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ABSTRACT 
 

Malignant pleural mesothelioma (MPM) is a devastating disease for which 

limited effective therapies are currently available. Tumour necrosis factor-

related apoptosis-inducing ligand (TRAIL) and other death receptor (DR) 

agonists are pro-apoptotic agents that trigger the extrinsic apoptotic pathway 

selectively in cancer cells. Previous work has shown that supports that loss of 

function of the nuclear deubiquitinase BRCA associated protein-1 (BAP1) 

augments sensitivity to recombinant TRAIL (rTRAIL) in MPM cells. This study 

shows that BAP1 is a candidate biomarker for rTRAIL sensitivity in cell line, 

early passage culture and tumour explant models of MPM. In addition, BAP1 

is a potential biomarker for sensitivity to other DR agonists and for additional 

cancer types with BAP1 mutations. I have also identified other novel 

candidate biomarkers for DR agonist sensitivity, notably ASXL1/2, through 

exploration of the mechanism underlying the BAP1-rTRAIL association. 

 

I present data supporting the clinical relevance and utility of the BAP1-TRAIL 

association. I have shown that loss of BAP1 function occurs in a significant 

proportion of MPM tumours in the UK and that loss of BAP1 function 

augments sensitivity to TRAIL in primary tumour tissue. I describe in vitro data 

supporting the hypothesis that loss of BAP1 function augments sensitivity to 

rTRAIL in MPM. I have shown that loss of BAP1 function augments sensitivity 

to other DR agonists and that BAP1 can act as a biomarker for DR agonist 

sensitivity in other cancers with BAP1 mutations. Finally, I explore the 

mechanism underlying the BAP1-TRAIL association. I present data supporting 

the notion that BAP1 binds to the ASXL1/2 proteins to form the polycomb 

repressor deubiquitinase complex which underlies BAP1-induced TRAIL 

resistance. Loss of this function results in a change in the expression of 

proteins of the extrinsic apoptotic pathway, which may favour apoptosis upon 

DR agonist binding. 
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IMPACT STATEMENT 
 

The findings presented in this thesis have significant potential clinical impact. I 

demonstrate the potential utility of loss of function of BAP1 and ASXL1/2 as 

biomarkers for sensitivity to DR agonists. Several DR agonists exist that have 

already completed phase I/II clinical testing in this context but so far have not 

demonstrated significant efficacy over standard therapy in several different 

malignancies when tested in unselected populations. Notably there have been 

no trials of DR agonists in MPM to date. Within completed trials however, a 

few patients were noted to exhibit partial or complete response, yet to date no 

means by which to identify such responders has been found. The data 

presented within this thesis supports the loss of function of BAP1, and 

potentially ASXL1/2, as candidate biomarkers for DR agonist sensitivity. BAP1 

loss of function has been observed in 42-67% of MPM tumours, which would 

therefore be amenable to DR agonist therapy. ASXL1 mutations are highly 

prevalent in myeloid malignancies (34-45%) and ASXL2 mutations are 

present in 4% of pancreatic and 6% of prostate cancers. These malignancies 

would also be potentially amenable to targeted DR agonist therapy. Insights 

gained into the mechanism suggest that BAP1 loss of function alters 

expression of proteins of the extrinsic apoptotic pathway. This could be 

exploited to sensitise BAP1 wild-type tumours to DR agonists either by 

inhibiting anti-apoptotic proteins or even by inhibiting BAP1 itself.  
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1.1 Malignant Pleural Mesothelioma 
 

Malignant pleural mesothelioma (MPM) is a rare but highly aggressive tumour 

originating from the mesothelial cells of the pleura, the lining of the lungs. 

MPM is strongly associated with asbestos exposure and is characterised by a 

long latency period of 20-50 years between fibre exposure and disease 

presentation [1, 2]. The background incidence is relatively low; there were 

2,717 new cases of MPM in the UK in 2014 (Figure 1-1) [3]. Owing to 

legislation banning the mining and use of asbestos, the incidence is expected 

to peak in the UK within the next 10-20 years. Globally however, 

industrialisation has led to an increase in asbestos use and the incidence is 

set to continue to increase for several decades. Prognosis is poor; the overall 

median survival of patients with MPM is 9-12 months, regardless of the stage 

of the disease [4]. The annual cost burden to the NHS is estimated to be 

approximately £16 million [5]. 

 
Figure 1-1: Mesothelioma incidence rates, UK, 1993-2015 [6] 

 

1 INTRODUCTION 
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There are three distinct subtypes of MPM: epithelioid (50-60% of MPM cases), 

sarcomatoid (10% of MPM cases) and biphasic (30-40% of MPM cases) [7]. 

Epithelial MPM can be further classified into subtypes including tubular, 

papillary, giant/large cell, small cell, myxoid and others that reflect 

morphological similarities to carcinomas of other origins [8]. Sarcomatoid 

MPM is characterised pathologically by spindle-shaped cells similar to those 

seen in fibrosarcomas and by poor prognosis compared with other types of 

MPM. Biphasic MPM has features of both the sarcomatoid and epithelial-

types of MPM [8]. 

 

1.1.1 Pathogenesis of MPM 
The vast majority of MPM (80%) is attributed to prior asbestos exposure [9]. 

There are two forms of asbestos (i) chyrosotile (white), consisting of curly 

fibres, and (ii) amphibole, consisting of needle-like fibres. Amphibole asbestos 

can be further classified as crocidolite (blue), amosite (brown), anthophyllite, 

actinolite and tremolite. The risk of developing MPM is related to the type of 

fibre, duration and burden of exposure; crocidolite is considered to be the 

most carcinogenic. As a result of its fire-resistant properties, industrialisation 

led to the mining and application of asbestos in constructions, heating 

arrangements, electrical works and plumbing. Those exposed as a result of 

working in such industries have been subjected to the occupational hazard of 

developing MPM. Para-occupational exposure can also occur, for example in 

family members exposed to fibres in workers clothes [1]. Additional known risk 

factors include simian virus 40 (SV40), chest wall radiation and erionite, an 

asbestos-like mineral found in Turkey.  

 

Asbestos fibres are very long and thin allowing them to be inhaled and to 

migrate to the pleura where they cause local irritation and initiate a cycle of 

tissue damage and repair. The precise mechanism by which they cause MPM 

is unknown. Proposed mechanisms include the generation of reactive oxygen 

species which induce DNA damage, disruption of mitotic spindles, absorption 

of further hazardous molecules, macrophage accumulation and release of 
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cytokine and growth factors including tumour necrosis factor-α (TNF-α) [2]. 

TNF-α has been shown to activate nuclear factor-κB, which leads to 

mesothelial cell survival and inhibits asbestos-induced cytotoxicity [10]. The 

aberrantly activated signalling network may create a pool of mesothelial cells 

that harbour DNA damage and a tumour microenvironment that supports 

them. 

 

1.1.2 Diagnosis and staging of MPM 

The most common presenting symptoms of MPM are breathlessness and 

chest pain caused by a reactive pleural effusion, tumour encasement of the 

lung and/ or invasion into the chest wall. Fatigue, anorexia, weight loss, 

sweats and malaise are also often present as a result of circulating cytokines. 

Some patients however remain asymptomatic and the disease is identified 

incidentally.  

Radiological imaging plays a key role in both diagnosis and staging; chest 

radiography, thoracic ultrasound and CT and PET-CT imaging are all routinely 

employed. MRI has been demonstrated to be superior to PET-CT for 

identifying locally invasive disease in cases where surgical resection is 

considered, though is not routinely used [11]. Definitive diagnosis however 

requires cytological or histological assessment of pleural fluid or tumour 

tissue. A number of diagnostic biomarkers including mesothelin, osteopontin 

and fibulin 3 have been evaluated but found to be of limited clinical use hence 

the urgent need to discover new candidate biomarkers [12, 13]. 

 

A number of staging classifications for MPM exist all of which have limitations 

for use in routine clinical practice largely due to limitations in current imaging 

techniques [14]. The consensus is a tumour, node, metastasis based system, 

using surgical or radiological information be employed. That proposed by the 

International Mesothelioma Interest Group is widely used (Table 1-1) [15].  
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Table 1-1. The International Mesothelioma Interest Group Staging System for 

malignant pleural mesothelioma [15] 

T  

T1 Tumour of the ipsilateral parietal pleura, including diaphragm and 

mediastinal pleura 

T1a No visceral pleural involvement 

T1b With visceral pleural involvement 

T2 Tumour affecting parietal, visceral, diaphragmatic and mediastinal pleura, 

with either involvement of diaphragmatic muscles or pulmonary 

parenchyma 

T3 Involvement of the endothoracic fascia, extension into the mediastinal fat, 

non-transmural involvement of the pericardium or resectable focus of chest 

wall invasion 

T4 Unresectable disease, diffuse chest wall or mediastinal involvement, direct 

transdiaphragmatic spread into the peritoneum, contralateral plural 

involvement, invasion of the spine, ribs or brachial plexus, trans-mural 

pericardial invasion or malignant pericardial effusion 

N  

N0 No regional lymph node metastases 

N1 Metastases in ipsilateral bronchopulmonary or hilar lymph nodes 

N2 Metastases in subcarinal or ipsilateral mediastinal lymph nodes, including 

ipsilateral internal mammary chain 

N3 Contralateral lymph node metastases, ipsilateral or contralateral 

supraclavicular lymph node involvement, and scalene nodes 

M  

M0 No extrathoracic metastases 

M1 Extrathoracic metastases present 

  

 

1.1.3 Management of MPM 

Surgery 

Surgical management of MPM is controversial with a lack of robust 

randomised trial data. It is used only in early-stage disease and in patients 

with good functional status. Surgical procedures employed include radical and 
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debulking / tissue-sparing options. Extrapleural pneumonectomy  (EPP) 

involves the removal of lung, pleura, pericardium and diaphragm with the aim 

of removing all disease [16]. A systematic review of early clinical studies 

concluded that it was impossible to determine whether EPP extended survival 

in MPM [17]. A feasibility study, the Mesothelioma and Radical Surgery trial 

(MARS) revealed potential harm associated with EPP with an adjusted hazard 

ratio for death of 2.75 (95% CI 1.21–6.26; p=0.016) [18]. EPP has since been 

largely abandoned in favour of less radical procedures such as 

pleurectomy/decortication (removal of the visceral and parietal pleura) or 

partial pleurectomy via video associated thoracic surgery (VATS). Such 

procedures do not aim for complete resection and they are usually employed 

alongside additional treatment modalities. A randomised trial is currently 

underway that aims to address if pleurectomy / decortication extends survival 

above non-surgical treatment [19]. Observational clinical studies have 

suggested that VATS partial pleurectomy controls symptoms in MPM however 

the only suitably powered randomised trial demonstrated no survival 

difference compared with talc pleurodesis via a chest drain [20]. 

 

Radiotherapy 

Radiotherapy is predominantly employed as a palliative measure in MPM and 

has no impact on survival. It has been used as an adjuvant to surgery and 

chemotherapy in the context of trimodality treatment however evidence for this 

approach is lacking and it is not considered standard care [21].  

 
Chemotherapy 

Chemotherapy using third-generation anti-folate agents is the only treatment 

modality that has been shown to improve survival in MPM. A trial of 488 

patients randomised to receive either pemetrexed and cisplatin or cisplatin 

alone demonstrated a median survival in the pemetrexed arm of 12.1 months, 

compared with 9.3 months with cisplatin alone (p=0.02) [22]. Toxicity rates 

were high initially, but fell after the addition of vitamin B12 and folic acid 

supplementation. A second trial comparing raltitrexed and cisplatin with 
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cisplatin alone in 250 patients demonstrated a median survival in the 

ratitrexed arm of 11.4 months compared with 8.8 months with cisplatin alone 

(p=0.048) [23]. The study appeared underpowered and consequently has had 

less impact on clinical care. Standard first line chemotherapy is therefore 

combination pemetrexed and cisplatin as the evidence base is stronger than 

that for ralitrexed and cisplatin, which is rarely used. Carboplatin can be 

substituted in older patients and patients with comorbidities, and has 

demonstrated similar efficacy to cisplatin [24]. Response rates to these 

regimes remain low however; an evaluation of over 1700 patients who 

received pemetrexed with either cisplatin or carboplatin demonstrated 

response rates of 26.3% and 21.7%, respectively [25]. 

  

Targeted Therapies 

Bevacizumab, an anti-VEGF monoclonal antibody, has been shown to be 

effective in MPM. VEGF plays a key role in MPM by promoting angiogenesis 

and stimulating tumour growth. VEGF-targeted inhibitory therapies, such as 

bevacizumab, exert their effects through a number of potential mechanisms, 

including inhibition of new vessel growth, regression of newly formed tumor 

vasculature and alteration of tumour blood flow. The MAPS trial randomised 

448 participants with MPM to receive cisplatin and pemetrexed chemotherapy 

with or without bevacizumab. Patients who received bevacizumab had 

significantly longer median (95% CI) overall survival at 18.8 (15.9–22.6) 

months compared with 16.1 (14.0–17.9) months in the chemotherapy alone 

arm (p=0.017). Patients given bevacizumab alongside chemotherapy also 

showed longer progression free survival of 9.2 (8.5–10.5) months versus 7.3 

(6.7–8.0) months in those receiving standard care (p<0.0001) [26]. This 

combination is now included in the National Comprehensive Cancer Network 

guidelines as a possible first-line treatment in appropriately selected patients. 

 

Immunotherapy 

There have been promising results with immunotherapy in MPM. Checkpoint 

inhibitors such as tremelimumab and pembrolizumab have shown significant 
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disease control rates and prolonged disease stability; clinical trials assessing 

this further are underway [27]. 

 

 

1.1.4 Genomic alterations in MPM 
A number of recent studies have shed significant light on the mutational 

landscape of MPM. Bueno et al sequenced transcriptomes and exomes from 

216 MPM tumours and identified recurrent mutations with predicted functional 

impact in ten genes [28]. These are BAP1, NF2, TP53, SETD2, DDX3X, 

ULK2, RYR2, CFAP45, SETDB1 and DDX51. The authors also found regions 

of recurrent copy loss that included BAP1, NF2, CDKN2A, LATS2, LATS1 and 

TP53 consistent with previous reports [29]. Copy number loss correlated with 

loss of expression in these genes. Previous studies involving smaller samples 

have also identified recurrent inactivation of BAP1, NF2, CDKN2A and TP53 

as a result of somatic mutations and/ or copy number alterations in MPM [30-

33].  
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1.2 BRCA associated protein-1  
 

BRCA associated protein-1 (BAP1) has been identified as a key tumour driver 

in the pathogenesis of MPM. Somatic loss-of-function (LOF) mutations were 

initially identified by Sanger sequencing in 20-25% of MPM tumours [34]. 

However integrated molecular approaches and immunohistochemical analysis 

suggest BAP1 loss of function is seen in as many as 42-67% of MPM tumours 

[35-37]. BAP1 is a nuclear deubiquitinase and transcriptional regulator with 

key roles in several important cellular processes (Figure 1-2). 

 
Figure 1-2 BRCA associated protein 1 – main binding partners and associated 
cellular functions [38] 
BRCA associated protein 1 (BAP1) carries out its main functions in multi-protein complexes 
with several different protein-binding partners within which it acts to deubiquitinate protein 
substrates, the major substrate being histone 2A. Complexes with host cell factor 1 (HCF1), 
yin yang 1 (YY1), INO80 chromatin remodelling compex (INO80), forkhead transcription 
factors ½ (FoxK1/2) or O-linked N-acetylglucosamine transferase (OGT) mediate functions 
related to cell cycle regulation and proliferation. Complexes with additional sex combs like 
proteins 1/2 (ASXL1/2) mediate functions related to cellular differentiation. Complexes with 
BRCA1 and BRCA1-associated RING domain protein 1 (BARD1) mediate functions related to 
DNA damage repair. Adapted from Wang et al [38]. 
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1.2.1 Deubiquitinases 

Ubiquitin (Ub) is a 76 amino acid polypeptide covalently bound to other 

proteins by sequential action of Ub activation (E1), Ub conjugating (E2) and 

Ub ligase (E3) enzymes, forming an isopeptide bond between the C terminus 

of Ub and the lysine residues of the substrates [39]. It is a reversible process; 

deubiquitinases (DUBs) catalytically cleave monoubiquitin or polyubiquitin 

chains from proteins. Ubiquitination can mark a protein for degradation by the 

proteasome, alter cellular location, change its activity and modulate its protein 

interactions [39]. Ubiquitinating and deubiquitinating enzymes can therefore 

modulate several biological processes including cell cycle progression, signal 

transduction, plasma membrane transport, transcriptional regulation, immune 

response, apoptosis and oncogenesis [39]. 

 

At least 98 DUBs have been identified and classified into six families [40]. 

These are (1) ubiquitin-specific proteases (USPs), (2) ubiquitin carboxy-

terminal hydrolases (UCHs) (3) ovarian-tumour proteases (OTUs) (4) 

Machado–Joseph disease protein domain proteases, (5) JAMM/MPN domain-

associated metallopeptidases (JAMMs)  (6) monocyte chemotactic protein-

induced proteins (MCPIP). Apart from JAMMs, all DUBs are cysteine 

peptidases and the presence of cysteine at the active site is required for their 

activity. BAP1 is the largest member of the UCH family of DUBs that in 

humans also includes UCHL1, UCHL3, UCHL5/UCH37. UCH enzymes can 

only target small peptides from the C-terminus of ubiquitin as they have a 

confined loop that precludes the processing of polyubiquitin chains and large 

folded proteins [40].  

 

1.2.2 BAP1 structure 

BAP1 is a 90kDa protein consisting of 729 amino acids. It contains a number 

of identified key domains that mediate its functions. At the N- terminus it 

contains the ubiquitin carboxyl hydrolase (UCH) domain, a conserved catalytic 

domain of 230 amino acids that confers its deubiquitinase activity [41]. At the 

C- terminus it contains the C-terminal domain (CTD) including a nuclear 
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localisation signal (NLS) [41]. The ubiquitin-conjugating enzyme UBE20 

induces BAP1 sequestration in the cytoplasm by multi-monoubiquitination of 

the NLS and BAP1 counteracts this by auto-deubiquitination of the same site 

thus regulating its own nuclear translocation [42]. The CTD is also proposed 

to interact electrostatically with the nucleosome core [43]. Between these 

termini a number of additional domains with key amino acids that mediate 

protein-protein interactions have been identified. These include a four amino 

acid (NHNY) host cell factor -1  (HCF-1) binding motif (HBM), [44], and a 

UCH-37 like domain (ULD) that contains interaction sites with a number of 

proteins including ASXL1/2 (R666-669) [45], YY-1 and BRCA-1 (lysine 691) 

[46]. Phosphorylation at threonine 493 enables interaction with FoxK1/2 [47] 

and at serine 592 facilitates its function in DNA repair [48]. BAP1 lacks a DNA 

binding domain and interacts with the genome through the assembly of multi-

protein complexes. A schematic structure highlighting these key domains and 

amino acids is in Figure 1-3. 

	  
Figure 1-3 Functional architecture of BAP1 

UCH – Ubiquitin hydroxyl carbolase domain, contains catalytic site for DUB activity, key 

amino acids cysteine 91 and alanine 95. HBM – HCF-1 binding motif. Threonine 493 (T493) is 

required for FOXK2 interaction. Serine 592 (S592) is phosphorylated during the DNA damage 

response. ULD – UCH-37 like domain, contains ASXL, BRCA1 and YY1 interaction sites. 

CTD – C terminal domain, contains nuclear localisation signal (NLS) and proposed to interact 

hydrostatically with nucleosome core. UBE20 monoubiquitinates the NLS. 
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1.2.3 BAP1 function 

BAP1 has emerged as a master genetic regulator forming multi-protein 

regulatory complexes to modulate the transcription of thousands of genes and 

influence several biological processes, including development, DNA repair, 

chromatin remodelling and oncogenesis.  

 

A significant interaction is with host cell factor 1 (HCF-1) with which BAP1 

interacts through its HCF binding motif (HBM) and removes K48 ubiquitin 

linkages at lysine residues [49]. HCF-1 modulates chromatin architecture by 

recruiting histone-modifying complexes and activating transcription factors 

including the E2F family, which controls G1/S phase progression in the cell 

cycle. Loss of BAP1 function results in an increase in K48 linkages and 

accumulation of HCF-1, which the promotes transition from G1 to the S phase 

of the cell cycle[49].        

 

BAP1 also interacts with yin yang 1 (YY1), a zinc finger protein capable of 

both transcriptional activation and repression, in an HCF1-dependent manner 

[44]. The ternary BAP1-HCF1-YY1 complex is recruited to the promoter of a 

number of genes including COX7C that encodes a component of the 

mitochondrial respiratory chain [44]. YY1 has been shown to act as an 

activator or suppressor of COX7C, depending on whether it is bound to the 

HCF1–BAP1 complex.  

 

O-linked N-acetylglucosamine transferase (OGT) is a glycosyltransferase that 

catalyses the addition of a single N-acetylglucosamine by O-glycosidic linkage 

to serine or threonine residues. BAP1 deubiquitinates OGT which in turn 

modifies and activates HCF-1 [50]. OGT is more rapidly degraded and levels 

decreased in BAP1-knockout splenocytes, as are HCF-1 levels. HCF-1 levels 

however are unaltered when BAP1 is introduced in BAP1 deficient renal 

cancer cells [51]. As OGT is a positive regulator of HCF-1 it has been 

suggested BAP1 activity may indirectly modify HCF-1 levels through OGT. 

Indeed chromatin immunoprecipitation (ChIP) sequencing demonstrates the 
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majority of the ~6000 candidate binding sites for BAP1 are also associated 

with OGT and HCF-1 [51]. The BAP1-HCF-1-OGT complex also influences 

metabolism. HCF1 recruits OGT to O-glcNAcylate PGC-1α, a key regulator of 

gluconeogenesis. O-GlcNAcylation of PGC-1α enables BAP1 to 

deubiquitinate PGC-1α and protect it from degradation, thereby promoting 

gluconeogenesis [42]. 

 

BAP1 is required for the interaction between HCF-1 and the forkhead 

transcription factors FoxK1/K2. FoxK1/K2 directly bind to DNA via a forkhead 

winged helix-turn-helix DNA-binding domain. Phosphorylation of BAP1 at 

threonine 493 enables its interaction with FoxK2, which recruits BAP1 to 

chromatin, which in turn recruits HCF1, forming a ternary complex [52]. 

Depletion of BAP1 results in the upregulation of FoxK2 target genes such as 

MCM3, CDC14 and CDKN1B [47]. Mutation of threonine 493 to alanine 

(T493A) on BAP1 abolishes this FoxK2 target gene regulation [47].  

 

Evidence suggests BAP1 also has a role in DNA damage signalling and 

repair. It interacts with several homologous recombination (HR) proteins 

including the BRCA1/BARD1 complex that harbours E3 ligase activity and 

regulates the DNA damage response [53]. BAP1 binds and deubiquitinates 

BARD1, causing dissociation of the complex thus modulating the E3 ligase 

activity and response to DNA damage [53]. BAP1 is phosphorylated on serine 

592 following UV irradiation as a result of which bound BAP1 dissociates from 

chromatin [53]. A model has been suggested whereby stress induced 

phosphorylation functions to displace BAP1 from specific promoters thus 

regulating the transcription of a subset of genes involved in the response to 

DNA damage. In response to DNA damage BAP1 is phosphorylated by the 

DNA repair protein ATM [54]. This recruits BAP1 to DNA damage sites 

together with ASXL1 to form the polycomb repressor deubiquitinase complex 

(PR-DUB; see below) which deubiquitinates H2AK119Ub in a PARP 

dependent manner [54]. Loss of BAP1 results in impaired homologous repair 

and increased sensitivity to radiation and PARP inhibitors. 
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BAP1 also interacts with INO80, a chromatin-remodelling complex that can 

alter chromatin structure by nucleosome sliding, histone eviction and histone 

exchange. INO80 is involved in various chromosomal processes, including 

DNA repair, telomere regulation, centromere stabilization and the transcription 

of genes. BAP1 stabilizes INO80 by deubiquitination and this contributes to 

DNA replication [55]. 

 
BAP1 may also play a role in inhibiting apoptosis caused by metabolic stress 

[56]. The unfolded protein response (UPR) protects cells from stress caused 

by misfolded proteins in the endoplasmic reticulum; if the stress is unresolved, 

this leads to induction of apoptosis by depleting ATP and generating reactive 

oxygen species (ROS). Under metabolic stress, BAP1 promotes the 

expression of genes essential for UPR by directly binding to promoters of the 

genes involved [56]. Studies performed with BAP1-null lung and renal cancer 

cell lines showed increased apoptotic induction following glucose deprivation. 
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1.3 The polycomb group proteins 
 

A key interaction of BAP1 is with the ASXL 1/2 proteins to form the polycomb 

repressor deubiquitinase complex (PR-DUB). This regulatory complex 

interacts with other polycomb group (PcG) proteins to modulate diverse 

cellular functions including development, stem cell function, tissue 

homeostasis and oncogenesis 

 

1.3.1 The polycomb repressor complexes 

PcG proteins assemble multi-subunit complexes termed polycomb repressive 

complexes (PRCs), which regulate chromatin organisation and maintain it in a 

transcriptionally inactive state [57]. There are two main polycomb repressor 

complexes (PRC), PRC1 and PRC2. Both induce covalent post-translational 

histone modifications associated with transcriptional silencing [58].  

 

PRC2 

PRC2 has four core components: enhancer of zeste 2 (EZH2), or its homolog 

EZH1, suppressor of zest 12 (SUZ12), embryonic ectoderm development 

(EED) and retinoblastoma-associated protein 48 (RbAp48). EZH2/1 houses a 

catalytic subunit, the SET domain, which catalyses trimethylation of histone 

H3 at lysine 27 (H3K27Me3), a mark that strongly correlates with PcG 

silencing (Figure 1-3) [59].  SUZ12 regulates the histone methyltransferase 

activity while EED modulates the substrate specificity of EZH2 toward histone 

H3K27 or histone H1K26. Evidence supports a role for H3K27Me3 as a 

docking site for PRC1 and PRC2 may therefore act to recruit PRC1 to 

chromatin [60, 61]. However, many genomic sites accumulate PRC2 but not 

PRC1 [62] and few accumulate PRC1 without PRC2 [63]. Therefore while 

H3K27Me3 may contribute to PRC1 targeting it may be insufficient alone and 

the mechanism of targeting could vary at different sites. PRC2 also has a role 

in recruitment of the H3K4 demethylase retinol binding protein 2 (RBP2) a 

further epigenetic marker associated with the modulation of gene transcription 

[64]. 



	  

	   26	  

PRC1 

PRC1 comprises chromobox (CBX) proteins together with one member of the 

really interesting new gene family (RING1a or RING1b), one member of the 

polycomb group ring finger family (PCGF1-6) and one of the HPH family 

(HPH1-3) [58]. RING1a/b harbour E3 ligase activity and catalyse the 

monoubiquitination of histone H2 at lysine 119 (H2AK119Ub) (Figure 1-3). A 

diverse number of PRC1 complexes exist, however their distinct functional 

and physiological roles are not clear. Knockout studies suggest H2AK119Ub 

plays a key role in transcriptional repression however the mechanism of 

PRC1-mediated gene silencing is still debated. Studies suggest H2AK119Ub 

at bivalent promoters restrains RNA polymerase II activity [65] preventing the 

exposure of H2A/B dimers from nucleosomes necessary for transcriptional 

elongation [66]. 

 

1.3.2 The polycomb repressive deubiquitinase complex 

The polycomb repressive deubiquitinase complex (PR-DUB) was initially 

identified in Drosophila as a complex of two proteins, Calypso and ASX, 

bound to PcG target genes, co-localising to a large extent with PRC1 [67]. The 

human homologues of Calypso and Asx are BAP1 and ASXL1/2. Both 

Drosophila and human PR-DUB deubiquitinate H2AK119Ub (Figure 1-4), and 

Drosophila mutants lacking PR-DUB show a strong increase in levels of 

H2AK119Ub and impaired HOX gene repression implicating a role for PR-

DUB in PcG transcriptional regulation [67]. However, simultaneous depletion 

of both the catalytic subunit of PRC1 and the PR-DUB results in more rapid 

loss of HOX gene repression than depletion of either alone, therefore it does 

not appear that PR-DUB simply opposes PRC1 function [67]. It may be that 

the opposing complexes act locally in different sites or that ubiquitination/ 

deubiquitination must occur in a temporally regulated manner for HOX gene 

repression/ regulation.   

 

Both BAP1 and ASXL1/2 are needed for deubiquitination of H2AK119Ub and 

mutations that disrupt this interaction lead to an increase in H2AK119Ub 
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levels in cancer cells [45].   Key sites required on both proteins have been 

identified. ASXL1/2 contains a N- terminus ASXH domain that has been 

shown to increase the affinity of BAP1 for ubiquitin and potentiate its 

deubiquitinase activity. The ASXH domain is hypothesised to interact with the 

UCH37-like domain (ULD) on BAP1 by anchoring it to the UCH domain [43]. 

As the ULD is close to the ubiquitin-binding site this conformational change 

optimises BAP1 ubiquitin binding. The ASXH domain corresponds to amino 

acids 253-391 and 253-411 in ASXL1 and ASXL2 respectively. Disruption of 

the amino acids R666-H669 within the ULD of BAP1 has been shown to 

abolish its ability to interact with ASXL1/2 and to deubiquitinate H2AK119Ub 

[45]. The BAP1 C- terminal domain (CTD) also appears to be important for the 

deubiquitination of H2AK119Ub by facilitating binding to the H2A nucleosome 

[43]. While the CTD houses the nuclear localisation signal and thus in vivo is 

needed for BAP1 to reach the nucleosome, in vitro studies demonstrate that 

PR-DUB with truncated BAP1 without the CTD exhibits low deubiquitinating 

activity towards H2AK119Ub [43]. The CTD is highly cationic and it has been 

suggested that these conserved positive charges interact electrostatically with 

anionic regions of the nucleosome core to tether it to BAP1. Indeed co-

incubation of the PR-DUB with increasing concentrations of the CTD, or its 

scrambled peptide sequence, displace the PR-DUB from the nucleosome and 

inhibit its DUB activity towards H2AK119Ub [43]. 

 

ASXL1 and ASXL2 compete for interaction with BAP1 in vitro and form two 

distinct complexes both capable of deubiquitinating H2AK119Ub. BAP1 and 

ASXL1/2 expression also appears to be co-regulated.  In vitro BAP1 levels 

increase with ASXL1/2 expression in a dose dependent manner and ASXL1/2 

expression increases following BAP1 overexpression [45]. shRNA knockdown 

of ASXL1 or ASXL2 in human fibroblasts results in a significant reduction in 

BAP1 expression while knockdown of BAP1 results in a significant reduction 

in ASXL2 expression [45]. ASXL2 is also downregulated in BAP1-deficient 

H28 and H226 MPM cells, and re-expression of BAP1 or the deubiquitinase 
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mutant BAP1C91S restores ASXL2 protein levels in these cells, without 

affecting its mRNA levels [45]. 

 
 

	  
Figure 1-4 A simplified schematic of Polycomb group complex interactions 

Polycomb repressive complex 2 (PRC2) consists of four subunits: enhancer of zeste 

homolog 2 (EZH2 – histone methyl transferase activity), suppressor of zeste 12 

(Suz12 - zinc finger), embryonic ectoderm development (EED), and RbAp48. PRC2 

catalyses trimethylation of histone 3 (H3) at lysine 27 (K27) facilitating binding of 

polycomb repressive complex 1 (PRC1). PRC1 consists of 4 core subunits: really 

interesting new gene 1a/b (Ring1a/b – E3 ligase), a chromobox family protein (CBX1-

6), Polycomb group RING finger protein (PCGF) and a human polycomb protein 

(HPC1/2). PRC1 catalyses monoubiquitination of histone 2A (H2A) at lysine 119 

(K119). The PR-DUB deubiquitinates H2AK119Ub. 

 

1.3.3 The ASXL Proteins 
The additional sex combs-like (ASXL) gene family consists of three members 

ASXL1, ASXL2 and ASXL3.  

 

ASXL Structure 

ASXL proteins share a common architecture consisting of an ASXN domain in 

the N-terminal region, an ASXH domain in the N- terminal adjoining region, 

ASXM1 and ASXM2 domains in the middle region and a PHD domain in the 

C- terminal region (Figure 1-5). The PHD domain (C4HC3 originally 
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discovered in the plant homeodomain) is a histone- or DNA-binding module of 

chromatin regulators and transcription factors. The ASXN domain is 

structurally similar to the forkhead box (Fox) domain of the Fox family 

members responsible for DNA binding. The ASXH domain binds to BAP1 and 

KDM1A, ASXM1 to NCOA1 and ASXM2 to nuclear hormone receptors 

(NHRs) [68]. 

 

 
N terminus                  C terminus 

  

Figure 1- 5 Functional domains of the ASXL proteins 

Protein structure of the ASXL proteins with the common functional domains and sites 

highlighted. The three ASXL proteins differ in size and site of domains. ASXN: DNA binding 

module; ASXH: protein-protein binding domain, binds to BAP1 and KDM1A; ASXM1 and 

ASXM2: nuclear hormone receptor binding; PHD: DNA binding module, likely binds to 

methylated histones. 

 

ASXL1 

Evidence supports a role for ASXL1 in transcriptional activation and 

repression via interaction with BAP1 and the polycomb group proteins. 

Constitutive adult ASXL1 knockout mice show abnormalities of the axial 

skeleton with posterior and anterior transformations corresponding to the 
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drosophila polycomb group mutant (PcG) and trithorax group mutant (TrxG) 

phenotypes, respectively [69, 70]. ASXL1 is co-immunoprecipitated with 

components of PRC2, including EZH2 and SUZ12, and re-expression of 

ASXL1 promotes H3K27me2/3 to partially inhibit the aberrant expression of 

HOXA-cluster genes in ASXL1-null leukaemic cells [70]. ASXL1 loss is 

associated with loss of H3K27Me3 with minimal effect on H2AK119Ub [71]. It 

is unclear how ASXL1 interacts with PRC2 including whether it binds directly 

or indirectly or if it recruits PRC2 to specific genomic loci to deposit 

H3K27Me3. Interestingly there is evidence to suggest that aberrant truncated 

ASXL1 may complex with BAP1 to form a ‘hyperactive’ PR-DUB resulting in 

depletion of H2AK119Ub and subsequent failure of PRC2 recruitment [72].  
	  
	  
	  
ASXL2 

Adult constitutive ASXL2 knockout mice also exhibit posterior transformation 

(PcG phenotype) and anterior transformation (TrxG phenotype) axial skeletal 

abnormalities. Dilated cardiomyopathy is also observed and attributed to 

epigenetic aberrations associated with a decreased level of H3K27me3 in 

cardiac myocytes [73].  
	  
	  
	  
ASXL3 
Less is known about ASXL3 than ASXL1/2. It is expressed in similar tissues to 

ASXL1 but at significantly lower levels. While all three ASXL proteins have 

been found to interact with BAP1 in vitro, ASXL3 has not been identified as a 

BAP1 binding partner in proteomic studies [74].  
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1.4  BAP1 and ASXL1/2 in cancer 
	  

Somatic mutations in BAP1 and the ASXL genes are common in a number of 

cancers. Germline mutations in BAP1 result in a tumour predisposition 

syndrome and those in ASXL1/3 in developmental abnormalities. There is 

however little overlap between the phenotypes observed in BAP1 and ASXL 

mutations suggesting some divergence of function between BAP1 and the 

ASXL proteins.  

 

1.4.1 BAP1 in cancer 

Somatic mutations in BAP1 have been identified through Sanger sequencing 

of whole exomes at a high prevalence in a number of tumours including MPM 

(23-36%) [30, 33], metastatic uveal melanoma (UM) (84%) [75], intrahepatic 

cholangiocarcinoma (25%) [76] and clear cell renal carcinoma (RCC) (8-14%) 

[77, 78]. Recurrent chromosomal loss of 3p21.1, insertions, deletions, 

frameshift, nonsense and missense mutations, have all been reported 

resulting in loss of BAP1 expression or expression of mutant BAP1 with 

inactive DUB activity or lacking the NLS [79]. Immunohistochemistry has 

proven to be a rapid way to screen for BAP1 alterations, which correlate with 

loss of nuclear staining with positive and negative predicative values of 100% 

and 98.6%, respectively [80] and a sensitivity and specificity of 88% and 97% 

[81]. A small number of missense mutations that inactivate the protein without 

epitope alteration may not be detected.  

 

Germline mutations of BAP1 also predispose affected individuals to a tumour 

predisposition syndrome inherited in an autosomal dominant pattern [82, 83]. 

Affected individuals have a high risk of developing tumours, particularly MPM, 

atypical Spitz tumours (ASTs), UM and cutaneous melanoma (CM) and clear 

cell RCC [83]. The precise mechanism by which BAP1 mutations predispose 

to tumour development is an area of active investigation. Evidence points to a 

role for BAP1 as a tumour suppressor dependent upon its DUB activity and 

nuclear localisation, functions typically lost by those mutations found in 
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cancer. BAP1 null H226 MPM cells transduced with wild-type BAP1 grow 

poorly in culture and when injected into athymic nude mice form 10-15 fold 

smaller tumours than H226 cells transduced with mutant BAP1 lacking DUB 

activity or a nuclear localisation signal [41]. Recent evidence suggests 

reduced levels of BAP1 in patients with a heterozygous germline BAP1+/- 

mutation decreases apoptosis in cells that accumulate DNA damage [84]. 

BAP1 was found to localise to the endoplasmic reticulum (ER) where it binds 

to, deubiquitinates and stabilises type 3 inositol-1,4,5-trisphosphate receptor 

(IP3R3), an ER channel that modulates calcium (Ca2+) release from the ER 

into the cytoplasm and mitochondria, a step that triggers apoptosis via 

mitochondrial Ca2+ overload. Reduced BAP1 was found to cause a reduction 

in IP3R3 levels and of Ca2+ flux preventing BAP1+/- fibroblasts from 

undergoing apoptosis in response to DNA damage. 

 

BAP1 in MPM 

Sanger sequencing initially revealed somatic BAP1 point mutations in 23-36% 

of sporadic MPM samples [30, 33] however integrated molecular sequencing 

and immunohistochemistry suggest a significantly higher incidence (~60%) 

of BAP1 alterations in MPMs [35]. BAP1 immunohistochemical analysis of 

123 MPM samples indicated that loss of nuclear BAP1 expression (indicative 

of mutant BAP1) correlates with a longer survival time [34]. Loss of nuclear 

BAP1 expression has also been found to be of clinical utility in distinguishing 

malignant from benign mesothelial proliferations [85] and MPM from non-small 

cell lung carcinoma [86].  

 

Owing to the high prevalence of BAP1 mutations in MPM it has been the 

subject of interest as a novel target for treatment. As it has a role with 

BARD1/BRCA1 in homologous recombination repair, poly (ADP ribose) 

polymerase (PARP) inhibitors have been tested for their efficacy in BAP1 

mutant tumour cells with conflicting results. A recent study found that the 

PARP inhibitors niraparib and olaparib markedly decreased clonal survival in 

multiple MPM cell lines, irrespective of BAP1 status [87]. However, increased 
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sensitivity to olaparib was observed in homozygous BAP1-null chicken DT40 

cells compared to wild-type and heterozygous BAP1-null cells [48]. A further 

recent study has implicated the importance of the levels of an alternative 

splice variant of BAP1 in conferring sensitivity to PARP inhibition [88]. This 

alternative splice isoform leads to the loss of 12 amino acids within the 

catalytic and BARD1 binding domains. Transfection of BAP1-deficient ZL55 

MM cells with this isoform resulted in increased sensitivity to olaparib 

compared to cells transfected with wild-type BAP1.  

 

BAP1 loss has been shown to reduce HDAC2 expression [89], and BAP1 

knockdown in MPM cells to increase cell death in response to HDAC 

inhibitors. However, in a phase III trial of 661 unselected MPM patients 

(VANTAGE 014) the HDAC inhibitor vorinostat did not improve overall survival 

compared with placebo [90]. Correlation of BAP1 status from tumours in this 

study with response to HDAC inhibition may shed light on the role of BAP1 as 

a biomarker for HDAC inhibitor sensitivity.  

 

BAP1 loss has also been found to increase EZH2 levels in MPM cell lines and 

BAP1-knockout mice [91]. Treatment of BAP1 mutant MPM lines with an 

EZH2 inhibitor was subsequently found to decrease cell proliferation, invasion 

and clonogenicity. Further, treatment of BAP1 mutant MPM mouse xenografts 

with EZH2 inhibitors significantly reduced tumour size compared to wild-type 

BAP1 xenografts. The mechanism is thought to be through a decrease in 

H4K20 monomethylation (H4K20me1) in BAP1 null cells, an epigenetic mark 

that plays a role in the transcriptional regulation of EZH2. Consistent with this, 

expression of the H4K20me1 methyltransferase SETD8 reduced EZH2 

expression and the proliferation of BAP1-mutant cells [91]. Other studies 

however have not demonstrated a clear association between BAP1 loss and 

EZH2 upregulation in MPM or UM biopsies using immunohistochemistry [92, 

93]. A phase 2 study of the EZH2 inhibitor Tazemetostat is underway 

(NCT02860286); unselected patients with MPM will be entered first followed 

by patients with a BAP1 mutation. 
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1.4.2 ASXL proteins in cancer 

ASXL1 

Nonsense point mutations or frame-shift mutations of ASXL1 are observed at 

a high rate in myeloid malignancies (Table 1-2) [94, 95]. These mutations 

mostly occur in exons 11 or 12 just before the PHD domain. It is not clear 

whether these truncating mutations result in loss of ASXL1 expression or 

expression of a stable truncated form of ASXL1. Initial studies failed to identify 

any ASXL1 expression in homozygous mutant cell lines and lower levels of 

full length ASXL1 in heterozygous mutants with reduced stability of the mutant 

form [71]. However use of a new N- terminus antibody has detected truncated 

ASXL1 in two cell lines with homozygous truncating mutations [96]. Further 

evidence suggests truncated ASXL1, which retains the N-terminal BAP1 

binding site, may form a hyperactive PR-DUB resulting in depletion of 

H2AK119Ub and H3K27Me3 [72]. 

 

Consistent with a role for ASXL1 in haematopoeisis, adult ASXL1 gene-trap 

mice exhibit splenomegaly and defects in B- and T- cell lymphopoeisis and 

myeloid skewing [97]. Myeloid malignancies however are not observed in 

these knockout mice. As mouse ASXL1/2 are co-expressed in embryonic and 

adult tissues the suppression of myeloid malignancies might stem from a 

functional redundancy between ASXL1 and ASXL2.  

 

ASXL1 is less frequently mutated in solid malignancies but is observed in 

55% of colorectal cancer (CRC) cell lines with microsatellite instability and ~1-

2% of breast, prostate, liver and head and neck squamous cell carcinomas 

[74]. ASXL mutations are only sporadically observed in lymphoid malignancies 

[98, 99].  

 

Germline mutations of human ASXL1 occur in the Bohring-Opitz syndrome, 

characterised by intellectual disability, cranio- skeletal features and feeding 

problems [100].  

 



	  

	   35	  

ASXL2 

ASXL2 mutations are observed in 23% of acute myeloid leukaemia (AML) 

t(8;21), a specific subset of AML with translocation between chromosomes 8 

and 21, but is otherwise almost never observed in leukaemia [101, 102]. 

ASXL1 mutations are also observed in AML t(8;21) however are mutually 

exclusive with ASXL2 mutations suggesting there may be synthetic lethal 

effects between the two. ASXL2 is mutated less frequently in solid 

malignancies including 6.0% of prostate cancers and 4.2% of pancreatic 

cancers (Table 1-2) [74]. 

 

ASXL3 

ASXL3 mutations have been very infrequently reported in any malignancy, 

haematological or solid. Germline truncating mutations in ASXL3 have been 

associated with a developmental syndrome with phenotypic overlap with 

Bohring-Opitz syndrome [103]. 
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Table 1-2 Cancer genomics of the ASXL proteins 

 

Gene Genetic Alterations Cancer Mutation Rate 

ASXL1 Gene amplification 

Truncation 

Cervical cancer 

CRC with MSI 

CMML 

MPN 

AML (secondary) 

MDS 

Liver cancer 

AML (de novo) 

CLL 

Prostate cancer 

HNSCC 

Breast cancer 

5.1% 

55% 

45.3% 

34.5% 

30% 

16.2% 

10% 

6.5% 

2.9% 

2.0% 

1.4% 

1.0% 

ASXL2 Truncation Prostate cancer 

Pancreatic cancer 

Breast cancer 

ATLL 

6.0% 

4.2% 

1.0% 

rare 

ASXL3 Truncation Melanoma 4.0% 

 

AML acute myeloid leukaemia, secondary – evolving from prior myelodysplasia or 

myeloproliferative disorder, de novo – not evolving from prior myelodysplasia or 

myeloproliferative disorder; ATLL adult T-cell leukaemia/lymphoma; CLL chronic 

lymphocytic leukaemia; CMML chronic myelomonocytic leukaemia; CRC with MSI 

colorectal cancer with microsatellite instability; HNSCC head and neck squamous cell 

carcinoma; MDS myelodysplastic syndrome; MPN myeloproliferative neoplasm.  

Adapted from Katoh, M 2013 [74]  
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1.5 TNF related apoptosis inducing ligand (TRAIL) 
 

TRAIL, also known as APO2 ligand and TNFSF10, is a member of the TNF 

death ligand superfamily and is expressed as a type II transmembrane protein 

in both membrane-bound and soluble forms. The physiological function of 

TRAIL is not fully understood, but it is believed to play a role in the control of 

autoreactive immune cells and immune surveillance, particularly against 

transformed cells [104]. 

 

1.5.1 TRAIL receptors 

TRAIL binds to four membrane bound death receptors (DR) (Figure 1-6). 

TRAIL-R1 (also known as DR4) and TRAIL-R2 (also known as DR5) contain 

an intracellular death domain (DD) required for cell death induction and can 

therefore induce apoptosis upon TRAIL binding and are widely expressed. 

TRAIL-R3 (also known as DCR1) and TRAIL-R4 (also known as DCR2) lack 

the DD and are incapable of inducing cell death. The DD lacking receptors are 

thought to act as ‘decoy’ receptors and negatively regulate apoptosis 

induction by TRAIL [105]. Evidence suggests DR4 and DR5 exist as 

preassembled multimers (dimers or trimers) activated by multimeric TRAIL 

ligands [106, 107]. These multimeric receptors can also in turn homo- and 

heterotrimerise to form higher order complexes [108, 109]. This clustering of 

DRs is thought to facilitate and stabilise assembly of the death inducing 

signaling complex  (see below). TRAIL also binds to a soluble protein, 

osteoprotegerin, with low affinity [110]. 

 

1.5.2 TRAIL apoptotic pathway 

TRAIL activates the extrinsic apoptotic pathway (Figure 1-6). On binding to 

TRAIL the intracellular DDs of three cross-linked receptors interact to recruit 

FAS-associated death domain protein (FADD) [111]. FADD in turn recruits the 

initiator caspases 8 and 10 to form the death-inducing signaling complex 

(DISC) [112]. The caspase 8 homologue FLICE like inhibitory protein (FLIP) 
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can compete with caspase 8 for FADD binding but has no catalytic activity. 

DISC formation induces cleavage and activation of caspases 8 and 10 that 

are subsequently released into the cytoplasm to cleave downstream effector 

caspases such as caspase 3, which induce apoptosis of the cell [113].  

 

TRAIL can also indirectly activate the intrinsic apoptotic pathway (Figure 1-6) 

[114]. The intrinsic apoptotic pathway is primarily triggered by DNA damage 

recognised by proteins such as P53. P53, through BAX/BAK, permeabilises 

the mitochondrial membrane enabling release of cytochrome c (cyt-c), which 

in turn activates caspase 9 through apoptotic protease-activating factor-1 

(APAF-1). Caspase 9 activates the effector caspases to induce apoptosis. 

Cross talk between the extrinsic and the intrinsic apoptotic pathways is 

mediated by BID. Upon activation, caspase 8 cleaves BID to truncated BID (t-

BID), which induces BAX/BAK to permeabilise mitochondria. 

 

1.5.3 TRAIL and cancer cells 
TRAIL is expressed on monocytes, macrophages, dendritic cells (DCs) and 

natural killer (NK) cells. It is thought to be involved in the effector mechanisms 

of these cells and to regulate immune homeostasis in normal physiology. 

TRAIL-R1 (DR4) and TRAIL-R2 (DR5) are highly expressed in several 

different malignancies. Evidence from in vitro and mouse studies suggests the 

role of TRAIL in cancer biology is diverse and physiologically TRAIL may have 

a role in immune surveillance against primary tumours and metastasis [115]. 
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Figure 1-6 TRAIL activates the extrinsic apoptotic pathway 

TRAIL triggers the extrinsic apoptotic pathway while conventional chemotherapeutics and 

radiotherapy trigger the intrinsic apoptotic pathway that is mediated by mitochondria. There is 

cross talk between the two pathways, which is mediated by cleavage of BID into t-BID by 

caspase-8.  cFLIP and IAPs are potent inhibitors of apoptotic pathways and their inhibition 

could induce synergistic effects by simultaneously triggering both pathways. TRAIL: tumour 

necrosis factor apoptosis-inducing ligand, FADD: FAS activated death domain, cFLIP: cellular 

FLICE inhibitory protein, BID: BH3 interacting-domain death agonist, IAPs: inhibitors of 

apoptosis proteins, BAK: BCL-2 homologous antagonist, Cyt-C: cytochrome c, APAF-1: 

apoptotic protease-activating factor 1. 

 

1.5.4 TRAIL and DR agonists as anti-cancer therapies 

The ability of TRAIL to selectively induce apoptosis in transformed cells has 

been leveraged to develop anti-cancer agents in the form of TRAIL-R/ DR 

agonists. These include recombinant forms of TRAIL (rTRAIL) and 

monoclonal antibodies and small molecule agonists to DR4 and DR5. 

Unfortunately to date none of these agents have demonstrated a significant 

clinical benefit in clinical trials of unselected populations (Table 1-3) [116]. A 

number of factors contributing to this failure have been postulated. These 
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include unfavourable pharmacokinetics and weak agonistic activity of DR 

agonists developed to date, intrinsic resistance mechanisms of primary 

cancer cells to DR agonist monotherapy, and the lack of suitable biomarkers 

by which to identify patients most likely to respond. Attempts have been made 

to understand and overcome each of these barriers.  

 
Table 1-3. Selected results of TRAIL-R/ DR agonists in clinical trials. 

Phase N Cancer Combination Safety Efficacy Ref 

Dulanermin 

I 

I 

II (RCT) 

 

71 

27 

213 

 

Advanced cancers 

Colorectal 

Lung 

 

- 

Chemo + BV 

Chemo + BV 

 

Safe 

Safe 

 

2PR 

6PR 

None 

 

[117] 

[118] 

[119] 

Mapatumumab 

I 

I 

II (RCT) 

 

49 

49 

109 

 

Advanced cancers 

Advanced cancers 

Lung 

 

-  

Chemo 

Chemo 

 

Safe 

Safe 

Safe 

 

None 

12PR 

None 

 

[120] 

[121] 

[122] 

Conatumumab 

I 

II (RCT) 

II (RCT) 

 

37 

83 

190 

 

Advanced cancers 

Pancreatic 

Colorectal 

 

- 

Chemo 

Chemo + BV 

 

Safe 

Safe 

Safe 

 

1PR 

None 

None 

 

[123] 

[124] 

[125] 

Lexatumumab 

I 

 

37 

 

Advanced cancers 

 

- 

 

Safe 

 

None 

 

[126] 

Tigatuzumab 

II 

 

61 

 

Pancreatic 

 

Chemo 

 

Safe 

 

8PR 

 

[127] 

PR, partial response. Chemo – combination chemotherapy. BV – bevacizumab. Dulanermin – 

recombinant TRAIL. Mapatumumab – agonist antibody to DR4. Conatumumab, 

lexatumumab, tigatuzumab – agonist antibodies to DR5.  

Adapted from Lemke et al, 2014 [116]  

 

Dulanermin is the first and only recombinant form of TRAIL developed for 

clinical application to date however is limited by a short half-life (approximately 

30 minute in vivo) and an inability to induce higher order clustering of TRAIL-

R/ DRs [128]. Agonistic antibodies have increased stability and a longer half-

life than dulanermin however remain limited by their bivalent mode of receptor 

binding. Novel multivalent TRAIL-R/ DR agonists have been developed with 
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the aim of replicating the higher order clustering observed physiologically. 

TAS266 is a tetravalent nanobody consisting of four high affinity heavy chain 

domain (VHH) antibody fragments each of which bind a single DR5 potentially 

clustering four receptors [129]. Unfortunately a phase I study was terminated 

early due to acute hepatotoxicity thought to be secondary to an anti-drug 

antibody response in immunosensitised individuals [130]. Medi3039 is a 

preclinical multivalent DR5 superagonist. It consists of multivalent fibronectin 

type III domains engineered for high affinity DR5 binding [131]. Preclinical 

testing has demonstrated potent apoptosis induction in cell lines at 

subpicomolar concentrations [132]. A first in human adaptive phase I trial is 

currently being planned in colorectal cancer [133].    

 

Several TRAIL-sensitising strategies have been tested, such as the 

combination of TRAIL-R/DR agonists with proteasome inhibitors, standard 

chemotherapeutic agents, SMAC mimetics and BH3 mimetics to antagonise 

anti-apoptotic BCL-2 family members, or various kinase inhibitors (e.g. AKT or 

PI3K inhibitors) [116]. Unfortunately, many of these studies show only limited 

therapeutic activity in vivo and likely underestimate potential in vivo toxicity. 

Recently, inhibition of cyclin-dependent kinase 9 (CDK9) was described as a 

potent TRAIL sensitisation strategy [134]. CDK9 inhibitors were shown to 

downregulate the anti-apoptotic factors, MCL1 and FLIP, simultaneously 

increasing DISC-generated caspase 8 activity and removing a mitochondrial 

block to maximal apoptosis induction rendering many TRAIL-resistant cancer 

cells sensitive. Thus the removal of multiple roadblocks to apoptosis may be 

key to TRAIL sensitisation. 

 

Notable within a number of Phase I/II trials is the observation that a subset of 

patients displays partial or complete response to TRAIL/ DR agonists without 

additional sensitisation strategies (Table 1-3). To date however no biomarker 

has been identified by which to identify such responders. High expression of 

the O-glycosylation enzyme GALNT14 was proposed as a signature of TRAIL 

sensitivity [135], however increased expression did not appear to significantly 
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correlate with clinical response to dulanermin in a phase II study of NSCLC 

[119]. An alternative approach proposed the expression of a panel of 

apoptosis pathway factors could predict TRAIL response however this is 

cumbersome and is yet to be validated clinically [136]. 
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1.6 BRCA associated protein-1 and TRAIL 
 

Much of this thesis is based upon and an extension of as yet unpublished 

data from the Janes lab presented below [137]. 

 

1.6.1 Loss of function of BAP1 as biomarker for TRAIL sensitivity 

The WTSI characterised the genomic aberrations present in 15 MPM cell lines 

using whole-exome sequencing, copy number analysis and gene expression 

arrays. These cell lines were then treated with 94 drugs including small 

molecule inhibitors and cytotoxic chemotherapeutics. A 6-day cell viability 

assay was performed to assess response. 1,425 single agent activity data 

profiles across the 15 cell lines were generated. To detect novel markers of 

drug sensitivity, statistical associations were sought between drug response 

and the mutational status of the cell lines based on five genes identified as 

candidate drivers of tumourigenesis in MPM [30]. There were 24 significant 

associations (false discovery rate (FDR) <0.2) between single agent response 

and the presence of a genomic alteration. The most statistically significant 

sensitising association seen was between BAP1 LOF mutations (mt BAP1) 

and treatment with recombinant TRAIL (rTRAIL; FDR = 0.18, effect size -0.48) 

(Figure 1-7A and 1-7B) No significant effect on cell viability as measured by 

XTT assay was observed in BAP1-wild-type (wt BAP1) lines when treated 

with rTRAIL. This association was subsequently confirmed in a larger panel of 

MPM cell lines (Figure 1-8A and 1-8B). 6 of the 8 cell lines (75%) harbouring 

a BAP1 LOF mutation were sensitive or partially sensitive to a dose range of 

rTRAIL, while 7 of the 9 cell lines (78%) harbouring wild-type BAP1 were 

resistant. BAP1 LOF mutations correlated with a loss of BAP1 protein 

expression in the majority of cell lines. 
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A 

B 

 Figure 1-7 A chemical screen of molecularly characterised MPM cells [137] 

(A) A Welch t-test was used to test for significant pharmacogenomic interactions between 94 

compounds and the presence of driver mutations in 5 MPM cancer genes. Each volcano plot 

circle corresponds to a significant gene–drug interaction; the position on the x-axis indicates 

the corresponding effect size. Both half-axes are positive; the right side (green circles) 

indicates sensitivity associations, whereas the left side (red circles) corresponds with 

resistance associations. The y-axis indicates the statistical significance of the identified 

interaction. The size of a given circle is proportional to the number of samples in which the 

selected mutational event occurs. Specific examples of associations are indicated where the 

effect size is large (rTRAIL and BAP1 mutations) or highly significant (cisplatin and CDKN2A 

mutations). (B) 6-day cell viability of wild-type (wt) BAP1 (n=10) and mutant (mt) BAP1 (n=5) 

MPM cell lines following rTRAIL treatment (t-test; *p=0.015).  

p = 0.015 
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A 

B 

	  
Figure 1-8 Initial validation of the identified BAP1-rTRAIL association [137] 

(A) 6-day cell viability data for 17 malignant pleural mesothelioma (MPM) cell lines treated for 

6 days with rTRAIL (0.4–50 ng/ml). Green = sensitive (S); orange = partially sensitive (PS); 

red = resistant (R). *Indicates lines harbouring BAP1 mutations. Those cell lines with BAP1 

mutations are more sensitive to rTRAIL (B) Immunoblot of BAP1 expression in BAP1-mt 

versus BAP1-wt MPM cell lines. Sensitivity to rTRAIL treatment is indicated as font colour: 

green (S); orange (PS); red (R). Cell lines with BAP1 mutations mostly lose BAP1 expression 

and are more sensitive to rTRAIL than wild-type cell lines.  

BAP1 wild-type MPM lines – H2373, H2803, H2369, MPP-89, H2591, H2818, H2810, H2869, 

H513. BAP1 mutant MPM lines – H2452, H2722, H2795, H2595, H2461, H2731, H2804, H28. 
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1.6.2 The deubiquitinase function of BAP1 mediates TRAIL resistance 

shRNA knockdown of BAP1 in the BAP1-WT MPM cell line H2818 resulted in 

increased cell death following rTRAIL treatment compared with empty vector 

(EV) control shRNA and the parental cell line further supporting the observed 

BAP1-rTRAIL association (Figure 1-9). 

 

	  
Figure 1-9 Knockdown of BAP1 in H2818 MPM cells sensitises them to rTRAIL 
[137] 

BAP1 wild-type H2818 cells were transduced with BAP1 shRNA-expressing lentivirus and 

treated with rTRAIL (dose range 0-500 ng/ml). Cell death was measured after 24 hours with 

an AnnexinV/ DAPI flow cytometry assay. shRNA knockdown of BAP1 expression resulted in 

an increased sensitivity to rTRAIL. H2818 untransduced vs H2818 EV transduced p = 0.739; 

H2818 untransduced vs H2818 BAP shRNA transduced p < 0.0001; H2818 EV transduced vs 

H2818 BAP shRNA transduced p < 0.0001. 

 

To elucidate the mechanism by which BAP1 modulates sensitivity to TRAIL 

expression vectors containing wild-type or mutant BAP1 were generated, 

each with an inactive functional site or protein-binding domain. These included 

C91A (mutation in the deubiquitination catalytic site), ΔHBM (deletion of the 

HCF-1-binding site), and ΔNLS (deletion of the nuclear localisation signal). 
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H226 MPM cells, which harbour a homozygous deletion of BAP1 and 

demonstrate complete loss of BAP1 expression, were transduced with a GFP 

expressing control vector, a wild-type BAP1 expression vector or one of these 

three mutant BAP1 expression vectors. rTRAIL sensitivity of the parental 

BAP1-null H226 MPM line was significantly diminished following expression of 

wild-type BAP1 and each of the mutant constructs except the C91A 

deubiquitinase mutant (Figure 1-10), implicating the deubiquitinase activity of 

BAP1 in TRAIL resistance.  
 

Figure 1-10 Cell viability of mutant BAP1 transduced H226 MPM cells treated 
with rTRAIL [137] 

The rTRAIL-sensitive H226 MPM cell line, which harbours a homozygous deletion of BAP1, 

was transduced with either a GFP (GFP) control, wild-type BAP1 or a mutant BAP1 

containing an inactive functional domain: C91A — mutation in deubiquitinase catalytic site; 

ΔHBM — deletion of HCF-1-binding motif; ΔNLS — deletion of nuclear localisation signal. 

These transduced cell lines were treated with 50ng/ml rTRAIL and cell death was assessed 

with an XTT assay (One-way ANOVA; **p<0.01). Transduction with all constructs except the 

EV and deubiquitinase mutant constructs resulted in an increase in rTRAIL resistance 

implicating this function in the mechanism of rTRAIL resistance. 
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1.6.3 BAP1 function affects transcription of extrinsic apoptotic proteins 

As one of the main roles of BAP1 is as a transcriptional regulator, differential 

gene expression data from BAP1-null H226 cells expressing the sensitising 

C91A BAP1 mutation or wild-type BAP1 were compared (through 

collaboration with the WTSI) and a signalling pathway impact analysis SPIA 

was carried out. Among those pathways significantly altered when comparing 

wild-type versus C91A BAP1 (FDR<0.2) was that of apoptosis. In particular, 

there was altered expression of components of the extrinsic apoptotic 

pathway. This manifested as an imbalance in levels of pro- and anti-apoptotic 

members with, for example, significantly decreased levels of the anti-apoptotic 

protein cIAP2 (p=2.32E-10) and increased levels of the pro-apoptotic death 

receptor 5 (p=7.79E-10) in the C91A BAP1-transduced cells (Figure 1-11). 

Figure 1-11 Differential gene expression of extrinsic apoptotic pathway genes 
in BAP1 mutant relative to BAP1 wild-type transduced H226 MPM cells   
cIAP 1/2 - cellular inhibitor of apoptosis protein 1/2, DR4/5 - death receptor 4/5, BIRC 6/7 - 
baculoviral IAP repeat-containing protein 6/7, NAIP - NLR family, apoptosis inhibitory protein, 
XIAP - X-linked inhibitor of apoptosis protein, FADD - Fas-associated protein with death 
domain. The anti-apoptotic genes and cIAP2, cIAP1 are significantly downregulated and the 
pro-apoptotic genes DR5 and FADD upregulated in the BAP1 mutant transduced MPM line.  
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1.6.4 Loss of BAP1 function augments sensitivity to rTRAIL in mouse 

MPM xenograft models  

To test the in vivo efficacy of TRAIL in inducing apoptosis in BAP1-mutant 

MPM cells, H226 BAP1-wild-type and the H226 C91A BAP1-mutant cell lines 

were transduced with luciferase and equal numbers of wild-type and mutant 

cells injected into the opposite flanks of mice. On day 14 after injection, the 

mice were divided into two groups and injected intraperitoneally with rTRAIL 

or vehicle for 6 days per week until day 40. Tumour growth was monitored 

longitudinally with bioluminescent imaging. BAP1-wild-type tumours showed 

no response to rTRAIL compared with vehicle. The growth rate of rTRAIL-

treated BAP1-mutant tumours was significantly suppressed compared with 

rTRAIL-treated BAP1-wild type and vehicle-treated tumours (p<0.05) (Figure 
1-12). 
 

	  
Figure 1-12 Growth of BAP1 wild-type vs. BAP1 mutant MPM xenografts 
treated with rTRAIL 

Mice were treated with vehicle or rTRAIL 6 days per week from days 14-40 after tumour 

engraftment. Bioluminescence was measured on days 0, 13, 19, 26 and 41, 15 minutes after 

injecting the mice with 0.2 ml luciferin intraperitoneally. The number of photons emitted per 

second indicates the tumour burden. Values shown are the average recorded from the 6 mice 

used in the experiment in each group. BAP1 – wild-type xenografts, C91A BAP1 – mutant 

xengrafts. Growth of the BAP1 mutant transduced cell line xenograft was significantly reduced 

compared with the wild-type transduced cell line xenograft when treated with rTRAIL and 

compared with vehicle treatment. 
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1.7 Hypothesis 
 

The above preliminary data suggests loss of BAP1 function augments 

sensitivity to rTRAIL in MPM. I hypothesise BAP1 can therefore act as a 

clinical biomarker for sensitivity to rTRAIL and the association will extend to 

other death receptor agonist drugs and other cancers with BAP1 mutations. I 

further hypothesise the mechanism underlying this involves modulation of 

expression of proteins of the extrinsic apoptotic pathway to favour apoptosis 

when this pathway is activated. 

 

1.8 Aims 
 

1. To explore the clinical relevance of the BAP1-TRAIL association in 

MPM  

2. To validate loss of function of BAP1 as a biomarker for sensitivity to 

rTRAIL and other death receptor agonists in MPM and other cancers 

3. To further elucidate the mechanism of BAP1 induced TRAIL resistance 
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2.1 General chemicals, solvents and plastic ware 
 
All chemicals used were of analytical grade or above and obtained from 

Sigma Aldrich (Poole, UK) unless otherwise stated. Water used for 

preparation of buffers was distilled and deionised (ddH2O) using a Millipore 

water purification system (Millipore R010 followed by Millipore Q plus; 

Millipore Ltd., MA, US). Polypropylene centrifuge tubes and pipettes were 

obtained from Becton Dickenson (Oxford, UK). 
 

 

2.2 Immunohistochemistry 
 

2.2.1 Patients and tissue samples 

Tumour samples were collected prospectively as part of the MSO1 trial [138]. 

The MSO1 trial is a phase III, three-arm randomized controlled trial in which 

active symptom control (ASC) was compared to ASC plus combination 

mitomycin, vinblastine and cisplatin (MVP) and ASC plus single agent 

vinorelbine. The two chemotherapy arms were combined in view of slow 

accrual and survival analysis revealed a small, non-significant benefit for ASC 

plus chemotherapy versus ASC alone in 409 patients, driven by a small, non-

significant survival benefit in the ASC plus vinorelbine arm. Diagnoses of 

MPM had previously been confirmed by clinical, immunohistochemical and 

morphological evaluation. The tissue samples were taken from resected 

surgical specimens or following videothoracoscopic biopsy, fixed in neutral 

formalin and embedded in paraffin. Clinical data relating to each of the cases 

was recorded as part of the original trial. 

 

2 METHODS 
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2.2.2 Cell pellets 

Early passage cell cultures were grown in T175 flasks until 80-90% confluent, 

trypsinised, washed twice with phosphate-buffered saline (PBS), centrifuged 

at 300g for 5 minutes and the supernatant removed. HistoGel specimen 

processing gel (American Mastertec) was liquefied by heating to 60°C and 4-6 

drops added to each cell pellet. Each specimen was vortexed for 5 seconds 

and allowed to cool to room temperature. The specimens were then 

transferred to a tissue cassette and processed using an automated tissue 

processor (Leica TP1050) to generate the FFPE tissue blocks. The blocks 

were manually sectioned and mounted onto slides. 

 

2.2.3 Staining protocol 

Immunohistochemical parameters for the BAP1 antibody were initially 

optimised using a tissue micro-array consisting of lung cancer and malignant 

melanoma, tissues which express BAP1 and acted as positive controls. The 

IHC analysis for each antigen was performed using a Bond III Automated IHC 

Stainer (Leica Microsystems, Wetzlar, Germany). Slides were treated for 30 

min with Leica BondMax Epitope Retrieval Solution 2 (ER2) to achieve post-

sectioning antigen retrieval. The specific BAP1 primary antibody (SC-28383 

(C4), mouse polyclonal antibody, 1:150; Santa Cruz Biotechnology, Santa 

Cruz, CA, USA) was applied for 15 min and revealed using the Leica Bond 

Polymer Refine detection kit (Leica Microsystems). The signal was enhanced 

using the Leica BondMax DAB enhancer kit (Leica Microsystems). Slides 

were counterstained with haematoxylin before mounting and microscopic 

visualisation. 

 

2.2.4 Scoring system 

Slides were scored independently by two consultant histopathologists as 

BAP1 positive or BAP1 negative. Those samples with consistent strong 

nuclear staining were scored as positive and any other pattern of staining as 

negative. Slides were also assessed for the presence of an internal positive 
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control in the form of strong lymphocyte staining. Only those samples with a 

positive internal control and concordance between the two reviewers were 

included in subsequent analyses. 

 
 

2.3 Cell culture 
 

2.3.1 Cell lines 

Cell lines were cultured in RPMI-1640 (H2461, H2722, H2731, H2795, H2803, 

CRL-2081, H2052, H28, H2804, H226, MPP-89, H2869, MDA-MB-231, H513) 

or Dulbecco's modified Eagle's medium and nutrient mix 12 medium 

(DMEM:F12) (H2818, H2810) supplemented with 10% fetal bovine serum 

(FBS), penicillin/ streptavidin and sodium pyruvate. 293T cells were cultured 

in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) and 2 mM L-glutamine. All cells were maintained in a 

humidified environment at 37°C and 5% CO2.  Culture media was changed 

every 3 days. Cells were grown until approximately 80% confluent and 

mobilised by washing with sterile phosphate-buffered saline (PBS) followed by 

0.05% trypsin in EDTA. After detachment cells were pelleted by centrifugation 

at 300g for 5 minutes and plated into 75 or 175 cm2 tissue culture flasks at 

ratios of 1:3 to 1:10 every 5-10 days depending on rate of proliferation. 

 

2.3.2 Early passage MPM cultures 

The early passage MPM cultures were purchased from Mesobank (15,30, 52, 

43,24, 34, 38, 33T, 50T, 53T, 3T, 7T, 8T, 12T, 14T, 23T, 19, 26, 35, 40, 45, 

12, 2, 36, 18) [139]. The MPM cultures were cultured in RPMI-1640 medium 

supplemented with 5% FBS, 25 mM HEPES, penicillin/ streptavidin and 

sodium pyruvate. All cells were maintained in a humidified environment at 

37°C and 5% CO2.  Culture media was changed every 3 days. Cells were 

grown until approximately 80% confluent and mobilised by washing with 

sterile phosphate-buffered saline (PBS) followed by 0.05% trypsin in EDTA. 
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After detachment cells were pelleted by centrifugation at 300g for 5 minutes 

and plated into 75 or 175 cm2 tissue culture flasks at ratios of 1:3 to 1:10 

every 5-10 days depending on rate of proliferation. 
 

2.4 Stock solutions and additives 
 

All drugs and solutions used in tissue culture were sterile filtered through a 

0.22μm filter unless otherwise stated. All solvents were tissue-culture grade. 

The drugs and solutions were stored as per manufacturer’s instructions. The 

list of additives and drugs used in this study are listed in Table 2-1. 

 
Table 2-1 Additives and drugs used in this study 

 

Drug / Additive 

 

 

Solvent 

Stock 

Concentration 

 

Supplier 

Polybrene Water 4mg/ ml Sigma Aldrich 

Ampicillin Water 100μg/ ml Sigma Aldrich 

Puromycin Media 100μg/ ml Invitrogen 

rTRAIL Water 1000μg/ ml Peprotech 

Medi3039 DMSO 0.1μM Medimmune 

 

 

2.5 Lentiviral vectors and transduction 
 

2.5.1 Cloning and mutagenesis of BAP1 expressing lentiviral vectors 

The BAP1 vector pCCL-CMV-BAP1 had previously been generated by K 

Kolluri by PCR amplification of BAP1 coding cDNA using a pCMV6-AC BAP1 

plasmid (Origene-SC117256) as a template and subsequent insertion of the 

BAP1 cDNA into a lentiviral vector previously used in the laboratory, pCCL-

CMV-flT, in place of flT via BamHI and SalI restriction sites (Figure 2-1) [140]. 

The ΔASXL mutation was performed on this pCCL-CMV-BAP1 vector using 
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the Q5 site directed mutagenesis kit (New England Biolabs-E0554) as per 

manufacturers instructions. The primers used are listed in Table 2-2. 
 

Table 2-2 Primers used in BAP1 cloning 

Primers Sequence (5’-3’) 

BAP1 forward CGTGGATCCGCCACCATGAATAAGGGCTGGCTGGA 

BAP1 reverse GTCGGTCGACTCACTGGCGCTTGGCCTTGTA 

BAP1 ASXL mutation forward AACTACGATGAGTTCATCTGCACCT 

BAP1 ASXL mutation reverse CTGGTCATCAATCTTGAACTTCTTCCTC 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 pCCL-CMV-BAP vector map [141] 

The pCCL.CMV.BAP1 expresses wild-type BAP1 through a CMV promoter. The lentiviral 

vector contains an ampicillin resistance gene to facilitate selection of plasmid expressing 

bacteria. The original full length TRAIL coding region in the pCCL.CMV.flT was substituted 

with the BAP1 coding sequence using BAMHI and SALI restriction sites to generate this 

vector. 

 

2.5.2 Propagation of lentiviral vector plasmids using Escherichia. coli 

The large-scale production of lentiviral vectors requires significant quantities 

of plasmid DNA. Each plasmid contains a replication sequence to allow 
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replication of the plasmids in Escherichia. coli (E. coli) and an ampicillin 

resistance gene to allow selection of those bacteria that contain the plasmid 

[142]. 

 

Bacterial transformation of E. coli with plasmid DNA 

Plasmids were expanded using chemically competent E. coli (C2987H, New 

England Biolabs, UK). 1µl plasmid was added to a vial of competent cells and 

left on ice for 30 minutes before being heat shocked at 42oC for 30 seconds 

and returned to ice for a further 5 minutes.  950µl of SOC medium was added 

to the bacteria and incubated in an orbital incubator at 370C for 1 hour at 

220rpm (Innova44, Eppendorf/ New Brunswick). 

 
Production of single plasmid-transformed bacterial colonies and generation of 

starter cultures 

35g LB agar was dissolved in 1L of ddH20, autoclaved at 1210C for 15 

minutes and cooled to approximately 500C prior to the addition of 50µg/ml 

ampicillin.  The LB agar was then poured into 90mm sterile petri dishes 

(Fisher) and cooled at 40C until the agar was set.  Prior to use LB agar plates 

were pre-warmed at 370C.  Different volumes of SOC medium containing 

transformed bacteria (from 50-200µl) were spread onto the agar plates and 

incubated overnight at 37oC.  The following day single bacterial colonies were 

selected using a sterile loop and used to inoculate 5ml LB broth (Fisher 

Scientific, Loughborough, UK) containing 50µg/ml ampicillin in a 50ml falcon 

tube.  LB broth was prepared by dissolving LB broth powder in ddH20 at 

20g/L, autoclaving at 1210C for 15 minutes and cooling to approximately 500C 

prior to adding 50µg/ml ampicillin.  Falcon tubes containing single bacterial 

colonies were incubated overnight in an orbital incubator at 37oC and 220rpm 

(Innova44, Eppendorf/ New Brunswick). 
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Miniprep – Extraction of plasmid from starter cultures 

To confirm the bacteria had been successfully transformed with plasmid DNA, 

extraction was performed using a plasmid miniprep kit (QIAgen 27104/6) as 

per manufacturer’s instructions.  

 

Restriction digests 

All restriction digests were performed using enzymes and buffers from New 

England Biolabs (Hitchin, UK) as per manufacturer’s instructions.  DNA was 

purified using the QIAquick PCR Purification Kit (QIAgen, 28104/6) according 

to the manufacturer’s protocol.  The purified product was run on a 1% (w/v) 

agarose gel using a HyperLadder I molecular weight marker (Bioline).  An 

ImageQuant LAS 4000 (GE Healthcare) biomolecular imager was used to 

visualise DNA fragments.  

 

Maxiprep - Large-scale production and extraction of plasmid DNA  

To multiply the plasmid 2ml of the starter culture was added to 200ml of LB 

broth containing 50µg/ml ampicillin and incubated overnight in an orbital 

incubator at 220rpm and 37oC (Innova44, Eppendorf/ New Brunswick).  DNA 

was purified using the HiSpeed plasmid maxi kit (QIAgen, 12662/3) as per 

manufacturer’s instructions.  

 
DNA Quantification 

The DNA was quantified using a NanoDrop 8000 spectrophotometer. Nucleic 

acids absorb ultraviolet light at specific spectra and the amount of light 

absorbed at different wavelengths is an indication of their purity. The ratio of 

absorbance at 260nm and 280nm (A260/A280 ratio) gives a measure of purity 

and a ratio of >1.8 is expected for pure DNA. 

 

2.5.3 Lentivirus production 

Lentivirus was produced by transfecting 293T cells with transfer and 

packaging plasmids using JetPEI [143]. On day one, 293T cells were seeded 

into 6 x T175 flasks to reach 80-90% confluence the following day for 
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transfection. On day two, 20µg transfer plasmid, 7µg pMD.G2 and 13 µg 

pCMV-dR8.74 were added to 1ml of 150mM sodium chloride solution per 

T175 flask to be transfected and vortexed for 10 seconds and passed through 

0.2 µl filter. 80µl JetPEI was added to 1ml 150mM NaCl per T175 flask to be 

transfected and vortexed for 10 seconds. The NaCl/PEI solution was added to 

the NaCl/DNA solution, vortexed for 10 seconds and incubated at room 

temperature for 15-30 minutes. The medium in each T175 flask of 293T cells 

was then replaced with 2ml of the NaCl/DNA/PEI solution and 13ml fresh 

DMEM. At 4 hours this medium was replaced with 20ml DMEM. The media in 

the T175 flasks was collected in a sterile container at 24 and 40 hours and 

each time replaced with fresh media. The lentivirus in these collected 

supernatants were subsequently concentrated by ultracentrifugation at 17,000 

rpm (SW28 rotor, Optima LE80K Ultracentrifuge, Beckman) for 2 hours at 4 

°C. The virus was resuspended in DMEM, aliquoted and stored at -80˚C until 

further use. 

 

2.5.4 Titration of lentivirus 

The virus generated above was quantified by titration of different dilutions of 

the virus with 293T cells [144]. In a 6-well plate, 50,000 293T cells were 

seeded into each well and the following day, at 30-40% cell confluence, the 

medium was exchanged for medium containing virus dilutions of 1/100, 

1/1000, 1/10000, and 1/100000 and 4µg/ml of polybrene, a cationic polymer 

enabling efficient cellular uptake of the virus. After 48 hours, the cells were 

trypsinised and the percentage of cells transduced measured by flow 

cytometry for the protein expressed by the virus. For detection of BAP1 

expression, cells were stained with a primary BAP1 antibody (Santa Cruz 

SC28383, 2:100) and a fluorescent secondary antibody (AF-488, Invitrogen 

A32723,1:200). The percentage of positive cells at each viral dilution was 

assessed by flow cytometry for AF-488 on a FACS LSRII flow cytometer and 

the viral titre calculated in virus particles/ml using the equation below: 
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Viral titre = number of cells transduced X proportion of positive cells 

volume of virus in ml 

 

2.5.5 Transduction 

Cells were transduced with viral particles at the required multiplicity of 

infection (MOI). Approximately 50,000 cells were seeded into each well of a 6-

well plate [145]. The following day the medium was exchanged for medium 

containing a volume of virus solution for the required MOI based on the 

number of cells, and 4µg/ml of polybrene. Cells from one well were trypsinised 

and counted for accurate determination of the number of virus particles 

needed for a particular MOI. 4 hours after transfection the media was 

exchanged with fresh culture media. The next day transduction efficacy was 

measured by flow cytometry as above.  

 

 

2.6 RNA interference 
 
Short hairpin RNAs (shRNAs) were used to knock down protein expression in 

tumour cell lines [146]. The shRNAs were expressed as part of a mir30-based 

GIPZ lentiviral vector (Dharmacon) (Figure 2-2). By mimicking an 

endogenous RNA, the GIPZ hairpin is efficiently processed in the cells 

allowing for an effective knockdown of the gene of interest. Bacteria 

expressing lentiviral vector plasmids with GIPZ hairpins were obtained from 

Dharmacon through the UCL RNAi library. They were expanded in LB broth, 

plasmids extracted and virus made by the procedures described above. The 

tumour cell lines were transduced with lentivirus, and treated with puromycin 

to select the pure population expressing shRNA. The knockdown was 

confirmed by immunoblotting.  The clones used in this study include BAP1 

(V2LHS_4147) and ASXL1 (V2LHS_171023), ASXL2 (V2LHS_55252). 
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Figure 2-2 GIPZ shRNA vector map 

The GIPZ shRNA expresses a 22 nucleotide shRNA mir via a CMV promoter. The lentiviral 

vector contains a puromycin resistance gene to facilitate selection of plasmid expressing 

bacteria and cells and GFP to aid in selection of transduced cells. 

 

 

 

2.7 Immunoblotting  
 

2.7.1 Sample collection and preparation 

Protein lysates were obtained as follows [147]. Cells were trypsinised and 

collected by centrifugation at 300g for 5 minutes. The cells were then washed 

twice with PBS and an appropriate volume of 1% SDS in TBS containing 

protease and phosphatase inhibitor added. This suspension was passed 

through a 25G needle 5 times to lyse cells and the proteins then denatured by 

incubation at 95 degrees for 10 minutes. The suspension was then 

centrifuged at 13000rpm (Eppendorf 5415R Microcentrifuge) for 10 minutes, 

the supernatant collected and protein concentration measured by BCA assay 

as detailed below. Protein samples were then separated by SDS–PAGE and 

transferred onto nitrocellulose membranes. Membranes were incubated with 

specific primary antibodies, washed, incubated with secondary antibodies and 

visualised using an ImageQuant LAS 4000 imaging system (GE Healthcare). 

Antibodies used are detailed in Table 2-3. 
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2.7.2 BCA protein assay 

To ensure equivalent amounts of protein were loaded for different samples the 

protein concentration of cell lysates was measured using the bicinchoninic 

acid (BCA) protein assay (Thermo Fisher Scientific, IL, US) [148]. The BCA 

assay relies on two reactions. Firstly the peptide bonds in proteins reduce 

Cu2+ to Cu+, a reaction directly proportional to the amount of protein present. 

Secondly the bicinchoninic acid chelates with the reduced Cu+ ions to 

produce a purple coloured solution that strongly absorbs light at 562nm. The 

absorbance thus correlates with protein concentration.  Known protein 

concentration standards were made by dissolving bovine serum albumin 

(BSA) in PBS at concentrations from 20μg/ml to 2000μg/ml. 20μl of each 

protein lysate sample along with 20μl of each standard concentration were 

added to individual wells of a 96-well plate and 180μl of BCA working solution 

added to each well. The plate was then incubated at 37⁰C for 30 minutes and 

the absorbance read at 562nm. The absorbance of the samples was 

compared to those of the known protein standards to determine the protein 

concentration. 
 

Table 2-3 Antibodies 

Antibody Manufacturer Catalogue 

number 

Source Dilution 

BAP1 Santa Cruz sc-28383 Mouse 1:500 

Caspase-8 Cell Signaling 9746 Mouse 1:1000 

c-FLIP Enzo Life 

Sciences 

ALX-804-961-

0100 

Mouse 1:1000 

c-IAP1 Cell Signaling 7065 Rabbit 1:1000 

c-IAP2 Cell Signaling 3130 Rabbit 1:1000 

FADD Cell Signaling 2782 Rabbit 1:1000 

XIAP Cell Signaling 2045 Rabbit 1:1000 

Survivin Cell Signaling 2803 Rabbit 1:1000 

ASXL1 Santa Cruz sc-293204 Mouse 1:1000 

ASXL2 Genetex GTX44956 Rabbit 1:2000 

H3K27Me3 Cell Signaling 9733 Rabbit 1:1000 
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H3 Cell Signaling 4499 Rabbit 1:1000 

H2AK119Ub Cell Signaling 8240 Rabbit 1:2000 

H2A Cell Signaling 12349 Rabbit 1:1000 

α-tubulin Cell Signaling #2125 Rabbit 1:2000 

Anti-mouse 

HRP 

Cell Signaling #7076 Rabbit 1:2000 

Anti-rabbit 

HRP 

Cell Signaling #7074 Mouse 1:2000 

 
 

2.7.3 Immunoblotting procedures 

Samples were diluted in dH2O to equivalent protein concentrations and mixed 

with 5x Laemmli Buffer (3.125mM Tris-base pH 6.8, 10% (w/v) SDS, 20% 

(v/v) glycerol, 50mM Dithiothreitol (DTT), in dH2O with bromophenol blue). 

The samples were then incubated for 10 minutes at 70⁰C and placed on ice 

prior to loading onto a precast 4-12% Bolt Bis-Tris Plus polyacrylamide gel 

(NW04122BOX). 25μl of each sample was added to each well. 5μl of a 

PageRuler pre-stained protein ladder (Thermo scientific) was also loaded. The 

gel was run at 150V in Tris/Glycine/SDS running buffer (0.25M Tris-base, 

1.92M Glycine, 1% SDS, in dH2O). Following separation, the gel was 

removed from the cassette and the proteins were transferred onto a 

nitrocellulose membrane using an iBlot transfer system (Invitrogen) on 

program 3 for 7 minutes. The quality of protein transfer was assessed by 

briefly staining the membrane with 0.1% (w/v) Ponceau solution and the blot 

then placed in Tris-buffered saline (TBS) (20mM Tris-base, 150mM NaCl, 

pH7.4) containing 0.1% (v/v) Tween20 (TBST). Blots were incubated with 

blocking buffer containing 5% (w/v) non-fat dry milk in TBST for 1 hour. Blots 

were then incubated with primary antibodies in 5% (w/v) BSA or 5% milk in 

TBST overnight at 4°C. All blots were then washed in TBST 3 times for 5 

minutes and incubated for 1 hour at room temperature with HRP-conjugated 

secondary antibody in 5% milk in TBST. After further washing 3 times in TBST 

for 5 minutes, 1 ml of Luminata western HRP chemiluminescence reagent 
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(Millipore) was applied to the membrane and incubated for 3 minutes. Excess 

reagent was drained off and immune-reactive bands visualised with an 

ImageQuant LAS 4000 biomolecular imager (GE Healthcare). 

 

 

2.8 Immunofluorescence 
 
Cells were seeded at 2.5x103 cells per well into 96 well Greiner µclear 

imaging plates in DMEM 10% FBS [149]. After 48 hours, cells were fixed in 

4% paraformaldehyde (PFA) for 10 minutes at room temperature and 

permeabilised in 0.3% NP-40 in PBS for 10 minutes. Cells were blocked in 1% 

BSA in 0.1% PBS tween for 1 hour at room temperature. Cells were incubated 

with H2AK119Ub primary antibody (cell signalling, #8240) overnight at 4oC, 

before incubating for 1 hour at room temperature with Alexafluor-488 anti-

rabbit secondary antibody. Nuclei were stained with Hoechst 33342 (Thermo, 

#62249). Images were acquired (n=3) using a BioTek Cytation3 Multimode 

reader, using a 10X objective. 4 fields of view were acquired per well (n=3), 

and the level of nuclear H2AK119Ub intensity was determined within the 

primary nuclear mask and normalised to total cell number.  

 

 

2.9 Cell viability assay 
 

An XTT assay was used to measure cell viability. XTT is a tetrazolium 

derivative (Applichem-A8088) that measures cell viability based on the activity 

of mitochondrial enzymes in live cells that reduce XTT and are inactivated 

shortly after cell death [150]. The amount of water-soluble product generated 

from XTT is proportional to the number of living cells in the sample and can be 

quantified by measuring absorbance at a wavelength of 475 nm. 
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Cells were seeded in 96-well plates in 100μl media per well at a density of 

40,000 cells/ml one day prior to treatment with soluble recombinant TRAIL 

(rTRAIL; Peprotech-310-04) or Medi3039 (Medimmune). 25μL of activated 

XTT reagent (Applichem #A8088) was added at 72h following treatment, 

incubated for 2 hours and the fluorescent signal intensity quantified using a 

fluorescent plate reader to measure excitation and emission wavelengths of 

490/650 nm. Relative cell viability was calculated as a fraction of viable cells 

relative to untreated cells.  

 
 

2.10  Flow cytometry 
 

2.10.1 Cell death assay 

An Annexin V-based flow cytometry assay was used to measure cell 

apoptosis and death [151]. Cells were seeded in 96-well plates in 100μl media 

per well at a density of 100,000 cells/ml one day prior to treatment with 

soluble recombinant TRAIL (rTRAIL; Peprotech-310-04) or Medi3039 

(Medimmune). 24 hours after treatment media, including all floating cells, was 

collected from each well and transferred to another 96-well plate. The 

adherent cells were washed with PBS, mobilised with 0.05% trypsin in EDTA 

and transferred to the second 96-well plate. Cells were then pelleted by 

centrifugation (300g, 5 minutes). The media was then discarded and cells 

pellets re-suspended in Annexin V binding buffer with Annexin V-647 antibody 

(Invitrogen) in a 1:100 ratio for 40 minutes on ice or 10 minutes at room 

temperature. 2μg/ml DAPI or PI was then added to each sample before flow 

cytometry analysis. Annexin V is a 35–36 kDa calcium-dependent 

phospholipid binding protein that has a high affinity for phosphatidlserine. 

Phosphatidlserine is located on the cytoplasmic side of the cell membrane, 

inaccessible to cell surface binding proteins, in normal viable cells. In 

apoptotic cells, it is translocated to the outer plasma membrane, thus 

exposing it to the external cellular environment and allowing binding of 
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Annexin V. The Annexin V is also able to pass through the membrane of dead 

cells that have lost their membrane integrity and bind to phosphatidlserine in 

the interior of the cell. These dead cells however will also stain with the 

nuclear stains DAPI or PI. Consequently, Annexin V-/DAPI- cells were judged 

to be viable, AnnexinV+/DAPI- cells were considered to be undergoing 

apoptosis (early apoptotic phase), and Annexin V+/DAPI+ cells were 

considered late apoptotic or necrotic, and recorded as dead. FlowJo® 

software was used to analyse all data. 

 

2.10.2 Death receptor expression 

For analysis of DR4 and DR5 expression on cell surface cells were stained 

with PE-conjugated antibody (DR4 - BioLegend Cat# 307205, DR5 - 

BioLegend Cat# 307405, Isotype control - Biolegend  #400112). FlowJo® 

software was used to analyse all data.  

 

 

2.11  Human tumour explants 
 

2.11.1 Mesothelioma tumour explants 

Appropriate ethical approval was obtained from the local Research Ethics 

Committee at the University of Leicester to carry out this work. The diagnosis 

of MPM was confirmed histologically for all patients prior to consent and 

surgery. Patients underwent pleurectomy, following which primary pleural 

tissue was sectioned into fragments measuring approximately 2 mm3. These 

tissue explants were cultured in 50% neurobasal and 50% DMEM:F12, 

supplemented with B27 (2%), EGF (20 ng/ml) and FGF (10 ng/ml). After 24 

hours the explants were treated with rTRAIL (vehicle, 50 ng/ml, 100 ng/ml or 

200 ng/ml) for a further 24 hours, following which explants were fixed for 

immunohistochemistry (Figure 2-4). The explants were fixed in 10% neutral-

buffered formalin (NBF) for 24 hours and then transferred into 70% ethanol 
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followed by paraffin embedding. Subsequently, 5μm sections were used for 

immunohistochemistry, as described below. 

 

2.11.2 Explant immunohistochemistry  

Cleaved PARP primary antibody (Abcam) was used at a 1:6000 dilution and 

the rabbit-specific HRP/DAB (ABC) detection IHC kit (Abcam) was used for 

immunohistochemistry, according to the manufacturer’s instructions. Sections 

were counterstained with haematoxylin and mounted using Vectamount 

permanent mounting media (Vector Labs, Peterborough, United Kingdom). 

Images were taken at 40x magnification on a Hamamatsu Nanozoomer Digital 

slide scanner. Cleaved PARP-positive cells were scored as the percentage of 

cells with nuclear staining (Figure 2-4). Sections were also stained for BAP1 

as described in 2.2.3. 

 

 

	  
Figure 2-3 Generation of human MPM explants 

Tumour explants were obtained by cutting primary pleural tissue from patients with MPM who 

underwent pleurectomy into fragments of approximately 2 mm3. The explants were treated 

with vehicle or rTRAIL (50 ng/ml, 100 ng/ml or 200 ng/ml) for 24 hours, following which time 

explants were fixed and stained for cleaved-PARP (a marker of apoptosis). 

 

 

Surgery	  	  

Tumour	  explants	  

vehicle	  

rTRAIL	  

IHC	  
(apoptosis)	  

anti-‐cleaved	  
PARP	  
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2.12  Statistics 
 
Statistical analysis was performed using GraphPad Prism (GraphPad 

Software, CA, USA) and Microsoft Excel. Student’s t-test was used to analyse 

differences between two groups whilst the analysis of variance (ANOVA) test 

with a Tukey post-hoc analysis was used to analyse differences between 

three groups. For multiple groups measured over multiple time points 

repeated measures ANOVA was used. Results were considered statistically 

significant for p≤0.05. All in vitro tests were performed in triplicate and all data 

are represented as mean values ± standard error of mean unless otherwise 

stated. 
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The work completed by K. Kolluri and C. Alifrangis presented in the 

introduction is highly supportive of loss of BAP1 function as a potential 

biomarker for rTRAIL sensitivity. This work was conducted entirely on 

established MPM cell lines [ref]. While a pragmatic model for initial validation 

and mechanistic work, cell lines suffer from a number of limitations but chiefly 

that the molecular makeup may differ significantly from the tissue of origin. In 

view of this, I aimed to assess loss of BAP1 function and its impact on rTRAIL 

sensitivity in primary tumour tissue. I secured access to three types: (1) 

formalin fixed, paraffin embedded (FFPE) tumour blocks and tissue sections 

collected as part of a prospective UK clinical trial (the MSO1 trial) [138], (2) 

early passage cell cultures from Mesobank [139], a UK based mesothelioma 

biobank and (3) FFPE tissue sections from tumour explants generated at the 

University of Leicester from tumour resected at pleurectomy [152]. 

 

In this chapter I use immunohistochemical assessment of nuclear BAP1 

expression as a surrogate for BAP1 molecular status to determine the 

prevalence of loss of BAP1 function in MPM and if there is an associated 

clinical phenotype in these primary tumour tissue samples. I treat early 

passage cell cultures and tumour explants (in collaboration with Professor 

Dean Fennell’s laboratory at the University of Leicester) with rTRAIL to 

validate loss of BAP1 function as a clinical biomarker for rTRAIL sensitivity. I 

also aim to determine if loss of BAP1 function also predicts sensitivity to 

systemic cytotoxic chemotherapy. Patients in the MSO1 trial were treated with 

single agent vinorelbine (V) or combination mitomycin, vinblastine and 

cisplatin (MVP), which allowed me to determine if there was any correlation 

between loss of BAP1 function in tumours and outcomes of patients treated 

with these regimes. I also assess the response of MPM cell lines to treatment 

with the current first line agents for MPM, cisplatin and pemetrexed to 

determine if there is an association with loss of BAP1 function.  

3 RESULTS I: BAP1 IN PRIMARY TUMOUR TISSUE 
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3.1 Nuclear BAP1 expression as a surrogate for BAP1 

molecular status in primary MPM tissue in the UK 
 
Using Sanger sequencing, somatic BAP1 mutations were initially identified in 

23-36% of MPM biopsies in the US [30, 33]. The mutations identified were 

predicted to result in loss of BAP1 expression or in loss or inactivation of the 

nuclear localisation signal (NLS) or deubiquitinase catalytic site that also 

prevents the auto-deubiquitination of BAP1 necessary for nuclear localisation 

[42]. Immunohistochemical analysis of a cohort of 123 MPM biopsies from 

Japan however revealed a loss of BAP1 nuclear staining in 60% suggesting a 

higher proportion of MPM tumours with loss of BAP1 function than that 

identified by Sanger sequencing (as its functions are predominantly nuclear) 

[153]. Using an integrated molecular approach (including Sanger sequencing, 

multiplex ligation-dependent probe amplification (MLPA), TaqMan copy 

number analysis, messenger RNA sequencing and promotor and whole gene 

methylation analysis) [35] in a cohort of 22 tumour samples, Carbone et al 

demonstrated that the rate of BAP1 mutations was indeed significantly higher 

than that identified by Sanger sequencing alone, and much closer to that 

implied by immunohistochemistry (IHC). While able to identify point mutations 

and small deletions, Sanger sequencing failed to identify larger exon losses 

and gains, reliably detected by MLPA. Both Sanger sequencing and MLPA 

failed to identify abnormal splicing forms, reliably detected by RNA 

sequencing. Sanger sequencing alone only identified BAP1 mutations in 6/22 

(27.3%) samples, while the integrated approach identified mutations in 14/22 

(63.6%). Carbone et al found that all gene alterations identified by the 

molecular analyses resulted in loss of nuclear BAP1 expression while strong 

nuclear expression reliably identified all those MPM biopsies containing wild-

type BAP1. A similar study using an integrated molecular approach by 

Koopmans et al also identified a strong association between loss of BAP1 

nuclear staining and BAP1 mutations with a sensitivity of 88% and a 

specificity of 97% in uveal melanoma [154]. Thus while a single molecular 

method is unable to identify all molecular BAP1 aberrancies there is a strong 
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association with loss of nuclear BAP1 expression as assessed by IHC. Loss 

of nuclear BAP1 expression has subsequently been identified in 42-67% of 

cohorts of MPM tumour biopsies [36, 37, 85] supporting a significantly higher 

frequency of BAP1 alterations in MPM than initially suggested by Sanger 

sequencing alone. 

 

To date there has not been any study on BAP1 nuclear expression in primary 

tumour tissue derived from patients in the UK. I aimed to conduct IHC analysis 

of the above primary tumour tissue samples to determine the prevalence of 

loss of nuclear BAP1 expression, as a surrogate for BAP1 molecular 

alterations. 

 

3.1.1 Nuclear BAP1 expression in primary MPM tumours 

79 tumour samples in the form of FFPE tissue blocks or mounted FFPE tissue 

sections from the MSO1 trial were available and suitable for IHC analysis. 

Tissue sections were mounted from the blocks and 79 sections were then 

stained for BAP1 using an automated staining protocol. Each tissue section 

was independently reviewed by two consultant histopathologists for the 

presence or absence of nuclear staining for BAP1. As these tumour biopsies 

were originally taken in 2003-2006 and stored at a facility outside our 

laboratory they were also assessed for the presence of a positive internal 

control in the form of lymphocyte staining to minimise confounding from false 

negatives owing to poor sample quality. Of the 79 samples 60 harboured a 

positive internal control and there was 100% concordance between the 2 

scorers for these 60 samples that were carried forward for further analysis.  

 

47 of the 60 samples were scored as lacking nuclear staining for BAP1, 

indicating a BAP1 LOF frequency of 78% in this cohort of tumour biopsies 

taken from patients in the UK. This is somewhat higher than the proportion 

reported in published studies outside the UK (Figure 3-1).  
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Figure 3-1 BAP1 nuclear staining in human MPM tumours  

Pie charts of the proportion of MPM tumours with positive or negative nuclear BAP1 

expression in the MSO1 cohort compared to cohorts previously assessed in studies 

in other countries. [35-37, 85]. The proportion of BAP1 negative in this study is higher 

than that identified in previous studies. 
 

3.1.2 Nuclear BAP1 expression in early passage MPM cultures 

Cell pellets from 25 early passage MPM cultures from the UK biobank 

Mesobank were generated, formalin fixed and paraffin embedded, sectioned 

and mounted onto slides. These cell pellet sections were assessed for nuclear 

BAP1 expression as above. In addition to this method of analysis for BAP1 

expression, protein lysates were extracted from these cell cultures and 

immunoblot analysis for BAP1 was conducted to determine if there was 

concordance between immunoblot and IHC analysis for BAP1 expression. I 

hypothesised there may be a discrepancy between the two as immunoblot 

analysis would still identify BAP1 expression in the case of LOF mutations 

that maintained full length BAP1 (e.g. point mutations, splice variants) 

whereas loss of BAP1 nuclear expression is seen in all BAP1 LOF mutations 

in MPM [35]. 

 

Immunoblot analysis identified BAP1 expression in 17 of the 25 cell culture 

lysates (68%)(Figure 3-2) while IHC analysis identified nuclear BAP1 

expression in 13 of the 25 cell cultures (52%)(Figure 3-3). The cell cultures 

USA 67% 
n= 70 

Italy 66% 
n=212 

Australia 48% 
n= 219 

France 42% 
n=26 

MSO1, UK 
n= 60 
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can therefore be place in one of three groups – (1) +ve immunoblot 

expression/ +ve nuclear expression, (2) +ve immunoblot expression/ -ve 

nuclear expression and (3) –ve immunoblot expression/ -ve nuclear 

expression. There was concordance between immunoblot and IHC expression 

for all cell cultures except 8T, 7T, 23T and 36, all of which expressed BAP1 on 

immunoblot but not on nuclear staining.  

 

Figure 3-2 Immunoblot for BAP1 in protein lysates from early passage MPM 
cultures 

Protein lysates from 25 early passage MPM cultures were subjected to immunoblotting for 

BAP1. BAP1 expression was identified in 17 of the 25 cell culture lysates (68%). IHC analysis 

identified nuclear BAP1 expression in 13 of the 25 cell cultures (52%) (Figure 3-3). There 

was concordance between immunoblot and IHC expression for all cell cultures except 8T, 7T, 

23T and 36, all of which expressed BAP1 on immunoblot but not on nuclear staining. 
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Immunoblot +ve/ Nuclear BAP1 +ve 

 
Immunoblot +ve/ nuclear expression –ve 

 
Immunoblot –ve/ nuclear expression -ve 

 

Figure 3-3 BAP1 immunohistochemistry in early passage MPM cultures  

Immunoblot analysis identified BAP1 expression in 17 of the 25 cell culture lysates 

(68%)(Figure 3-2) while IHC analysis identified nuclear BAP1 expression in 13 of the 25 cell 

cultures (52%)(Figure 3-3). The cell cultures can therefore be place in one of three groups – 

(1) +ve immunoblot expression/ +ve nuclear expression, (2) +ve immunoblot expression/ -ve 

nuclear expression and (3) –ve immunoblot expression/ -ve nuclear expression. There was 

concordance between immunoblot and IHC expression for all cell cultures except 8T, 7T, 23T 

and 36, all of which expressed BAP1 on immunoblot but not on nuclear staining.  
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3.1.3 Nuclear BAP1 expression in human MPM explants 

I collaborated with Dr S. Busacca in Professor Dean Fennell’s laboratory at 

the University of Leicester to assess nuclear BAP1 expression in human 

tumour explants. S. Busacca generated the tissue explants at the University of 

Leicester from tissue resected at pleurectomy. Tumour tissue was cut into 

fragments and cultured as tissue explants. These explants were then formalin 

fixed, paraffin embedded, sectioned and mounted onto slides. I then 

conducted immunohistochemical analysis of nuclear BAP1 expression as 

above (Figure 3-4). 
 

	  
Figure 3-4 BAP1 immunohistochemistry of human MPM explants 

Three human tumour explants were generated and stained for BAP1 expression. One of the 

three explants (patient 1) lacked nuclear expression of BAP1.  

 

Three human tumour explants were generated one of which (patient 1) lacked 

nuclear expression of BAP1.  

 

 

 

 

 

 

 

Patient	  1 Patient	  2 Patient	  3 
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3.2 BAP1 and clinical characteristics in MPM  
 

Using BAP1 nuclear expression as a surrogate for BAP1 molecular status I 

aimed to determine if this correlated with any clinical characteristics in MPM in 

the MSO1 cohort and Mesobank cell cultures. As I had access to data for only 

three tumour explants this analysis was not conducted on the explants, as the 

sample size was not large enough to infer statistical significance. 

 

3.2.1 Nuclear BAP1 expression and clinical characteristics in MPM from 

the MSO1 trial 
	  
The clinical data collected as part of the MSO1 trial included the gender and 

age at diagnosis of the patients and the histological subtype of the tumour. I 

used this data to determine if there was any correlation with BAP1 nuclear 

expression. 

 
Table 3-1. Clinical characteristics in tumours with and without nuclear BAP1 

expression

 
A chi-squared test was used to determine if there was a difference in gender, 

histological subtypes and treatment received between the two groups and a 2-

sided t-test for comparison of the age at diagnosis.  There was no statistically 

significant difference in gender, age at diagnosis, histological subtype or 

! Nuclear!
BAP1!IHC!
positive!
(N=13)!

Nuclear!
BAP1!IHC!
negative!!
(N=47)!

p>value!

Gender!(M=male)) M:)100%) M:)91%) 0.22)
Median!age!at!diagnosis)(years)! 68.8! 66.0! 0.80)
Histology! ! ! 0.31)
Epithelioid) 77%)(10)) 89%)(42)) !
Biphasic) 23%)(3)) 9%)(4)) !
Sarcomatoid) 0%)(0)) 2%)(1)) !
Treatment! ) ) 0.81)
Active)symptom)control)(ASC)) 31%)(4)) 40%)(19)) !
ASC)+)vinorelbine) 31%)(4)) 26%)(12)) !
ASC)+)mitomycin,)vinblastine,)cisplatin) 38%)(5)) 34%)(16)) !
!
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treatment received between those tumours with and without nuclear BAP1 

expression (Table 3-1). 

 

3.2.2 BAP1 and clinical characteristics in early passage MPM cultures 

Clinical data regarding the sex and age at diagnosis of the patients and the 

histology of the tumours from which the early passage cell cultures were 

derived was available from Mesobank. I used this data to determine if nuclear 

BAP1 expression correlated with any of these characteristics. 
	  

A chi-squared test was used to determine if there was a difference in gender 

and histological subtypes between the two groups and a 2-sided t-test for 

comparison of age at diagnosis.  There was no statistically significant 

difference in gender, age at diagnosis and histological subtype between those 

tumours with and without nuclear BAP1 expression (Table 3-2). 
	  

Table 3-2. Clinical characteristics in early passage cultures with and without 

nuclear BAP1 expression. 

	  

 
 

 

 

 

 

 

! Nuclear!
BAP1!IHC!
positive!
(N=13)!

Nuclear!
BAP1!IHC!
negative!!
(N=12)!

p=value!

Gender!(M=male)) M:)85%) M:)83%) 0.93)
Median!age!at!diagnosis!(years)) 64.0! 64.0! 0.82)
Histology! ! ! 0.35)
Epithelioid) 54%)(7)) 58%)(7)) !
Biphasic) 31%)(4)) 42%)(5)) !
Sarcomatoid) 15%)(2)) 0%)(0)) !
!
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3.3 BAP1 as a biomarker in primary MPM tissue 
 

As noted above, the data presented in the introduction from K. Kolluri and C. 

Alifrangis that initially identified loss of BAP1 function as a biomarker for 

rTRAIL sensitivity was conducted entirely on established cell lines. I therefore 

aimed to further validate loss of BAP1 function as a biomarker for rTRAIL 

sensitivity in primary tumour tissue to strengthen the translational applicability 

of this finding. As noted in the introduction, loss of BAP1 function has also 

been identified as a possible biomarker for sensitivity to a number of drugs in 

MPM including PARP, HDAC and EZH2 inhibitors. I therefore also aimed to 

determine if loss of BAP1 function/ nuclear expression correlated with 

response to systemic cytotoxic chemotherapy using the data collected 

prospectively as part of the MSO1 trial. 

 

3.3.1 BAP1 as a biomarker for systemic cytotoxic chemotherapy 
	  
3.3.1.1 BAP1 and response to treatment with vinorelbine or mitomycin, 

vinblastine and cisplatin 

The MSO1 cohort was taken from a prospective three-armed randomised 

clinical trial in which patients were treated with active symptom control (ASC), 

single agent vinorelbine (V) and ASC, or combination chemotherapy with 

mitomycin, vinblastine and cisplatin (MVP) and ASC [138]. Data was 

prospectively collected on overall survival. I therefore aimed to determine if 

loss of nuclear BAP1 expression was predictive of response to these two 

systemic cytotoxic chemotherapeutic regimens. 

 

The 60 tumour samples that had been stained for BAP1 expression in 3.3.1 

were used for this analysis. Kaplan Meier analysis of all patients, irrespective 

of treatment arm, revealed no significant difference in survival between 

patients with tumours with positive or negative nuclear BAP1 expression 

overall (Figure 3-5A). When stratified by treatment arm – ASC, ASC + V and 

ASC + MVP – no significant difference in median survival was identified 
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between those patients with BAP1 positive or BAP1 negative tumours within 

any treatment arm (Figure 3-5B).  

B 

	  
Figure 3-5 Nuclear BAP1 expression and survival in patients with MPM from 
the MSO1 trial 

 (A) Kaplan Meier survival curve of all patients in the MSO1 trial stratified by BAP1 nuclear 

expression. (B) Median survival in months of all patients and patients within each treatment 

arm stratified by nuclear BAP1 expression. ASC – active symptom control, V + ASC – 

vinorelbine plus active symptom control, MVP + ASC – mitomycin, vinblastine and cisplatin 

plus active symptom control.  
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3.3.1.2 Loss of BAP1 function does not predict sensitivity to cisplatin or 

pemetrexed  

The chemotherapy regimes used in the MSO1 trial are no longer first line 

treatments for MPM. I therefore assessed if loss of BAP1 function predicted 

response to the current first line chemotherapeutic agents for MPM, cisplatin 

and pemetrexed. I treated 4 BAP1 mutant and 5 BAP1 wild-type MPM lines 

with a dose range of cisplatin or pemetrexed and measured the cell viability at 

72 hours with an XTT assay (Figure 3-6). There was no obvious correlation 

between BAP1 status and sensitivity to these agents among the lines tested. 

 

	  
Figure 3-6 Relative cell viability of MPM cells treated with cisplatin and 
pemetrexed 

72-hour cell viability results for 9 MPM cell lines (4 BAP1 mutant - green and 5 BAP1 wild-

type - red) treated with (A) cisplatin (B) pemetrexed 

 

3.3.2 BAP1 as a biomarker for rTRAIL in early passage MPM cultures 
25 early passage MPM cultures were treated with a dose range of rTRAIL and 

cell viability at 72 hours measured to determine sensitivity (Figure 3-7A). The 

cells were categorised by their response as sensitive, partially sensitive or 

resistant to rTRAIL if treatment with rTRAIL resulted in <50%, 50-75% or > 

75% cell viability at a dose of 50ng/ml rTRAIL respectively, above which dose 

minimal dose response was observed.  
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These MPM cultures had previously had their nuclear BAP1 expression status 

determined by immunohistochemistry in 3.1.2 thus allowing analysis of an 

association between BAP1 expression and rTRAIL sensitivity (Figure 3-7B). 

MPM cultures with negative nuclear BAP1 expression demonstrated 

significantly lower mean cell viability in response to 50ng/ml rTRAIL treatment 

than those with positive nuclear BAP1 expression.  

 

 

Figure 3-7 rTRAIL treatment of early passage MPM cultures  
 (A) Early passage MPM cultures were treated with a dose range of rTRAIL and cell viability 

measured at 72h. Cells were categorised by response as sensitive (green - <50% survival at 

50ng/ml), partially sensitive (orange – 50-75% survival at 50ng/ml) or resistant (red - >75% 

survival at 50ng/ml). 21 lines are shown. (B) 72h cell viability of early MPM cultures treated 

with 50ng/ml rTRAIL stratified by positive nuclear BAP1 staining (n=13) or negative nuclear 

BAP1 staining (n=12) as assessed by immunohistochemistry. 

 

3.3.3 BAP1 as a biomarker for rTRAIL in human MPM explants 

The tumour explants generated by S. Busacca at the University of Leicester 

were used to further validate loss of BAP1 function as a biomarker for rTRAIL 

sensitivity. Tumour resected at pleurectomy was cut into fragments and 

cultured as tissue explants. After 24 hours these explants were treated with a 
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dose range of rTRAIL or vehicle for a further 24 hours following which the 

explants were formalin fixed and paraffin embedded for 

immunohistochemistry. To quantify the apoptotic response to treatment 

sections of the treated explant were stained with anti- cleaved PARP antibody 

and the percentage of tumour cells with positive nuclear cleaved PARP 

staining calculated by a histopathologist. Sections of untreated explant were 

also stained for nuclear BAP1 expression as above (Figure 3-8). 
 

	  
Figure 3-8 rTRAIL treatment of human MPM tumour explants 

 (A) Tumour explants derived from three patients and treated with vehicle (-) or rTRAIL 

(+rTRAIL) for 24h. Explants were stained with anti-BAP1 and anti-cleaved PARP antibodies 

with and without rTRAIL treatment. (B) The percentage of cleaved PARP-positive cells in 

tumour explants treated with a dose range of rTRAIL for 24 hours was scored. These data 

were provided by Professor Dean Fennell’s laboratory. 

 

Of the three tumour explants, those from patients 2 and 3 expressed nuclear 

BAP1, while the explant from patient 1 did not express BAP1. The explant 

from patient 1 demonstrated increased levels of apoptosis, as measured by 

percentage of cells that express cleaved PARP, compared to the levels of 

apoptosis seen in the explants from patients 2 and 3.  

 

A B 
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3.4 Discussion 

 

3.4.1 There is a high prevalence of loss of BAP1 nuclear expression in 

MPM in the UK 
This study has identified that 78% of MPM tumours resected from a cohort of 

patients in the UK harbour loss of nuclear BAP1 expression and would be 

targets for a BAP1 biomarker driven therapy. As highlighted in Figure 3-1 this 

proportion is higher than the proportion identified by previous studies from 

cohorts outside the UK. A number of explanations are possible.  The higher 

proportion of MPM tumours that harbour loss of nuclear BAP1 expression in 

this cohort may be due to the specifics of this population being from the UK. 

For example, the type of asbestos to which patients in the UK are more likely 

to have been exposed relative to populations in the US, Japan, Australia and 

mainland Europe may have had an effect. Evidence supports an association 

between asbestos exposure and BAP1 mutations [155], however no study to 

date has investigated a possible association between the type of asbestos 

and BAP1 mutations. Methodological issues can also not be excluded. As 

noted above the MPM tumours taken from the MSO1 trial were resected 

between 2003-2006 and degradation of tissue quality could have affected 

immunohistochemical analysis. I did however attempt to minimise 

confounding from this by only including those tissue specimens that 

harboured an internal positive control in the form of positive lymphocyte 

staining. Finally the specifics of IHC protocols vary between studies, which 

may affect results, however all studies in Figure 3-1 used the same antibody 

as that used in this study. 

 
48% of the early passage MPM cultures analysed were also found to have 

lost nuclear BAP1 expression. This is more in keeping with results from other 

studies (Figure 3-1). The advantage of the use of BAP1 IHC as the method to 

identify MPM tumours with loss of BAP1 function is highlighted by the results 

from IHC and immunoblot analysis of the MPM early passage cell cultures  
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(Figure 3-3). Four of the cultures (8T, 7T, 23T and 36) exhibited BAP1 

expression on immunoblot however IHC revealed that this full length BAP1 

was not expressed in the nucleus.  The BAP1 antibody used (Santa Cruz C-4) 

is a monoclonal antibody raised against amino acids 430-729 of BAP1, i.e. the 

C- terminus and will therefore identify BAP1 that retains the NLS. It may be 

that these cell cultures harbour point mutations that inactivate the NLS or that 

inactivate the catalytic subunit that prevents BAP1 auto-deubiquitination 

(required for nuclear localisation) thus resulting in full length BAP1 (imaged on 

immunoblot) but sequestered in the cytoplasm. Integrated molecular 

sequencing of these cell cultures would resolve this issue but was prohibitively 

expensive for this thesis. As the functions of BAP1 are nuclear, this result 

emphasises the advantage of using BAP1 IHC as a method to identify MPM 

tumours with loss of BAP1 function. Determination of the molecular status of 

BAP1 to identify MPM that harbour loss of BAP1 function can be reliably 

achieved by an integrated molecular approach to sequencing as described 

above [35]. This approach however is expensive and time consuming and IHC 

is an easy, cheap and validated surrogate [35]. As this study, and others, 

propose loss of BAP1 function to act as a biomarker for sensitivity to targeted 

agents it seems likely that BAP1 IHC will be the tool by which MPM tumours 

are stratified for a BAP1 biomarker driven therapy. 

 

3.4.2 Nuclear BAP1 expression is not associated with a clinical 

phenotype 
To date no distinct clinical phenotype has been associated with BAP1 

mutations in MPM. Somatic BAP1 mutations have however been 

demonstrated to be associated with a higher risk of metastasis in uveal 

melanoma [156] and higher-grade tumours and shorter survival in clear cell 

renal carcinoma [157]. I found no significant correlation between age at 

diagnosis, sex and histological subtype and loss of BAP1 expression. This is 

consistent with results from Carbone et al, who in a cohort of 70 MPM 

tumours also did not find significant relationships between loss of nuclear 

BAP1 expression and sex, age at diagnosis, ethnicity and history of asbestos 
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exposure [35]. Zauderer et al also analysed 121 MPM tumours that had been 

tested for BAP1 mutation by Sanger sequencing to determine if BAP1 

mutation status was associated with any of age, sex, histology, stage, 

smoking status, asbestos exposure and overall survival [34]. A history of 

smoking was significantly more common in patients whose tumours that 

harboured a BAP1 mutation however no other clinical feature was significantly 

different among those with and without BAP1 mutations. This study however 

suffers from the limitation of relying solely on Sanger sequencing to identify 

BAP1 mutations and thus is likely to have misclassified a number of mutant 

tumours as wild-type as detailed above.  

 

3.4.3 Nuclear BAP1 expression does not predict response to systemic 

cytotoxic chemotherapy  

As highlighted in the introduction, preclinical data from the Janes’ lab 

suggests loss of BAP1 function augments rTRAIL sensitivity. Published 

preclinical data also supports loss of BAP1 function as a potential therapeutic 

biomarker for EZH2, HDAC and PARP inhibitors [89, 91]. In view of this, and 

in view of the high prevalence of loss of BAP1 function in MPM, I aimed to first 

determine if loss of BAP1 function also sensitises to systemic cytotoxic 

chemotherapy. I first assessed this in primary tumours treated with single 

agent vinorelbine or combination chemotherapy with mitomycin, vinblastine 

and cisplatin (MVP) using samples and data from the MSO1 trial [138]. I found 

no significant difference in overall survival between those patients with 

tumours that did and did not express nuclear BAP1 in the cohort as a whole. I 

also found no significant difference in overall survival between those patients 

with tumours that did and did not express nuclear BAP1 when treated with 

either single agent vinorelbine or with combination MVP or in the untreated 

cohort. This data suggests that loss of nuclear BAP1 expression does not 

predict response to systemic cytotoxic chemotherapy in the form of 

vinorelbine or MVP. As I did not have access to primary tumour tissue and 

data from patients treated with the current first line chemotherapeutic agents, 

cisplatin and pemetrexed, I treated MPM lines with these agents. The results 
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support that there is no sensitising association between cisplatin or 

pemetrexed and loss of BAP1 function.  There have been no published 

studies to date that have assessed BAP1 as a biomarker for sensitivity to 

systemic cytotoxic chemotherapy regimens.  

 

3.4.4 Loss of nuclear BAP1 expression predicts sensitivity to rTRAIL 

I also aimed to validate loss of BAP1 function as a biomarker for rTRAIL 

sensitivity in primary tumour tissue. Sensitivity to rTRAIL was found to be 

significantly higher in early passage MPM cultures that do not express nuclear 

BAP1 than in those that do express BAP1 in the nucleus consistent with data 

from established cell lines presented by K. Kolluri (Figure 3-7). I also 

collaborated with Dr S. Busacca in Prof Dean Fennell’s laboratory in the 

University of Leicester who has expertise in the use of tumour explants as a 

preclinical model by which to assess novel therapies in MPM [158]. Of the 

three tumour explants successfully generated by S. Busacca, the explant that 

did not express nuclear BAP1 demonstrated higher levels of apoptosis in 

response to rTRAIL than the two explants that did express nuclear BAP1. 

While admittedly this experiment is underpowered for statistical inference, it 

remains an exciting finding supportive of loss of BAP1 function as a biomarker 

for sensitivity to rTRAIL and does not contradict the findings from the other 

preclinical models.  

 

Thus data from primary tumour tissue presented in this thesis support the use 

of loss of BAP1 function as a biomarker for sensitivity to rTRAIL in MPM. The 

next step would be to run a clinical trial in patients to determine the true 

translational applicability of this finding. Review of tumour tissue from previous 

clinical trials of rTRAIL for BAP1 expression would also be a pertinent act. 

 

 
 



	  

	   88	  

3.5 Summary 

 
• There is a high prevalence of loss of nuclear BAP1 expression in 

cohorts of tumour samples (78%) and early passage cell cultures 

(48%) from the UK. 

• Loss of nuclear BAP1 expression is not associated with gender, age at 

diagnosis or histological subtype in MPM tumours or early passage 

cultures.  

• Loss of BAP1 function does not predict response to systemic cytotoxic 

chemotherapy 

• Loss of nuclear BAP1 expression predicts sensitivity to rTRAIL in early 

passage MPM cell cultures. 

• Loss of nuclear BAP1 expression correlates with rTRAIL sensitivity in a 

limited sample of MPM tumour explants. 
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The second aim of this thesis was to further validate loss of BAP1 function as 

a biomarker for sensitivity to rTRAIL and other DR agonists in MPM and other 

cancers. The initial validation data conducted by K. Kolluri was conducted on 

only two MPM cell lines (one BAP1 mutant and one wild-type), as such I 

aimed to further validate loss of BAP1 function as a biomarker for rTRAIL 

sensitivity via manipulation of BAP1 expression in further MPM lines. 

Furthermore the original drug screen of 15 MPM lines carried out at the WTSI 

included recombinant TRAIL (rTRAIL) as the only DR agonist compound. As 

several additional DR agonists exist I hypothesised that loss of BAP1 function 

would extend as a biomarker for sensitivity to other DR agonists. Loss-of-

function mutations in BAP1 are also prevalent in additional cancers including 

uveal melanoma, clear cell renal carcinoma and intrahepatic 

cholangiocarcinoma [75, 159, 160]. I therefore also aimed to determine if loss 

of BAP1 function sensitises additional cancer types to DR agonists. 

 

The observation that loss of BAP1 function sensitises MPM to TRAIL also has 

interesting implications for sensitising BAP1 wild-type tumours; two potential 

strategies emerge. Firstly pharmacological replication of the mechanism by 

which loss of BAP1 function induces TRAIL sensitivity could be used in a 

combination therapy with TRAIL to treat BAP1 wild-type (WT) tumours. 

However, elucidation of the precise mechanism by which biomarkers confer 

their effect is often difficult and in this case unlikely to involve a single 

pharmacological target. An alternative strategy would be to inhibit BAP1 itself 

through a BAP1 inhibitor. No clinical or preclinical compounds currently exist 

that are known to specifically inhibit BAP1 function. A valid concern however 

is the effect of loss of BAP1 function on rTRAIL sensitivity in non-transformed 

cells. TRAIL is known to induce apoptosis in transformed but not non-

transformed cells, although the mechanism is unknown. However the effect of 

4 RESULTS II: VALIDATION OF BAP1 AS A 
BIOMARKER FOR DR AGONIST SENSITIVITY  
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BAP1 inhibition on rTRAIL sensitivity in non-transformed cells is unknown. I 

therefore also aimed to determine the effect of BAP1 loss of function on 

rTRAIL sensitivity in non-transformed cells.  
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4.1 Expression of wild-type BAP1 in mutant BAP1 MPM cells 

decreases rTRAIL sensitivity 
 
The H28 MPM line harbours a homozygous deletion of BAP1 and therefore 

expresses no BAP1 protein, while H2804 harbours a heterozygous splice 

mutation predictive of loss of function and expresses mutant BAP1 (Figure 1-
6B). Both cell lines were found to be sensitive to rTRAIL in the WTSI MPM 

line drug screen (Figure 1-6A). I aimed to manipulate these cell lines to 

further validate loss of BAP1 function as a biomarker for rTRAIL sensitivity.  

 

4.1.1 Transduction of mutant BAP1 MPM cells with BAP1 expressing 
lentivirus  

I transduced H28 and H2804 cells with wild-type BAP1 (BAP1 WT) and 

deubiquitinase mutant BAP1 (BAP1 C91A) expressing lentiviral constructs 

that had previously been generated and titrated by K. Kolluri. As H28 

expresses no BAP1 protein I was able to quantify the percentage of cells 

successfully transduced by flow cytometry using a primary BAP1 antibody and 

a secondary fluorescent antibody (AlexaFluor 488). 87.1% and 91.9% of H28 

cells transduced at multiplicity of infection (MOI) 3 and MOI 5 respectively 

were found to express BAP1 WT. 94.6% and 94.8% of H28 cells transduced 

at MOI 3 and MOI 5 respectively were found to express BAP1 C91A (Figure 
4-1). H2804 however expresses a mutant BAP1 protein and therefore flow 

cytometry could not be conducted to determine transduction success. I 

therefore performed immunoblot analysis to verify successful overexpression 

of BAP1 WT and BAP1 C91A (Figure 4-2).  
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Figure 4-1 Flow cytometry of H28 MPM cells transduced with BAP1 lentiviral 
constructs 

Untransduced, BAP1 WT (BAP1) and BAP1 C91A transduced H28 cells at MOIs 3 and 5 

were stained for BAP1 with primary antibody and assessed by flow cytometry with a 

secondary Alexa Fluor 488 secondary antibody to determine the percentage of successfully 

transduced cells. As the MOI increased the percentage of successfully transduce cells 

increased. A Becton Dickinson LSRFortessa analyser was used. 

 

Figure 4-2 Immunblot of BAP1 in H2804 
MPM cells tranduced with BAP1 lentiviral 
constructs 

Protein lysates from untransduced, BAP1 WT 

and BAP1 C91A transduced H2804 cells at MOI 

5 were immunoblotted for BAP1 expression. 

Cells transduced with BAP1 contructs express 

significantly higher amounts of BAP1 protein in 

light of an overexpression model being used. 

 

 

 

Untransduced BAP1	  MOI	  3 BAP1	  MOI	  5 

C91A	  MOI	  3 C91A	  MOI	  5 

	  

U BAP1 C91A 

BAP1 
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4.1.2 Overexpression of wild-type BAP1 in mutant BAP1 MPM cells 

results in reduced sensitivity to rTRAIL 

H28 and H2804 cells transduced with BAP1 WT and BAP1 C91A at MOI 5 

were treated with a dose range of rTRAIL for 24 hours and an Annexin V/ 

DAPI cell death assay was performed.  

 

Transduction of the parental H28 line with BAP1 WT resulted in a significant 

decrease in cell death in response to rTRAIL treatment (p = 0.002) while 

transduction with BAP1 C91A did not result in a significant change (p=0.7375) 

A significantly higher cell death response was observed in the BAP1 C91A 

transduced cells relative to the BAP1 WT transduced cells (p=0.0145) (Figure 

4-3A).  

 

Transduction of the parental H2804 line with BAP1 WT also resulted in a 

significant decrease in cell death in response to rTRAIL treatment (p < 

0.0001) while transduction with BAP1 C91A resulted in no significant change 

(p = 0.2407). There was a significantly lower cell death response observed in 

the BAP1 WT transduced lines relative to the BAP1 C91A transduced lines (p 

< 0.0001) (Figure 4-3B).  
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Figure 4-3 Loss of BAP1 function and response to rTRAIL treatment in BAP1 
mutant MPM lines  

Cell death in response to 24h treatment with rTRAIL assessed by an Annexin V/DAPI flow 

cytometry assay in (A) H28 lines - at 100ng/ml rTRAIL a significant difference in parental vs 

BAP1 (*p= 0.002) and BAP1 vs C91A (**p = 0.0145) lines is observed (B) H2804 lines – 

parental vs C91A * p = 0.2407, parental vs BAP1 ** p = <0.0001, C91A vs BAP1 *** p = < 

0.0001. Parental – untransduced, C91A – BAP1 DUB mutant transduced, BAP1 WT – wild-

type BAP1 transduced. 
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4.2 Knockdown of BAP1 in wild-type BAP1 MPM cells 

increases rTRAIL sensitivity 
 

The MPP-89 and H2869 MPM lines express wild-type BAP1 and were found 

to be resistant to rTRAIL treatment in the WTSI MPM line drug screen (Figure 

1-6). I aimed to knock down BAP1 in these cell lines as an additional model to 

validate loss of BAP1 function as a biomarker for rTRAIL sensitivity. 

 

4.2.1 Titration of BAP1 shRNA lentivirus  

BAP1 shRNA lentivirus was generated using a mir30-based GIPZ BAP1 

shRNA plasmid (V2LHS_4147, Dharmacon) and the packaging plasmids as 

described in methods. The shRNA plasmid expresses a green fluorescent 

protein (GFP) marker to allow for selection and titration. 5 x 104 293T cells 

were plated in a 6-well plate and transduced with different dilutions of the 

BAP1 shRNA expressing lentivirus. The cells were grown for 48 hours, the 

culture media removed and the cells washed with PBS, trypsinised and 

transferred to FACS buffer to determine the proportion of transduced cells by 

flow cytometry for GFP. The virus quantity that transduced approximately 20% 

of cells was used to calculate the viral titre. The following equation was used: 

 

Viral titre = number of cells transduced X proportion of positive cells 

volume of virus in ml 

 

0.125μL of virus transduced 22.7% of 293T cells and the viral titre was 

therefore determined to be 9.1 x 107 transduction units/ml (Figure 4-4). 
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Figure 4-4 Titration of BAP1 shRNA expressing lentivirus 

293T cells were transduced using a dilution series of concentrated lentiviral particles. 

GFP expression as determined by flow cytometry for a range of viral volumes are 

shown which reflects the percentage of transduced cells. As the volume of 

concentrated lentiviral particles added was increased the percentage of GFP +ve 

cells, reflective of successful transduction, also increased. 

 

 

4.2.2 Titration of EV shRNA lentivirus  

An empty vector (EV) shRNA expressing lentivirus was also generated using 

a clone from Dharmacon. The procedure for viral titration was as per that of 

the BAP1 shRNA expressing lentivirus as described above. 0.5μL of virus 

transduced 22.6% of 293T cells and the viral titre was therefore determined to 

be 2.3 x 107 transduction units/ml (Figure 4-5). 
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Figure 4-5 Titration of EV shRNA expressing lentivirus 

293T cells were transduced using a dilution series of concentrated lentiviral particles. 

GFP expression as determined by flow cytometry for a range of viral volumes are 

shown which reflects the percentage of transduced cells. As the volume of 

concentrated lentiviral particles added was increased the percentage of GFP +ve 

cells, reflective of successful transduction, also increased. 

 

 

4.2.3 Transduction of wild-type BAP1 MPM cells with BAP1 shRNA 

lentivirus  
MPP-89 and H2869 cells were transduced with BAP1 shRNA and EV shRNA 

expressing lentivirus at MOI 5. As the shRNA lentivirus expresses a 

puromycin resistance marker, treatment with 10μg/ml puromycin was used to 

select a pure population of BAP1 shRNA expressing cells. Immunoblot 

analysis confirmed reduced BAP1 expression in the BAP1 shRNA transduced 

relative to the EV transduced cells in both cell lines however BAP1 expression 

was still observed in the BAP1 shRNA transduced cells (Figure 4-6). 
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Figure 4-6 Immunoblot of BAP1 in 
BAP1 shRNA transduced MPM cells 

Immunoblot of MPP-89 and H2869 cells 

transduced with MOI 5 of EV shRNA 

(EV) or BAP1 shRNA (shRNA) virus. 

Transduction with shRNA lentivrus 

successful resulted in knockdown of 

BAP1 expression in both cell lines. 
 

 

 

 

 

4.2.4 Knockdown of BAP1 in wild-type BAP1 MPM cells results in 
increased rTRAIL sensitivity 

Parental, BAP1 shRNA and EV shRNA transduced MPP-89 and H2869 cells 

were treated with a dose range of rTRAIL for 24 hours following which an 

Annexin V/ DAPI cell death assay was performed. Transduction of the 

parental line with the EV shRNA construct resulted in no significant change in 

cell death in response to rTRAIL treatment in either MPP-89 (p=0.8768) or 

H2869 (p=0.6095) cells. Transduction with BAP1 shRNA resulted in a 

significant increase in cell death in response to rTRAIL treatment in both lines 

relative to both the parental and EV shRNA transduced lines (p = <0.0001 for 

all comparisons) (Figure 4-7). Beyond 50ng/ml of rTRAIL however no dose 

response relationship was observed in all cell lines. 
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Figure 4-7 shRNA knockdown of BAP1 and response to rTRAIL treatment in 
BAP1 wild-type MPM lines 

Cell death in response to 24h treatment with rTRAIL as assessed by an Annexin V/DAPI flow 

cytometry assay in (A) MPP-89 lines - Parental vs C91A (p = 0.8768), Parental vs shBAP1 (p 

= <0.0001), EV vs shBAP1 (p = <0.0001)  (B) H2869 MPM lines - Parental vs C91A (p = 

0.6095), Parental vs shBAP1 (p = <0.0001), EV vs shBAP1 (p = <0.0001). Parental – 

untransduced, EV – empty vector shRNA transduced, shBAP1 – BAP1 shRNA transduced.   
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4.3 BAP1 as a biomarker for sensitivity to other DR agonists  
 

A number of clinical and preclinical death receptor (DR) agonist compounds 

exist in addition to recombinant TRAIL (rTRAIL) including antibodies and small 

molecule agonists to both DR4 and DR5. I hypothesised that as rTRAIL 

induces apoptosis through binding to DR4/5 and as the evidence presented 

by K. Kolluri suggests loss of BAP1 function alters expression of components 

of the apoptotic pathway, any compound that binds to and activates DRs 

would induce greater cell death in the context of loss of BAP1 function. Loss 

of BAP1 function would therefore be an effective biomarker for these DR 

agonists in addition to rTRAIL. Through collaboration with Medimmune LLC, I 

gained access to the preclinical DR5 agonist Medi3039 to test this hypothesis 

in in vitro models. 

 

4.3.1 Loss of BAP1 function sensitises MPM cells to Medi3039 
K. Kolluri generated the BAP1 WT expressing plasmid pCCL.CMV.BAP1 and 

site directed mutagenesis of this plasmid was used to generate lentiviruses 

each with a mutation in a key functional BAP1 site as previously described. 

The mutant vectors generated by K Kolluri were: C91A – inactive DUB 

catalytic site, NLS – deletion of the nuclear localization signal and ΔHBM – 

inactive HCF1 binding motif, in addition to a GFP expressing control construct. 

The H226 cell line harbours a homozygous deletion of BAP1 and expresses 

no BAP1 protein. H226 cells were transduced with each of these constructs 

by K Kolluri to generate H226 cells that express either wild-type BAP1, mutant 

BAP1 or GFP as a control.   As highlighted in the introduction, transduction 

with BAP1 WT, NLS or ΔHBM conferred rTRAIL resistance while transduction 

with BAP1 C91A had no effect on rTRAIL sensitivity implicating DUB activity 

as key to BAP1 induced TRAIL resistance (Figure 1-8). I took these 

transduced H226 cells and treated them with rTRAIL and Medi3039 along with 

the parental line to determine if loss of BAP1 function and DUB activity 

conferred sensitivity to Medi3039 as for rTRAIL. 
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Parental, GFP, C91A, BAP1 WT, NLS and ΔHBM transduced H226 cells were 

treated with a dose range of rTRAIL for 72h following which an XTT viability 

assay was performed (Figure 4-8A). Transduction of the parental line with the 

GFP construct (control) resulted in no significant change in cell viability in 

response to rTRAIL treatment (p=0.0863). The GFP control was used for 

statistical comparison of the mutant constructs to account for any effect of 

transduction on response to rTRAIL. Transduction of the parental line with 

BAP1 WT resulted in a significant increase in cell viability in response to 

rTRAIL treatment relative to the GFP transduced line (p<0.0001). Similarly 

transduction with the NLS or ΔHBM constructs also resulted in a significant 

decrease in cell viability in response to rTRAIL treatment (p<0.0001) relative 

to the GFP transduced line. Transduction of the parental line with the C91A 

construct however resulted in no significant change in cell viability in response 

to rTRAIL treatment relative to the GFP transduced line (p=0.4037).  

 

I next treated the cells with a dose range of Medi3039 for 72h following which 

an XTT viability assay was performed (Figure 4-8B). The same pattern of 

results was observed for Medi3039 as for rTRAIL. Transduction of the 

parental line with the GFP construct (control) resulted in no significant change 

in cell viability relative to the parental line (p=0.2221) and transduction with 

the C91A DUB mutant resulted in no significant change in cell viability in 

relative to the GFP transduced cells (p=0.0572) in response to Medi3039 

treatment. Transduction with the BAP1 WT, NLS or HBM constructs resulted 

in a significant increase in cell viability in response to Medi3039 treatment 

relative to the GFP transduced line (p<0.0001 for all). 
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Figure 4-8 Response to DR agonist treatment in transduced H226 MPM cells 

Parental and transduced H226 cell lines were treated with a dose range of a DR agonist and 

cell viability assessed at 72h with an XTT assay (A) rTRAIL – parental vs GFP (p = 0.0863) 

GFP vs C91A (p = 0.4037), BAP1 WT vs NLS (p = 0.5778), BAP1 WT vs ΔHBM (p >0.9999), 

GFP vs BAP1 WT/ NLS/ ΔHBM (p = <0.0001) (B) Medi3039 – parental vs GFP (p = 0.2221), 

GFP vs C91A (p = 0.0572), BAP1 WT vs NLS (p = 0.2179), BAP1 WT vs ΔHBM (p = 0.1658) 

GFP vs BAP1 WT/ NLS/ ΔHBM (p= <0.0001). Parental – untransduced, GFP – GFP 

transduced control, C91A – inactive DUB mutant transduced, BAP1 – BAP1 WT transduced, 

NLS – deleted NLS transduced, ΔHBM – inactive HBM mutant transduced. Transduction of 

the parental line with the GFP construct (control) resulted in no significant change in cell 

viability relative to the parental line (p=0.2221) and transduction with the C91A DUB mutant 
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resulted in no significant change in cell viability in relative to the GFP transduced cells 

(p=0.0572) in response to Medi3039 treatment. Transduction with the BAP1 WT, NLS or HBM 

constructs resulted in a significant increase in cell viability in response to Medi3039 treatment 

relative to the GFP transduced line (p<0.0001 for all). This is the same pattern of results as 

for rTRAIL which suggests the observations made for rTRAIL can be extended to other DR 

agonists. 

 
 

4.4 BAP1 as a biomarker for sensitivity to DR agonists in 

additional cancer types 

 

4.4.1 Loss of BAP1 function sensitises breast cancer cells to Medi3039  

Using an shRNA knockdown model, loss of BAP1 function was also 

demonstrated to act as a biomarker for rTRAIL sensitivity in BAP1 wild-type 

MDA-MB-231 breast cancer cells by K. Kolluri (Figure 4-9A and B). I aimed 

to determine if this association between loss of BAP1 function and DR agonist 

sensitivity extended to Medi3039 in a non-MPM cancer line. K. Kolluri 

previously transduced MDA-MB-231 breast cancer cells with BAP1 shRNA 

and EV shRNA lentivirus. I treated the parental, BAP1 shRNA and EV shRNA 

transduced cell lines with a dose range of Medi3039 for 72 hours following 

which response was assessed with an XTT cell viability assay (Figure 4-9C). 

 

Transduction of the parental line with EV shRNA did not result in a significant 

change in cell viability in response to Medi3039 treatment (p=0.7798). 

Transduction of the parental line with BAP1 shRNA however resulted in a 

significant decrease in cell viability in response to Medi3039 treatment relative 

to both the parental (p<0.0001) and EV transduced (p<0.0001) lines. These 

results reflect those observed in response to rTRAIL treatment. Transduction 

of the parental line with EV shRNA however did result in an increase in cell 

death in response to rTRAIL treatment (p< 0.0001) yet a significant increase 

in cell death relative to this control was still seen in the BAP1 shRNA 

transduced cells (p< 0.0001). 
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Figure 4-9 Loss of BAP1 function and response to DR agonist treatment in 
MDA-MD-231 breast cancer cells 

 (A) Immunoblot of parental, EV shRNA and BAP1 shRNA transduced cell lines. (B) Cell 

death assay of MDA-MB-231 cells treated with rTRAIL - Parental vs EV (p <0.0001), Parental 

vs shBAP1 (p = <0.0001), EV vs shBAP1 (p = <0.0001) (data from K. Kolluri). (C) XTT cell 

viability assay of MDA-MB-231 cells treated with Medi3039 - Parental vs EV (p = 0.7798), 

Parental vs shBAP1 (p <0.0001), EV vs shBAP1 (p = 0.002). Transduction of the parental line 

with EV shRNA did not result in a significant change in cell viability in response to Medi3039 

treatment (p=0.7798). Transduction of the parental line with BAP1 shRNA however resulted in 

a significant decrease in cell viability in response to Medi3039 treatment relative to both the 

parental (p<0.0001) and EV transduced (p<0.0001) lines. These results reflect those 

observed in response to rTRAIL treatment. Transduction of the parental line with EV shRNA 

however did result in an increase in cell death in response to rTRAIL treatment (p< 0.0001) 

yet a significant increase in cell death relative to this control was still seen in the BAP1 shRNA 

transduced cells (p< 0.0001). 
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4.4.2 Loss of BAP1 function sensitises clear cell renal carcinoma cells 

to DR agonists 

The BAP1 wild-type clear cell renal carcinoma cell line Caki-1 was transduced 

with empty vector or BAP1 shRNA at MOI 5. Immunoblot confirmed a 

decrease in expression of BAP1 in the BAP1 shRNA but not EV shRNA 

transduced cells (Figure 4-10A). Parental, EV shRNA and BAP1 shRNA 

transduced cells were treated with a dose range of rTRAIL or Medi3039 and 

cell viability at 3 days was measured (Figure 4-10B and C). Transduction of 

the parental line with EV shRNA did not result in a significant change in cell 

viability in response to either rTRAIL (p=0.1922) or Medi3039 (p=0.0650) 

treatment. Transduction with BAP1 shRNA however resulted in a significant 

decrease in cell viability in response to both rTRAIL and Medi3039 relative to 

both the parental and EV shRNA transduced lines (p<0.0001 for all).  

 

	  
Figure 4-10 Loss of BAP1 function and response to DR agonist treatment in 
Caki-1 clear cell renal carcinoma cells 

(A) Immunoblot EV shRNA (EV) and BAP1 shRNA (shBAP1) transduced cell lines. (B) XTT 

cell viability assay of Caki-1 cells treated with rTRAIL (C) XTT cell viability assay of Caki-1 

cells treated with Medi3039. Transduction of the parental line with EV shRNA did not result in 

a significant change in cell viability in response to either rTRAIL (p=0.1922) or Medi3039 

(p=0.0650) treatment. Transduction with BAP1 shRNA however resulted in a significant 

decrease in cell viability in response to both rTRAIL and Medi3039 relative to both the 

parental and EV shRNA transduced lines (p<0.0001 for all).   

0 100 200 300 400 500
0

25

50

75

100

rTRAIL (ng/ml)

R
el

at
iv

e 
C

el
l V

ia
bi

lit
y 

(%
)

Caki-1

Parental
EV

shBAP1

ns

p< 0.0001

0.1 1 10 100
0

25

50

75

100

Medi3039 mcM

R
el

at
iv

e 
C

el
l V

ia
bi

lit
y 

(%
)

Caki-1

Parental
EV
shBAP1

ns

p< 0.0001

	  

A  

B  C  



	  

	   107	  

 

The BAP1 wild-type clear cell renal carcinoma cell line BB65 was also 

transduced with empty vector or BAP1 shRNA at MOI 5. Immunoblot 

confirmed a decrease in expression of BAP1 in the BAP1 shRNA but not EV 

shRNA transduced cells (Figure 4-11A). Parental, EV shRNA and BAP1 

shRNA transduced cells were treated with a dose range of rTRAIL or 

Medi3039 and cell viability at 3 days was measured (Figure 4-11B and C). 

Transduction of the parental line with EV shRNA did not result in a significant 

change in cell viability in response to either rTRAIL (p=0.5245) or Medi3039 

(p=0.4670) treatment. Transduction with BAP1 shRNA however resulted in a 

significant decrease in cell viability in response to both rTRAIL and Medi3039 

relative to both the parental and EV shRNA transduced lines (p<0.0001 for 

all).  
 

	  
Figure 4-11 Loss of BAP1 function and response to DR agonist treatment in 
BB65 clear cell renal carcinoma cells 

 (A) Immunoblot EV shRNA (EV) and BAP1 shRNA (shBAP1) transduced cell lines. (B) XTT 

cell viability assay of BB65 cells treated with rTRAIL (C) XTT cell viability assay of BB65 cells 

treated with Medi3039. Transduction of the parental line with EV shRNA did not result in a 

significant change in cell viability in response to either rTRAIL (p=0.5245) or Medi3039 

(p=0.4670) treatment. Transduction with BAP1 shRNA however resulted in a significant 

decrease in cell viability in response to both rTRAIL and Medi3039 relative to both the 

parental and EV shRNA transduced lines (p<0.0001 for all). 
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4.5 BAP1 and TRAIL sensitivity in benign cells  
 

In view of the above data combined BAP1 inhibition and DR agonist therapy 

might be an effective treatment for BAP1 wild-type tumours. I therefore aimed 

to determine the effect of loss of BAP1 function on rTRAIL sensitivity in non-

transformed non-malignant lines to assess for potential off target effects of 

this treatment strategy. I also aimed to determine the effect of loss of BAP1 

function on rTRAIL sensitivity in transformed non-malignant lines.  

 

4.5.1 Human non-transformed primary fibroblasts 

A human primary fibroblast culture derived from a patient that underwent 

bronchoscopy was transduced with BAP1 shRNA or EV shRNA lentivirus at 

MOI 5. As the lentivirus expresses a puromycin resistance marker treatment 

with 10μg/ml puromycin was used to select a pure population of BAP1 shRNA 

expressing cells. Immunoblot analysis confirmed reduced BAP1 expression 

following BAP1 shRNA transduction and puromycin treatment (Figure 4-12A). 

BAP1 expression in the EV transduced fibroblasts was unaffected. The 

parental, EV shRNA and BAP1 shRNA transduced fibroblasts were treated 

with a dose range of rTRAIL for 72 hours following which an XTT cell viability 

assay was performed. Transduction of parental fibroblasts with EV shRNA did 

not result in a significant change in response to rTRAIL treatment (p=0.2655). 

There was also no significant difference in response to rTRAIL treatment in 

the BAP1 shRNA transduced fibroblasts relative to the parental (p=0.7828) or 

EV shRNA transduced fibroblasts (p=0.3602) (Figure 4-12B). 
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Figure 4-12 Loss of BAP1 function and response to rTRAIL treatment in non-
transformed fibroblasts 

(A) Immunoblot of BAP1 expression in parent, EV shRNA (EV) and BAP1 shRNA (shBAP1) 

transduced fibroblasts (B) 72h XTT cell viability assay to assess cell survival in response to 

rTRAIL treatment. Transduction of parental fibroblasts with EV shRNA did not result in a 

significant change in response to rTRAIL treatment (p=0.2655). There was also no significant 

difference in response to rTRAIL treatment in the BAP1 shRNA transduced fibroblasts relative 

to the parental (p=0.7828) or EV shRNA transduced fibroblasts (p=0.3602) 

 

4.5.2 Human non-transformed bronchoepithelial cell culture 

A human primary bronchoepithelial cell (HBEC) culture derived from a patient 

that underwent a diagnostic bronchoscopy was transduced with BAP1 shRNA 

expressing or EV shRNA lentivirus at MOI 5. As the lentivirus expresses a 

puromycin resistance marker treatment with 10μg/ml puromycin was used to 

select a pure population of BAP1 shRNA expressing HBECs. Immunoblot 

analysis confirmed reduced BAP1 expression following BAP1 shRNA 

transduction and puromycin treatment (Figure 4-13A). BAP1 expression in 

the EV transduced HBECs was unaltered. The parental, EV shRNA and BAP1 

shRNA transduced HBECs were treated with a dose range of rTRAIL for 72 

hours following which an XTT cell viability assay was performed (Figure 4-

13B). Transduction of parental HBECs with EV shRNA did not result in a 

significant change in response to rTRAIL treatment (p=0.2276). There was 

also no significant difference in response to rTRAIL treatment in the BAP1 
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shRNA transduced HBECs relative to the parental (p=0.1435) or EV shRNA 

transduced HBECs (p=0.9662) (Figure 4-12B). 

 
 

 
Figure 4-13 Loss of BAP1 function and response to rTRAIL treatment in non-
transformed HBECs 

(A) Immunoblot of BAP1 expression in parent, EV shRNA (EV) and BAP1 shRNA (shBAP1) 

transduced HBEC at MOIs 1 and 5 (B) 72h XTT cell viability assay to assess cell survival in 

response to rTRAIL treatment. Transduction of parental HBECs with EV shRNA did not result 

in a significant change in response to rTRAIL treatment (p=0.2276). There was also no 

significant difference in response to rTRAIL treatment in the BAP1 shRNA transduced HBECs 

relative to the parental (p=0.1435) or EV shRNA transduced HBECs (p=0.9662) 
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The NL-20 cell line is a non-malignant but immortalised, transformed 
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transduced lines transduced at MOI 5 were used for further analysis. The 

parental, EV shRNA and BAP1 shRNA transduced cells were treated with a 

dose range of rTRAIL for 72 hours following which an XTT cell viability assay 

was performed. A significant decrease in cell viability in response to rTRAIL 

treatment was seen in the EV shRNA transduced cells relative to the parental 

cells (p < 0.0001) suggesting that transduction may have an effect on rTRAIL 

sensitivity in this cell line. A significant decrease in cell viability however was 

seen in the BAP1 shRNA transduced relative to the EV shRNA transduced 

cells in response to rTRAIL treatment (p = 0.0005). 

 

	  
Figure 4-14 Loss of BAP1 function and response to rTRAIL treatment in a 
transformed HBEC 

 (A) Immunoblot of BAP1 expression in parent, EV shRNA (EV) and BAP1 shRNA (shBAP1) 

transduced the transformed HBEC line NL20 at MOIs 1 and 5 (B) 72h XTT cell viability assay. 

A significant decrease in cell viability in response to rTRAIL treatment was seen in the EV 

shRNA transduced cells relative to the parental cells (p < 0.0001) suggesting that 

transduction may have an effect on rTRAIL sensitivity in this cell line. A significant decrease in 

cell viability however was seen in the BAP1 shRNA transduced relative to the EV shRNA 

transduced cells in response to rTRAIL treatment (p = 0.0005). Data generated with Yuki Ishii. 
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4.6 Discussion 
 

4.6.1 Expression of wild-type BAP1 in mutant BAP1 MPM lines 

increases resistance to rTRAIL  

The original WTSI cell line-drug screen was a single experiment using a single 

dose of rTRAIL to assess cell viability in response to drug treatment. 

Therefore the identified association between BAP1 LOF mutation and rTRAIL 

sensitivity must be validated in further models for confidence in the finding. K. 

Kolluri transduced the BAP1 null H226 cell line with C91A mutant and BAP1 

WT expressing vectors and demonstrated that only WT BAP1 conferred 

resistance to rTRAIL. However, the association in a single cell line could be 

attributed to the specific molecular alterations in that cell line. The above 

finding that transduction of two further BAP1 null cell lines, H28 and H2804, 

with C91A BAP1 and BAP1 WT results in a reduction in cell death only in the 

case of BAP1 WT transduction significantly strengthens and further validates 

the original WTSI observation (Figure 4-3). These data also provide further 

evidence that the deubiquitinase function of BAP1 is key to mediating rTRAIL 

resistance. It is notable that the two cells lines differ in the degree to which 

rTRAIL sensitivity is modulated by transduction with wild-type BAP1. At higher 

doses the sensitivity of WT BAP1 transduced H28 cells to rTRAIL increases to 

approach that of the parental and C91A BAP1 transduced cell lines. It may be 

that differences in the endogenous expression of apoptosis pathway 

components between the two cell lines accounts for this difference. For 

example untransduced H28 cells might express higher levels of anti-apoptotic 

components modulated by BAP1 function than H2804 cells such that these 

higher levels persist despite introduction of functional BAP1 and are overcome 

to a lesser degree in response to rTRAIL treatment. Alternatively it may be 

that differences in the transduction between the two cell lines resulted in H28 

cells having less functional BAP1 activity compared to H2804 cells for higher 

doses of rTRAIL to overcome the shRNA transduction. A method of 

determining BAP1 activity, through a deubiquitinase assay for example would 

resolve this. 
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4.6.2 Knock-down of BAP1 in MPM cells results in increased rTRAIL 

sensitivity 

Having used an overexpression model to further validate loss of BAP1 

function as a biomarker for rTRAIL sensitivity in MPM, I have also successfully 

used an shRNA knockdown model to the same end. Both untransduced MPP-

89 and H2869 cells are relatively resistant to rTRAIL however when BAP1 

expression is reduced, but not completely silenced, using shRNA the 

sensitivity of both these cell lines significantly increases; the cell death in 

response to 50ng/ml rTRAIL treatment almost doubles in both (Figure 4-7). It 

is interesting to note that above this dose no dose-response is observed 

suggesting there is a limiting factor to rTRAIL response in the parental and 

transduced cell lines. One possible explanation is that the residual BAP1 

expressed despite the knockdown limits the response seen. This observation, 

that an increase in cell death is observed in spite of residual BAP1 

expression, also implies that the degree of BAP1 activity rather than absolute 

presence determines rTRAIL sensitivity. Use of CRISPR-Cas9 technology to 

edit out BAP1 would allow determination of the effect of complete loss of 

BAP1 function rather than a reduction in expression. 

 

4.6.3 Loss of BAP1 function also sensitises cancer cells to the death 

receptor 5 agonist Medi3039 

A soluble recombinant form of TRAIL (rTRAIL), dulanermin (Roche), was the 

first TRAIL-R/DR agonist to be developed and assessed in a clinical trial [119, 

161]. Since then numerous further TRAIL-R/DR agonist compounds have 

been developed as highlighted in the introduction (Table 1-3). Given the 

pharmacological limitations of rTRAIL it seems likely that the newer 

multivalent DR agonists will supersede it in clinical use. As such, from a 

translational perspective, it is important to determine if loss of BAP1 function 

extends to other DR agonists in addition to rTRAIL. Above I have 

demonstrated in overexpression and knockdown models of MPM that loss of 

BAP1 deubiquitinase function results in sensitivity to Medi3039, and it seems 

likely therefore that this association will extend to other DR agonists, although 
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not formally tested here. Medi3039 is significantly more potent than rTRAIL as 

can be seen in Figure 4-8. Higher doses of rTRAIL still result in >50% relative 

cell survival, even in cells with loss of BAP1 function, however micromolar 

doses of Medi3039 result in <25% survival in these cells and even in some 

decreased survival in BAP1 wild-type transduced cells. Medi3039 is a 

multivalent DR agonist while rTRAIL binds in a univalent manner which likely 

accounts for its increased potency as multivalent DR binding triggers greater 

DISC activation. The significant levels of reduced cell survival in the presence 

of loss of BAP1 function cells highlights the potential clinical potency of using 

BAP1 as a biomarker to stratify the use of such potent DR agonists. 

 

4.6.4 Loss of BAP1 function sensitises other cancer types to DR 

agonists 

As noted, BAP1 loss-of-function mutations are observed in a number of 

additional cancers. The above data supports that loss of BAP1 function also 

sensitises breast cancer and clear cell renal carcinoma to DR agonists. 8-14% 

of clear cell renal carcinoma tumours harbor loss-of-function mutations in 

BAP1 and these might therefore be amenable to DR agonist therapy [162]. It 

would be pertinent to assess this in other cancer with a high-observed 

frequency of BAP1 mutations including uveal melanoma and intrahepatic 

cholangiocarcinoma. Although BAP1 is not frequently mutated in breast 

cancer, the observation that loss of BAP1 function sensitises a breast cancer 

cell line to DR agonists suggests that this association may have widespread 

clinical relevance to any cancer with loss of BAP1 function.  

 

4.6.5 Loss of BAP1 function does not sensitise non-transformed cells 

to rTRAIL 
As evidence presented supports that loss of BAP1 function sensitises MPM 

tumours to DR agonists, combined BAP1 inhibition and DR agonist therapy 

might be an effective treatment for BAP1 wild-type tumours. I therefore aimed 

to determine the effect of BAP1 inhibition on rTRAIL sensitivity in non-tumour 
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cells. The data above demonstrates that non-transformed human primary 

fibroblasts and HBECs are resistant to rTRAIL and this resistance cannot be 

overcome by shRNA inhibition of BAP1 expression, unlike established MPM 

lines and primary MPM cultures. This evidence suggests that the combination 

therapy proposed would not be toxic to non-malignant cells. The data also 

however demonstrates that non-malignant but transformed HBECs are 

sensitised to rTRAIL by BAP1 inhibition. Transformation of non-malignant 

TRAIL resistant cells has been shown to induce rTRAIL sensitivity however 

the mechanisms are poorly understood. A study of TRAIL resistance in non-

transformed primary human fibroblasts suggests they rely upon multiple 

redundant mechanisms for resistance – both cFLIP regulation of DISC 

activation and high levels of anti-apoptotic Bcl-2 or XIAP expression 

downstream [163]. Removal of only one of these ‘blocks’ is insufficient to 

overcome TRAIL resistance. Oncogenic Ras transformation of human 

fibroblasts has been shown to confer TRAIL resistance and this was 

associated with an enhanced recruitment of pro-caspase 8 to the DISC [164] 

and induction of the pro-apoptotic protein Bak [165]. Similar findings have 

been observed in transformed keratinocytes where increased TRAIL 

sensitivity was associated with both reduced cFLIP and XIAP expression 

[166, 167]. A balance of pro- and anti- apoptotic factors expressed therefore 

ultimately determines whether a cell is TRAIL sensitive. It may be that non-

transformed cells have multiple levels of TRAIL resistance that cannot be 

overcome by BAP1 inhibition whereas transformation already removes some 

‘roadblocks’ such that BAP1 inhibition further sensitises to rTRAIL. Benign 

human tissue is non-transformed and therefore these results support that 

BAP1 inhibition will not increase their TRAIL sensitivity and thus the off target 

effects of DR agonists if used in conjunction with a BAP1 inhibitor. 
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4.7 Summary  

 
• Loss of BAP1 function in both overexpression and shRNA knockdown 

cell line models of MPM result in increased sensitivity to rTRAIL. 

• This association of loss of BAP1 function with DR agonist sensitivity 

extends to Medi3039, a preclinical multivalent DR agonist. 

• Medi3039 is significantly more potent than rTRAIL. 

• Loss of BAP1 function is associated with sensitivity to DR agonists in 

breast and clear cell renal carcinoma lines. 

• Loss of BAP1 function does not sensitise non-transformed cells to 

rTRAIL. 

 
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  

	   117	  

	  

	  

	  

	  

CHAPTER	  V:	  

RESULTS	  III	  

	  

	  

	  

	  



	  

	   118	  

 

Delineation of the mechanism underlying BAP1 induced DR agonist 

resistance would potentially reveal targets for sensitisation of DR agonist 

resistant tumours. The data presented by K. Kolluri reveals that the 

deubiquitinase (DUB) function of BAP1 is necessary for DR agonist resistance 

and an inactive DUB domain results in sensitivity (Figure 1-8). The gene 

expression data from the Wellcome Trust Sanger Institute (WTSI) supports a 

significant change in the mRNA expression of components of the apoptosis 

pathway in response to loss of BAP1 DUB function as a potential underlying 

mechanism (Figure 1-9).  In line with these findings, BAP1 is known to 

complex with transcription factors to modulate gene transcription via its DUB 

function. I therefore aimed to determine which transcriptional regulatory 

partners might be key to BAP1 induced DR agonist resistance as this might 

point to those genes most likely to be involved. Review of the literature 

highlights HCF-1, ASXL1/2, and FoxK1/2 as transcriptional regulatory 

partners for BAP1. The literature also identifies mutations of BAP1 that disrupt 

the interaction with each of these proteins [43-45, 52, 168, 169]. K. Kolluri 

employed site directed mutagenesis of the pCCL.CMV.BAP1 plasmid to 

generate lentiviral constructs with mutations in the binding sites for HCF-1 and 

Fox K1/2 and demonstrated that H226 cells transduced with these mutants 

remained resistant to rTRAIL (Figure 1-8). This implies the transcriptional 

regulatory complexes that BAP1 forms with these transcription factors are not 

involved in mediating DR agonist sensitivity. I used this strategy to generate a 

lentiviral construct with mutations in the ASXL1/2 binding site to determine if 

the transcriptional regulatory complex that BAP1 forms with these proteins, 

the PR-DUB, is involved in mediating DR agonist sensitivity. This identified 

BAP1/ASXL binding as a key interaction implicating PR-DUB function. I 

therefore aimed to determine if activity of this complex also affects expression 

of components of the apoptotic pathway and if the PR-DUB target substrate 

5 RESULTS III: THE MECHANISM OF BAP1 
MEDIATED DR AGONIST RESISTANCE 
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H2AK119Ub, which alters chromatin architecture and gene transcription, 

correlates with DR agonist sensitivity in MPM.  
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5.1 BAP1 and ASXL1/2 and TRAIL resistance 
 

BAP1 binds to ASXL1/2 to form two mutually exclusive complexes both 

capable of deubiquitinating H2AK119Ub [43, 45]. These PR-DUB complexes 

regulate gene transcription along with the polycomb repressor complexes 

through epigenetic modification of chromatin structure [58]. Deletion of amino 

acids R666-H669 in BAP1 has been shown to abolish BAP1-ASXL1/2 binding 

and to significantly disrupt the ability of BAP1 to deubiquitinate H2AK119Ub 

[45]. I used site directed mutagenesis of the pCCL.CMV.BAP1 plasmid to 

generate a lentiviral construct that expresses BAP1 with this mutation, and is 

therefore incapable of binding to ASXL1/2, to determine the impact of 

disruption of this complex on rTRAIL sensitivity. 

 

5.1.1 Titration of the ΔASXL lentivirus  

The pCCL.CMV.BAP1 plasmid was used as a template for site directed 

mutagenesis to generate a lentivirus that expresses a BAP1 protein with an 

inactive ASXL protein-binding site (ΔASXL). 5 x 104 293T cells were plated in 

a 6-well plate and transduced with different dilutions of this mutant BAP1 

expressing lentivirus. The cells were grown for 48 hours, the culture media 

removed and the cells washed with PBS, trypsinised and stained with a BAP1 

primary and an AlexaFlour-488 secondary antibody for titration by flow 

cytometry. The virus quantity that transduced approximately 20% of cells was 

used to calculate the viral titre and the equation used in 3.2.1 used as before.  

 

0.5μL of virus transduced 20.9% of 293T cells and the viral titre was therefore 

determined to be 2.1 x 107 transduction units/ml (Figure 5-1). 
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 Figure 5-1 Titration of ΔASXL BAP1 expressing lentivirus 

293T cells were transduced using a dilution series of concentrated lentiviral particles. BAP1 

expression as determined by flow cytometry to AF-488 for a range of viral volumes are shown 

which reflects the percentage of transduced cells. As the volume of concentrated lentiviral 

particles added increased the percentage of BAP1 expressing cells also increased implying 

successful transduction.  

 

5.1.2.2 Transduction of BAP1 null H226 MPM cells with ΔASXL BAP1 

expressing lentivirus results in expression of BAP1 

H226 cells were transduced with the ΔASXL lentivirus at MOI 3 and 5. 

Transduction efficacy was assessed by flow cytometry for BAP1 expression. 

71.1% of H226 cells were transduced at MOI 3 and 86.1 at MOI 5 (Figure 5-

2). The cells transduced at MOI 5 were therefore used for further experiments. 

 
 

Untransduced 0.0625μl 0.125μl 

0.25μl 0.5μl 1μl 
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Figure 5-2 Transduction of H226 MPM cells with ASXL BAP1 expressing 
lentivirus 

Flow cytometry assessment of H226 cells for BAP1 expression after transduction with ΔASXL 

lentivirus at MOIs 3 and 5. At both MOI 3 and 5 a significant proportion of cells were 

successfully transduced and expressed BAP1. As a higher proportion of the cells transduced 

at MOI 5 expressed BAP1 (86.1%), these cells were used in further experiments.  

 

5.1.2 Loss of ASXL binding on BAP1 results in increased rTRAIL 

sensitivity  

Parental, C91A (DUB mutant), BAP1 WT and ΔASXL transduced H226 cells 

were treated with a dose range of rTRAIL for 24 hours and an Annexin 

V/DAPI assay performed to determine response.  

 

Transduction of the BAP1 null parental line with wild-type BAP1 resulted in a 

significant decrease in cell death in response to rTRAIL treatment (p< 0.0001) 

(Figure 5-3). Interestingly transduction with the C91A and ΔASXL mutants 

resulted in an increase in cell death in response to rTRAIL treatment relative 

to the parental line (p< 0.0001), which could indicate that transduction itself 

has an effect on sensitivity to rTRAIL. However, a statistically significant 

difference in rTRAIL sensitivity between the BAP1 WT transduced line 

(control) and the C91A and ΔASXL transduced lines (p< 0.0001) was seen. 

Thus, loss of activity of these sites results in rTRAIL sensitivity implicating the 

	  

MOI	  3 MOI	  5 
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function of these sites in BAP1 mediated rTRAIL resistance. Notably the cell 

death response to rTRAIL seen in both the C91A and ΔASXL transduced cells 

was almost identical (p= 0.9874). 

 

	  
Figure 5-3 Loss of BAP1-ASXL binding and response to rTRAIL treatment in 
H226 MPM cells 

Parental, BAP1 WT, C91A and ΔASXL transduced H226 cells were treated with a dose range 

of rTRAIL and cell death measured with an Annexin V/DAPI assay. *p< 0.0001, **p< 0.0001, 

*** p< 0.0001. Transduction of the BAP1 null parental line with wild-type BAP1 resulted in a 

significant decrease in cell death in response to rTRAIL treatment (p< 0.0001). Interestingly 

transduction with the C91A and ΔASXL mutants resulted in an increase in cell death in 

response to rTRAIL treatment relative to the parental line (p< 0.0001), which could indicate 

that transduction itself has an effect on sensitivity to rTRAIL. However, a statistically 

significant difference in rTRAIL sensitivity between the BAP1 WT transduced line (control) 

and the C91A and ΔASXL transduced lines (p< 0.0001) was seen. 

 
 
 

 

0 100 200 300 400 500
0

10

20

30

40

TRAIL ng/ml

%
 C

el
l D

ea
th

Parental

ΔASXL

BAP1

C91A

* 

**

***



	  

	   124	  

5.2 BAP1 and expression of extrinsic apoptotic pathway 

proteins  
My hypothesis is that BAP1 modulates expression of the apoptotic pathway 

proteins to alter DR agonist sensitivity. The above finding that disruption of a 

known transcriptional regulatory complex supports this. Also consistent with 

this hypothesis are the previous findings of C. Alifrangis at the Wellcome Trust 

Sanger Institute (WTSI) who compared the mRNA levels of the apoptotic 

pathway proteins expressed in wild-type BAP1 and DUB mutant BAP1 

transduced H226 MPM lines. This revealed a significant difference in mRNA 

expression of several extrinsic apoptotic pathway components (Figure 1-9). 

The mRNA expression of the pro-apoptotic proteins DR4, DR5 and FADD 

increased and that of the anti-apoptotic proteins cIAP1 and cIAP2 decreased 

in the rTRAIL sensitive DUB mutant transduced cells. This pattern is 

consistent with the increase in rTRAIL sensitivity observed in these cells. 

However, the mRNA expression of the anti-apoptotic proteins survivin, BIRC6, 

BIRC7, BIRC8, NAIP and XIAP was found to increase in these cells. One 

might expect mRNA expression of these anti-apoptotic proteins to decrease in 

cells that exhibit an increase in rTRAIL sensitivity, as is the case with the DUB 

mutant transduced cells. I therefore aimed to assess the protein expression of 

the extrinsic apoptotic pathway components in the DUB mutant transduced 

H226 cells compared to the wild-type BAP1 transduced cells to determine if 

the protein, rather than mRNA, expression changes are more consistent with 

the increase in rTRAIL sensitivity observed in these cells.  

   

5.2.1 Loss of BAP1 function results in increased DR expression on 

MPM cells 
The mRNA microarray identified a significant increase in the expression of 

death receptors 4 and 5 (DR4/5) in the presence of DUB mutant versus wild-

type BAP1. To determine if this difference was reflected in cell surface 

expression I conducted flow cytometry analysis of DR4 and DR5 expression in 

BAP1 WT and DUB mutant transduced H226 cells.  
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No significant difference in flow cytometry analysis of an isotype control was 

observed between BAP1 WT and C91A (DUB mutant) transduced H226 cells. 

Expression of both DR4 and DR5 however was much higher in C91A 

transduced cells relative to wild-type BAP transduced cells (Figure 5-4). The 

median fluorescent intensity recorded for DR4 and DR5 expression in C91A 

transduced cells was double that of the BAP1 WT transduced cells.  This 

increase in DR4 and DR5 expression is consistent with the increase in mRNA 

expression of these proteins observed. 

 

 
Figure 5-4 Death receptor expression in BAP1 wild-type and mutant 
transduced H226 MPM cells 

Flow cytometry analysis of an isotype control, DR4 and DR5 expression in BAP1 WT (H226 

BAP1) and DUB mutant (H226 C91A) transduced cells. Expression was quantified using 

median fluorescent intensity (MFI) and the % relative difference in expression in the mutant vs 

wild-type BAP1 transduced cell lines is shown (Δ). No significant difference in flow cytometry 

analysis of an isotype control was observed between BAP1 WT and C91A (DUB mutant) 

transduced H226 cells. Expression of both DR4 and DR5 however was much higher in C91A 

transduced cells relative to wild-type BAP transduced cells. This increase in DR4 and DR5 

expression is consistent with the increase in mRNA expression of these proteins observed. 

Isotype	  (control) DR4	  (TNFRSF10A) DR5	  (TNFRSF10B) 

H226	  BAP1 H226	  C91A 
	  



	  

	   126	  

 
I also conducted immunoblot analysis of DR4 and DR5 expression in the 

sequenced MPM cell lines to determine if there was any correlation with 

rTRAIL sensitivity or BAP1 status (Figure 5-5). Interestingly for DR4 

expression there was an almost exact correlation with protein expression and 

rTRAIL sensitivity in these cell lines. Those cell lines that were rTRAIL 

sensitive expressed higher levels of DR4 than those cell lines that were 

rTRAIL resistant. There was a less striking correlation with DR5 expression 

however the BAP1 wild-type rTRAIL resistant cell lines also appeared to 

express less DR5 than BAP1 mutant rTRAIL sensitive cell lines overall. 

 

 
Figure 5-5 Death receptor 4 and 5 expression in MPM cell lines 

The MPM cell lines are coded according to rTRAIL sensitivity (red – resistant, orange – 

partially sensitive, green – sensitive). Those cell lines that were rTRAIL sensitive expressed 

higher levels of DR4 than those cell lines that were rTRAIL resistant. There was a less striking 

correlation with DR5 expression however the BAP1 wild-type rTRAIL resistant cell lines also 

appeared to express less DR5 than BAP1 mutant rTRAIL sensitive cell lines overall. 

 

5.2.2 Loss of BAP1 function results in decreased expression of 

inhibitors of apoptosis  
I conducted immunoblot analysis of expression of cFLIP, cIAP1, cIAP2, 

FADD, survivin and XIAP in the DUB mutant and BAP1 WT transduced H226 
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cells. I also conducted this analysis in the ΔASXL mutant transduced cells to 

determine if the pattern of change was consistent with that of the DUB mutant, 

further implicating the PR-DUB (Figure 5-6). In the presence of both C91A 

and ΔASXL, expression of the anti-apoptotic proteins cIAP1 and cIAP2 

decreased relative to WT BAP1 transduced cells while expression of the anti-

apoptotic proteins XIAP and survivin and the pro-apoptotic protein FADD did 

not differ. This is more consistent with my hypothesis than the mRNA 

microarray data where the mRNA of the anti-apoptotic proteins XIAP and 

survivin were found to increase in the rTRAIL sensitive cells.   

 

	  
Figure 5-6 The extrinsic apoptotic pathway in BAP1 wild-type and mutant 
transduced H226 MPM cells 

 (A) mRNA expression of extrinsic apoptotic pathway components in BAP1 DUB mutant 

transduced relative to BAP1 WT transduced H226 MPM cells (data generated by C Alifrangis 

for reference). (B) Immunoblot of extrinsic apoptotic pathway components in BAP1 C91A and 

ΔASXL mutant transduced relative to BAP1 WT transduced H226 MPM cells. In the presence 

of both C91A and ΔASXL, expression of the anti-apoptotic proteins cIAP1 and cIAP2 

decreased relative to WT BAP1 transduced cells while expression of the anti-apoptotic 

proteins XIAP and survivin and the pro-apoptotic protein FADD did not differ. 

 

A B 
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I also conducted immunoblot analysis of expression of these extrinsic 

apoptotic pathway proteins in the sequenced MPM cell lines to determine if 

there was any correlation with rTRAIL sensitivity or BAP1 status. 

 
A 

 
B	  

 
C	  
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D	  

 
E	  

 
F 

G
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Figure 5-7 Immunoblot of extrinsic apoptotic pathway proteins in MPM lines 

The MPM cell lines are coded according to rTRAIL sensitivity (red – resistant, orange – 

partially sensitive, green – sensitive). (A) caspase 8 (B) XIAP (C) cFLIP (D) FADD (E) c-IAP1 

(F) c-IAP2 (G) surviving 

 
For the pro-apoptotic caspase 8 there appears to be higher expression levels 

in the rTRAIL sensitive BAP1 mutant cell lines than the rTRAIL resistant BAP1 

wild-type lines (Figure 5-7A). Notably, the BAP1 mutant but rTRAIL resistant 

MPM line H2722 expresses a lower level of caspase 8 than the other BAP1 

mutant lines and the BAP1 wild-type but rTRAIL sensitive MPM line CLR-2081 

expresses a higher level of caspase 8 than the other BAP1 wild-type lines. 

The anti-apoptotic protein XIAP appears to be expressed at lower levels in the 

rTRAIL sensitive BAP1 mutant lines than the rTRAIL resistant BAP1 wild-type 

lines overall (Figure 5-8B).  For the pro-apoptotic protein FADD there is no 

obvious correlation between expression and rTRAIL sensitivity in either the 

BAP1 mutant or wild-type lines (Figure 5-7C and D). For the anti-apoptotic 

proteins cFLIP, c-IAP1, c-IAP2 and survivin there also does not appear to be 

an obvious correlation between expression and rTRAIL sensitivity in either the 

BAP1 mutant or wild-type lines (Figure 5-7E, F and G).  
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5.3 ASXL1/2 and DR agonist sensitivity in MPM  
 
As disruption of the BAP1-ASXL1/2 complex sensitises MPM cells to DR 

agonists I hypothesised that ASXL1 and ASXL2 are also key to mediating DR 

agonist sensitivity and loss of function of ASXL1/2 would also result in 

increased sensitivity to DR agonists. I therefore aimed to assess the 

expression of these proteins in MPM lines to determine if there is any 

correlation with DR agonist sensitivity. I also aimed to determine the effect of 

loss of BAP1 function on ASXL1/2 expression to assess if there is any co-

regulation of expression between the proteins of the PR-DUB complex. I 

subsequently conducted shRNA knockdown experiments in 

BAP1/ASXL1/ASXL2 wild-type MPM lines to assess the effect of loss of 

ASXL1/2 function on rTRAIL sensitivity. 

 

5.3.1 ASXL1/2 expression in MPM cell lines 

	  
Figure 5-8 Immunoblot of PR-DUB components in MPM lines 

Immunoblot analysis of BAP1, ASXL1 and ASXL2 expression in MPM lines stratified by 

mutant status and TRAIL sensitivity. Red – resistant, orange – partially sensitive, green – 

sensitive.  
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Immunoblot analysis of BAP1, ASXL1 and ASXL2 expression in MPM lines 

reveals that there is no association between rTRAIL sensitivity and ASXL1 

and ASXL2 expression in these lines. There also does not appear to be an 

association between BAP1 expression and ASXL1/2 expression. 

 

5.3.2 ASXL1/2 expression in BAP1 mutant transduced cell lines 

Figure 5-9 Immunoblot of ASXL1/2 in BAP1 mutant MPM lines 

No significant change in expression of ASXL1/2 in the presence of any of the BAP1 

mutations was identified implying no regulatory effect of BAP1 function on these 

proteins. 

 

Immunoblot analysis of ASXL1 and ASXL2 expression in the mutant BAP1 

transduced cell lines revealed no significant change in expression of these 

proteins in the presence of any of the BAP1 mutations identified (Figure 5-9). 
	  
	  

5.3.3 Titration of ASXL1 and ASXL2 shRNA virus 

ASXL1 and ASXL2 shRNA lentivirus was generated using a mir30-based 

GIPZ ASXL1/2 shRNA plasmid (ASXL1 - V3LHS_313251, ASXL2 – 
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V3LHS_313940, Dharmacon) and the packaging plasmids as described in 

methods. The shRNA plasmid expresses a green fluorescent protein (GFP) 

and a puromycin resistance marker to allow for titration and selection. 5 x 104 

293T cells were plated in a 6-well plate and transduced with different dilutions 

of the ASXL1/2 shRNA expressing lentivirus. The cells were grown for 48 

hours, the culture media removed and the cells washed with PBS, trypsinised 

and transferred to FACS buffer to determine the proportion of transduced cells 

by flow cytometry for GFP (Fig 5-10 and Fig 5-11). The virus quantity that 

transduced approximately 20% of cells was used to calculate the viral titre and 

the equation used in 4.2.1 used as before.  

 

	  
Figure 5-10 Titration of ASXL1 shRNA lentivirus 

293T cells were transduced using a dilution series of concentrated lentiviral particles. The 

shRNA virus expresses GFP. Flow cytometry of GFP expression for a range of viral volumes 

are shown which reflects the percentage of transduced cells. As the volume of lentiviral 

particles added increased the percentage of successfully transduced cells also increased. 

 

	   Untransduced 0.125μl 0.25μl 

0.5μl 1μl 2μl 
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For the ASXL1 shRNA virus 2μL of virus transduced 16.6% of 293T cells and 

the viral titre was therefore determined to be 4.2 x 106 transduction units/ml 

(Figure 5-10). 

 

	  
Figure 5-11 Titration of ASXL2 shRNA lentivirus 

293T cells were transduced using a dilution series of concentrated lentiviral particles. The 

shRNA virus expresses GFP. Flow cytometry of GFP expression for a range of viral volumes 

are shown which reflects the percentage of transduced cells. As the volume of lentiviral 

particles added increased the percentage of successfully transduced cells also increased. 

 
For the ASXL2 shRNA virus 2μL of virus transduced 17.3% of 293T cells and 

the viral titre was therefore determined to be 4.3 x 106 transduction units/ml 

(Figure 5-11). 

 

5.3.4 Transduction of MPM cell lines with ASXL1 and ASXL2 shRNA 

lentivirus  

Three BAP1/ASXL1/ASXL2 wild-type MPM lines H513, H2689 and MPP-89 

were transduced with ASXL1 and ASXL2 virus at MOI 5. As the shRNA 

Untransduced 0.125μl 0.25μl 

0.5μl 1μl 2μl 
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lentiviruses express a puromycin resistance marker, treatment with 10μg/ml 

puromycin was used to select a pure population of shRNA expressing cells. 

To assess ASXL1 and ASXL2 expression in the transduced cell lines real time 

polymerase chain reaction (RT-PCR) was conducted (Figure 5- 12). This 

revealed a successful reduction in ASXL1 and ASXL2 mRNA expression in 

the transduced cell lines.  

 

	  
Figure 5-12 ASXL1/2 mRNA expression in ASXL1/2 shRNA transduced MPM 
lines 

RT-PCR analysis of ASXL1/2 mRNA expression in MPM lines transduced with ASXL1/2 

shRNA. Figures represent percentage mRNA expression relative to the untransduced line. 

Blue – untransduced cells, red – transduced cells. A successful reduction in ASXL1 and 

ASXL2 mRNA expression in the transduced cell lines is demonstrated. 

 

5.3.5 Knockdown of ASXL1/2 modulates DR agonist sensitivity in MPM 

cells 
The parental, EV, ASXL1 and ASXL2 shRNA transduced MPM cells were 

treated with a dose range of rTRAIL for 24 hours and cell death was 

measured with an Annexin V/DAPI assay. These cells were also treated with 

a dose range of Medi3039 and cell viability measured at 72 hours with an XTT 

assay. 

 

 

 

H513 H2869 MPP-‐89 
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5.3.5.1 Knockdown of both ASXL1 and ASXL2 sensitises H513 MPM cells to 

rTRAIL and Medi3039. 

Transduction of the parental H513 line with EV shRNA resulted in no 

significant difference in cell death in response to rTRAIL treatment (p= 

0.9254) (Figure 5-13). Transduction with both ASXL1 and ASXL2 shRNA 

however resulted in a significant increase in cell death in response to rTRAIL 

treatment relative to both the EV shRNA transduced and parental cells (p< 

0.0001). There was no significant difference in cell death in response to 

rTRAIL treatment between the ASXL1 and ASXL2 shRNA transduced cells 

(p= 0.7739).  

 

This pattern was replicated in cell viability response to Medi3039 treatment. 

Transduction of the parental H513 line with EV shRNA resulted in no 

significant difference in cell viability in response to Medi3039 treatment (p= 

0.9770). Transduction with both ASXL1 and ASXL2 shRNA however resulted 

in a significant decrease in cell viability in response to Medi3039 treatment 

relative to both the EV shRNA transduced and parental cells (p< 0.0001). 

There was no significant difference in cell viability in response to Medi3039 

treatment between the ASXL1 and ASXL2 shRNA transduced cells (p= 

0.2925).  
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Figure 5-13 shRNA knockdown of ASXL1/2 and response to DR agonist 
treatment in H513 MPM cells 

 (A) Cell death response to rTRAIL treatment – parental, EV, ASXL1 and ASXL2 shRNA 
transduced cells were treated with a dose range of rTRAIL and cell death measured with an 
Annexin V/DAPI assay at 24h. Parental vs EV – p = 0.9254. Parental/EV vs ASXL1, 
parental/EV vs ASXL2 - all p < 0.0001. (B) Cell viability response to Medi3039 treatment - 
parental, EV, ASXL1 and ASXL2 shRNA transduced cells were treated with a dose range of 
Medi3039 and cell viability measured with a XTT cell viability assay at 72h. Parental vs EV – 
p = 0.9770. Parental/EV vs ASXL1, parental/EV vs ASXL2 - all p < 0.0001.  Results suggest 
ASXL1/2 knockdown results in increased sensitivity to DR agonists.  
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5.3.5.2 Knockdown of both ASXL1 and ASXL2 sensitises H2869 MPM cells to 

rTRAIL and Medi3039. 

Transduction of the parental H2869 line with EV shRNA resulted in a 

significant increase in cell death in response to rTRAIL treatment (p=0.0001) 

suggesting an effect of transduction on rTRAIL sensitivity in these cells 

(Figure 5-14). Transduction with both ASXL1 and ASXL2 shRNA however 

resulted in a significant increase in cell death in response to rTRAIL treatment 

when compared to both the parental and EV shRNA transduced line 

(p<0.0001). Notably the cell death seen in the ASXL2 transduced line was 

significantly greater than that seen in the ASXL1 transduced line (p<0.0001).  

 

This pattern was replicated in cell viability response to Medi3039 treatment. 

Transduction of the parental H2869 line with EV shRNA resulted in a 

significant decrease in cell viability in response to Medi3039 treatment 

(p<0.0001). Transduction with both ASXL1 and ASXL2 shRNA resulted in a 

significant decrease in cell viability in response to Medi3039 treatment when 

compared to both the parental and EV shRNA transduced line (p<0.0001). 

Notably the cell viability seen in the ASXL2 transduced line was significantly 

lower than that seen in the ASXL1 transduced line (p<0.0001).  
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Figure 5-14 shRNA knockdown of ASXL1/2 and response to DR agonist 
treatment in H2869 MPM cells 

 (A) Cell death response to rTRAIL treatment – parental, EV, ASXL1 and ASXL2 shRNA 
transduced cells were treated with a dose range of rTRAIL and cell death measured with an 
Annexin V/DAPI assay at 24h. Parental vs EV – p = 0.0001. EV vs ASXL1 and EV vs ASXL2 
– p < 0.0001  (B) Cell viability response to Medi3039 treatment - parental, EV, ASXL1 and 
ASXL2 shRNA transduced cells were treated with a dose range of Medi3039 and cell viability 
measured with a XTT cell viability assay at 72h. Parental vs EV, EV vs ASXL1, EV vs ASXL2 
– all p < 0.0001. Results suggest ASXL1/2 knockdown results in increased sensitivity to DR 
agonists, with ASXL2 having a more significant effect. 
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5.3.5.3 Knockdown of ASXL1 but not ASXL2 sensitises MPP-89 MPM cells to 

rTRAIL and Medi3039. 

Transduction of the parental MPP-89 line with EV shRNA resulted in no 

significant change in cell death in response to rTRAIL treatment (p=0.6671) 

(Figure 5-15). Relative to the parental and EV shRNA transduced cells, 

transduction with ASXL2 shRNA resulted in no significant change in cell death 

in response to rTRAIL treatment (p=0.1281 and p=0.3218 respectively). 

Transduction with ASXL1 shRNA however resulted in a significant increase in 

cell death in response to rTRAIL treatment relative to both the EV shRNA 

transduced and parental cell line (p<0.0001).    

 

This pattern was replicated in cell viability response to Medi3039 treatment. 

Transduction of the parental MPP-89 line with EV shRNA resulted in no 

significant change in cell viability in response to rTRAIL treatment (p=0.9283). 

Relative to the parental and EV shRNA transduced cells, transduction with 

ASXL2 shRNA resulted in no significant change in cell viability in response to 

rTRAIL treatment (p=0.7723 and p=0.4047 respectively). Transduction with 

ASXL1 shRNA however resulted in a significant decrease in cell viability in 

response to rTRAIL treatment relative to both the EV shRNA transduced and 

parental cell line (p<0.0001).    
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Figure 5-15 shRNA knockdown of ASXL1/2 and response to DR agonist 
treatment in MPP-89 MPM cells 

(A) Cell death response to rTRAIL treatment – parental, EV, ASXL1 and ASXL2 shRNA 
transduced cells were treated with a dose range of rTRAIL and cell death measured with an 
Annexin V/DAPI assay at 24h. Parental vs EV – p = 0.6671, parental/EV vs ASXL1 – p < 
0.0001, parental vs ASXL2 - p = 0.1281, parental vs ASXL2 - p = 0.3218.  (B) Cell viability 
response to Medi3039 treatment - parental, EV, ASXL1 and ASXL2 shRNA transduced cells 
were treated with a dose range of Medi3039 and cell viability measured with a XTT cell 
viability assay at 72h. Results suggest ASXL1 but not ASXL2 knockdown results in increased 
sensitivity to DR agonists in this cell line. Parental vs EV – p = 0.9283, parental/EV vs ASXL1 
– p < 0.0001, parental vs ASXL2 - p = 0.7723, parental vs ASXL2 - p = 0.4047.  
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5.4 Polycomb repressor complex 1 and 2 signatures 
 

The observation that loss of any of BAP1 or ASXL1/2 function or their 

interaction sensitises MPM cells to DR agonists points to the role of the PR-

DUB in mediating DR agonist sensitivity.  The PR-DUB modulates gene 

transcription by modifying chromatin architecture through the deubiquitination 

of histone 2A at lysine 119 (H2AK119). This modulation can also be 

influenced by PRC1, the enzymatic activity of which results in the 

ubiquitination of H2AK119, but also indirectly by PRC2 that trimethylates 

histone 3 at lysine 27 (H3K27Me3) that in turn recruits PRC1. In view of this I 

hypothesised that there is a correlation between H2AK119Ub, or possibly 

H3K27Me3, and DR agonist sensitivity. If correct, this would lend further 

support to DR agonist sensitivity being mediated by regulation of gene 

transcription by the PR-DUB. 

 

5.4.1 Loss of BAP1 function results in an increase in H2AK119 

ubiquitination  

First I aimed to determine if the mutations of BAP1 that disrupt the PR-DUB, 

C91A DUB and ΔASXL, increase H2AK119Ub levels in MPM cells. I also 

assessed if these mutations resulted in an increase in PRC2 activity, as 

measured by H3K27Me3, these levels might indirectly affect H2AK119Ub by 

recruiting the PRC1 complex. I therefore conducted immunoblot analysis of 

H2AK119Ub and H3K27Me3 expression in parental, GFP, BAP1 WT, C91A 

DUB and ΔASXL transduced H226 lines (Figure 5-16A). Following this, 

through collaboration with Alan Holmes in the UCL translational research 

office, I also performed quantitative assessment of H2AK119Ub levels in 

these cells using immunofluorescence.  

 

Immunoblot analysis revealed that transduction of the BAP1 null parental line 

with wild-type BAP1 reduced expression of H2AK119Ub, consisted with 

increased PR-DUB activity. Transduction with control GFP, or those mutants 

that disrupt the PR-DUB - C91A or ΔASXL - did not result in any visible 
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change (Figure 5-16B). Transduction of the BAP1 null H226 line with GFP, 

BAP1 WT, C91A or ΔASXL did not result in any change in H3K27Me3 levels 

suggesting that PR-DUB function does not affect PRC2 activity in these cells. 

 

Immunofluorescence allowed quantitative assessment of H2AK119Ub in 

these cells lines (Figure 5-16C and D). Transduction of the BAP1 null 

parental line with wild-type BAP1 resulted in a significant decrease in 

H2AK119Ub levels, while transduction with the C91A mutant resulted in no 

significant difference. Transduction of the parental H226 line with the ΔASXL 

mutant resulted in a smaller but significant decrease in expression of 

H2AK119Ub, but this level was still significantly higher than that transduced 

with wild-type BAP1.  

 

	  
Figure 5-16 H2AK119Ub and H3K27Me3 expression in BAP1 transduced H226 
MPM cells 

 (A) Immunoblot analysis of H2AK119Ub expression (B) Immunoblot analysis of H3K27Me3 

expression (C) Immunofluorescence images of H2AK119Ub expression (D) Median 

fluorescent intensity (MFI) of cells stained for H2AK119Ub. *** p < 0.0001. 

Parental – untransduced, C91A – DUB mutant transduced, ΔASXL – ASXL binding mutant 

transduced, BAP1 WT – wild type transduced. 
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5.4.2 PRC signatures and DR agonist sensitivity in MPM cells 

The above data demonstrates that disruption of the PR-DUB in MPM results 

in an increase in H2AK119Ub levels and no effect on H3K27Me3 levels. This 

correlates with DR agonist sensitivity in H226 cells. I next aimed to determine 

if there is a correlation between H2AK119Ub and DR agonist sensitivity in the 

established MPM lines. A correlation would be supportive of PR-DUB activity 

upon H2AK119Ub levels as being the mechanism underlying DR agonist 

sensitivity. 

 

Immunoblot analysis of the established MPM lines however did not reveal an 

obvious correlation between H2AK119Ub expression and DR agonist 

sensitivity (Figure 5-17). Interestingly, the BAP1 mutant lines did not 

demonstrate significantly higher H2AK119Ub expression than the wild-type 

BAP1 lines. I also assessed immunoblot expression of H3K27Me3 in these 

lines to determine if a change in this, and therefore PRC1 recruitment, might 

account for the discrepancy but no consistent correlation was identified.  

 

	  
Figure 5-17 Immunoblot of H2AK119Ub and H3K27Me3 in MPM lines 

Cell lines are stratified by BAP1 status and rTRAIL sensitivity. Green – sensitive, orange – 

partially sensitive, red – resistant. There is no correlation between H2AK119Ub or H3K27Me3 

expression and DR agonist sensitivity 
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5.5 Discussion 

 

5.5.1 Interaction of BAP1 with ASXL1/2 mediates rTRAIL resistance 

The above data suggests that the interaction of BAP1 with ASXL1/2 is key in 

mediating rTRAIL sensitivity. This finding, together with those of K. Kolluri that 

binding of BAP1 to HCF-1 and FoxK1/2 does not affect TRAIL sensitivity, 

raises several interesting implications for the underlying mechanism. The 

different proteins to which BAP1 binds form different complexes that mediate 

different functions, predominantly the regulation of expression of different 

genes. Therefore those BAP1 interactions that are key to rTRAIL resistance 

may point to which regulatory complexes, and therefore which genes, might 

be involved.  

 

BAP1 binds to ASXL1/2 to form the polycomb repressor deubiquitinase 

complex (PR-DUB), a known transcriptional regulatory complex [67]. While a 

number of deubiquitination substrates for BAP1 have been identified, 

including itself, the main substrate for the PR-DUB complex thus far identified 

is lysine 119 on histone 2A (H2AK119Ub) [67]. Deubiquitination at this site 

modifies chromatin architecture to regulate gene expression and is opposed 

by the ubiquitination activity of the Ring1A/B enzyme within the polycomb 

repressor complex 1 (PRC1). Thus as disruption of the PR-DUB results in 

increased rTRAIL sensitivity it is likely that those genes regulated by the PR-

DUB complex are involved. While the number of genes regulated by the PR-

DUB is in the order of thousands, the interaction of BAP1 with other proteins 

might further narrow down those genes involved in TRAIL sensitivity.  
 

FoxK1/2 are transcription factors the functions of which have been linked to 

cell cycle regulation and cell proliferation [170, 171]. Less is known about the 

activities of FoxK1 and there have been no published studies looking at the 

effect of the BAP1/FoxK1 interaction on gene expression. FoxK2 however has 

been found to recruit BAP1 to FoxK2 target genes through the forkhead-
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associated domain and BAP1 depletion results in an up-regulation of FoxK2 

target genes [47]. As the finding of K. Kolluri that disruption of the 

BAP1/FoxK2 interaction does not affect rTRAIL sensitivity one can infer that 

FoxK2 target genes are not involved in mediating rTRAIL sensitivity. 

Interestingly, evidence suggests that this BAP1 dependent FoxK2 gene 

repression involves the activity of BAP1 as part of the PR-DUB complex [52] 

and that it is opposed by PRC1 dependent ubiquitination of H2AK119 which 

results in the activation of FoxK2 target genes. Thus it appears that the 

activity of the PR-DUB may be targeted towards specific genes by additional 

proteins that bind to BAP1 such as FoxK2. Evidence suggests that HCF-1 is 

also bound to BAP1 within this complex but it is not necessary for FoxK2 

target gene repression [47]. K. Kolluri found that disruption of BAP1-HCF1 

interaction does not affect rTRAIL sensitivity. Thus neither FoxK2 nor HCF-1 

binding is involved in rTRAIL sensitivity, which suggests that the target genes 

to which these transcription factors direct the PR-DUB are not involved in 

rTRAIL sensitivity.  

 

To further identify those genes involved in rTRAIL sensitivity it would be 

interesting to perform a mRNA microarray study of H226 cells transduced with 

the ASXL binding mutant and compare this analysis with that already obtained 

from the WTSI from the BAP1 WT and DUB mutant transduced cells. Those 

genes that have the same change in the DUB and ΔASXL mutants are likely 

to be regulated by PR-DUB activity and this would further narrow the potential 

genes down. Identification of FoxK2 and HCF-1 target genes through a ChIP 

assay might also help to exclude those genes less likely to be involved in 

rTRAIL sensitivity. 

 

5.5.2 Loss of BAP1 PR-DUB function alters expression of apoptotic 

pathway proteins 
I hypothesised that BAP1 activity modulates expression of components of the 

apoptotic pathway to influence DR agonist sensitivity. Microarray data from 

the WTSI confirmed that the mRNA expression of components of the 
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apoptotic pathway significantly differed between wild-type and DUB mutant 

BAP1 transduced cells (Figure 1-9). One might expect a consistent pattern 

where the expression of anti-apoptotic proteins decreased and pro-apoptotic 

proteins increased in the rTRAIL sensitive DUB mutant transduced cells. 

However the mRNA expression of some anti-apoptotic components was found 

to increase in the presence of DUB mutant BAP1. The above flow cytometry 

and immunoblot data however reveals that protein expression of the levels of 

pro- and anti- apoptotic components differ from the mRNA expression. Cell 

surface expression of the pro-apoptotic receptors DR4 and DR5 were found to 

increase in the presence of DUB mutant BAP1, consistent with the mRNA 

expression, which was also found to increase. Protein expression of the 

inhibitory apoptotic proteins cFLIP, cIAP1 and cIAP2 however were found to 

decrease in the presence of the DUB and ΔASXL binding mutant while the 

mRNA expression was conversely found to be increased. Protein expression 

of FADD and survivin did not change in the presence of both DUB and 

ΔASXL, while the mRNA expression of these proteins was found to increase. 

It seems therefore that although BAP1 activity affects gene transcription of the 

apoptosis pathway, there are additional post-transcriptional events that occur 

that affect protein expression. Overall pro-apoptotic protein expression 

increased and anti-apoptotic protein expression decreased. It is however 

important to note that the expression of all apoptotic pathway proteins was not 

assessed. Therefore the conclusion that can be drawn is limited to expression 

of some of the apoptotic pathway components is altered by BAP1 activity at 

both an mRNA and protein level and that these two are not always consistent. 

The consistent pattern of change of protein expression in the presence of both 

the DUB and ASXL binding mutant however supports both these functions 

mediate TRAIL sensitivity and further implicates the PR-DUB. 

 

5.5.3 MPM lines express different levels of extrinsic apoptotic pathway 

proteins 

The correlation of DR4 expression, and to a lesser extent DR5 expression, 

with rTRAIL sensitivity observed in the established MPM lines is notable. This 



	  

	   148	  

is suggestive that an increase in DR expression contributes to rTRAIL 

sensitivity in MPM. Although the flow cytometry data confirms that loss of 

BAP1 DUB function results in an increase in the expression of DR4 and DR5, 

the observation that the BAP1 wild-type but rTRAIL sensitive cell CRL-2081 

has high DR4/5 expression and the BAP1 mutant but rTRAIL resistant cell 

H2722 has low DR4 expression suggests that mechanisms other than BAP1 

exist that can also regulate their expression.  

 

On analysis of expression of the other extrinsic apoptotic pathway proteins in 

these cell lines there is a much less consistent correlation with TRAIL 

sensitivity and BAP1 status. There is a trend towards increased expression of 

the pro-apoptotic caspase 8 and lower expression of the anti-apoptotic XIAP 

in the rTRAIL sensitive BAP1 mutant cells but not an obvious trend in the 

other proteins assessed. While these are interesting observations, 

mechanistic conclusions cannot be drawn from these trends. One can 

however conclude that protein expression of components of the extrinsic 

apoptotic pathway vary between different MPM lines. The balance of pro- and 

anti- apoptotic proteins expressed may determine the degree of apoptosis 

seen in response to death receptor activation. Indeed this is believed to 

underlie much of the heterogeneity in response to DR agonists observed in 

cell lines from other malignancies. 

 

5.5.4 Loss of ASXL1/2 function increases sensitivity to DR agonists 

The above data suggests that ASXL1 and ASXL2 loss of function can also 

result in increased sensitivity to DR agonists in MPM. Initial assessment of 

ASXL1/2 expression in MPM lines did not reveal any obvious correlation with 

rTRAIL sensitivity. All the MPM lines expressed both ASXL1 and ASXL2 

irrespective of BAP1 status. Perhaps this is not surprising, as ASXL1 and 

ASXL2 mutations are not known to be associated with MPM. Evidence from 

the literature also suggests that there is a degree of co-regulation of 

expression between ASXL1/2 and BAP1. Daou et al. found that ASXL1/2 

protein levels were increased following overexpression of BAP1 in 293T cells 
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while conversely BAP1 protein levels increased in a dose dependent manner 

with increased ASXL1/2 expression [45]. Knockdown of BAP1 also reduced 

ASXL2 expression [45]. In view of this I assessed ASXL1/2 expression in the 

BAP1 mutant transduced H226 MPM cells to determine if any particular loss 

of BAP1 function resulted in a change in ASXL1/2 expression. Interestingly 

this did not reveal a change in ASXL1/2 expression with any of the BAP1 

mutants. It is possible that this is as none of the functional sites mutated in the 

above lines are involved in ASXL1/2 regulation, however this seems unlikely 

as these sites cover the major functional domains of BAP1. Alternatively the 

293T transfection model used by Daou et al. might not replicate the 

complexity of a cancer cell line. In either case the data does not support a role 

for BAP1 in the regulation of ASXL1/2 expression in MPM.  

 

The above data also supports that loss of ASXL1/2 function increases DR 

agonist sensitivity in MPM. It is notable however that the ability of ASXL1 and 

ASXL2 to modulate DR agonist sensitivity is not consistent across the cell 

lines. In H513 and H2869 cells, knockdown of both ASXL1 and ASXL2 

increases the sensitivity of cells to DR agonists, however the effect of ASXL2 

knock down is significantly greater than ASXL1 in H2869. In MPP-89 cells 

knock down of ASXL1, but not ASXL2, increases the sensitivity of cells to DR 

agonists. Both ASXL1 and ASXL2 are capable of binding to BAP1 to form the 

PR-DUB and deubiquitinate H2AK119Ub and these complexes are mutually 

exclusive. It is notable therefore that immunoblot analysis (Figure 5-8) of 

MPP-89, where ASXL1 but not ASXL2 knockdown increases DR agonist 

sensitivity, ASXL1 expression is higher than ASXL2 expression. In H2869, 

where ASXL2 knockdown has a significantly greater effect on DR agonist 

sensitivity than ASXL1, ASXL2 expression is higher and in H513 where both 

ASXL1 and ASXL2 knockdown has the same effect on DR agonist sensitivity 

the expression of both appears to be equal. It may be therefore that the 

overall amount of ASXL1 and ASXL2 expressed determines the activity of the 

PR-DUB, which could explain the different patterns seen in the different cell 

lines.  
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5.5.5 Loss of BAP1 PR-DUB function increases H2AK119Ub expression 

The above data demonstrates that disruption of the PR-DUB in the H226 

MPM line results in an increase in H2AK119Ub expression with no effect on 

H3K27Me3 levels. However assessment of H2AK119Ub and H3K27Me3 

expression in MPM lines did not reveal an obvious correlation with DR agonist 

sensitivity. Although this data does not conclusively support my hypothesis 

that H2AK119Ub levels mediate DR agonist sensitivity, it does not 

conclusively refute it. To infer causation, rather than correlation, between 

H2AK119Ub and DR agonist sensitivity in MPM, an interesting experiment 

might be conducted whereby PRC1 enzymatic activity is inhibited which would 

decrease H2AK119Ub level. If this were to result in a corresponding decrease 

in DR agonist sensitivity this would demonstrate that modulation of 

H2AK119Ub affects DR agonist sensitivity. Ring1A/B inhibitors are available 

to inhibit PRC1 enzymatic activity and this experiment is part of my future 

work plan. 

 

 

5.6 Summary 

 
• The interaction of BAP1 with ASXL1/2 is key to mediating DR agonist 

sensitivity in MPM indicating a role for the PR-DUB 

• Loss of BAP1 activity modulates expression of components of the 

apoptosis pathway at both an mRNA and protein level 

• Loss of ASXL1 and ASXL2 function increases sensitivity to DR 

agonists in MPM  

• The influence of ASXL1 and ASXL2 on DR agonist sensitivity varies 

across MPM lines and may be related to total protein expression 

• Loss of PR-DUB activity increases H2AK119Ub expression in MPM 

lines 
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The overall hypothesis for this thesis is that loss of BAP1 function can act as a 

biomarker for DR agonists in MPM and that the underlying mechanism 

involves the regulation of expression of components of the extrinsic apoptotic 

pathway by BAP1. The data presented within this thesis provides data that 

supports a loss of BAP1 function augments sensitivity to rTRAIL in in vitro 

models in the form of cell lines and early passage cell cultures and in an ex 

vivo model in the form of MPM tumour explants. The data presented also 

supports that loss of BAP1 function also augments sensitivity to other DR 

agonists such as Medi3039 as demonstrated in in vitro models. With regard to 

the underlying mechanism the data supports that loss of the capabilities of 

BAP1 that underlie its role in the polycomb repressor deubiquitinase (PR-

DUB), deubiquitiniase and ASXL binding, mediate response to DR agonists. 

Loss of both the deubiquitinase and ASXL binding functions also result in 

modulation of expression of components of the extrinsic apoptotic pathway at 

both an mRNA and protein level. Consistent with a role for the PR-DUB in 

mediating DR agonist sensitivity, the data presented supports that loss of 

ASXL1 and/or ASXL2 function also augments sensitivity to DR agonists in 

MPM. ASXL1/2 therefore may act as further biomarkers for DR agonist 

sensitivity in relevant cancers. Here I discuss the clinical implications and 

future directions for the work.  

 

 

6.1 BAP1 expression and mutations in mesothelioma  

 
Data presented in chapter III supports that a significant proportion of MPM 

tumours taken from a cohort of UK patients lose nuclear expression of BAP1. 

Published research supports that this loss of expression is the result of 

mutations in BAP1, which supports the use of immunohistochemistry to 

6 SUMMARY AND FUTURE DIRECTIONS 
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identify MPM tumours with BAP1 mutations [35]. It would be interesting to 

sequence the MPM tumours from the MSO1 study to confirm that those with 

loss of BAP1 nuclear expression indeed harbour mutations in BAP1. This 

would need to comprise a comprehensive integrated molecular approach to 

identify all BAP1 mutations rather than Sanger or next generation sequencing 

alone. Laser capture microdissection of single cells would also need to be 

conducted to obtain tissue suitable for analysis. It would be relatively easy 

however to perform comprehensive integrated molecular sequencing of the 

Mesobank early passage MPM cultures for BAP1 mutational status to 

determine if this correlates with nuclear expression and rTRAIL sensitivity. I 

therefore intend to conduct this as part of my future work plan. 

 

 

6.2 Further validation of BAP1 as a biomarker for TRAIL 

sensitivity 

 
Data presented in chapters III and IV supports that loss of BAP1 function 

augments sensitivity to DR agonists as demonstrated in cell lines, early 

passage cell cultures, and a limited number of tumour explants. K. Kolluri also 

presented data validating the association between loss of BAP1 function and 

rTRAIL sensitivity in a mouse xenograft model (Figure 1-10). With regards to 

further validation I would propose concentrating on expanding the cohort of 

human tumour explants as the most convincing preclinical model. This 

however is dependent upon the number and quality of surgical biopsy 

specimens available. The tumour explants generated in this thesis were taken 

from patients undergoing therapeutic pleurectomy. We have also attempted to 

generate tumour explants from diagnostic biopsy specimens taken at video 

assisted thoracoscopic surgery. However, these specimens are significantly 

smaller than those obtained at pleurectomy and as such the explants 

generated were unsuitable for immunohistochemical analysis. Thus the 

expansion of the explant cohort is subject to the number of patients 
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undergoing pleurectomy at our local surgical centre. As few patients with 

MPM are suitable for this operation this is a relatively infrequent procedure 

and therefore it may take some time to develop a large cohort.   

 

Further validation in a genetically engineered mouse model (GEMM) of 

mesothelioma would also be an advance on the mouse xenograft model used 

by K. Kolluri. A published BAP1+/- GEMM exists that develops peritoneal 

biphasic mesothelial tumours following intraperitoneal asbestos injections 

every 3 weeks for 4 cycles with a median survival time of 43 weeks in BAP1+/- 

vs 55 weeks in WT littermates [172]. However Professor Anton Berns at the 

Netherlands Cancer Institute has developed an as yet unpublished conditional 

knockout GEMM of mesothelioma that I believe is superior to which we will 

have access through collaboration [173]. These GEMMs have a background 

genotype of CDKN2a-/-/NF2f/f, which expedites tumour development, and 

alternate additional genotypes of BAP1+/+, BAP1f/+ or BAP1f/f  thus enabling 

the assessment of the effect of BAP1 status against a common genetic 

background. This model spontaneously develops pleural mesothelial tumours 

with a median survival time of 13 weeks in BAP1 mutant vs 19 weeks in WT 

littermates, thus radically reducing experimental time, negating the use of 

hazardous asbestos administration and offering a model in keeping with the 

focus of this project on pleural not peritoneal mesothelioma. Furthermore the 

tumours in this model recapitulate several features of human pleural 

mesothelioma including an epithelioid phenotype, pleural effusions and 

mediastinal invasion. This model also offers locotemporal control over 

induction of the mutations thus facilitating experimental control over both the 

timing of tumour development and targeting of the mutation to the thoracic 

mesothelial lining, rather than the germline. Therefore I plan to use these mice 

in the future to further validate BAP1 as a biomarker for rTRAIL sensitivity in 

vivo. 

 

With regard to further in vitro validation, CRISPR-Cas9 technology to edit out 

the BAP1 gene would also be a more robust model than shRNA knockout 
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models in which to study the effect of BAP1 loss of function in cell lines and 

early passage cell cultures and to study the downstream mechanism. 

Conference data from other labs and the experience of our own however 

suggests that complete knockout of BAP1 often results in cell death 

highlighting the ubiquitous nature of the functions of this protein.  

 

BAP1 mutations are prevalent in a number of additional malignancies 

including uveal melanoma, clear cell renal carcinoma and intrahepatic 

cholangiocarcinoma [75, 78, 160, 174]. Although in this study we have 

demonstrated that loss of BAP1 function sensitises the breast cancer cell line 

MDAMB-231 and the clear cell renal carcinoma lines Caki-1 and BB65 to DR 

agonists, it would be pertinent to demonstrate this in additional cancer types 

with a high prevalence of BAP1 mutations. I plan to perform shRNA 

knockdown of BAP1 in uveal melanoma and cholangiocarcinoma cells and 

treat them with DR agonists to this end. 

 

 

6.3 Mechanism of BAP1 induced TRAIL resistance 
 

Data presented in chapter V indicates that BAP1 might modulate DR agonist 

sensitivity in a complex with ASXL1 or 2 as part of the polycomb repressor 

deubiquitinase (PR-DUB). This is a known transcriptional regulatory complex 

that along with the polycomb repressor complexes 1 and 2 (PRC1/2) conducts 

epigenetic modifications to influence gene transcription [67]. Data presented 

also supports that disruption of the functions of BAP1 that underpin the activity 

of this complex alter expression of components of the extrinsic apoptotic 

pathway. This raises a number of further interesting questions to be explored. 

 

Although the data within this thesis supports that loss of BAP1 deubiquitinase 

and ASXL binding activity mediates DR agonist sensitivity, further 

experiments will need to be conducted to directly implicate the PR-DUB. Loss 

of BAP1 function results in an increase in global H2AK119Ub levels and an 
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associated increase in DR agonist sensitivity. Therefore if treatment of MPM 

cells with a RING1A/B inhibitor, which would decrease global H2AK119Ub 

levels, results in a decrease in DR agonist sensitivity, this would directly 

implicate this epigenetic modification, and in turn the PR-DUB, in DR agonist 

sensitivity. Such combination experiments are part of my future work plan 

 

I also plan to conduct further experiments to clarify the effect and significance 

of loss of ASXL1/2 function on DR agonist sensitivity. The data within this 

thesis suggests that loss of ASXL1 and/ or 2 function can increase sensitivity 

to DR agonists. The reason for the discrepancy in response to loss of 

ASXL1/2 between the cell lines tested in this thesis is however is not clear. 

Both ASXL1 and ASXL2 are capable of binding to BAP1 and the resulting 

complexes both of deubiquitinating H2AK119Ub. It might be that the total 

amount of ASXL1 and ASXL2 determines PR-DUB activity and thus response 

to DR agonist treatment. To this end it would be interesting to knockdown both 

ASXL1 and ASXL2 in MPM lines and assess the response to DR agonists.  

 

Although the above experiments are interesting mechanistically, a more 

clinically relevant model would be to assess loss of function of ASXL1/2 in 

those cancers in which mutations are found. I plan to assess response to DR 

agonist therapy in ASXL1 wild-type and mutant AML cell lines and also in 

knockdown ASXL1 in wild type AML cell lines and assess response. Similar 

experiments could also be conducted on breast and prostate cancer cell lines 

to assess the clinical significance of ASXL2 on DR agonist sensitivity. 

 

 

6.4 Sensitisation of BAP1 wild type tumours 

 
If the mechanism by which loss of BAP1 function sensitises cancer cells to 

DR agonists can be determined then pharmacological replication of this could 

sensitise BAP1 wild-type tumours to DR agonists. However the data within 



	  

	   157	  

this thesis suggests that the expression of several apoptotic pathway proteins 

is affected by BAP1 function and therefore an attempt to identify the key 

proteins is likely to be a challenge. An alternate strategy however could be to 

inhibit BAP1 itself. We have therefore partnered with the UCL drug discovery 

group to develop an inhibitor of BAP1 deubiquitinase activity. The successful 

development of such an inhibitor could not only be used to sensitise BAP1 

wild-type tumours to DR agonists, but also to other targeted agents such as 

EZH2, HDAC and PARP inhibitors sensitivity to which is associated with loss 

of BAP1 function [87, 89, 91]. 

 

 

6.5 Clinical implications 
 

6.5.1 Clinical implications in haematological malignancies 

ASXL1 mutations have been frequently observed in myeloid malignancies and 

ASXL2 mutations in breast, prostate, bladder and pancreatic cancer [68]. The 

data within this thesis supports that loss of function of ASXL1 and/or 2 also 

leads to increased sensitivity to DR agonists in MPM lines. As noted above it 

would be pertinent to assess the effect of loss of ASXL1/2 function in clinically 

relevant cell lines. However should this also demonstrate that loss of ASXL1/2 

function augments sensitivity to DR agonists in these models, the potential 

clinical relevance of this would remain unclear. All BAP1 mutations identified 

in MPM are loss of function and therefore one would predict such tumours 

would be sensitive to DR agonist therapy. In the case of myeloid malignancies 

with ASXL1 mutations however it is not clear whether these result in loss of 

function, gain of function or dominant negative effects [72]. The potential 

clinical utility would therefore depend on further clarity in this area as it is likely 

that only loss of function mutations would result in DR agonist sensitivity. 

Truncating mutations of ASXL2 in breast and prostate cancers have been 

identified and are predicted to result in either a degraded protein or small N 

terminal proteins thus DR agonist therapy may be of more relevance in such 
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cases. However, this comprises a significantly smaller population of patients 

than those with ASXL1 mutations.  

 

6.5.2 Clinical implications in MPM 

New therapies are desperately needed for MPM. Current first line therapy for 

MPM, pemetrexed/cisplatin, suffers from limited efficacy and a significant side 

effect profile. Alternative solutions for MPM treatment include checkpoint 

inhibitors and targeted agents against VEGF however both suffer from 

limitations. Phase 1b testing of the anti PD-1 antibody Pembrolizumab as 

second line therapy in PD-L1 positive MPM demonstrated a stable disease in 

72% of a limited cohort (n = 25) but 64% of patients reported a treatment 

related adverse effect including fatigue, nausea and arthralgia [175]. Phase II 

results are pending, however evidence suggests this therapy is likely to only 

be effective in the 20% of patients with PD-L1 positive MPM [176]. The anti 

VEGF antibody Bevacizumab has demonstrated a modest improvement in 

overall survival over pemetrexed/cisplatin (18.8 vs. 16. months) but only when 

used in combination with pemetrexed/cisplatin [177]. Furthermore significant 

rates of hypertension, cardiovascular events, and arterial and venous 

thromboembolic events were noted. Therefore while it has received FDA 

approval for first line-treatment in MPM those at risk of the above side effects 

are excluded, a significant proportion given the demographic affected by 

MPM. Following cost-effectiveness analysis it has not been licenced by NICE. 

 

An alternative treatment for the significant majority of MPM patients that 

harbour BAP1 mutations in the form of DR agonist therapy is therefore a 

clinically significant finding.  To date there have been no trials of any DR 

agonist in MPM or any other cancer with a high prevalence of BAP1 

mutations. Such a trial might have demonstrated clinical efficacy of DR 

agonists unlike those trials conducted to date. I believe the data presented 

supports a case for conducting a BAP1 stratified clinical trial for a DR agonist 

therapy in MPM. Indeed similar preclinical data demonstrating that loss of 

BAP1 function predicts sensitivity to EZH2 inhibitors in MPM has lead to a 
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phase II clinical trial of tazemetostat currently underway [91] (NCT02860286). 

Despite limited success in clinical trials to date new DR agonists continue to 

be developed by the pharmaceutical industry that aim to overcome the 

limitations of early DR agonists, in particular that of univalent binding. Novel 

DR agonists such as Medi3039 (Medimmune) and ABBV-621 (Abbvie) aim to 

maximise receptor clustering and activation of the death inducing signaling 

complex (DISC). Such compounds have currently yet to complete phase I 

testing however a shrewd strategy would be to trial these compounds in MPM 

and/or other malignancies with a high rate of BAP1 mutations to assess the 

effect of this proposed biomarker.  
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