eN  is total number of elements, and jl  is the length or Jacobian of each element. The 

integrations within each element can be obtained explicitly as in Lu et al. (2000). 

2.4. The pressure  

The pressure in the flow field can be obtained through the Bernoulli equation 

2 2

0 0

1 1
( )

2 2
tP P u y h − = − −  + − −                                     (33) 

The velocity potential   can be solved at each time step through the numerical scheme in the 

previous section, from which its gradient   can be obtained. However the temporal derivative 

of potential t  is still unknown explicitly. To deal with this problem, the auxiliary function method 

is adopted (Wu and Eatcok Taylor, 1996, 2003). We notice that t   also satisfies the Laplace’s 
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function in the fluid domain. The normal derivative of t  on the body surface can be written as 

(Wu, 1998) 

( ) ( )t

n n n

 


  
=   −  +   −    

U Ω X n U Ω U+ X                      (34) 

where U V= +U i j  , =Ω k   with = k i j  , and the dot means the temporal derivative. A 

particular attention should be paid to the accelerations in Eq. (34), which are unknown before the 

force is found. To uncouple their nonlinear mutual dependence, we define  

0 1 2 3t U V    = + + +                                                (35) 

Here ( 0, 3)i i =  satisfy the Laplace’s equation. The body surface boundary conditions for the 

auxiliary functions can respectively be written as 

( )0

( ) ( ) [ ( ) ( )]
y x

x y y x

n n n

W X U Y n W n U
n n

 


 
 

  
= −  +   −    

 
= − + + − + + − − −

 

U Ω UX

         (36) 

1
xn

n


=


                                                               (37) 

2
yn

n


=


                                                               (38) 

3 ( )y xXn Yn
n


= −


                                                       (39) 

On the bottom, we have 

0,( 0,1,2,3)i i
n


= =


                                                     (40) 

On both the inner and outer free surfaces, the auxiliary functions related to the accelerations are 

assumed to be zero 

( 1,2,3) 0i i = =                                                         (41) 

while  

2 2 0
0 0 0

1 1
( ) 1

2 2

V
u y h P

V



 
  

= −  + − − − −  
   

                             (42) 

on the inner free surface and   

2 2

0 0

1 1
( )

2 2
u y h = −  + − −                                            (43) 

on the outer free surface. At the far field, the boundary conditions take the form  

0,( 0,1,2,3),i i x
n


= = →


                                              (44) 
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The second derivatives in Eq. (34) may cause numerical difficulty. We adopt the method in Xu and 

Wu (2013) and use the following relationship 

y x

n l

  
=

 
， yx

n l

 
= −

 
                                                 (45) 

where l  is along the tangential direction of body surface and is obtained by rotating n  by 90 

degrees anti-clockwise, and thus x yl n= −  and y xl n= . In the stretched system, we define 

0 1 2 3t Us Vs s       = + + +                                             (46) 

Similar to Eqs. (36-39), the body surface boundary conditions for the auxiliary functions in the 

stretched system can respectively be written as  

( )0

( sin cos ) ( cos sin )
( ) ( )

[( cos sin )( sin cos )

( sin cos )( cos sin )]

n n n

W X U Y
n n

s n n W

n n U

   

   

   

 


       

     

     

  
= −  +   −    

 +  −
= − + + − +

 

+  − − −

− + − +

U Ω UX

    (47) 

1 cos sinn n
n

 


 


= −


                                                  (48) 

2 sin cosn n
n

 


 


= +


                                                 (49) 

3 [ ( sin cos ) ( cos sin )]X n n Y n n
n

   


   


= + − −


                         (50) 

In these equations and those below, the following relationship is to be adopted 

p p( )cos ( )sinX s s     = + − +                                      (51) 

p p( )sin ( )cosY s s     = + + +                                       (52) 

The boundary conditions for the auxiliary functions on the inner and outer free surfaces retain the 

same form as that in Eqs. (42-43). At the far field, the boundary conditions can be written as 

0 ,It L
n n

 


 
= =

 
                                                      (53) 

0,( 1,2,3),i i L
n





= = =


                                               (54) 

The values on the right hand side of Eq. (53) are estimated through the linear interpolation based on 

the values on the upper and lower free surfaces (Song, 2015). When the dual stretched and normal 

physical systems are involved in the calculation, the auxiliary function method can still be used. 

They will be solved in the two separate domains and continuity conditions will be enforced on their 

interface. The procedure is virtually identical to that for the potential itself, described previously. 

After the initial stage, when the wetted body surface is no longer a small fraction of the characteristic 

length, for example the body dimension, the stretched coordinate system will be no longer needed 

and computation can be conducted in the single physical domain.  

2.5. The body motion 
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Based on Newton’s law, the motion of body can be written as 

      e= +M A F F                                                       (55) 

where 

0 0

0 0

0 0

m

m

I

 
 

=
 
  

M ,  

U

V

 
 

=  
  

A , 

1

2

3

F

F

F

 
 

=
 
  

F , 

0

0

e m

 
 

= −
 
  

F                  

In the above equation, m  is the mass of the two dimensional floating body, with the moment of 

inertia, I , with respect to the centre of mass. The hydrodynamic force in Eq. (55) can be obtained 

through the integration of pressure 0P P−   in Eq. (33) along the body surface in contact with 

bubble and water including the impact area. Based on the definition of auxiliary functions in Eq. 

(35), we note that the terms of unknown accelerations appear on the right hand side of Eq. (55). 

These unknown terms can be moved to the left hand side of Eq. (55), and the following coupled 

equation of motion is established as a result  

      e+ = +M C A Q F                                                   (56) 

where  C  is a matrix with the coefficients  

0S
ij i jC n dS=                                                            (57) 

and matrix [ ]Q  can be obtained through  

0

2 2

0 0
S

1 1
[ ( )]

2 2
i iQ u y h n dS = − +  − + −                                 (58) 

where 0S  covers bubble surface and wetted surface. The latter includes the impact area IS  on 

which the integration is performed in the stretched system at the initial stage. We have the 

contribution from this part as 

I

2

S
ij i jC s n dS=                                                          (59) 

I

2 2

0 0 G p p
S

1 1
{ [ ( )sin ( )cos ]}

2 2
i iQ s u y s s h n dS       = − +  − + + + + + −    (60) 

where , 1,2,3i j = . 

3. Numerical results and discussions  

The initial parameters for the overturning wave are set as 0 1.1623u =   and 0 10x =  

respectively, and correspondingly 1.5h = . The still water depth is set as 1.0 in non-dimensional 

sense, and    is set as 0.5. These are the same as those in Cooker and Peregrine (1990). 

Correspondingly, the non-dimensional atmospheric pressure is 10.087. The width and initial draught 

of a rectangular floating body used in the study are set as 0.3 and 0.515 respectively, and the corners 

on the two sides of bottom are replaced by a quarter circle with a radius of 0.015. The initial position 

of the centre of gravity of the body is set as ( , ) (0, 0.25)G Gx y = − , the mass as 0.156, which is 
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the same as the fluid force in vertical direction at 0t = , and the rotational inertia is set as 0.1. The 

floating body may be used as typical representations for various ocean engineering problems. For 

example, it can be used to represent overturning wave impact on a two dimensional cross section of 

a floating ship. In such a case, a moving ship may not have additional restoring force apart from the 

hydrostatic ones. Therefore its cross section has the full three degrees of freedom. Even when a ship 

is anchored, the cable anchorage may provide some additional restoring force, but it does not 

completely restrain the motions. Another example which can be represented by the present 

configuration is that the overturning wave impact on floating breakwaters which commonly have 

two types based on the way in which the body is anchored to seabed. The first type is the vertical 

pile-restrained floating breakwater, in which the body is allowed to have vertical response, or heave, 

while horizontal and rotational motions, or surge and roll, are restrained. The second type is the 

tethered floating breakwater, in which the floating body is anchored to seabed through a group of 

mooring cables, and all three degrees of motions in two-dimensional sense are allowed. The third 

example is the tension leg platform (TLP), in which the floating body is connected to seabed through 

tendons, which may be treated as massless springs. In such a case, the additional restoring forces to 

the body motion are all related to the variation of the length of tendons and they are not independent. 

A further example which may be presented by the present configuration is when the body is 

completely restrained or fixed. If its draught extends to seabed or is sufficiently deep, it represents 

the case of a coastal wall. In following simulations, the selected cases reflect the examples above, 

and the last case is mainly used for convergence study. 

3.1. Convergence study and comparison 

In order to verify the reliability and accuracy of the methodology and numerical procedure in the 

paper, we first consider the case of an overturning wave impacting a fixed body which resembles a 

coastal wall, especially if the draught is large. The width of the rectangular computational domain 

is set as 16x =  in the physical system and 4L =  in the stretched system. In stage 1, in which 

the wave front has not touched the body, the body surface and the free surface below the wave front 

which will become the bubble surface after the impact are both discretised with elements of size 

ml . At the wave front, where the free surface has the largest curvature, the element size is set as 

0.5 ml . Away from this area, the size of element increases gradually at a fixed ratio  , and the 

largest element size is not allowed to be bigger than 0.5, while in the cases below it actually has not 

exceeded 0.32. In stage 2, when the wave front hits the body surface and the dual stretched and 

physical coordinate systems are used in the calculation, the element distribution in the physical 

system is the same as that in stage 1. In the stretched system, the elements of equal size nl  are 

distributed along the impact area, and the sizes of elements on both the outer and inner free surface 

increase gradually at the ratio   from the body. The size of the element near the interface with 

the physical domain is the same as that in stage 1. In stage 3, which starts when the stretching ratio 

0.07s  , the computation is conducted in a single physical domain. The element sizes on the body 

surface below the air bubble are set as nl , while those on the body surface above the air bubble are 

file:///C:/Users/dell/AppData/Local/youdao/dict/Application/7.0.1.0214/resultui/dict/result.html
file:///C:/Users/dell/AppData/Local/youdao/dict/Application/7.0.1.0214/resultui/dict/result.html
file:///C:/Users/dell/AppData/Local/youdao/dict/Application/7.0.1.0214/resultui/dict/result.html
file:///C:/Users/dell/AppData/Local/youdao/dict/Application/7.0.1.0214/resultui/dict/result.html
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set as 0.5 nl .On the inner free surface, the element side increases gradually from the impact zone to 

the main body zone at the fixed ratio  , and the largest one is no bigger than nl . The element size 

on the outer free surface increases gradually at the fixed ratio  , and the largest element size is no 

bigger than 0.5. In the following simulations, the thin jet is regularly cut once the jet thickness is 

smaller than 0.01 nl , or when the two tips inside the bubble meet.   

  Assume that the overturning wave hits the body at 0t t= . Strictly speaking, the impact starts 

when the tip of the wave front touches the body surface. However, we start the simulation at a tiny 

wetted contact surface or an initial stretching ratio 
4

0 8.7 10s −=   , which corresponds to 

0 5.26608t =  in the present case. Figs. 4 (a) and (b) give the pressure distributions at 0/ 10s s =  

and 0/ 20s s =  respectively, in which the horizontal coordinate 'y  is parallel to the symmetry 

axis of body and measured from the bottom. The ratio   for element size increase is set as 1.02. 

Based on the discussion in Sun and Wu (2013), and Sun et al. (2015), at the initial moment of water 

entry, the boundary conditions on the liquid surface at 0s s=  are assumed to be the same as those 

before the body touches the water. Thus the solution at this very early stage may not entirely 

correspond to the true physics, as the boundary condition does not contain the disturbance. However, 

when 0s  is sufficiently small, after a period of numerical transition, the initial results do not have 

significant effect on those at later stage. For this reason, it can be seen from Figs. 4(a) and (b) that, 

when 0/ 10s s =  and 20, there is hardly any visible difference between the two curves from the 

two different meshes. In fact the average relative errors between them are 0.98% in Figs. 4(a) and 

1.62% in Figs. 4(b). This suggests that a mesh independent result has been achieved. Based on this, 

we may also disregard the results between 0/ 1s s =  and 10 and assume that the results from the 

simulation are meaningful only when 0/ 10s s  . This will not cause any real problem for practical 

applications as 0s   can be as small as desired based on the requirement of accuracy. The time 

histories of horizontal force 1F , vertical force 2F  and rotational moment 3F  including both the 

dynamic wave exciting and hydrostatic force, and history of air bubble volume V   at different 

meshes are given in Figs. 4(c~ f) respectively, from 010s s  (
4

0 4.7 10t t −−   ). It can be seen 

that the results from different meshes are virtually graphically identical. The average relative errors 

are only 0.44%, 0.12%, 0.47% and 0.06% respectively. This also indicates that the present numerical 

procedure is mesh independent. 
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Fig.4. Mesh convergence study (a) the pressure distribution at 0/ 10s s =  , (b) the pressure 

distribution at 0/ 20s s = , and the time histories of (c) 1F , (d) 2F , (e) 3F  and (f) air bubble volume 

V .  

In stage 1, as the wave is propagating and an overturning wave will be formed, the time step dt , 

is taken from the ratio of 0 max/ ( )ml V , where maxV  is the maximum of the velocity magnitude 

on the free surface at each time step. 0  is a coefficient, and taken as 5 in this stage. Just before 

the wave front touches the body, or when the distance between the tip of wave front and body is 

smaller than 0.2 ml , a small time step 52.5 10dt −=   is used. This is to avoid the situation in 
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which 0s =   at t   and then relatively large 0s s=   at t dt+  . In stage 2, the time step is set 

through 0 /ds s n=   based on the requirement of the stretched system. This gives a time step 

/ ( )dt ds s t= . In stage 3, the time step is switched back to max/ ( )ndt l V= . The comparison of 

results from two different time steps are presented in Fig. 5 to verify convergence. In the first case, 

the time step increases gradually in stage 2, and this can be realized by setting 100n =  in the first 

200 steps, then 50n =  from steps 200 to 400, and 10n =  from 400th time step.   in the stage 

3 is set as 10. In the second case, the corresponding time steps are doubled. This means that the 

corresponding n  and   in the previous case are reduced by half. It is evident that the pressures 

in Figs. 5(a) and (b) from two different time steps are almost coincident. The relative errors are 1.24% 

and 2.65% respectively. The curves for the time histories of forces and the curves for cavity volume 

in Figs. 5(c~f) respectively are graphically identical. The average relative errors are only 0.34%, 

0.08%, 0.32% and 0.07% respectively. These results indicate that the present numerical procedure 

is time step independent. In the following simulations, unless it is specified, mesh is based on 

0.03ml = , 0.03nl = , 1.02 = , time step is set based on those parameters in case one of Fig.5 

and 0 =5 . 
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Fig. 5. Convergence study with time step (a) the pressure distribution at 0/ 10s s = , (b) the pressure 

distribution at 0/ 20s s = , and the time histories of (c) 1F , (d) 2F , (e) 3F  and (f) air bubble volume 

V .  
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Fig. 6. The time history of the temporal derivative of impact area /ds dt . 

 Based on the result from the simulation, it has been observed that impact occurs at 

0 5.26608t t=  . The force on the body rises rapidly or virtually vertically to a peak and then it 

drops to a value which is the starting point of the force history at 
4

2 0 4.7 10t t t −=  +   in Figs. 4 

and 5. This nearly vertical rise may contradict to Eq. (60) which implies that the force should vary 

with s  continuously and starts from 0 when 0s = . However as can be seen from Fig. 6, /ds dt  

increases very rapidly due to the fact that the wave front is quite blunt. This leads to a nearly vertical 

variation of force, especially 1F  and 3F , with respect to t . Within this very short period of time 

2 0t t− , the impact may be lumped together and the loading on the body can be measured through 

the impulse (Wu, 2001).  

2

0

t

i i
t

Fdt =                                                              (61) 
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Such an impulse model has in fact been used by Cooker (1996). The momentum change of a floating 

body from 0t t=   to 2t t=   can be obtained by i  . For example, for the horizontal one, 

2 01 t tmu mu = − . Here 
4

2 0 4.7 10t t −− =  , and 1  is roughly equal to 31.8 10− . This gives 

an estimated velocity variation of 
2 0

35.7 10t tu u u − = − =  . Such a small variation due to the 

initial impulse is ignored in the subsequent calculations. After the impulse period, the wetted surface 

due to the wave front is no longer small, and the loading from this wetted surface is no longer 

negligible. Thus the force at 2t t=  ( 2s s= ) is not the same as that at 0t t=  ( 0s s= ). Beyond 

this point which approximately corresponds to 2 010s s , the force begins to vary smoothly. 

Fig. 7 gives the comparison between the results obtained from the present procedure and those 

from Cooker and Peregrine (1990) for a vertical wall. In such a case, the draught of the body in our 

case is taken the same as the water depth and then its motion will be completely restrained. The 

parameters of wave are kept the same as those in the previous cases apart from 0x  which is now 

set as 7.5, and they are the same as those in Cooker and Peregrine (1990). It can be seen from the 

figure that the present results for both free shape and pressure are in good agreement with those 

from Cooker and Peregrine (1990). 
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Fig. 7. Comparison of results for wave hitting a fixed vertical wall (a) the free surface and (b) the 

pressure distribution on the wall at 4.19t = . 

3.2. Case studies 

3.2.1 A floating body without external constraint  

We first consider overturning wave impact on a body freely floating on the free surface. This 

reflects a cross section of a ship in beam sea. When the middle section of a slender ship does not 

change very much along the length, strip theory can be used to predict its motion. Here when the air 

bubble is trapped, strictly speaking its flow should be modelled by the two dimensional 

compressible flow theory for each section. However we adopt the simplified model based on the 

adiabatic model. This reflects a cross section of a ship in the sea. The parameters of incoming wave 

and body are the same as those used before, and the wave will hit the body at 0 5.26608t =  . 
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Although the body will respond to the wave and be sent into motion before impact occurs, we let it 

move only from 
4

0 4.75 10t t − +  , which corresponds to 010s s . During this short interval, 

the impulse stage discussed above has passed, and the small variation of velocity due to the impulse 

is neglected. Fig. 8 gives the free surface profile and pressure distribution on the front side of body 

at different 0t t−  . As can be seen in Fig. 8(a), at the early stage of impact, represented by 

0 0.001t t− = , the area of the wetted surface at the impact zone is very small. Due to the large 

relative velocity between the wave front and body, a large impact pressure in Fig. 8(b) is generated 

on the wetted area. Within this impact zone, two peaks of the pressure can be observed, located at 

upper and lower jet roots respectively. It is evident that the former peak is larger than the latter one. 

This is due to the fact that the angle which is formed between the upper side of the body and free 

surface is smaller than that at the lower side, while the velocity magnitudes at the two places are 

found to be similar. A smaller deadrise angle usually corresponds to a larger impact pressure, as 

discussed by Sun et al. (2015). As t  increases, the relative velocity between the body and wave 

front decreases, due to the fact that the overturning wave is being blocked as well as that the body 

has been set into motion, and this leads to the rapid decrease of impact pressure. Thus the impact 

pressure at 0 0.02t t− =   is much smaller than that at 0.001, and a much smaller peak can be 

observed. Beyond that the pressure on the front side is more or less uniform. Its value is very close 

to that inside the trapped bubble and therefore oscillates in time with its volume.  
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Fig. 8. (a) The free surface profile and (b) pressure distribution of an overturning wave impacting 

on a floating body at different time.  

  Fig. 9 presents the time histories of acceleration, velocity and displacement in three degrees of 

freedom, respectively, together with air bubble volume and air bubble pressure. When 

0 0.02− t t , the wetted surface may be small however the impact pressure is relatively large, as 

can be seen from Fig. 8(b). This means that the overall fluid loading may be still significant. More 

importantly, as the impact point is significantly higher than the mean free surface, it leads to a large 

rotational acceleration, as can be seen in Fig. 9(c). After that, as the air bubble volume decreases, its 

internal pressure increases, and it gradually becomes the most important component in the resultant 

force. As can be observed from the pressure curve in Fig. 9(k), it reaches a peak at 0 0.07t t−  . 
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As the pressure in the air bubble increases, the magnitudes of the accelerations in heave and roll 

also increase between 0 0.02t t−   and 0.07, as can be observed in Figs. 9(a) and (c). As time 

increases, the increased air bubble pressure will push the wave back and its volume will bounce 

back or increase. This will be helped by the motion of body which is being pushed away from the 

overturning wave. The pressure in the bubble will then decrease. As the air bubble expands, the 

pressure in the bubble may fall below the atmospheric pressure, which generates a suction force. 

This phenomenon can be observed between 0 0.12t t−   and 0.25 in Fig. 9(k). This will lead to 

the decrease of resultant force in x−   direction, and thus the horizontal acceleration in x  

direction increases in Fig. 9(a). This also leads to the decrease of rotational force, and the rotational 

acceleration in anticlockwise direction in Fig. 9(c) therefore decreases. Such a tendency will 

continue until the horizontal velocity in Fig. 9(d) is almost zero at 0 0.2t t−  , near which the 

rotational velocity in Fig. 9(f) is also close to zero. After that, the air cavity begins to contract, and 

the air cavity pressure, resultant force, and the velocities of movement in Figs. 9(d) and (f) will then 

increase again.  
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Fig.9. The time histories of (a)horizontal acceleration, (b)vertical acceleration, (c)rotational 

acceleration, (d)horizontal velocity, (e)vertical velocity, (f)rotational velocity, (g)horizontal 

displacement, (h)vertical displacement, (i)rotational displacement, (j)air bubble volume and (k)air 

bubble pressure. 

3.2.2 A floating body tethered to seabed through mooring cables 
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Fig. 10. Floating breakwater with a cable system. 

The floating breakwaters are usually placed at a location where the wave motion is largest, and it 

is often tethered to seabed through a group of mooring cables, and the buoyancies and weights of 

cables are both neglected. Typically, the floating breakwaters are long, and the section of structure 

does not change very much for a buoyant box or raft. The two-dimensional theory is used here for 

the similar reasons discussed in section 3.2.1. Fig. 10 gives a typical case of a floating breakwater 

anchored to seabed, and the motion of body is restrained by two cables. In mathematical modelling, 

the cable is usually treated as a massless spring, and only the effect of axial stiffness is considered. 

The angles between x  axis and the cables on the right and left sides are denoted as 1  and 2  

respectively, while their lengths are 1  and 2  respectively, which will both vary with the motion 

of body. At 0t = , they are correspondingly denoted as 01 , 02 , 01  and 02 . The ends of the 

two cables fixed on body are denoted as 1N   and 2N   respectively, while those fixed on the 

seabed are denoted as 1M  and 2M  respectively. ( , ) i i  represent the coordinates of iN  in 

the body fixed system, while ( , )
i iM Mx y   denote the coordinates of ,( 1,2)=iM i   in the earth 

fixed system. The displacements of ends fixed on body can be expressed as 

(cos 1) sini x i ix q     = + − −                                            (62) 

sin (cos 1)i y i iy q     = + + −                                           (63) 
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where xq  and yq  are defined in Eqs. (17) and (18). The variation of i  due to body motion can 

be given as  

2 2

0 0 0 0 0( cos ) ( sin )      = +  + +  −i i i i i i i ix y                            (64) 

in which  

0 0 0cos[( cos ) / ( )]i i i i i ia x    = +  +                                      (65) 

The force along the cable is calculated based on Hooke’s law  

0=  +i i iT k T                                                           (66) 

where k  is the stiffness coefficient of the cable and 0iT  is its pre-tension force which satisfies 

01 01 02 02sin sin + + = BT T m F   and 01 01 02 02cos cos 0 + =T T   to guarantee the balance of 

force on the body in calm water, where BF  is the buoyancy. iT  from each cable will lead to forces 

and moment on the body and will be incorporated into the equation (56) through 

1 1 2 2

1 1 2 2

1 1 1 2 2 2 1 1 1 2 2 2

cos cos

sin sin

sin( ) sin( ) cos( ) cos( )

 

 

           

− − 
 

= − − −
 
 − −  − −  + −  + −  

e

T T

F T T m

T T T T

  (67) 

The parameters of the floating body considered here are the same as those presented at the 

beginning of section 3, apart from the mass which is now taken as 0.1. The two cables are symmetric 

about the centre line of body at 0t = , with 02 8 =  and 01 172 = . In such a case, we have 

the pre-tension force 01 02 0.2= =T T . The y  coordinates of 1N  and 2N  are the same as that 

of the mass centre, or their coordinates in the body-fixed system are (0.15,0)  and ( 0.15,0)−  

respectively, where 0.15 is the half width of the body. This corresponds to a vertical distance

01 01sin 0.75  = , which is comparable to the draught of body 0.515. As both cables have a small 

slope, the horizontal motion of the body will be very much restrained. Fig. 11 provides the velocities 

and displacements in three degrees of freedom, respectively, together with the air bubble volume 

and pressure at different stiffness. When the stiffness k  is zero, the cable has only the pre-tension 

force which is constant. Under the action of fluid force, air bubble force and the pre-tension force, 

the magnitude of the horizontal velocity in Fig. 11(a) increases first and then decreases, and the sign 

is negative throughout the whole simulation. The magnitude of the vertical velocity in Fig. 11(c) 

decreases and the sign remains negative. The floating body continually moves to the left and 

downwards, as shown in Figs. 11(b) and (d). The rotational velocity increases to a peak and then 

decreases. The motion in this case is similar to that in section 3.2.1. For non zero k  , it is not 

possible for the body to continually move away from its mean position. It would be pulled or pushed 

back by the cables and begin to oscillate around the mean position. When k  is larger, the body is 
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expected to pulled back earlier and therefore has a smaller motion amplitude and larger frequency. 

This is particularly evident in the horizontal mode for which the cable provides the main constraint. 

If we consider the case in which the body rotates about its fixed mass centre, 1  and 2  will 

increase or decrease together when   is small. Therefore the moments created by the two cables 

will cancel each other when   is small, for example before 0.1t = , during this period the cables 

have small effects on the roll motion. When    is not small, 1   and 2   will be noticeably 

affected by the variation of   . Thus When    becomes larger, some difference of rotational 

motion from different stiffness k  can be found. Since the restrained moment is small relative to 

the fluid rotational moment, the difference is not very prominent. This is also reflected by Figs. 11(e) 

and (f), which show the rotational velocity and displacement are not significantly affected by k  at 

0 0.1t t−  . After that, some difference can be observed.  

As k  becomes very large, the results are expected to tend to those at k → . We should note 

that at k → , it is still possible for the body to have motion. This is because although 1  and 

2  will no longer change, it provides only two constraints given in Eq. (64) while the body has 

three degrees of freedom. However it is expected in such a case that the sway, heave and roll motions 

should be linked to a single parameter as there is effectively only one degree of freedom. In fact, we 

can substitute Eqs. (62) and (63) into (64) and impose 1 2 0  =  = . xq  and yq  can then be 

written in terms of  . The numerical results at large k  in Figs. 11(b, d, f) are found to satisfy 

these two equations accurately. It is interesting to notice that the orders of  , yq  and xq  are 

110− , 210−  and 310−  respectively, as expected from this kind of restraint.  
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Fig. 11. The time histories of (a) horizontal velocity, (b) horizontal displacement, (c) vertical velocity, 

(d) vertical displacement, (e) rotational velocity, (f) rotational displacement, (g) the volume and (h) 

the pressure of air bubble for a floating breakwater at different cable stiffness. 

3.2.3 A floating body constrained by tendons attached on bottom  

In the following case, the two tendons will be placed vertically below a floating body, or

01 02 / 2  = = . Such a form of restraint can often be found in tension leg platforms (TLP). A 

TLP is generally not a slender body and the 3D should be used for such a geometrical configuration. 

However the results from the present 2D simulations can still be expected to provide some overall 

insights into the problem. The tendon is treated as a spring with no mass, and only the effect of axial 

stiffness is considered. In this case, the width and draught of the floating body are both set as 0.5, 

the mass and rotating inertial are set as 0.1 and 2 respectively. The initial position of rotating centre 

is (0, 0.25)−  in the space-fixed system. The ends of the tendons on the body in body-fixed system 
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are located at (0.25, 0.25)−   and ( 0.25, 0.25)− −   respectively. From the balance of force at 

0t = , we have 
2

01 02 8.17 10T T −= =  . Typically, the water depth at which a TLP operates is 

much larger than its draught. However, the breaking wave model given by Eq. (1) can still be used 

to represent some realistic cases. In such a case the initial length 0  is set as 30, which is much 

larger than the water depth in Eq. (1) to reflect a realistic ratio of tendon length to the TLP draught. 

The tendons will mainly provide the restraint in vertical direction while they provide far smaller 

restraints in other directions when their lengths are long. From Figs. 12(a) and (b), it can be seen 

that after impact, the body will be simply pushed away in the horizontal direction. The tendons offer 

very little resistance, even at very large k . The effect of tendons in the vertical direction is obvious 

in Figs. 12(c) and (d). As k   increases, the motion becomes smaller. However as the stiffness 

becomes larger, the natural frequency of the body in heave becomes higher. The body motion after 

impact becomes highly oscillatory. This is consistent with a typical feature of a TLP, ie, ringing. As 

discussed by Zhou and Wu (2015), when a TLP is set into motion by a transient wave, it may have 

persistent oscillation at high frequency even long after the wave has passed the body. The effect of 

k  on xq  becomes obvious at later stage of the impact, as shown in Fig. 12(b). Correspondingly, 

the effects of k  on bubble volume and pressure are also evident at the later stage of impact, as 

shown in Figs. 12(g) and (h).  
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Fig. 12. The time histories of (a) horizontal velocity, (b) horizontal displacement, (c) vertical velocity, 

(d) vertical displacement, (e) rotational velocity, (f) rotational displacement, (g) the volume and (h) 

the pressure of air bubble for a TPL at different tendon stiffness. 

4. Conclusions  

The problem of breaking wave impacting on the floating body with air bubble effect has been 

modelled through the boundary element method, based on velocity potential theory with fully 

nonlinear boundary conditions. The dual systems and auxiliary function method are adopted to deal 

with the extremely small impact zone at the initial stage and decouple the mutual dependence of 

fluid loading, air bubble deformation and body motion, respectively. Extensive simulations have 

been undertaken for various cases of breaking wave impact, from which the following conclusions 

can be drawn. 

(1) At the early stage of impact, the area of the wetted surface at the impact zone is very small while 

the impact pressure is very large, which is mainly due to the large relative velocity between the wave 

and body and the blunt shape of the wave front. After a very short impulse stage, as time increases, 

the impact pressure decreases rapidly.  

(2) The air bubble pressure varies with its volume. When time t  is not large, due to the fact that 

the wave front has a large plunging speed and the velocity of body is small, the air bubble volume 

decreases rapidly, and correspondingly, the bubble pressure increases rapidly. The increased air 

bubble pressure supplies a force that simultaneously accelerates the body and decelerates the fluid 

coming from the other side of the bubble. Consequently, the air bubble volume will increase while 

the pressure will decrease. It is possible that the bubble pressure will fall below the ambient pressure, 
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which effectively provides a suction force on the body.  

(3) For the case of a floating breakwater, the horizontal direction is effectively restrained through 

two cables with small angles relative to the seabed, while the vertical motion is less affected. The 

variations of the air bubble volume and pressure are mainly due to the rotational motion of the body 

in addition to the wave plunging itself. When cable stiffness k  is large, the horizontal, vertical and 

rotational displacements of the body are all related to a single parameter and the body effectively 

has one degree of freedom, while the former is much larger than the latter two. Different from 

smooth wave loading, in a breaking wave, the body will experience a large impact force and air 

bubble pressure force within a short period of time. For a breakwater, the momentum obtained from 

the breaking wave is mainly transmitted into the motion of the body in rotational degree. 

(4) For a body attached to the bed by vertical cables, the heave motion is constrained. The heave 

motion set going by impact may have small amplitude, but it oscillates in time with high frequency. 

This resembles the ringing typically seen on a TPL which could oscillate at high frequency 

persistently after a transient wave has long past. The air bubble volume and pressure are mainly 

affected by the horizontal motion which is far less restrained than the vertical motion.  

(5) The present work has ignored the possible ventilation and cavitation effects. As it has been found 

in the simulation that the pressure during the impact may be lower than the ambient pressure, air 

could be sucked into the fluid and additional air cavities could be formed apart from the trapped one. 

In the cases considered, the smallest absolute pressure is about 6 gh , which is about 
46.03 10 aP  

if 1h m= . The vapour pressure is about 
32.34 10 aP , and thus cavitation does not occur in such 

a case. However, cavitation can occur under other conditions, as well as ventilation. To include their 

effects, the model in the present work has to be refined, which forms part of our further work. 
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