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A B S T R A C T

In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the
double-distribution-function (DDF) approach on the standard D2Q9 lattice. A density distribution function re-
laxed by the cascaded scheme based on central moments is employed to solve the flow field, and a total energy
distribution function relaxed by the BGK scheme is used to solve the temperature field. The two distribution
functions are coupled naturally to provide a new TCLBM. In this method, the viscous heat dissipation and
compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, and the
external force is considered directly without the Boussinesq assumption. The TCLBM is validated by numerical
experiments of the thermal Couette flow, low-Mach number shock tube problem, Rayleigh-Bénard convection,
and natural convection in a square cavity with a large temperature difference. The simulation results agree well
with the analytical solutions and/or results given by previous researchers.

1. Introduction

The lattice Boltzmann method (LBM), based on the kinetic theory,
has achieved remarkable success as an alternative method to conven-
tional computational fluid dynamics (CFD) for thermal flow and heat
transfer applications during the past three decades [1–9]. Different
from solving the discretized Navier-Stokes (N-S) equations in tradi-
tional CFD methods, the LBM solves a discrete kinetic equation at the
mesoscopic scale, designed to reproduce the N-S equations in the
macroscopic limit. The main advantages for LBM over traditional CFD
include [10,11]: convenience to deal with complex boundary, easiness
of programming, high parallel efficiency, and natural incorporation of
micro and meso-scale physics.

The basic algorithm realization of LBM is collision-streaming or
streaming-collision, although other time and space evolution schemes
can also be used. To be specific, at each time step the collision is first
locally executed and followed by streaming the post-collision distribu-
tions to their neighbors, or just exchanging the above procedure [12].
Based on this algorithm, various collision operators can be adopted,
such as the single-relaxation-time (SRT) or BGK operator [13], two-
relaxation-time (TRT) operator [14,15], multiple-relaxation-time
(MRT) operator [16,17], and entropic operator [18–20]. Compared
with these extensively used operators, cascaded or central moment
operator, first proposed by Geier et al. [21] in 2006, is more recent. The

collision in the cascaded Lattice Boltzmann method (CLBM) is per-
formed by relaxing central moments to their local equilibrium values
separately, which is different from MRT LBM where the raw moments
are relaxed. As mentioned in Ref. [21], central moments can be ex-
pressed as polynomials of raw moments of the same order and below.
When a raw moment is relaxed (in MRT), all central moments at the
same or higher orders will be changed. This “cross-talk” is a source of
instability and can be removed in CLBM. By choosing the relaxation
parameters properly, CLBM can be adopted to simulate very high
Reynolds number flows using coarse grids without adopting any tur-
bulence models or entropic stability [21]. Recently, Lycett-Brown and
Luo [22] extended the CLBM to multiphase flow using the interaction
potential method [23] with the EDM force scheme [24]. Compared with
the LBGK method, the proposed model provided significant improve-
ment in reducing spurious velocities, and increasing the stability range
for the Reynolds number and liquid to gas density ratio. They further
extended the model to three dimensions and achieved high Weber
number, high Reynolds number and high density ratio simultaneously
in binary droplet collision simulations [25,26]. More recently, based on
a generalized multiple-relaxation-time (GMRT) framework, we pro-
posed a consistent method to incorporate a force field into CLBM and
clarified the relation between CLBM and MRT LBM [27].

Although CLBM has obtained success in high Reynolds number
single-phase flows and multiphase flows, its applications are so far
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limited to incompressible flows. Recently, we showed that for in-
compressible thermal flows, CLBM can improve the numerical stability
significantly compared with the BGK model [9]. The purpose of the
present study is to extend CLBM to Low-Mach compressible thermal
flows. Generally, there are three feasible ways to construct thermal
LBMs. The first one, multispeed approach [28,29], is a straightforward
extension of athermal to thermal LBMs, in which more discrete velo-
cities are adopted to match higher-order moment constraints of the
density distribution function for recovering the energy equation. In the
second one, a density distribution function is still used to simulate the
velocity field, while other methods, such as finite difference or finite
volume [30,31], are adopted for the temperature field. The double-
distribution-function (DDF) [1,2] approach is the third one, where two
different distribution functions are adopted to solve flow and tem-
perature fields, respectively. In DDF-based thermal LBMs, the com-
pression work and heat dissipation can be simply included, and the
specific-heat ratio and Prandtl number are adjustable. On the whole,
the DDF approach keeps the intrinsic features and simple structures of
the standard LBM, and more comparisons and discussions among the
three methods can be found in Refs. [2,4,32]. In the history, the first
DDF thermal model was proposed by He et al. [1] by using an internal-
energy-distribution-function-based DDF approach. Guo et al. [2] then
presented another DDF thermal model using a total energy distribution
function to solve the energy equation, which is simpler than He and co-
workers’ model. In Guo and co-authors’ model, the local temperature in
equilibrium density and energy distribution functions is replaced by the
reference temperature, thus it is a decoupling model and is limited to
Boussinesq flows. In 2012, Li et al. [4] developed a coupling DDF
thermal model which can simulate more general thermal flows, and the
model was extended to three-dimensions by Feng et al. [33] recently.
Inspired by these works, we construct a thermal cascaded lattice
Boltzmann method (TCLBM) in the present work based on the DDF
approach. In the TCLBM, a density distribution function is relaxed using
the cascaded scheme, a total energy distribution function is relaxed
using the SRT scheme, and the external force is considered directly
without the Boussinesq assumption.

The rest of the paper is structured as follows: Section 2 briefly in-
troduces the cascaded LBM. Section 3 presents a method to incorporate
the force field into cascaded LBM. In Section 4, we extend the athermal
CLBM to TCLBM. Numerical experiments are carried out for several
benchmark problems to validate the proposed model in Section 5. Fi-
nally, conclusions of this work are made in Section 6.

2. Cascaded LBM

In this paper, the D2Q9 lattice [13] is adopted, and the discrete
velocities are defined as =e (0,0)0 , =ea

− −a π a π c(cos[( 1) /2], sin[( 1) /2]) , for =a 1–4, and
= − −a π a π ce ( 2 cos[( 9/2) /2], 2 sin[( 9/2) /2])a for =a 5–8. In LBM,

=c δ δ/x t , here δx and δt are the lattice spacing and time step, and
= = =c δ δ 1x t is used in this work. For the derivation of CLBM, we

follow Lycett-Brown and Luo [22] and begin with the velocity moments
of the discrete distribution function (DF) fa, and then fa and fa

eq can be
formulated as functions of the corresponding moments and equilibrium
moments.

The raw moments are defined as

∑=ρM f e e .mn
a

a ax
m

ay
n

(1)

in this notation, the zero-order moment =M 100 , and first-order mo-
ments =M ux10 and =M uy01 are conserved, corresponding to mass, x
and y momentum components, respectively. To get the formulations of
fa , another six independent moments are needed, including 3 second-
order moments (M11, M02 and M20), two third-order moments (M21, M12,
noting that M03 and M30 are not independent of the first-order ones
owing to the lack of symmetry in D2Q9 lattice), and the fourth-order

moment M22. Recombining the second-order moments, the trace of the
pressure tensor, the normal stress difference and the off diagonal ele-
ment of the pressure tensor are given by

= + = − =E M M N M M Π M, , .20 02 20 02 11 (2)

According to the definition above, we get the raw moment re-
presentation of populations:

= − +f ρ M E M[ ],0 00 22 (3a)

= ⎡
⎣

+ + − − ⎤
⎦

f ρ M E N M M1
2

1
2

( ) ,1 10 12 22 (3b)

= ⎡
⎣

+ − − − ⎤
⎦

f ρ M E N M M1
2

1
2

( ) ,2 01 21 22 (3c)

= ⎡
⎣

− + + + − ⎤
⎦

f ρ M E N M M1
2

1
2

( ) ,3 10 12 22 (3d)

= ⎡
⎣

− + − + − ⎤
⎦

f ρ M E N M M1
2

1
2

( ) ,4 01 21 22 (3e)

= + + +f ρ Π M M M1
4

[ ],5 21 12 22 (3f)

= − + − +f ρ Π M M M1
4

[ ],6 21 12 22 (3g)

= − − +f ρ Π M M M1
4

[ ],7 21 12 22 (3h)

= − − + +f ρ Π M M M1
4

[ ].8 21 12 22 (3i)

It should be noted that other variables can also be expressed using their
moments in this form similarly.

Central moments are defined in a reference frame shifted by the
local velocity,

∑= − −∼ρM f e u e u( ) ( ) .mn
a

a ax x
m

ay y
n

(4)

The transformation between the raw moments and central moments can
be expressed using the binomial theorem as given by Lycett-Brown and
Luo [22]. To construct a CLBM, we follow the assumption adopted in
Ref. [34], by setting the discrete equilibrium central moments equal to
the corresponding continuous values,

∫ ∫= − −∼
−∞

∞

−∞

∞
ρM f ξ u ξ u dξ ξ( ) ( ) ,mn

eq eq
x x

m
y y

n
x y (5)

where f eq is the local Maxwell-Boltzmann distribution for athermal
fluid at temperature T0 in continuous particle velocity space ξ ξ( , )x y ,

= ⎡
⎣⎢

−
− ⎤

⎦⎥
f

ρ
πRT

ξ
RT

u
2

exp
( )

2
,eq

0

2

0 (6)

and the lattice sound speed =c RTs 0 is set to be 1/ 3 in this work.
Substituting Eq. (6) into Eq. (5), we can calculate the second order and
above central moments, and write them using the combination as done
in raw moments:

= = = =

= =∼

∼∼ ∼ ∼

∼
Π N M M

E RT M RT

0,

2 , ( ) .

eq eq eq eq

eq eq
21 12

0 22 0
2 (7)

The implementation of CLBM is also composed of collision step and
streaming step. For the collision step, central moments are relaxed to
their equilibrium values, separately:

= + −∼ ∼ ∼Π w Π w Π(1 ) ,eq*
1 1 (8a)

= + −∼ ∼ ∼N w N w N(1 ) ,eq*
1 1 (8b)

= + −∼ ∼ ∼E w E w E(1 ) ,eq*
2 2 (8c)
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= + −∼ ∼ ∼M w M w M(1 ) ,eq
21
*

3 21 3 21 (8d)

= + −∼ ∼ ∼M w M w M(1 ) ,eq
12
*

3 12 3 12 (8e)

= + −∼ ∼ ∼M w M w M(1 ) ,eq
22
*

4 22 4 22 (8f)

where w1 and w2 are dependent on the shear and bulk viscosities, re-
spectively ( = −ν RT w(1/ 0.5)0 1 , and = −ν RT w(1/ 0.5)B 0 2 ), and the
parameters for the third- and fourth-central moments (w3 and w4) are
freely tunable to control the stability. The post-collision raw moments
can then be recovered according to the binomial theorem,

= +∼Π Π u u ,x y
* *

(9a)

= + −∼N N u u ,x y
* * 2 2 (9b)

= + +∼E E u u ,x y
* * 2 2 (9c)

= + + + −∼M M u Π u E N u u2 1
2

( ) 2 ,x y x y21
*

21
* * * * 2

(9d)

= + + − −∼M M u Π u E N u u2 1
2

( ) 2 ,y x y x12
*

12
* * * * 2

(9e)

= + + − + − −

+

∼M M u M u M E u u N u u Π

u u

u2 2 1
2

1
2

( ) 4

3 .

x y x y x y

x y

22
*

22
*

12
*

21
* 2 * 2 2 * *

2 2 (9f)

Then we get the post-collision distribution using Eq. (3), and the
streaming step is as usual,

+ + =f δ t δ f tx e x( , ) ( , ).a a t t a
* (10)

3. Incorporating forcing terms into cascaded LBM

To include the force effect on the flow field, we define fa changes
due to this force field by a source term Sa. To match the overall accu-
racy in LBM, one way to add the source term in CLBM is to employ the
second-order trapezoidal rule along the characteristic line,

+ + = + + + +[ ]f δ t δ f t δ S Sx e x( , ) ( , )
2

.a a t t a
t

a t a δ t δx x e
*

( , ) ( , )a t t (11)

To remove the implicitness in Eq. (11), the transformation method in
Ref. [34] is adopted,

+ + = + = −f δ t δ f t δ S f f δ Sx e x( , ) ( , ) ,
2

.a a t t a t a t a a
t

ax
*

( , ) (12)

He et al. [1] proposed that the presence of the force field = F FF ( , )x y
changes the continuous distribution function as follows:

= ⋅
−

f
ρ

ξ
RT

fF u
Δ

( )
.eqF

0 (13)

We then follow the assumption in Ref. [34] that the discrete central
moments of Sa are equal to the continuous central moments of fΔ F:

∫ ∫

∑= − −

= − −

∼

−∞

∞

−∞

∞

ρM S e u e u

f ξ u ξ u dξ ξ

( ) ( )

Δ ( ) ( ) .

mn
s

a
a ax x

m
ay y

n

x x
m

y y
n

x y
F

(14)

Substituting Eq. (13) into the integral, we get the nonzero central
moments of Sa,

=∼M a ,s
x10 (15a)

=∼M a ,s
y01 (15b)

=∼M RT a ,s
y21 0 (15c)

=∼M RT a .s
x12 0 (15d)

where ax and ay are horizontal and vertical components of the accel-
eration. As suggested by Premnath and Banerjee [34], we remove third-
order moments in Eq. (15) henceforward for convenience. Using the
binomial theorem once again, we yield analytical raw moments of Sa,

=M 0,s
00 (16a)

=M a ,s
x10 (16b)

=M a ,s
y01 (16c)

= +E a u a u2( ),s
x x y y (16d)

= −N a u a u2( ),s
x x y y (16e)

= +Π a u a u ,s
x y y x (16f)

= +M a u a u u2 ,s
y x x x y21

2 (16g)

= +M a u a u u2 ,s
x y y x y12

2 (16h)

= +M a u u a u u2 2 .s
x x y y y x22

2 2 (16i)

Thus, the analytical expressions of Sa can be written in the same form as
Eq. (3).

From the definition in Eq. (12), the conserved raw moments of the
transformed discrete distribution fa are =M 100 , = −M u δ a0.5x t x10 ,
and = −M u δ a0.5y t y01 , respectively. The corresponding non-conserved
raw and central moments can then be obtained straightforwardly,

= − = + > =∼∼
M M M M M p q1

2
, , ( 2).pq pq pq

s
pq pq (17)

With Eqs. (7) and (15), the non-conserved equilibrium central moments
will remain the same as the ones before transformed, thus the collision
step for the central moments will not be affected in Eq. (8). According
to the relationship between raw moments mentioned above, the post-
collision raw moments are slightly different from Eq. (9),

= + − +
∼

Π Π u u a u a u1
2

( ),x y x y y x
*

(18a)

= + − − −
∼

N N u u a u a u( ),x y x x y y
* * 2 2 (18b)

= + + − +
∼

E E u u a u a u( ),x y x x y y
* * 2 2 (18c)

= + + + − + +
∼

M M u u E N u u a u a u u2 Π 1
2

( ) 2 1
2

,x y x y y x x x y21
*

21
* * * * 2 2

(18d)

= + + − − + +
∼

M M u Π u E N u u a u a u u2 1
2

( ) 2 1
2

,y x y x x y y x y12
*

12
* * * * 2 2

(18e)

= + + − + −

− + − −

∼
M M u M u M E u u N

u u Π u u a u u a u u

u2 2 ( )

4 3 .
x y x y

x y x y x x y y y x

22
*

22
*

12
*

21
* 1

2
2 * 1

2
2 2 *

* 2 2 2 2
(18f)

After substituting Eq. (18) into Eq. (3) together with the conserved ones
(M00, M10 and M01) to get f a

* , the streaming step is then given as:

+ + = +f δ t δ f t Sx e x( , ) ( , ) .a a t t a a tx
*

( , ) (19)

The hydrodynamic variables are then obtained as:

∑ ∑= = +ρ f ρ f δu e F, 0.5 .
a

a
a

a a t
(20)

4. Coupling DDF cascaded LBM for thermal flows

For thermal flows, the temperature T is now a function of space and
time, not a constant value T0. The equilibrium distribution function f eq

is given by
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= ⎡
⎣⎢

−
− ⎤

⎦⎥
f

ρ
πRT

ξ
RT

u
2

exp
( )

2
,eq

2

(21)

and then the reference temperature T0 in Eq. (7) should be replaced by
local temperature T. Inspired by the total-energy-based DDF models
[2,4], we adopt a density distribution function relaxed by the cascaded
scheme to solve the flow field, together with a total energy distribution
function using the BGK relaxation scheme to simulate the temperature
field, and the two fields are coupled through the ideal gas equation of
state (EOS, =p ρRT ). The discrete total energy distribution function
has the kinetic equation [2],

∂ + ⋅∇ = − − + − = ⋅ −h h
τ

h h Z
τ

f f Ze e u u1 ( ) ( ), /2.t a a a
h

a a
eq a

hf
a a

eq
a a

2

(22)

To recover the compressible N-S equations, discrete raw moments of
fa

eq should be consistent with the continuous raw moments of f eq from
the zeroth-to third-order. As mentioned in Sec. 2, two of the third-order
raw moments are not independent due to the lack of symmetry in D2Q9
lattice,

∑ ∑= =f e f e ρu ,
a

a
eq

ax
a

a
eq

ax x
3

(23a)

∑ ∑= =f e f e ρu .
a

a
eq

ax
a

a
eq

ax y
3

(23b)

Combining them with = +M u RT u ueq
y x y21

2 and = +M u RT u ueq
x y x12

2 , we
have,

∑ = + + +

+ − −

f e e e ρRT u δ u δ u δ ρu u u

ρu θ u δ

( )

(1 ) .
a

a
eq

ai aj ak k ij j ik i kj i j k

l l ijkl
2 (24)

The last term at the RHS is a deviation from the continuous moments
for f eq, where =θ T T/ 0 , and =δ 1ijkl when = = =i j k l, else =δ 0ijkl .
This means that the diagonal elements ( =δ 1ijkl ) for the third-order
velocity moments deviate from the needed relationship. As pointed out
by Prasianakis and Karlin [35], the deviation can be removed only by
adding a correction term Ca into the evolution equation for standard
lattices. According to Li and co-workers’ work [4], the raw moments for
Ca should satisfy,

= = = =M M M M 0,c c c c
00 10 01 11 (25a)

= ∂ − + ∂ −E
ρ

ρu θ
ρ

ρu θ1 [ (1 )] 1 [ (1 )]c
x x y y

(25b)

= ∂ − − ∂ −N
ρ

ρu θ
ρ

ρu θ1 [ (1 )] 1 [ (1 )].c
x x y y

(25c)

The other raw moments can be chosen as:

= ∂ −M
ρ

u ρu θ1 [ (1 )],c
y x x21 (25d)

= ∂ −M
ρ

u ρu θ1 [ (1 )],c
x y y12 (25e)

=M 0.c
22 (25f)

In the above, all the third-order velocity terms have been neglected
because of the low Mach number limit. Then all the central moments for
Ca are zero except:

= ∂ − + ∂ −∼E
ρ

ρu θ
ρ

ρu θ1 [ (1 )] 1 [ (1 )],c
x x y y

(26a)

= ∂ − − ∂ −∼N
ρ

ρu θ
ρ

ρu θ1 [ (1 )] 1 [ (1 )].c
x x y y

(26b)

In the simulation, the derivative terms can be evaluated using a second-
order central difference. Then the analytical expressions of Ca can be
written in the same form as Eq. (3).

By using a second-order trapezoidal rule, the evolution equation can
be written analogously:

+ + = + +

= − −

f δ t δ f t S δ C δ f

f δ S δ C

x e x( , ) ( , ) ,

2 2
.

a a t t a a t t a t t a

a
t

a
t

a

x x
*

( , ) ( , )

(27)

Due to the non-zero second-order central moments (∼E c and ∼N c ) for Ca,
the equilibrium central moments for the transformed distribution fa
should be:

= = =
∼ ∼ ∼
Π M M 0,

eq eq eq
21 12 (28a)

= ∂ − − ∂ −
∼
N

ρ
ρu θ

ρ
ρu θ1

2
[ (1 )] 1

2
[ (1 )],

eq
y y x x

(28b)

= − ∂ − − ∂ −
∼
E RT

ρ
ρu θ

ρ
ρu θ2 1

2
[ (1 )] 1

2
[ (1 )],

eq
x x y y

(28c)

=
∼
M RT( ) .

eq
22

2 (28d)

The cascaded relaxation for central moments is in the same form as Eq.
(8), while the dynamic viscosity μ and bulk viscosity μB are:

= − = −μ p w μ p w(1/ 0.5), (1/ 0.5).B1 2 (29)

Because the conserved raw moments for Ca are zero, the calculation for
post-collision raw moments is the same as Eq. (18). Then f a

* can be
obtained using Eq. (3) once again. After the streaming step Eq. (27),
hydrodynamic variables are then obtained using Eq. (20).

To recover the total energy equation, the velocity moments for ha
eq

should satisfy:

=M E,heq
00 (30a)

= +M E RT u( ) ,heq
x10 (30b)

= +M E RT u( ) ,heq
y01 (30c)

= + + +M E RT u RT E RT( 2 ) ( ),heq
x20
2 (30d)

= + + +M E RT u RT E RT( 2 ) ( ),heq
y02
2 (30e)

= +M E RT u u( 2 ) .heq
x y11 (30f)

where = +E bRT u( )/22 is the total energy, in which the gas has b
degrees of freedom. Besides, we can set higher raw moments to be zero,
so ha

eq can be given by Eq. (3),

=

⎧

⎨

⎪
⎪

⎩
⎪
⎪

− + − + =

+ ⋅ + + +

+ +

= …

+ = …

h

ρ E E RT RT E RT a

ρ E RT E RT e u e u

RT E RT

a

ρ E RT e e u u a

u

e u

[ ( 2 ) 2 ( )], 0

[( ) ( 2 )( )

( )],

1, , 4

[( 2 ) ], 5, 8

a
eq

a ax x ay y

ax ay x y

2

1
2

2 2 2 2

1
4

(31)

In the same manner, we use a transformed total energy distribution
function:

= − = ⎛
⎝

− + + ⎞
⎠

h h K K Z
τ

f f δ S δ C1
2

,
2 2

.a a a a
a

hf
a a

eq t
a

t
a

(32)

Then the time-discrete form of Eq. (22) is,

+ + − = − −

+ −

h δ t δ h t w h t h t

w K

x e x x x( , ) ( , ) [ ( , ) ( , )]

(1 0.5 ) ,
a a t t a h a a

eq

h a tx( , ) (33)

where the relaxation parameters are related to the thermal conductivity
λ Prandtl number Pr and the specific-heat coefficients at constant
pressure cp ( = +c b R( 2) /2p ) [4],

= + = + −−w λ pc τ μ p Pr/( ) 0.5, ( / 0.5)/( 1).h p hf
1 (34)

The macroscopic temperature is obtained by,
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∑= ⎛

⎝
⎜ − ⎞

⎠
⎟T

bR
h ρ u2 / 1

2
.

a
a

2

(35)

If the compression work and viscous heat dissipation are negligible,
we can adopt an analogous internal energy (temperature) distribution
function [4] to solve the temperature field. This concludes the devel-
opment of a new thermal cascaded lattice Boltzmann method (TCLBM).

5. Numerical experiments

In this section, a series of numerical experiments are conducted to
verify the developed model. Unless otherwise specified,

= = =w w w 1.02 3 4 is adopted in simulations.

5.1. Thermal Couette flow

To check the capability of describing viscous heat dissipation by the
present TCLBM, two-dimensional thermal Couette flow is simulated.
We consider the viscous fluid between two infinite parallel plates, in
which the upper one is moving at speed U with temperature T0 and the
lower adiabatic plate is fixed. With the assumption that =Pr μc λ/p is
constant and =μ μ T T( / ) ( / )0 0 , there is an analytical solution [36],

⎛
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+
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= +
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where = +γ b b( 2)/ is the specific-heat ratio, =Ma U γRT/ 0 is the
Mach number, and H is the distance between the two plates.

In our simulations, we set =Ma 0.35 with different values of Pr and
γ: =Pr 4 with =γ 5/3 =b( 3) and 3/2 =b( 4); Pr= 5 with =γ 5/3 and
3/2. A uniform mesh = = ×N N 5 60x y is employed. For the top and
bottom walls, the non-equilibrium bounce-back method [37] and non-
equilibrium extrapolation method [2,38] are adopted for velocity and
temperature boundary conditions, respectively, while the periodic
boundary condition is imposed along the x direction. The upper wall
temperature and the reference temperature are set to unity, with a re-
ference dynamic viscosity =μ 0.350 . The relaxation parameter w1 is a
field variable related to the local dynamic viscosity as given in Eq. (29).

Fig. 1 presents the simulation and analytical results for

dimensionless temperature profiles in four cases. It can be observed that
numerical results are in excellent agreement with the theoretical ones.
To be specific, the temperatures at the bottom wall in numerical T( )n
and analytical T( )a solutions are compared in Table 1. The relative error
is defined as = − − −E T T T T1.0 ( )/( )r n a0 0 . As presented in Table 1,
the relative errors are less than 1% in all the cases.

5.2. Low-Mach shock tube problem

To check the present model's ability of simulating Low-Mach
number compressible flow, a shock tube problem is studied in this
section. The construction of this problem is that a long tube containing
the same gas is separated by a barrier in the middle into two parts with
different pressures, densities and temperatures. At the moment of re-
moving the barrier, a complex flow is set up. The initial conditions for
our simulations are,

⎧
⎨⎩

= ≤ ≤
= < ≤

ρ ρ u u p p x
ρ ρ u u p p x
( / , / , / ) (1,0,0.2), 0 0.5

( / , / , / ) (0.5, 0,0.1), 0.5 1
x

x

0 0 0

0 0 0 (37)

where =ρ 1.00 , =T 1.00 , = =p ρ RT 1/30 0 0 , =u ρ RT0 0 0 are the re-
ference density, temperature, pressure and velocity, respectively, and
L0 is the length of the tube.

In the simulation, a ×1000 5 lattice is used, the periodic boundary
condition is imposed along the y direction, while EDFs are used in =x 0
and =x 1000. The specific heat ratio γ and Prandtl number Pr are set to
1.4 and 0.71, with =w 1.891 . Simulation results are compared with the
analytical ones in Fig. 2. The four plots present dimensionless density,
pressure, horizontal velocity, and temperature profiles, respectively, at
time =t δ520 t. It can be observed that numerical results are in good
agreement with the theoretical ones.

5.3. Rayleigh-Bénard convection

To check the ability of simulating thermal flow with external force
by the present TCLBM, the numerical experiment of the Rayleigh-
Bénard convective flow is conducted in this section. The Rayleigh-
Bénard instability is one of the classical thermal instability phenomena,
in which the fluid is enclosed between two parallel stationary walls,
cold at the top and hot at the bottom, and experiences the gravity force.
Linear stability theory has proven that convection develops most
readily when the wave number is at the critical value 3.117 [40], which
is approximately corresponding to length-width ratio 2:1 in the flow
domain.

Since the present model is a coupling model, we can implement the
force by means of central moments with =a 0x and = −a gy (g is the
gravity acceleration), without using the Boussinesq assumption. We
conduct the experiment in the weakly compressible regime, with a 6%
temperature difference of the reference temperature =T 1.00 . To delete
the heat dissipation term, we adopt the internal energy distribution
function to simulate temperature field [4,41]. The non-equilibrium
extrapolation scheme [2,38] is used to treat the upper and lower wall
boundaries for both velocities and temperatures, whereas the periodic
boundary scheme is applied along the horizontal direction. The Prandtl
number corresponds to air, =Pr 0.71. Then the flow is characterized by

Fig. 1. Comparison between the simulation (symbols) and analytical (solid
lines) results for dimensionless temperature profiles at =Ma 0.35, with =Pr 5
and 4 , =γ 5/3 and 3/2, respectively.

Table 1
Comparison of the bottom wall temperatures between numerical and analytical
results.

Cases =Pr 5 =Pr 5 =Pr 4 =Pr 4

=γ 5/3 =γ 3/2 =γ 5/3 =γ 3/2

Tn 1.2031 1.1524 1.1626 1.1218
Ta 1.2042 1.1531 1.1633 1.1225
Er 0.54 0.46 0.43 0.57
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the Rayleigh number Ra,

=
−

Ra
gβ T T H Pr

ν
( )

,l h
3

2 (38)

where Tl and Th are temperatures of the upper and lower walls ( >T Tl h),
H is the distance between the walls, and ν is the kinematic viscosity of
the fluid. The characteristic velocity = −u gβ T T H( )c h l should be set
to be an appropriate value, for example 0.08 in our simulation, to keep
the flow in the low-Mach number regime. And β is the thermal ex-
pansion coefficient, which is the reciprocal of reference temperature for
the ideal gas considered here.

For this kind of instability phenomenon, the driven force by the
density variations induced by the temperature variations will balance
with the viscosity force at the critical Rayleigh number Rac, while if the
Rayleigh number is increased above the threshold, the driving force will
dominate and convection will start. First, we use a × = ×N N 200 100x y
grid to calculate the critical Rayleigh number. We initialize the tem-
perature field with a linear distribution in the y direction and give a
small perturbation for density around the reference density =ρ 1.00 . It
is noted that the total kinetic energy will keep increasing/decreasing
lineally after the initial unsteady period around the critical Rayleigh
number. For that, the total kinetic energy increment eΔ every 10000
time steps in the domain is measured,

∑= + − = ⎡
⎣

⎤
⎦

e e t e t e t ρ x y t x y tuΔ ( 10000) ( ), ( ) 1
2

( , , ) ( , , ) .2
(39)

where eΔ is measured by the slope of the total kinetic energy change
with time, not at a certain time step. The critical Rayleigh number
extrapolated is =Ra 1707.07c (see Fig. 3), which is in excellent

agreement with the analytical value 1707.76.
Flows of different Rayleigh numbers are then simulated, =N 80y is

used if <Ra 10000, =N 100y if ≤ <Ra10000 50000 and =N 150y for
≥Ra 50000. The normalized temperature distribution for Rayleigh-

Fig. 2. Comparison between the simulation (symbols) and analytical [39] (solid lines) results for dimensionless density, pressure, horizontal velocity, and tem-
perature profiles at =t δ520 t . The symbol spacing is ISkip= 2.

Fig. 3. Total internal energy increment × −eΔ ( 10 )10 changes with different
Rayleigh numbers. Triangles are the numerical results; the solid line is the
linear fit for the simulations. The critical Rayleigh number extrapolated is

=Ra 1707.07c .
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Bénard convection at =Ra 5000, 10000 and 50000 are shown in Fig. 4.
When the Rayleigh number increases, we can see two clear trends in the
figures: the mixing of the hot and cold fluids is enhanced, and the
temperature gradients near the bottom and top walls are increased,
both of which mean the convective heat transfer is enhanced in the
domain. To quantify this, the Nusselt number in the system is calcu-
lated,

= +Nu
u T H
k T

1
Δ

,y

(40)

where the square bracket represents the average over the whole system
and k is the thermal conductivity of the fluid. The obtained values of
Nusselt number Nun at various Rayleigh numbers are compared with
the reference data in Table 2, and plotted in Fig. 5. The simulation
results are in good agreement with those of Ref. [40] in a wide range of

Ra as given in Table 2. During the small Rayleigh number range
( <Ra 5000), convection is suppressed so that the Nusselt number de-
creases rapidly to 1.0 at =Ra Rac, where the empirical formula loses
efficacy. At very high Rayleigh numbers, the numerical results slightly
underestimate the heat transfer, while this trend was also observed in
other LBM studies [1,33,35].

Fig. 4. The normalized temperature −T T T( )/Δ0 distribution for Rayleigh-Bénard convection flow. From top to bottom: =Ra 5000, 10000 and 50000. A total of 19
equidistant lines are plotted.

Table 2
Comparison of Nusselt number between the present numerical results and the
results in Ref. [40].

Cases =Ra 2500 =Ra 5000 =Ra 10000 =Ra 30000 =Ra 50000

Nun 1.468 2.106 2.650 3.629 4.181
Ref. [40] 1.475 2.116 2.661 3.662 4.245
E (%)R 0.47 0.47 0.41 0.90 1.51
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5.4. Natural convection in a square cavity

In this subsection, the present TCLBM is employed to simulate the
natural convection in a square cavity. In this case, the large temperature
difference condition is considered, in which the left and right walls are

maintained at =T 960h K and =T 240l K respectively, and the horizontal
sidewalls are adiabatic. The dynamic viscosity is defined by the
Sutherland's Law:

= ⎛
⎝

⎞
⎠

+
+

μ
μ

T
T

T S
T S* *

3/2 *

(41)

where =T 273* K, =S 110.5 K. The μ* is the dynamic viscosity at T *,
which is determined from the reference viscosity μr at the reference
temperature =T 600r K. In the simulation. The Prandtl number is taken
as 0.71, μr is set to be 0.14, 0.1, 0.06, and 0.055 for =Ra 103, 104, 105,
and 106 , and the grid sizes are 100 × 100, 150 × 150, 250 × 250 and
650 × 650, respectively. The isotherms and streamlines are presented in
Figs. 6 and 7. The streamlines are drawn through the numerical in-
tegration of the steady compressible stream function
(∂ = − ∂ =ψ ρu ψ ρu,x y y x), where the partial derivative is discretized by
the second-order central difference. The asymmetry feature of the
convection with a large temperature difference is clearly shown in
Figs. 6 and 7: For =Ra 103 and 104, the center of the primary vortex
shifts to the lower right side of the cavity center, and the two small
vortexes at higher Rayleigh numbers are not similar in size and shape,
which agree well with the benchmark solutions given in Ref. [42].

To quantify the results, the average Nusselt number of the left wall
and the maximum velocity components (normalized by the reference
velocity =V μ PrH/( )ref r ) across the vertical and horizontal mid-planes
are computed. The local and averaged Nusselt numbers are defined as

= ∂ −Nu y Hλ T λ T T( ) . /[ ( )]wall r h l and ∫=Nu Nu y dy H( ) /H
0 [4,42]. The

results predicted by the present TCLBM are compared with the previous
benchmark solutions [42] and LB results [4] in Table 3. From the table
we can see that the present results are in good agreement with the data

Fig. 5. Nusselt number vs Rayleigh number. Triangles: the present thermal
CLBM; squares: reference data from Ref. [40]; and solid line: the empirical
formula =Nu Ra Ra1.56( / )c

0.296.

Fig. 6. Isotherms (left) and streamlines (right) of natural convection in a square cavity at =Ra 103 and =Ra 104.
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in previous works.

6. Conclusions

In this paper, we developed a thermal cascaded lattice Boltzmann
method (TCLBM) for low-Mach compressible thermal flows on standard
lattices. Considering the proven numerical performances of DDF-based
thermal LBMs, we constructed the TCLBM in this framework. Firstly,
the reference temperature in equilibrium central moments for the
density DF was replaced by the local temperature. Secondly, a correc-
tion term was introduced similarly by means of central moments to
remove the derivation of two diagonal elements for the third-order raw

moments. Then a total energy EDF was introduced according to the
required raw moments. Finally, by relaxing the density DF and total
energy DF using the cascaded and BGK schemes respectively, a DDF
thermal CLBM was constructed, where the density DF solves the flow
field and the total energy DF solves the temperature field and they are
coupled naturally by EOS for the ideal gas.

To verify the proposed model, a thermal Couette flow was simulated
first, and the simulation results agreed well with the analytical solu-
tions in different cases, which demonstrated the present TCLBM can
include viscous heat dissipation with different Prandtl number and
specific-heat ratio. The TCLBM's ability of simulating low-Mach com-
pressible flows was then verified by simulating a low-Mach shock tube
problem. The numerical results for the Rayleigh-Bénard and square
cavity convections confirmed that the model can simulate thermal
problems with force field without invoking the Boussinesq assumption.

In summary, the present TCLBM retains the simplicity and numer-
ical efficiency of the DDF-LB method while the numerical stability of
CLBM is preserved. In this method, the viscous heat dissipation and
compression work are taken into account, the Prandtl number and
specific-heat ratio are adjustable, and the external force is considered
directly without the Boussinesq assumption. Finally, the present
method can be extended to three dimensions (3D) readily based on the
3D cascaded LBM [21,25,26].
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Fig. 7. Isotherms (left) and streamlines (right) of natural convection in a square cavity at =Ra 105 and =Ra 106.

Table 3
Comparisons of the present results with the Benchmark [42] and LB [4] solu-
tions.

Ra Nu u max ymax v max xmax

103 Benchmark [42] 1.108 3.702 0.1618 4.324 0.9036
LB [4] 1.111 3.726 0.1600 4.429 0.9100
Present 1.106 3.681 0.1624 4.323 0.9063

104 Benchmark [42] 2.218 16.777 0.7821 20.327 0.9270
LB [4] 2.217 16.786 0.7800 20.404 0.9267
Present 2.224 16.841 0.7813 20.299 0.9312

105 Benchmark [42] 4.480 43.692 0.8364 71.084 0.0948
LB [4] 4.454 43.984 0.8360 71.070 0.0960
Present 4.512 43.805 0.8344 71.303 0.0938

106 Benchmark [42] 8.687 84.703 0.8541 227.414 0.0537
LB [4] – – – – –
Present 8.691 85.332 0.8551 224.312 0.0540
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