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Abstract

We present JHCN 4 3=  and JHCO 4 3= + maps of six nearby star-forming galaxies, NGC 253, NGC
1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the
MALATANG survey. All galaxies were mapped in the central 2′×2′region at 14″ (FWHM) resolution
(corresponding to linear scales of ∼0.2–1.0 kpc). The LIR–L′dense relation, where the dense gas is traced by the

JHCN 4 3=  and the JHCO 4 3= + emission, measured in our sample of spatially resolved galaxies is
found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity
ratio, LIR/L′dense, shows systematic variations with LIR within individual spatially resolved galaxies, whereas the
galaxy-integrated ratios vary little. A rising trend is also found between LIR/L′dense ratio and the warm-dust
temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4–3) and
IR/HCO+ (4–3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas
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(SFEdense), appear to be nearly independent of the dense gas fraction ( fdense) for our sample of galaxies. The SFE of
the total molecular gas (SFEmol) is found to increase substantially with fdense when combining our data with those
on local (ultra)luminous infrared galaxies and high-z quasars. The mean L LHCN 4 3 HCO 4 3¢ ¢ +( – ) ( – ) line ratio measured
for the six targeted galaxies is 0.9±0.6. No significant correlation is found for the L LHCN 4 3 HCO 4 3¢ ¢ +( – ) ( – ) ratio
with the star formation rate as traced by LIR, nor with the warm-dust temperature, for the different populations of
galaxies.

Key words: galaxies: ISM – galaxies: star formation – infrared: galaxies – ISM: molecules – radio lines: galaxies

1. Introduction

In the past two decades we have seen significant advances in
our understanding of the relationship between star formation and
the interstellar gas, from which stars form, in large part thanks to
galaxy surveys at (sub)millimeter bands of multiple molecular
species (e.g., Kennicutt 1998; Gao & Solomon 2004a, 2004b;
Baan et al. 2008; Bigiel et al. 2008; Graciá-Carpio et al. 2008;
Leroy et al. 2008; Daddi et al. 2010; Shi et al. 2011, 2018; García-
Burillo et al. 2012; Greve et al. 2014; Lu et al. 2014; Zhang et al.
2014; Usero et al. 2015). It has become clear that the molecular
gas, rather than the atomic gas, is the raw material for star
formation. The Kennicutt–Schmidt (KS) law that relates the
global surface densities of star formation rate (SFR) and that of
total gas, including atomic and molecular gas (traced by the H I
21 cm line and rotational lines of CO, respectively), is
characterized by a power-law index of n≈1.4 ( n

SFR gasS µ S ;
see Kennicutt 1998; Kennicutt & Evans 2012, and references
therein). The super-linear slope derived in this empirical scaling
relation suggests that the star formation efficiency (SFE) indicated
by the SFR per unit mass of molecular gas increases with SFR.

Bigiel et al. (2008) examined the resolved KS law on a
sub-kiloparsec scale (∼750 pc) in nearby spiral and dwarf
galaxies and did not find significant correlation between ΣH I

and ΣSFR, as the H I surface density is shown to saturate at
about 9 M pc 2-

 . In contrast, a slope of unity relates ΣSFR and
H2S for normal and dwarf galaxies (Schruba 2013). However,

the slope steepens for the SFR H2S S– relation if we expand the
sample to include galaxies with extreme starbursts, such as
luminous infrared galaxies (LIRGs, L L L10 1011

IR
12 < )

and ultraluminous infrared galaxies (ULIRGs, L L10IR
12 ),

which is evident from both observations (e.g., Gao & Solomon
2004b; Daddi et al. 2010; Liu et al. 2015b) and theoretical
predictions (e.g., Krumholz & McKee 2005; Elmegreen
2015, 2018). In addition, a breakdown of the KS law is found
at giant molecular cloud (GMC) scales of a few tens of parsecs
(e.g., Onodera et al. 2010; Nguyen-Luong et al. 2016), which is
attributed to the dynamical evolution of GMCs and the drift of
young clusters from their GMCs.

A large JHCN 1 0=  survey in nearby spiral galaxies and
(U)LIRGs performed by Gao & Solomon (2004a, 2004b)
revealed a tight linear correlation between the infrared (IR) and
the HCN luminosities for normal star-forming galaxies and
starbursts. This linearity seemingly extends down to the scale
of Galactic massive cores in the Milky Way and holds over a
total range of luminosity of about eight orders of magnitude
(Wu et al. 2005). These results imply that the dense molecular
gas (i.e., n H 7 10 cm2

4 3 ´ -( ) ) as traced by the JHCN =
1 0 line, rather than the total molecular gas, is the direct fuel
for star formation. High-resolution simulation of dense clouds
found that the HCN luminosity is related to mass of dense gas of
104 cm−3 (Onus et al. 2018). In addition, Spitzer studies of
Galactic molecular clouds also show evidence that star formation
is restricted to the dense cores of GMCs (e.g., Evans 2008; Lada

et al. 2010). The critical density ncrit
40 of rotational transitions is

proportional to μ2ν3 (for optically thin lines at frequency ν; μ is
the dipole moment of the molecule); therefore, molecules with
high dipole moment are expected to trace high-density molecular
gas (e.g., μHCN∼2.98 D, 3.93HCOm ~+ D, and μCS∼1.96D
vs. μCO∼0.11 D; see Schöier et al. 2005). Subsequently, a
number of studies have explored the link between molecular
lines of dense gas (e.g., HCN, HCO+, and CS) and IR
luminosities in different populations of galaxies (e.g., Gao et al.
2007; Papadopoulos 2007; Baan et al. 2008; Liu & Gao 2010;
Wu et al. 2010; Wang et al. 2011; García-Burillo et al. 2012;
Zhang et al. 2014; Chen et al. 2015; Usero et al. 2015; Liu
et al. 2016).
While all of these studies generally agree that there is a close

link between the dense gas and star formation, the exact nature of
the relation is less clear. Specifically, it is not clear whether the
SFE, as gauged by IR/HCN, is indeed universal from GMCs to
distant starburst galaxies. While log-linear fits over eight decades
in luminosity have been claimed as evidence of such a
universality, claims to the contrary have also been made. For
example, local (U)LIRGs have been observed to have 3–4 times
higher IR/HCN (1–0) ratios than normal galaxies (Graciá-Carpio
et al. 2008; García-Burillo et al. 2012), which would suggest a
slightly super-linear IR-HCN relation. Furthermore, resolved
studies of dense gas tracers in nearby galaxies have revealed a
systematic change in IR/HCN (1–0) with galactocentric radius
(e.g., Chen et al. 2015; Bigiel et al. 2016).
The physical processes that can affect the observed LIR–L′dense

relation fall into two categories. One category contains the
physical mechanisms that might compromise the ability of a
given molecular transition (e.g., JHCN 1 0=  ) to trace the
dense gas in a consistent manner that can be calibrated, for
example, significant enhancements in the HCN abundance due to
X-ray-driven chemistry on large scales, such as might be found in
active galactic nuclei (AGNs; e.g., Lepp & Dalgarno 1996;
Kohno et al. 2001). The HCN abundance is also thought to be
enhanced in hot cores and high-temperature chemistry regions
driven by shock heating. Furthermore, it is predicted to be
sensitive to the gas-phase metallicity (e.g., Bayet et al. 2012;
Davis et al. 2013; Braine et al. 2017). In the other category we
find physical processes that would affect the SFE. Recent
observations of Orion A show that the JHCN 1 0= 
emission can trace gas with a characteristic H2 density that is
about two orders of magnitude below the value commonly
adopted (Kauffmann et al. 2017), which argues that HCN may
also be excited through collisions with electrons (Goldsmith &
Kauffmann 2017). It has been argued that the JHCN 1 0= 

40 The critical density of rotational level j is defined as n j
A

C Tcrit
j j j j

j j j j kin
=

å

å
> ¢  ¢

¹ ¢  ¢
( )

( )
where Aj j ¢ is the Einstein coefficient for spontaneous emission, Aj j

2 3m nµ ¢
in units of s−1, and Cj j ¢ is the collision rate coefficient that depends on the gas
temperature, in units of cm3 s−1. All critical densities in this work are calculated
on the assumption of Tkin=100 K and optically thin conditions. The critical
densities will decrease if the lines are optically thick.
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line could be enhanced by infrared pumping through a
vibrational transition at 14 μm near strong mid-infrared sources
(e.g., Aalto et al. 1995, 2012; Graciá-Carpio et al. 2006). In
addition, self-absorption of HCN emission has been observed in
the Galactic center and in the compact obscured nuclei of nearby
(U)LIRGs (Mills et al. 2013; Aalto et al. 2015; Mills &
Battersby 2017), thereby rendering this line useless as a probe of
the star-forming conditions in the center.

It is still not fully understood how the physical properties of
molecular clouds affect the star formation process in galaxies. In a
theoretical study of the star formation relation, Krumholz &
McKee (2005) and Krumholz & Thompson (2007) derive a
turbulence-regulated model for understanding the KS law. They
propose that the star formation is controlled by the free-fall
timescale of the gas and that the slope of the IR–molecular line
luminosity correlations, i.e., the relation between the SFR as
probed by the IR luminosity and the molecular emission line,
depends on the average gas density of the molecular clouds and
the critical density of the molecular line. Similarly, non-local
thermodynamic equilibrium radiative transfer calculations with
hydrodynamical simulations of galaxies predict decreasing
power-law indices of the SFR–molecular line luminosity relation
with increasing ncrit, due to the increase of subthermal emission of
the gas tracers in galaxies (Narayanan et al. 2008).

Lada et al. (2010, 2012) argue that the rate of star formation
in a molecular cloud or galaxy does not depend on the overall
average gas density, but only on the amount of molecular gas
above a certain volume density or column density thresholds
(i.e., n H 10 cm2

4 3 -( ) ; see also Heiderman et al. 2010).
Observations of local molecular clouds by Evans et al. (2014)
show evidence to support this density threshold model and find
that the free-fall time (tff) is irrelevant to the SFR on small
scales of a few parsecs within molecular clouds. Zhang et al.
(2014) observed JHCN 4 3=  , JHCO 4 3= + , and

JCS 7 6=  in 20 nearby star-forming galaxies and found
tight linear correlations of IR–molecular line luminosities for
all three gas tracers that probe molecular gas with density
higher than 106 cm−3, consistent with those found for

JHCN 1 0=  (e.g., Gao & Solomon 2004a, 2004b; Wu
et al. 2005) and JCS 5 4=  (e.g., Wang et al. 2011)
observations, indicating that the free-fall timescale is likely
irrelevant to the SFR on global scales for gas with densities
104 cm−3. They argue that the shorter tff for the denser gas
would not keep L′dense–LIR linear if the Σdense/tff–ΣSFR

correlations are linear for all of the dense gas, since the gas
content as traced by molecule at high-J (e.g., JHCN 4 3=  )
has a shorter tff than that at low-J (e.g., JHCN 1 0=  ) with
a lower critical density because tff

1 2rµ - . However, it is
important to remember that the Σdense–ΣSFR correlation is
subject to uncertainties in the conversion from L′dense to the gas
mass and from LIR to the SFR. In addition, the Herschel study
of a large sample of nearby galaxies and Galactic clouds in
mid- to high-J (J 4 3=  to 12 11 ) CO transitions by Liu
et al. (2015a) found that all nine CO transitions are linearly
correlated with IR luminosities over a luminosity range of
about 14 orders of magnitude, from high-z star-forming
galaxies down to Galactic young stellar objects. Recent
observations of Galactic clouds also found that the dense gas
SFE is remarkably constant over a wide range of scales (i.e.,
from ∼1–10 pc to >10 kpc) and far-ultraviolet radiation
environments (Shimajiri et al. 2017).

Up to now, observations of dense gas in galaxies have been
mainly performed on the central nuclear regions of nearby
galaxies with a single pointing or in local (U)LIRGs with
global measures. Observations of dense gas tracers toward the
outer disks of galaxies that are more quiescent and relatively
weaker in gas emission are still scarce. Chen et al. (2015)
presented an JHCN 1 0=  map of M51 that covers a
4′×5′region. They found that the outer disk regions of M51
on a kiloparsec scale follow the IR-HCN relation established
globally in galaxies within the scatter, and these regions bridge
the luminosity gap between GMCs and galaxies. Maps of M51
in HCN, HCO+, and HNC J 1 0=  emission were also
shown in Bigiel et al. (2016). Both studies show that HCN
J 1 0=  is enhanced with respect to the IR emission in the
nuclear region of M51 compared to the outer disk. These are
consistent with the results reported by Kohno et al. (1996), who
found that the HCN emission is enhanced compared to the CO
emission in the central region (<200 pc). It has been suggested
that the enhancement of the HCN abundance at the nucleus of
M51 could be attributed to the shock produced by the
interaction between AGN jets and molecular gas (Matsushita
et al. 2015). JHCN 1 0=  observations in several off-
nuclear positions of nearby galaxies by Usero et al. (2015)
show a systematic variation of the SFR per unit dense gas mass
with both the H2 and stellar mass surface densities, which they
argue is more consistent with models of turbulence-regulated
star formation than with density threshold models.
In this work we present new mapping observations of six

nearby star-forming galaxies, NGC253, NGC1068, IC342,
M82, M83, and NGC6946, in the J 4 3=  lines of HCN
and HCO+. These observations were completed in the early
stages of the MALATANG (Mapping the dense molecular gas
in the strongest star-forming galaxies; Z. Zhang et al. 2018, in
preparation) survey with the James Clerk Maxwell Telescope
(JCMT). In the MALATANG survey, we select these six
targets to be mapped in the central regions because of their
broad distribution, strong emission lines of molecular gas, and
concentrated star formation activity in the nuclear regions.
Table 1 outlines some of the basic physical properties of these
six galaxies. These are the first JHCN 4 3=  and

JHCO 4 3= + spatially resolved observations toward the
central 2′×2′region (i.e., ∼2–9 kpc) of these nearby galaxies
to date. Three of our sample galaxies, i.e., NGC 253, NGC
1068, and M82, have previously been mapped in the
J 4 3=  lines of HCN and the HCO+ (e.g., Seaquist &
Frayer 2000; Knudsen et al. 2007; Krips et al. 2011; García-
Burillo et al. 2014) but over on smaller regions. All six galaxies
have been mapped in JCO 1 0=  by the 45 m telescope of
the Nobeyama Radio Observatory (NRO) with almost the same
angular resolution as the JCMT (e.g., Nakai et al. 1987; Sorai
et al. 2000; Kuno et al. 2007; Salak et al. 2013), providing an
excellent comparison with the total H2 gas.
We describe our JCMT observations, the data reduction, and

the processing of ancillary data in Section 2. Section 3 presents
the spectra and luminosity measurements. In Section 4 the
relationships between the dense molecular gas tracers and the
star formation properties are presented and discussed. In
Section 5, we present the HCN-to-HCO+ J 4 3=  line ratio
and discuss possible explanations for the variations of line
ratios in different populations of galaxies. Our main results are
summarized in Section 6. We adopt cosmological parameters of

3
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H 71 km s Mpc0
1 1= - - , ΩM=0.27, and ΩΛ=0.73 through-

out this work (Spergel et al. 2007).

2. Observations and Data Reduction

2.1. JCMT HCN (4−3) and HCO+ (4−3) Data

Z. Zhang et al. (2018, in preparation) describe the basic
MALATANG observation and reduction strategy. In brief,
observations of the J 4 3=  lines of HCN and HCO+ in the
six galaxies that we are studying here, NGC253, NGC1068,
IC342, M82, M83, and NGC6946, were obtained on the JCMT
with the 16-receptor array receiver Heterodyne Array Receiver
Program (HARP; Buckle et al. 2009), between 2015 December
and 2016 November in the early stages of the MALATANG
survey. The Auto-Correlation Spectral Imaging System (ACSIS)
spectrometer was used as the receiver backend with a bandwidth
of 1 GHz and a resolution of 0.488MHz, which correspond to
840 km s−1 and 0.41 km s−1 at 354 GHz, respectively. We
mapped the central 2′×2′region for all six targets using a
3×3 jiggle mode with grid spacing of 10″. The FWHM
beamwidth of each receptor at 350 GHz is about 14″. To optimize
the performance, we set up the rotator angle of the K-mirror to
control the orientation of the HARP array so that there were four
working receptors parallel to the major axis of the galaxy in each
scan, since two receptors (H13, H14) at the edge of the array were
not operational. The telescope pointing was checked before
starting a new source and every 1–1.5 hr by observing one or
more calibrator sources in the JCO 3 2=  line at 345.8 GHz.
The uncertainty in the absolute flux calibration is estimated to be
about 10% for our sample of galaxies and is measured with the
standard line calibrators. The velocity of each galaxy measured in
our observations is radio defined with respect to the kinematical
local standard of rest. Details of the observations for the six
galaxies are summarized in Table 2.

We reduce the data using the Starlink41 software pack-
age ORAC-DR (Currie et al. 2014; Jenness et al. 2015) to
obtain pipeline-processed data and then convert the spectra to
GILDAS/CLASS42 format for further data processing. A recipe
of REDUCE_SCIENCE_BROADLINE with default parameters
was adopted for the ORAC-DR pipeline. We further assess the

quality of the data by inspecting the flatness of the baseline and
the deviation of the rms noise level between the measured and
expected values based on the radiometer equation and then
attribute a quality tag to each spectrum. After flagging the data
with a bad quality grade (i.e., spectra with distorted baselines or
abnormal rms noise levels, which is defined as three times higher
than the value calculated with the radiometer equation), the data
for each spectral line were gridded into a cube. For positions
observed with the central four receptors, on average about 15%
of the spectra were flagged owing to bad baselines, while about
30%–40% were discarded for positions observed with receptors
on the edge of the array, which are less stable. We fitted and
subtracted a first-order baseline from the data cube using
channels outside of the velocity range of the line emission. The
final cubes were converted from antenna temperature TA* to
main-beam temperature Tmb adopting a main-beam efficiency of
ηmb=0.64 (T Tmb A mb* hº ). To check the validity of the data
processing results with the ORAC-DR pipeline, we used a
different reduction method that combines the raw data into a
cube using the task makecube in the SMURF package (Jenness
et al. 2013), after first flagging poor data (see Warren et al. 2010;
Wilson et al. 2012). Similarly, the spectra were converted to the
CLASS format for further analysis. Figure 1 is a comparison of
the spectra in the central 90″×90″ region of M82 obtained
from the reduction method with the ORAC-DR pipeline with
those processed using the method described in Wilson et al.
(2012). It is clear that both the profile and the intensity of the
spectra derived from different reduction methods are in good
agreement for each position where significant signal is detected.
A refined data reduction method, which aims primarily at the
processing of weak emission lines by converting the raw data to
GILDAS/CLASS format and qualifying the data automatically,
is under development (Z. Zhang et al. 2018, in preparation).

2.2. Ancillary Data

The six galaxies in this study have a large number of ancillary
data available at multiple wavelengths. In this work, we will focus
on molecular line and infrared data for a comprehensive analysis.

2.2.1. Infrared Data

We retrieved the calibrated IR image data obtained using the
Spitzer MIPS and Herschel PACS instruments from the

Table 1
The Basic Properties of the Galaxies in the MALATANG Sample Observed in Jiggle-map Mode

Source R.A.(J2000) Decl.(J2000) Vhel
a Db D25

c P.A.d Inclination Spatial Scale Typee Referencesf

(km s−1) (Mpc) (arcmin) (deg) (deg) (1″)

NGC 253 00 47 33.1 −25 17 19.7 243 3.5 27.5×6.8 51 76 17 pc SAB(s)c, SF 1
NGC 1068 02 42 40.8 −00 00 47.8 1137 15.7 7.1×6.0 90 43 76 pc (R)SA(rs)b, AGN L
IC 342 03 46 48.5 +68 05 46.0 31 3.4 21.4×20.9 0 25 16 pc SAB(rs)cd, SF 2
M82 09 55 52.4 +69 40 46.9 203 3.5 11.2×4.3 65 66 17 pc I0 sp, SF 3
M83 13 37 00.9 −29 51 56.0 513 4.8 12.9×11.5 45 27 23 pc SAB(s)c, SF 1
NGC 6946 20 34 52.3 +60 09 13.2 40 4.7 11.5×9.8 19 30 23 pc SAB(rs)cd, SF 4, 5

Notes.
a Heliocentric velocity drawn from the NASA/IPAC Extragalactic Database (NED).
b Source distance. For NGC 1068, the distance is calculated using H 71 km s Mpc0

1 1= - - corrected for the Virgo infall motion. The distances of the remaining
galaxies are recent values from the literature. See the last column for the reference.
c Major and minor diameters of the galaxies, which are optical sizes measured at the 25th-magnitude isophote in the blue band.
d Position angle of the major axis of the galaxy, except for NGC 1068 and IC 342. This is used in mapping HCN and HCO+ emission.
e Galaxy types from NED. SF denotes galaxies that are star-forming without an AGN. NGC1068 is a barred spiral galaxy hosting a Seyfert 2 type AGN.
f Reference for the source distance. (1) Radburn-Smith et al. 2011; (2) Wu et al. 2014; (3) Dalcanton et al. 2009; (4) Poznanski et al. 2009; (5) Olivares et al. 2010.

41 http://www.starlink.ac.uk/
42 http://www.iram.fr/IRAMFR/GILDAS/
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NASA/IPAC Infrared Science Archive (IRSA). The data have
been processed to level 2 for MIPS 24 μm and level 2.5 for
PACS 70 μm, 100 μm, and 160 μm bands in the pipeline. For
galaxies that were observed as part of the KINGFISH (Key
Insights on Nearby Galaxies: A Far-Infrared Survey with
Herschel; Kennicutt et al. 2011) program, IC 342 and NGC
6946, we use the PACS images made with the Scanamorphos
code version 16.9. The FWHM angular resolutions are
approximately 6 0, 5 8, 7 8, and 12″ at 24 μm, 70 μm,
100 μm, and 160 μm, respectively. The Herschel SPIRE data
were not used in our study because of their lower angular
resolution (18″) compared with our JCMT line observations.

To estimate the infrared luminosity of each position in our
target galaxies, we measure the infrared flux densities from 24
to 160 μm. In a first step, we use the convolution kernels
provided by Aniano et al. (2011) to convolve the Spitzer and
Herschel maps to match the 14″ beam of our line data. For
the PACS data, we scale the image by a factor of 1.133×
(14/pixel size)2, where pixel size is the length of a pixel in
arcseconds, to convert the units from Jy into Jy beam−1, while
for MIPS images, we first convert the pixel value in MJy sr−1

into Jy and then scale the image to Jy beam−1. We estimate an
average of the pixel values within the sky area to subtract the
mean sky background for each galaxy. We then measure the
central pixel flux for each position in the convolved image to
obtain the flux of each infrared band in units of Jy beam−1.

2.2.2. NRO 45 m CO J=1 → 0 Data

We obtain the CO J 1 0=  data from the Nobeyama CO-
mapping survey (Kuno et al. 2007) at the NRO website.43 The
beam size (FWHM=15″) of the CO J 1 0=  mapping is
comparable to our JCMT observations. We align the CO data with
our JCMT data by gridding the cube and then extract the spectra
from each matched position. Except for M82, for which we adopt
the JCO 3 2=  data from the JCMT NGLS survey (Wilson
et al. 2012), the CO data for the remaining five galaxies are the
J 1 0=  transition and were observed with the NRO 45m.

With the CO data, we determine for each position the velocity
range over which line emission is to be integrated. The CO line is
detected at high signal-to-noise ratio, at all positions that we
observed with the JCMT. Integrating over the CO-emitting
velocity ranges guarantees that we have an integrated-intensity
measurement along each line of sight, which is particularly
important for positions with weak emission of the HCN or HCO+

J 4 3=  line.

3. Molecular Line and Infrared Measurements

3.1. Spectra

Figure 2 shows mosaics of JHCN 4 3=  and
JHCO 4 3= + spectra of the central 50 50~  ´  regions

of the six galaxies, which have been mapped in their central
2′×2′regions. Our observations show that the dense molecular
line emission is mainly concentrated within the central ∼1′region.
We will present a further analysis of the data in the outer disks (i.e.,
1′region) using the refined data reduction method mentioned in
Section 2.1 in a follow-up paper. All the six galaxies have been
detected in both JHCN 4 3=  and JHCO 4 3= + lines
in off-central positions, except M83, where only the central
position was detected in HCN and HCO+ emission with
significance of 4.9σ and 8.5σ, respectively. For M83, we only
show the spectral line toward the central position and a spectrum
averaged by stacking all the positions observed, excluding the
center for each line. For the spectrum from each position, we shift
the velocity relative to the line center, which is derived from

JCO 1 0=  spectra at the same position with a Gaussian
fitting, and then stack the HCN and HCO+ spectra from all off-
center positions. As expected, the line profiles are very similar
between HCN and HCO+ since both trace the dense molecular gas
in galaxies. For the five galaxies with detections in off-central
positions, the rotation of circumnuclear gas is apparent in both
lines based on the line profiles and the shifts in centroid velocity.

3.2. HCN and HCO+ Line Luminosities

The observed line intensities, I T dvmbò= , for the positions
with �3σ detection in the J 4 3=  lines of HCN and HCO+

Table 2
Summary of Observing Parameters

Source Molecule Dates of Observations fobs ROT_PA Tsys t tint
(GHz) (deg) (K) (225 GHz) (minutes)

(1) (2) (3) (4) (5) (6) (7) (8)

NGC 253 JHCN 4 3=  2015-(12-02, 12-10, 12-11) 354.223 51, −39 231 0.024 142
JHCO 4 3= + 2015-12-12 356.447 51, −39 281 0.036 100

NGC 1068 JHCN 4 3=  2015-(12-13, 12-30, 12-31), 2016-11-14 353.191 0 246 0.046 250
JHCO 4 3= + 2015-(12-12, 12-13), 2016-(02-10, 06-23, 10-09) 355.411 0 328 0.072 287

IC 342 JHCN 4 3=  2015-(12-02, 12-12, 12-16), 2016-(10-08, 10-09) 354.474 90 458 0.076 300
JHCO 4 3= + 2015-(12-13, 12-16, 12-20, 12-21, 12-24), 2016-10-07 356.701 90 453 0.070 352

M82 JHCN 4 3=  2015-(12-10, 12-12) 354.265 65, 155 270 0.031 150
JHCO 4 3= + 2015-12-13 356.494 65, 155 338 0.051 100

M83 JHCN 4 3=  2016-(06-22, 06-25, 07-12, 07-13, 07-14) 353.954 −45 459 0.075 300
JHCO 4 3= + 2016-(06-26, 07-11, 07-15, 07-16, 07-17, 07-18, 07-31) 356.132 −45 619 0.097 350

NGC 6946 JHCN 4 3=  2016-(05-04, 06-15, 07-11, 07-12) 354.458 109 409 0.082 450
JHCO 4 3= + 2016-(05-05, 05-06, 06-16, 07-12, 07-13, 07-14, 07-15) 356.681 109 472 0.091 553

Note. Column (1): galaxy name. Column (2): observed spectral line. Column (3): the data obtained in the early stage of the MALATANG survey that were used in this
study. The date of the observations is listed in the format of YYYY-MM-DD. Column (4): observing frequency. Column (5): position of the K-mirror. In order to make
sure there are four working receptors parallel to the major axis of the galaxies in each scan, we set up the rotator angle of the K-mirror to control the orientation of the
HARP array (see Section 2.1). Column (6): median system temperature over all observations. Column (7): median atmospheric opacity at 225 GHz over the observations
that was recorded at the start and end of each scan. Column (8): total integration time including time spent integrating on the source and the reference position.

43 http://www.nro.nao.ac.jp/~nro45mrt/html/COatlas/
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are listed in Table 3, along with the line luminosities. We
define a detection if the velocity-integrated line intensity is
higher than or equal to 3σ. The uncertainties (σ) in the
integrated intensities were derived via

T v v v v1 , 1I rms line res line bases = D D + D D ( )

where Trms is the rms main-beam temperature of the line data for
a spectral velocity resolution of Δvres, Δvline is the velocity
range of the emission line, and Δvbase is the velocity range used
to fit the baseline (Gao 1996). The velocity range is determined
based on the JCO 1 0=  data with a Gaussian fit to the line
profile, on the assumption that the velocity range of dense gas is
covered by the CO line emitting range (see Section 2.2.2). For
the positions without significant detections, we estimated a 3σ
upper limit to the line integrated intensities. The JCO 1 0= 
luminosities of M82 were estimated based on the JCMT

JCO 3 2=  data by assuming a line brightness temperature
ratio of r31=0.8±0.2 for all the positions mapped in M82
(e.g., Weiß et al. 2005; Mao et al. 2010).

The line luminosities Ldense¢ 44 for each position were
calculated following Solomon et al. (1997):
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where SΔv is the velocity-integrated flux density, νobs is the
observed line frequency, and DL is the luminosity distance. We
convert the line intensity to flux density using a conversion
factor of S T 15.6 24.4 Jy Kmb mb

1h= = - for the JCMT by
assuming that the line emission from each individual region
fills the main beam, given that the gas emission is rather
clumpy in these nearby galaxies.
Three of our sample galaxies have published fluxes of HCN

and HCO+ J 4 3=  emission toward the galaxy center in
the literature (NGC 253, NGC 1068, M82; Seaquist & Frayer
2000; Knudsen et al. 2007; Zhang et al. 2014). We compared
our fluxes with those previous efforts and found good
agreement for these sources (i.e., to within ∼20%).

3.3. Infrared Luminosities

We estimate the total infrared (TIR) luminosities LTIR from
3 μm to 1100 μm using the prescription of Galametz et al.
(2013) based on a combination of Spitzer/MIPS 24 μm and
Herschel/PACS luminosities:

L c L i L , 3iTIR n= S n ( ) ( )

where νLν (i) is the resolved luminosity in a given band i in
units of Le and measured as D f4 iL

2p n n( ) , and ci are the
calibration coefficients for various combinations of Spitzer and
Herschel bands. For galaxies without a MIPS 24 μm image or
that are saturated in the 24 μm image cores, we use PACS
bands alone to estimate LTIR. With the exception of NGC1068
and M82, for which only PACS 70 μm and 160 μm data are
available, we have photometry data in at least three bands for
the remaining four galaxies. The total uncertainties estimated
for LTIR comprise the photometric uncertainty, the flux

Figure 1. JCMT HCO+ J=4→ 3 spectra map in the central 90″×90″ region (grid spacing of 10″) of M82 processed with the ORAC-DR pipeline (left panel) and
the method described in Wilson et al. (2012) (right panel). All spectra are on the TA* scale for the same range from −0.025 to 0.18 K and smoothed to 26 and 20 km s−1

for the two methods, respectively.

44 The line luminosity Ldense¢ is often expressed in units of K km s−1 pc2. The
line luminosity Ldense measured in Le can be converted from Ldense¢ by
multiplying by a factor of k c8 rest

3 3p n (Solomon et al. 1992).
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Figure 2. (a) JHCN 4 3=  (thick lines) and JHCO 4 3= + (thin lines) spectra map at the central ∼50″×50″ region of galaxies that were observed in jiggle-
mapping mode (3×3 pattern, 10″ spacing) with the JCMT. To facilitate comparison with the spectra of positions with weak emission, we scaled down the spectra for
those positions with relatively stronger emission of both JHCN 4 3=  and JHCO 4 3= + by the same multiplying factor, which is listed in the upper right
corner of each grid. For each line and position, we averaged all the spectra taken at that position, excluding those with poor baseline or abnormal noise levels to
produce a final spectrum. All spectra are on the Tmb scale and smoothed to a velocity resolution of ∼26 km s−1 unless otherwise noted. The offset from the center
position in units of arcseconds is indicated in the upper left corner of each grid. The JHCO 4 3= + lines were shifted downward with zero intensity level indicated
by the horizontal lines. The directions north and east are shown to the right of each spectra grid. (b) The spectra of IC 342 were smoothed to a velocity resolution of
13 km s−1. (c) For M83, we show the spectra toward the central position (left) and the spectra stacked for all the observed positions excluding the center (right). We
stack the spectra by averaging the off-center positions with velocities shifted to the line center of the JCO 1 0=  data, which were derived by a single-velocity-
component Gaussian fitting.
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calibration uncertainty (assumed to be 5%; Balog et al. 2014),
and the uncertainty of the TIR calibration from combined
luminosities (∼20% for galaxies with data in four IR bands
available and ∼25% for those that have fewer IR images;
Galametz et al. 2013). The IR luminosity derived for each
position with significant (�3σ) JHCN 4 3=  or JHCO =+

4 3 detections is listed in Table 3.

4. The Relationships between Dense Molecular Gas Tracers
and Dust/Star Formation Properties

4.1. Correlation between Molecular Lines of Dense Gas and
Infrared Luminosities

In Figure 3, we show the LIR–L′dense relation for the different
populations of galaxies compiled for this work using our new

Figure 2. (Continued.)
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data (Table 3) and the data from the literature, including
JHCN 4 3=  and JHCO 4 3= + detections in the

center of nearby normal galaxies and in (U)LIRGs (Zhang
et al. 2014), and six local (U)LIRGs observed with ALMA
(Imanishi & Nakanishi 2013a, 2013b, 2014). We also included
two high-redshift quasars, the Cloverleaf at z=2.56 and APM
08279+5255 at z=3.91. The Cloverleaf quasar is the only
high-z galaxy that is detected in both JHCN 4 3=  and

JHCO 4 3= + emission (Barvainis et al. 1997; Riechers
et al. 2011).45 For APM 08279+5255, we estimate the

JHCN 4 3=  and JHCO 4 3= + line luminosities
based on the J 6 5=  lines of HCN and HCO+ measured
by Riechers et al. (2010), by assuming a J 6 5=  /J =
4 3 line luminosity ratio of 1.1±0.6, for both HCN and
HCO+. This line ratio is roughly estimated by taking the average
of the HCN J 6 5=  /J 5 4=  luminosity ratio (r65(HCN)=
1.36±0.31; Riechers et al. 2010) and the CO line ratio
(r64(CO)=0.86±0.29; Weiß et al. 2007). Note that it is likely
that the uncertainties in the J 6 5=  /J 4 3=  line ratios

are underestimated owing to the presumably nonuniform physical
conditions in the molecular gas as traced by CO and the dense
gas as traced by HCN and HCO+ in this galaxy (Weiß et al.
2007). The SFRs are calibrated based on the total IR luminosity
(e.g., Kennicutt 1998; Murphy et al. 2011). For the high-z
quasars, however, we used the far-IR luminosity (i.e., integrated
from 40 μm to 120μm rest wavelength; Helou et al. 1985) as a
measure of SFR owing to the powerful AGN heating of dust in
the mid-IR band. The IR luminosity of these two quasars shown
in Figure 3 thus corresponds to the far-IR luminosity plus an
additional uncertainty of 30% from converting the FIR
luminosity to the total IR luminosity (Sanders et al. 2003;
Weiß et al. 2003, 2007). We note that a tentative detection of

JHCO 4 3= + and an upper limit of JHCN 4 3= 
emission in a z=2.64 lensed star-forming galaxy were reported
recently by Roberts-Borsani et al. (2017), and stacked detections
of these two lines are reported in high-z dusty galaxies by Spilker
et al. (2014). These data were not included in our analysis, as no
IR measurements are yet available.
We adopt the IDL routine linfitex.pro of the MPFIT

package (Markwardt 2009) for the linear least-squares fit and
LINMIX_ERR of Kelly (2007), which uses the Markov Chain
Monte Carlo approach to account for measurement

Figure 2. (Continued.)

45 Updated measurements of JHCN 4 3=  and JHCO 4 3= + emission
with the IRAM PdBI for the Cloverleaf were published in the IRAM Newsletter
at http://www.iram-institute.org/medias/uploads/NewsletterAug2010.pdf.
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Table 3
Derived Properties for Sampled Positions of the Six Galaxies in Our Sample

Source Offsetsa IHCN (4–3) IHCO 4 3+( – ) L′HCN (4–3) L HCO 4 3¢ +( – ) LTIR
(arcsec) (K km s−1) (K km s−1) (104 K km s−1 pc2) (104 K km s−1 pc2) ( L107

)

NGC 253 (0, 0) 57.7±0.7 76.6±0.8 445±5 583±6 1681±102
(10, 0) 35.9±0.7 36.7±0.5 277±6 280±4 870±53
(20, 0) 9.8±0.6 9.9±0.9 75±4 76±7 160±9
(−10, 0) 20.9±0.7 33.0±0.9 162±5 251±7 566±35
(−20, 0) 7.7±0.7 6.5±0.9 59±6 50±7 64±4
(0, 10) 17.2±0.6 8.3±0.8 133±5 64±6 1162±71
(10, 10) 6.3±1.0 6.6±1.0 48±8 50±7 552±33
(20, 10) 2.2±0.4 <1.9 17±3 <14 103±6
(−10, 10) 8.0±0.4 8.7±0.6 61±3 66±5 509±30
(−20, 10) 6.4±0.5 4.9±0.6 49±4 37±5 69±4
(0, −10) 9.9±0.5 20.3±0.8 76±4 154±6 178±11
(10, −10) 7.6±0.7 11.9±1.0 59±5 91±8 103±6
(20, −10) 4.4±0.4 3.9±1.0 34±3 30±7 41±2
(−10, −10) 3.2±0.7 8.6±0.8 25±5 66±6 67±4

NGC 1068 (0, 0) 9.0±0.5 3.4±0.8 1398±72 521±121 4347±280
(10, 0) 1.6±0.4 <1.1 245±62 <165 1511±96
(−10, 0) 3.8±0.7 2.3±0.6 589±106 346±91 2832±179
(−20, 0) <1.0 1.4±0.4 <157 208±54 1052±65
(0, 10) 4.7±0.3 3.2±0.5 721±41 487±71 2675±169
(10, 10) 1.4±0.3 1.4±0.5 220±53 219±74 1678±105
(−10, 10) 2.0±0.3 <1.8 310±41 <280 1614±101
(−20, 10) <1.0 1.1±0.4 <150 164±55 627±38
(0, −10) 2.8±0.5 2.3±0.3 435±74 358±50 1545±96
(−10, −10) 2.1±0.3 1.4±0.3 329±48 213±53 2018±125
(−20, −10) <0.9 0.9±0.2 <141 133±33 903±55
(0, 20) <0.9 0.9±0.3 <139 144±47 1066±66
(10, 20) 1.7±0.3 1.2±0.4 266±49 188±55 874±54
(0, −20) <1.2 1.6±0.3 <187 243±50 320±20
(−10, −20) <1.3 1.9±0.6 <197 284±95 467±30

IC 342 (0, 0) 2.7±0.3 3.8±0.3 20±2 27±2 190±11
(10, 0) 1.7±0.3 0.8±0.2 12±2 6±2 85±5
(−10, 0) 1.2±0.2 1.7±0.3 9±2 12±2 87±5
(0, 10) 1.8±0.2 2.2±0.2 13±1 16±2 99±6
(10, 10) 1.5±0.2 1.9±0.2 11±2 14±2 49±3
(−10, 10) <0.9 0.8±0.2 <6 6±2 42±2
(0, −10) <0.7 1.7±0.3 <5 12±2 55±3
(−10, −10) 0.9±0.3 0.8±0.2 6±2 6±1 30±2
(0, 20) <0.8 0.9±0.2 <6 7±2 13±1
(10, 20) <0.7 0.9±0.2 <5 6±2 11±1

M82 (0, 0) 9.2±0.7 26.3±0.7 71±6 200±5 1052±68
(10, 0) 8.9±0.4 25.5±0.8 69±3 194±6 785±51
(20, 0) 3.0±0.4 13.6±0.8 23±3 103±6 323±21
(−10, 0) 8.3±0.4 23.4±0.9 64±3 179±7 860±57
(−20, 0) 1.8±0.5 5.8±0.8 14±4 44±6 343±22
(0, 10) 3.0±0.5 9.0±1.1 23±4 69±9 957±61
(10, 10) 3.0±0.3 9.9±1.0 23±2 75±8 643±41
(20, 10) <1.5 3.3±0.9 <11 25±7 295±19
(−10, 10) 3.7±0.7 11.6±0.9 29±5 88±7 991±63
(−20, 10) 1.3±0.2 10.6±0.8 10±2 81±6 581±37
(0, −10) 2.7±0.5 8.6±0.6 21±4 66±5 182±12
(10, −10) 3.8±0.5 10.8±1.6 29±4 83±12 171±11
(20, −10) <1.6 8.5±0.9 <12 65±7 86±6
(−10, −10) <1.5 3.8±0.7 <11 29±5 129±9
(−20, −10) 1.6±0.4 <2.4 13±3 <18 75±5
(−10, −20) <1.7 1.8±0.6 <13 14±5 31±2

M83 (0, 0) 2.0±0.4 1.7±0.2 29±5 24±3 274±16
NGC 6946 (0, 0) 1.4±0.5 4.5±0.5 20±7 63±7 196±11

(10, 0) <1.0 2.0±0.5 <14 27±8 44±2
(−10, 0) <1.4 3.1±0.4 <19 43±6 121±7
(0, 10) <1.2 2.2±0.7 <16 30±9 77±4
(−10, 10) <1.3 2.4±0.5 <19 33±7 59±3

Notes. All uncertainties are estimated statistically from the measurements. For the line velocity-integrated intensity and luminosity, an additional 10% uncertainty should be added to account
for the systematic uncertainties in absolute flux calibration. For the IR luminosity, we need to take into account the additional uncertainties from the flux calibration (∼5%) and the TIR
calibration (∼20%–25%) (see Section 3.3). We report a 3σ upper limit for non-detections.
a
Offsets without correcting for the rotation of the receiver array. See the observing settings in Section 2.1 and the directions north and east for each galaxy in Figure 2.
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uncertainties for the Bayesian regression. The uncertainties in
LIR and L′dense accounted for in the fitting include the statistical
measurement uncertainties and the systematic uncertainties,
which mainly originate from calibration (see Sections 2.1 and
3.3 for details). The best linear least-squares fit (logarithmic) to
our new data (the upper limits are not included in the fitting,
marked in open symbols with leftward-pointing arrows in
Figure 3), combined with the literature data, yields

L Llog 1.00 0.04 log 3.80 0.27 . 4IR HCN 4 3=  ¢ + ( ) ( ) ( )( – )

This fit is shown as the solid line in the left panel of Figure 3. A
Spearman rank correlation test yields a correlation coefficient of
rs=0.89, with a probability (p-value) of 1.1×10−26 for the null
hypothesis. The Bayesian regression fits give a slope of
0.95±0.04, consistent with the linear least-squares fit, and the
posterior distribution of possible slopes is shown in the inset of the
left panel of Figure 3. A linear least-squares fit to our JCMT data
(colored symbols) alone yields log LIR=0.84(±0.09)log L′HCN
(4–3)+4.69(±0.53), with a Spearman rank correlation coefficient
of 0.75, which is shown as a black dotted line in the left panel of
Figure 3.

In the right panel of Figure 3 we plot the relation between
LIR and L HCO 4 3¢ +( – ) and perform the same comparison. A linear
least-squares fit to the data points excluding the upper limits
gives a correlation close to linear,

L Llog 1.13 0.04 log 2.83 0.24 , 5IR HCO 4 3=  ¢ + +( ) ( ) ( )( – )

with a Spearman rank correlation coefficient of 0.92. The Bayesian
regression fits give a similar slope of 1.10±0.04, and the fit using
measurements in Table 3 alone gives a consistent relation with

L Llog 1.09 0.08 log 3.06 0.49IR HCO 4 3=  ¢ + +( ) ( )( – ) , with a
Spearman rank correlation coefficient of 0.84.

Liu et al. (2016) observed JHCN 4 3=  and
JCS 7 6=  lines in Galactic clumps and found that the

LIR are tightly correlated with both HCN and CS luminosities
down to clumps with L L10IR

3~ . We compiled the
JHCN 4 3=  data of Galactic clumps to compare with the

data shown in the left panel of Figure 3. A linear least-squares fit
to all data yields a slope of 1.03±0.01 (see Figure 4), in good
agreement with the fit for the sample of galaxies measured
globally.

To check the reliability of the best-fit relations obtained
above, we adopted a Monte Carlo (MC) approach to fit the
data. This approach, which is based on Blanc et al. (2009) and
Leroy et al. (2013), includes observational uncertainties, upper
limits, and intrinsic scatter in the fits. Following Blanc et al.
(2009), we fitted the following relation with three parameters:

L
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where A is the normalization factor, N is the power-law index,
and 0, ( ) is the intrinsic, log-normally distributed scatter on
the relation with zero mean and standard deviation ò. Our data
are mainly limited by the sensitivity of the dense gas
observations as can be seen in Figure 3. For the non-detections
of JHCN 4 3=  and JHCO 4 3= + emission, we use
the measurements in our fits and exclude data with velocity-

integrated intensity Igas�0. Similarly to Leroy et al. (2013),
we grid our data in L Llog log10 IR 10 gas¢( )– ( ) space using cells
0.75 dex wide in both dimensions.
The detailed fitting procedure to our data using a MC

approach is described in the Appendix. Table 4 reports the
results of the MC fits for different dense gas tracers. For
the L LIR HCN 4 3¢– ( – ) relation we measure a power-law index N=
1.00±0.04, an amplitude A=103.58±0.25, and an intrinsic
scatter ò=0.53±0.04 dex, while for the L LIR HCO 4 3¢ +– ( – )
relation we obtain a power-law index N=1.10±0.04, an
amplitude A=102.95±0.34, and an intrinsic scatter ò=0.32±
0.11 dex. The best-fit slope and amplitude are in good
agreement with the results obtained based on the bivariate
linear fit using clipped data in Figure 3. The intrinsic scatter of
0.53±0.04 dex and 0.32±0.11 dex derived based on the MC
fits is significant, implying that the IR luminosity can vary by a
factor of ∼2–4 for regions having the same dense molecular
line luminosity.

4.2. Comparison of Correlations between the Ratios

To eliminate the distance and the galaxy size dependencies
that could introduce a potentially strong correlation of LIR with
L′dense, where the dense gas is traced by the JHCN 4 3= 
and JHCO 4 3= + emission, we follow the same approach
as that adopted by Gao & Solomon (2004a) to examine the
correlation between the luminosity ratios LIR/L′CO and
L′dense/L′CO. A linear least-squares fit to our data including
global measurements of local (U)LIRGs and high-z quasars
gives slopes of 1.02±0.14 and 1.34±0.14, respectively. A
Spearman test yields a correlation coefficient of rs=0.57 with
the significance of its deviation from the zero of a p-value of
2.6×10−6 for JHCN 4 3=  , and rs=0.65 with a p-value
of 5.3×10−10 for JHCO 4 3= + , suggesting a moder-
ately significant correlation between LIR/L′CO and L′dense/L′CO
(see the top panels of Figure 5).
Similarly, in the bottom panels of Figure 5 we plot the

correlation between LIR and L′CO divided by L′dense for
normalization. The correlation between LIR/L′HCN (4–3) and
L′CO/L′HCN (4–3) is found to be weaker (rs=0.36) than the
correlation between LIR and L′HCN (4–3) normalized by L′CO,
and with a higher p-value of 0.0053. For the correlation
between L LIR HCO 4 3¢ +( – ) and L LCO HCO 4 3¢ ¢ +( – ), the Spearman
test gives a correlation coefficient of 0.04 with a p-value of
0.72, suggesting that the significance of the correlation between
the luminosity ratios is very low, although a strong correlation
is seen between IR and CO (see the insets in the bottom panels
of Figure 5).
The results of this work are limited by the dynamical range

of the L′dense/L′CO ratio (about 2 dex) and the large scatter, as
well as the effect of correlated axes (both normalized with the
same variable); it remains unclear how strong the physical
correlation between SFR and dense gas is. It is beyond the
scope of this paper to analyze in detail the origin of the possible
physical correlation. Our results are consistent with the
correlation between the IR and the HCN (1–0) luminosities
shown in Gao & Solomon (2004a). Moreover, a tight linear
correlation between the surface densities of the dense molecular
gas and the SF rates, as well as between the HCN luminosity
and the radio continuum luminosity, has been established for a
large sample of galaxies (e.g., Liu & Gao 2010; Chen
et al. 2015, 2017; Liu et al. 2015b). All of these results
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indicate that the star formation is very likely physically related
to the dense molecular gas.

To statistically quantify the detailed physical relationship
between dense molecular gas and star formation with models,

analysis of the entire data set of MALATANG and the
combination of all data sets from available dense gas surveys
(e.g., Gao & Solomon 2004a, 2004b; Zhang et al. 2014; Usero
et al. 2015; Bigiel et al. 2016) and the investigation of the
dependence on different parameters are required. We will
address this subject in future work.

4.3. Comparison with Literature Data

The nearly unity power-law slopes derived for the
LIR–L′HCN (4–3) and L LIR HCO 4 3¢ +– ( – ) correlations from our fits
are in good agreement with Zhang et al. (2014). The slightly
super-linear slope of the L LIR HCO 4 3¢ +– ( – ) correlation derived
from our fit also agrees with that obtained by Zhang et al.
(2014), who speculate that the super-linear slope is likely to be
a result of a decrease of the HCO+ abundance in extreme
physical conditions. For example, in extreme IR-luminous
galaxies, an increase of free electrons created by cosmic-ray
ionization would accelerate the destruction of HCO+ by
dissociative recombination (Seaquist & Frayer 2000). The
self-absorption feature of the HCO+ emission line is often

Figure 3. Correlations between the molecular line luminosities of dense gas tracers log(L′dense) and the IR luminosity log(LIR) for galaxies spatially resolved on sub-
kiloparsec scales (colored symbols) and galaxies with integrated measurements (black symbols). Left: JHCN 4 3=  . Right: JHCO 4 3= + . The colored symbols
represent the spatially resolved sub-kiloparsec structures in the central ∼50″×50″ region of our sample galaxies, and the black symbols indicate the data from the
literature (see legend in the top left of each panel). The solid lines in the left and right panels indicate the best-fit relations of Equations (4) and (5) respectively, while the
black dotted lines show the relation considering the new JCMT data alone. The upper limits are marked with open symbols with leftward-pointing arrows and are not
included in the fitting. The total uncertainties on the individual data points, including the statistical measurement uncertainties and the systematic uncertainties, are
indicated by error bars (see Table 3). The best-fit power-law index and the Spearman rank correlation coefficient for the LIR–L′HCN (4–3) relation and the L LIR HCO 4 3¢ +– ( – )
relation are listed in the top left of each panel. The inset shows the probability density distribution of the slope derived from the Bayesian fitting.

Figure 4. Correlation between JHCN 4 3=  and IR luminosities for Galactic
clumps (circles), our sample of galaxies resolved at sub-kiloparsec scales (colored
symbols), normal galaxies and local (U)LIRGs (filled circles), and high-z quasars
(crosses). The upper limits of JHCN 4 3=  are not included in the fitting and
are not shown in this plot. The solid line represents the best-fit relation of
log LIR=1.03(±0.01)log L′HCN (4–3)+3.58. The probability density distribu-
tion of the slope derived from the Bayesian fitting is shown in the inset panel. A
Spearman rank correlation analysis yields a correlation coefficient of 0.94.

Table 4
Results of Monte Carlo Fitting to Equation (6)

Molecule log10 A N ò
(Le) (dex)

JHCN 4 3=  3.58±0.25 1.00±0.04 0.53±0.04
JHCO 4 3= + 2.95±0.34 1.10±0.04 0.32±0.11

Note. The best-fit values for parameters in Equation (6) for the L LIR HCN 4 3¢– ( – )
relation and the L LIR HCO 4 3¢ +– ( – ) relation. The uncertainties are estimated from a

bootstrapping approach described in the Appendix.
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observed in the Galactic dense clumps (e.g., Reiter et al. 2011).
However, it is not easy to investigate thoroughly the physical
origin, since HCO+ is an ion and follows a more complex
chemistry (Omont 2007; Papadopoulos 2007). Observations of
other molecular ions that probe dense gas, such as N2H

+,
would provide clues to test the hypothesis.

Nevertheless, the linear correlation between LIR and
L′HCN (4–3) is similar to that derived for the J 1 0=  lines
of HCN and HCO+ (e.g., Gao & Solomon 2004a; Wu
et al. 2005; Baan et al. 2008; Bigiel et al. 2015, 2016; Usero
et al. 2015; Chen et al. 2017) and the JCS 7 6=  line
(Zhang et al. 2014). All of these correlations hold over a wide IR
luminosity range covering nearly 10 orders of magnitude,
providing evidence to support the argument that the SFR is
directly proportional to the total mass of dense gas and does not

depend on the exact value of the gas density once the gas is
denser than a threshold density of ∼104 cm−3 (Lada et al. 2012).
All of these dense gas tracers have a critical density higher
than this threshold, and the critical densities (n 3 6crit ~ - ´( )
106 cm−3) for JHCN 4 3=  and JCS 7 6=  are about
two orders of magnitude higher than JHCN 1 0=  . These
results are inconsistent with the sub-linear relations (e.g., power-
law slope of 0.6±0.1 and 0.7±0.1 for the LIR–L′HCN (4–3) and
L LIR HCO 4 3¢ +– ( – ) relations, respectively) predicted by numerical
simulations, which concluded that the SFR–L′gas slope tends to
decrease with increasing ncrit (Narayanan et al. 2008; Juneau
et al. 2009). Our mapping observations show direct evidence that
a portion of dense gas as traced by the JHCN 4 3=  and

JHCO 4 3= + emission is distributed in the off-nuclear
regions. It thus cannot be ruled out that the sub-linear slope

Figure 5. Top: LIR/L′CO (1–0) as a function of L′HCN (4–3)/L′CO (1–0) (left) and L LHCO 4 3 CO 1 0¢ ¢+( – ) ( – ) (right) for nearby star-forming galaxies (colored symbols), local
(U)LIRGs (open stars), and high-z quasars (crosses). The IR and dense molecular line luminosities are normalized by L′CO (1–0) to remove the galaxy distance and size
dependencies. Bottom: similar to the top panels, but instead normalized by JHCN 4 3=  (left) and JHCO 4 3= + (right). The inset shows the correlation
between LIR and L′CO (1–0). The Spearman rank correlation coefficient for each panel is listed in the upper left corner.
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(∼0.8±0.1) obtained by Bussmann et al. (2008) is a result of
underestimating the total JHCN 3 2=  emission for nearby
galaxies, as the line intensities are measured from a single point
toward the galaxy center with a beam size of ∼30″, while the IR
luminosities are derived from IRAS flux densities measured with
a larger beam size.

4.4. Variation in the Infrared–Molecular Line Luminosity Ratio

In the left panel of Figure 6 we show the ratio of
LIR/L′HCN (4–3) as a function of LIR. The mean values of
log(LIR/L′HCN (4–3)) for Galactic clumps, normal star-forming
galaxies, and (U)LIRGs/high-z quasars are 3.62±0.03,
3.89±0.06, and 3.86±0.10, with an rms scatter of 0.35,
0.35, and 0.32 dex, respectively. The mean value of
log(LIR/L′HCN (4–3)) for the full sample of galaxies is
3.71±0.03, with an rms scatter of 0.38 dex. The ratio of
L LIR HCO 4 3¢ +( – ) shows a similar scatter (see the right panel of
Figure 6). The mean log(L LIR HCO 4 3¢ +( – )) for normal galaxies
and (U)LIRGs/high-z quasars are 3.77±0.05 and
4.02±0.08 with an rms scatter of 0.33 and 0.26 dex,
respectively, while the mean value measured for the full
sample is 3.73±0.04 with an rms scatter of 0.36 dex. The
mean LIR/L′dense ratio measured across the whole population of
galaxies in our sample appears to vary little. This is similar to
the IR/HCN (1–0) and the IR/HCO+ (1–0) data, which are
found to be independent of LIR extending from galaxy scales to
individual GMCs (e.g., Gao & Solomon 2004a; Wu et al. 2005;
Chen et al. 2017). Note that there is significant scatter measured
within our sample of galaxies, which is in good agreement with
the intrinsic scatter derived from MC fitting (see Section 4.1).
A plausible explanation for the large scatter could be a wide
range of physical conditions for the molecular gas in the dense
phase and/or abundance variations (e.g., Jackson et al. 1995;
Papadopoulos 2007). However, it is worth noting that both the
IR/HCN (4–3) and the IR/HCO+ (4–3) ratios show systematic

variations with IR luminosity within individual spatially
resolved galaxies, as well as the Galactic clumps, though with
significant scatter. We discuss possible explanations for these
trends in the next subsection.
Compared with other galaxies in our sample, M82 appears

weakened in HCN (4–3) relative to IR with a ratio of IR/HCN
(4–3) mostly above the 1σ scatter (see the left panel of Figure 6),
while the IR/HCO+ (4–3) ratio shown in the right panel of
Figure 6 is well within the 1σ scatter. A plausible explanation for
the decrease of L LHCN 4 3 HCO 4 3¢ ¢ +( – ) ( – ) could be a low HCN
abundance in M82. Braine et al. (2017) observed various
molecular lines in low-metallicity Local Group galaxies and
found that both HCN and HNC lines are weak with respect to
the IR emission, while HCO+ follows the trends observed in
galaxies with solar metallicity. They attributed the weakness of
the nitrogen-bearing molecules to the low nitrogen abundance in
these galaxies, based on the observed trend in the HCN/HCO+

ratio with metallicity. The weak JHCN 4 3=  emission
observed in M82 may be a similar effect, as there is some
evidence of sub-solar metallicity for this galaxy (e.g., Origlia
et al. 2004; Nagao et al. 2011).
Another possible explanation is related to the relatively low

gas density observed in M82. In a study of HCN and HCO+ in
transitions up to J 4 3=  , Jackson et al. (1995) found that
the HCN J 4 3=  /J 1 0=  line ratio is significantly
smaller for M82 than for NGC 253, both of which are starburst
galaxies with intense star formation in galactic nuclei and have
comparable IR luminosities. A single-component gas excitation
model indicates that the average gas density n(H2) is at least 10
times lower in M82 (∼104 cm−3) than in NGC 253
(∼5×105 cm−3) (Jackson et al. 1995; Knudsen et al. 2007;
Naylor et al. 2010). Compared with the extremely low line ratio
of HCN J 4 3=  /J 1 0=  (<0.1) observed in M82, a
factor of more than 10 times lower than in NGC 253, the
HCO+ J 4 3=  /J 1 0=  line ratio of M82 also shows a
lower value (∼0.3) than that of NGC 253, but only by a factor

Figure 6. Left: luminosity ratio of IR to HCN (4–3) as a function of LIR for Galactic clumps (circles), our sample of galaxies resolved to sub-kiloparsec scales (colored
symbols), normal galaxies and local (U)LIRGs (filled circles), and high-z quasars (crosses). Right: luminosity ratio of IR to HCO+ (4–3) as a function of LIR for the
same set of galaxies as in the left panel, but without the sample of Galactic clumps. Symbols are as in Figure 4. The mean values of log(LIR/L′HCN (4–3)) and log
(L LIR HCO 4 3¢ +( – )) for the full sample of galaxies are 3.71±0.03 and 3.73±0.04 (solid lines), with an rms scatter of 0.38 and 0.36 dex (dashed lines), respectively.
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of 2–3 (Jackson et al. 1995). Other observations of M82 show
that the HCN/HCO+ J 3 2=  /J 1 0=  line ratio is
larger than the J 4 3=  /J 1 0=  ratio (e.g., Nguyen-Q-
Rieu et al. 1989; Wild et al. 1992; Seaquist & Frayer 2000).
This may imply a lack of molecular gas with high density, in
which case HCO+ is more easily collisionally excited to J =
4 3 than HCN, since the critical density of JHCN 4 3= 
(n 5.6 10crit

6~ ´ cm−3) is higher than that of JHCO 4= +

3 (n 1.3 10crit
6~ ´ cm−3) (Meijerink et al. 2007; Yamada

et al. 2007; Greve et al. 2009). In addition, studies of chemical
complexity toward the nuclear regions of M82 and NGC 253
by molecular line surveys reveal different chemical composi-
tions for these two galaxies (e.g., Martín et al. 2006; Aladro
et al. 2011). It is found that the nuclear starburst in M82
represents an evolved state where the heating of molecular
clouds is driven by photon-dominated regions, while the
heating of NGC 253 is dominated by large-scale shocks
(Martín et al. 2006). This could be a plausible explanation for
the systematic difference of the IR/HCN (4–3) ratio between
M82 and NGC 253 that is shown in the left panel of Figure 6.

4.5. Correlations with Warm-dust Temperature

Figure 7 shows the LIR/L′HCN (4–3) ratio (left) and the
L LIR HCO 4 3¢ +( – ) ratio (right) as a function of f70 μm/f100 μm for
NGC253, IC342, and NGC6946, where we have both PACS
70 μm and 100 μm data. We adopt the PACS 70 μm/100 μm
flux ratio as a proxy for warm-dust temperature, similar to the
IRAS 60 μm/100 μm color, which is often used to estimate the
temperature of the warm-dust component (Td∼25–60 K; e.g.,
Solomon et al. 1997; Chanial et al. 2007). We also include a
sample of local (U)LIRGs with PACS data from Chu et al. (2017)
for comparison. A least-squares fit and a Spearman test yield
log(LIR/L′HCN (4–3))=2.1(±0.5) log( f70/f100) + 3.8 (rs=0.50,
p-value=3.5×10−3) and log(L LIR HCO 4 3¢ +( – ))=2.5(±0.5)
log( f70/f100) + 3.8 (rs=0.58, p-value=9.4×10−5), respec-
tively, indicating that there is a statistically significant correlation
between LIR/L′dense and Td. These correlations are slightly
stronger than the correlation between LIR/L′HCN (1–0) and
f60 μm/f100 μm, but not as strong as the LIR/L′CO (1–0) versus
f60 μm/f100 μm correlation (correlation coefficient of 0.85; see
Figure 9 in Gao & Solomon 2004a; Liu et al. 2015b).

Comparing the LIR/L′dense–f70 μm/f100 μm relation with the
LIR/L′dense–LIR relation for the individual galaxies, spatially
resolved at sub-kiloparsec scales shown in Figure 6, we find
that the ratio of LIR/L′dense correlates with both the dust
temperature indicated by the observed 70 μm/100 μm flux
ratio and the IR luminosity. We speculate that the rising trend
of LIR/L′dense with LIR observed is likely driven primarily by or
related to the correlation of LIR/L′dense with Td, since the IR
emission from dust grains depends closely on the dust
temperature.

4.6. Correlations between SFE and Dense Gas Fraction

Figure 8 shows the SFE of the dense molecular gas
(SFEdense≡SFR/Mdense) as a function of the dense molecular
gas fraction ( fdense). The dense gas content is traced by the

JHCN 4 3=  (top panel) and the JHCO 4 3= +

(bottom panel) lines, respectively. The SFR is estimated from
the total IR luminosity based on the calibrations of Kennicutt

(1998) and Murphy et al. (2011):
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The SFR is calculated based on a Kroupa (2001) IMF. To
better compare with previous work that focuses mostly on the
luminosity ratio of HCN/CO at J 1 0=  as a measure of the
dense gas fraction (e.g., Gao & Solomon 2004a; Usero
et al. 2015), we convert the J 4 3=  line luminosity of
HCN and HCO+ to the dense gas mass and the CO J 1 0= 
luminosity to the total molecular gas mass, by assuming
conversion factors46 of αdense and αCO, respectively. We
initially assume a Galactic αCO of 4.3 for the full sample of
galaxies (Bolatto et al. 2013) (left column).
The mass of dense molecular gas can be estimated from

L′HCN (4–3) and L HCO 4 3¢ +( – ),
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r
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where αdense is the HCN(HCO+) J 1 0=  to dense gas
mass conversion factor and r41 is the HCN(HCO+) J 4= 
3/J 1 0=  line ratio. For simplicity, we assume a fixed
αdense=10 for both HCN J 1 0=  and HCO+ J 1 0= 
emission, which was estimated by Gao & Solomon (2004a) for
normal SF galaxies with a brightness temperature of Tb=35K.
We adopt r41=0.3, which is an average ratio estimated by
comparing the JHCN 4 3=  data of Zhang et al. (2014)
(including the data presented in this study) with the

JHCN 1 0=  data of Gao & Solomon (2004b). Note that
the r41 we used is a rough estimate with large uncertainty, partly
due to the slightly different angular resolution of the

JHCN 4 3=  and the JHCN 1 0=  observations. Also
note that the dense gas mass of extreme systems, i.e., galaxies or
regions that are more excited in molecular gas emission with
higher gas temperature, is likely overestimated under the
assumption of a fixed r41. The JHCN 4 3=  observations
of a few (U)LIRGs indeed show higher r41 ranging from∼0.3 to
1.0 (Papadopoulos 2007).
We adopt here the assumption that the LIR/L′HCN (4–3) ratio is a

proxy for the SFE of the dense gas (SFEdense∝LIR/L′HCN (4–3)),
assuming that both the αdense and the line ratio r41 are constant for
the full sample of galaxies. Similar assumptions are applied to the
dense gas as traced by the JHCO 4 3= + line. A Spearman
test yields a statistically insignificant correlation with rs=−0.36
and a p-value of 0.0053 for JHCN 4 3=  and with
rs=−0.04 and a p-value of 0.718 for JHCO 4 3= + ,
indicating a very weak dependence, if any, between SFEdense and
fdense within our sample. It is clearly illustrated in Figure 8 that the
fraction of dense gas is higher in starbursts and galactic centers
(circled point) than in the outer regions of our sample galaxies,
although there are some off-nuclear positions that have similar
fdense to the central region (e.g., M82). These are in good
agreement with previous JHCN 1 0=  studies and confirm
the findings by Gao & Solomon (2004a, 2004b) that the starburst
strength can be better indicated by the fraction of molecular gas in
dense phase. For the nearby normal, star-forming galaxies, the

46 The units of the luminosity-to-mass conversion factor, Me (K km s−1 pc2)−1,
are omitted from the text for brevity.
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mean log( fdense) are −0.89±0.07 and −0.98±0.04, with an
rms scatter of 0.28 and 0.22 dex, for the dense gas as traced by

JHCN 4 3=  and JHCO 4 3= + , respectively. The
small scatter in these ratios indicates that the dense gas fraction
varies little for galaxies with normal star formation activity, which
seems to be a plausible explanation for the linear relation found
between ΣSFR and Σgas in nearby normal galaxies (e.g., Bigiel
et al. 2008; Lada et al. 2012).

It is evident from the left panel of Figure 8 that one of the
high-z quasars in our sample exhibits excess dense gas content
with an unphysical dense gas fraction ( fdense>1), if we adopt
a Galactic αCO and αdense. Observations of luminous IR
galaxies show that molecular clouds in starbursts are highly
concentrated with large velocity dispersions and have higher
average gas volume densities than a typical GMC in the Milky
Way (Bolatto et al. 2013, and references therein), implying that
a smaller αCO is more appropriate for these galaxies (e.g.,
Leroy et al. 2015a, 2015b). Note that the molecular gas mass
measured for the central nuclear regions of star-forming
galaxies may be overestimated for a Galactic αCO (Sandstrom
et al. 2013). It is expected that the CO-to-H2 conversion factor
has a dependence on the physical conditions in the molecular
clouds, TCO

0.5
ba rµ , if we assume that the emission

originates in the gravitationally bound and virialized cloud
cores (e.g., Bolatto et al. 2013). The multiline analysis of HCN
and HCO+ by Graciá-Carpio et al. (2008) presents evidence
that αHCN is probably about three times lower in IR-luminous
galaxies. The potential variation of the dense gas excitation
(e.g., HCN J 4 3=  /J 1 0=  line ratio) in different
physical conditions could also play an important role in
estimating the dense gas content.

With these results we assume a ULIRG-like αCO=0.8 and
dense dense

MWa a= /3.2 for the dense gas as traced by the HCN and
HCO+ emission in extreme starbursts (NGC 253, M82, (U)
LIRGs, and high-z quasars), similar to the value adopted for
LIRGs/ULIRGs in García-Burillo et al. (2012). For comparison,

in the right panel of Figure 8 we also plot the data points for
starbursts by assuming a revised αCO and αdense, while we keep
using Galactic conversion factors for the remaining normal disk
galaxies. A Spearman test to the data of extreme starbursts with
gas content calculated with the revised αCO and αdense, combined
with normal disk galaxies, gives similar correlation coefficients
(rs=−0.04 and p-value=0.79 for JHCN 4 3=  ,
rs=0.42 and p-value=2.1×10−4 for JHCO 4 3= + )
to the results derived based on the assumption of fixed
conversion factors. The weak correlation revealed suggests that
the efficiency of star formation in the dense gas is likely to be
independent of dense gas fraction. Keeping in mind the
dependency revealed for LIR/L′dense ratio with warm-dust
temperature shown in Section 4.5, we note that the uncertainties
of conversion factors (αCO and αdense) may introduce some
biases in interpreting the correlations between the SFE of dense
gas and the dense gas fraction.
We also plot the SFE of the total molecular gas, i.e., the

inverse of the molecular gas depletion time (τgas), as a function
of fdense (see Figure 9). These are similar to the relations shown
in the top panel of Figure 5, but we convert the IR and line
luminosities to SFR and gas mass, respectively. Similar to
Figure 8, we assume Galactic and ULIRG-like conversion
factors for the starbursts in our sample for comparison,
respectively. It is clear that the SFEmol increases with fdense
with a strong correlation coefficient (rs∼0.6 with p-value
<10−6 for JHCN 4 3=  and rs∼0.7–0.8 with p-value
<10−10 for JHCO 4 3= + ). While a nearly constant
SFEmol is found for normal star-forming galaxy disks by
Usero et al. (2015), our data show that the SFEmol is strongly
correlated with fdense when combining normal disks with more
extreme IR-luminous galaxies. Here we also note the large
uncertainties involved in the derivation of correlations, due to
the limited data points and the effect of correlated axes, as well
as the assumption of conversion factors.

Figure 7. LIR/L′HCN (4–3) (left panel) and L LIR HCO 4 3¢ +( – ) (right panel) as a function of 70 μm/100 μm flux ratio for the galaxies in our sample where we have both
PACS 70 μm and 100 μm data. The galaxy centers are highlighted with a black circle. The best-fit power-law index and the Spearman rank correlation coefficient for
each panel are listed in the bottom right.
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Compared with the normal galaxies, the higher SFE found in
(U)LIRGs and the high-z quasars indicates that the latter will
consume their total gas reservoir more quickly. This is
consistent with the trend seen between τgas and LFIR, where
the depletion timescale is typically one order of magnitude
shorter for ULIRGs and high-z quasars with higher LFIR than
for normal spiral galaxies (e.g., Solomon & Vanden Bout 2005;
Daddi et al. 2010; Carilli & Walter 2013; Combes et al. 2013).
As expected, the galaxy centers tend to show higher SFEmol

than the outer regions as a result of the starburst environment in
the galactic nuclear region.

5. The HCN (4−3)/HCO+ (4−3) Line Ratio

In the left panel of Figure 10, we plot the HCN-to-HCO+

J 4 3=  luminosity ratio as a function of IR luminosity for
our target galaxies combining measurements of normal spirals,
(U)LIRGs, and quasars from the literature to inspect the
variation of the HCN/HCO+ line ratio. It is apparent that no
systematic trend is found between L LHCN HCO¢ ¢ + and LIR. The
L LHCN HCO¢ ¢ + J 4 3=  ratio varies from 0.1 to 2.7 with a
mean value of 0.9 and an rms scatter of 0.6 for the six targeted
galaxies, while an average ratio of 0.8±0.5 is found for
normal star-forming galaxies without AGNs embedded. The

Figure 8. SFE of the dense molecular gas as a function of the dense gas fraction, with dense gas as traced by the JHCN 4 3=  (top row) and the
JHCO 4 3= + (bottom row) lines for the sample of galaxies compiled in this work. The left panels show the data that assume a Galactic αCO of 4.3 and αdense of

10 for the full sample of galaxies, while the right panels represent the data that adopt a ULIRG-like αCO of 0.8 and αdense of 10/3.2 for starbursts (NGC 253, M82, (U)
LIRGs, and high-z quasars). We assume a fixed αdense and line brightness temperature ratio r41 to estimate the mass of molecular gas in the dense phase for the full
sample of galaxies. Symbols are as in Figure 5. The data points highlighted with a black circle denote the central position of each galaxy. The Spearman rank
correlation coefficient for each panel is listed in the upper left corner.
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L LHCN HCO¢ ¢ + J 4 3=  ratio varies from 0.1 to 3.0 for the
full sample of galaxies, in agreement with the HCN/HCO+

luminosity ratios observed at J 1 0=  and J 3 2= 
transitions (e.g., Knudsen et al. 2007; Krips et al. 2008; Privon
et al. 2015; Imanishi et al. 2016).

The lowest HCN/HCO+ line ratios in our sample are found in
M82 and appear to be constant across the starburst disk with a
mean value of ∼0.3, which is consistent with previous JCMT
observations of M82 (Seaquist & Frayer 2000). As discussed in
Section 4.4, we consider that the low HCN/HCO+ ratio
observed in M82 is more likely due to a deficit of HCN, rather
than an increase of HCO+, given that HCN is much weaker than
HCO+ with respect to the IR emission (see Figure 6). Moreover,
we speculate that the weakness of HCN in M82 could be
attributed to the decrease of nitrogen abundance in the sub-solar
metallicity environment and/or the relatively low gas density

condition of this galaxy. For NGC3628 and NGC6946, which
show comparably low HCN/HCO+ ratios in the left panel of
Figure 10, it has been found that their metallicities are sub-solar
(Engelbracht et al. 2008; Gazak et al. 2014). In addition, NGC
3256 and NGC 1614 also show relatively low HCN/HCO+

ratios (�0.4; see the left panel of Figure 10). Weak
JHCN 1 0=  emission and a relatively low HCN/HCO+

J 1 0=  ratio for NGC 1614 have also been reported by
García-Burillo et al. (2012). We speculate that the weakness of
HCN in these two galaxies may be related to the deficiency of
high-density gas, since both galaxies are merger remnants at an
advanced merger stage that probably have dispersed their
molecular gas by shocks from supernova explosions (e.g.,
Jackson et al. 1995; Costagliola et al. 2011).
An enhancement of the HCN/HCO+ abundance ratio in X-ray-

dominated regions with modest densities (n<104–105 cm−3) is

Figure 9. Similar to Figure 8, but we plot the SFE of the total molecular gas as a function of the dense gas fraction.
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predicted by theoretical models (e.g., Lepp & Dalgarno 1996;
Meijerink et al. 2007). Observations show evidence for HCN
enhancement in nearby galaxies hosting AGNs (e.g., Kohno
et al. 2001; Krips et al. 2008; Izumi et al. 2016). We see from the
left panel of Figure 10 that the Seyfert 2 galaxy NGC 1068 shows
a high HCN/HCO+ ratio with the highest value in the center, in
contrast to the low ratio observed in the pure starburst, such as in
M82. High HCN/HCO+ line ratios are also found in NGC 4418
and Mrk 231, which could be associated with the enhancement of
HCN by X-ray radiation from the AGN. The HCN and HCO+

J 1 0=  observations also show relatively high line ratios for
these galaxies (e.g., Imanishi et al. 2004; Costagliola et al. 2011).
However, for the Cloverleaf, which is a high-z quasar hosting
AGNs, a similar enhancement of HCN is not found. Instead, a
relatively low HCN/HCO+ ratio that is comparable to starburst-
dominated systems is obtained for this galaxy. It has been argued
that the variation of the HCN/HCO+ ratio is likely determined by
multiple processes, including the interplay of radiation field and
gas density (e.g., Papadopoulos 2007; Harada et al. 2010, 2013;
Privon et al. 2015).

We also examine the relationship between the HCN/HCO+

J 4 3=  line ratio and the f f70 m 100 mm m flux ratio for the
galaxies where we have both PACS 70 μm and 100 μm data
(see the right panel of Figure 10). No significant correlation is
found between HCN/HCO+ and 70 μm/100 μm color temp-
erature. A study of the excitation mechanisms for HCN and
HCO+ emission that includes low-J observations will be
presented in a future paper.

6. Summary

We have presented observations of the JHCN 4 3=  and
JHCO 4 3= + lines in the central ∼50″×50″ regions of

six nearby star-forming galaxies from the JCMT program
MALATANG. We combined these new data with previous
multiwavelength observations to study the relationships

between the dense molecular gas as traced by the J 4 3= 
lines of HCN and HCO+, the IR luminosity, and the dust and
star formation properties. Finally, we discussed the variation of
the HCN/HCO+ J 4 3=  line ratio in different populations
of galaxies. We summarize below the main results and
conclusions of this work.

1. We detect HCN and HCO+ J 4 3=  emission in all
six targeted galaxies at multiple positions except for M83,
where only weak detections at the central position were
obtained. Both the line profiles and line widths are found
to be very similar for HCN and HCO+, indicating that
these two molecules are arising from the same region.

2. All galaxies observed in our sample are spatially resolved
at sub-kiloparsec scales and follow the linear relation of
LIR–L′dense (dense gas as traced by HCN and HCO+

J 4 3=  ) established globally in galaxies within the
scatter. Our new data extend the relation to an inter-
mediate-luminosity regime to bridge the gap between
Galactic clumps and integrated galaxies. The nearly linear
slopes obtained for the LIR–L′HCN (4–3) and L LIR HCO 4 3¢ +– ( – )
relations are inconsistent with the sublinear relations
predicted by some theoretical models.

3. We find that the LIR/L′dense ratio shows a systematic
trend with LIR within individual galaxies, whereas the
galaxy-integrated ratios vary little. Similar trends are also
found between the LIR/Lgas ratio and the warm-dust
temperature gauged by the 70 μm/100 μm flux ratio.

4. Using appropriate conversion factors of αCO and αdense

for normal star-forming galaxies, local (U)LIRGs, and
high-z quasars, we find that the fraction of dense gas is
higher in (U)LIRGs, high-z quasars, and galactic centers
than in the outer regions of our sample galaxies, where a
small variation of dense gas fraction is found. The SFE of
the dense molecular gas appears to be nearly independent
of dense gas fraction for our sample of galaxies, while the

Figure 10. HCN/HCO+ J 4 3=  luminosity ratio as a function of IR luminosity (left panel) and 70 μm/100 μm flux ratio (right panel) for our sample of galaxies
that are spatially resolved (colored symbols) and the normal galaxies (filled circles), local (U)LIRGs (open stars), and high-z quasars (crosses) from the literature. The
galaxy centers of the six targeted galaxies are highlighted with black circles.
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SFE of the total molecular gas increases substantially
with dense gas fraction when combining our data with
local (U)LIRGs and high-z quasars.

5. The HCN/HCO+ J 4 3=  ratio varies from 0.1 to 2.7
with a mean value of 0.9 and an rms scatter of 0.6 for the
six targeted galaxies. No obvious correlation is found
between HCN/HCO+ line ratio and either IR luminosity
or warm-dust temperature. We speculate that the low
HCN/HCO+ J 4 3=  ratio found in M82 could be
attributed to a low HCN abundance and/or lack of gas
with high enough density to excite the JHCN 4 3= 
emission in this galaxy. The highest ratios are found in
AGN-dominated systems, consistent with a scenario in
which the presence of an AGN could cause an
enhancement of the HCN abundance.
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Appendix
The Fitting Method Using a Monte Carlo Approach

Based on Blanc et al. (2009) and Leroy et al. (2013), we fit
the data using a Monte Carlo approach that allows us to include
upper limits in the fit and incorporate the intrinsic scatter in the
L LIR dense¢– relation as a free parameter. In the following, we
describe this approach.

1. We generate 1000 MC realizations of the data for each set
of parameters {A, N, ò}. For each realization, we take the
observed Ldense¢ as the true value and calculate the
corresponding true LIR using Equation (6), drawing a new
value from 0, ( ) for each data point to introduce the
intrinsic scatter. We apply the observational uncertainties
in Lgas¢ and LIR by offsetting the data points by random
amounts. The uncertainty in Ldense¢ is derived from
statistical measurement errors and the systematic uncer-
tainties in flux calibration (see Section 2.1), while the
uncertainty in LIR includes the statistical measurement
errors and the errors introduced by the flux calibration
and the TIR calibration from combined luminosities (see
Section 3.3). For the non-detection of JHCN 4 3= 
and JHCO 4 3= + emission, we use the measured
values of these data points together with their error bars in
the fitting procedure and exclude data with velocity-
integrated intensity Idense�0, given that our data are
mainly limited by the sensitivity of the dense gas
observations.

2. We grid our observed data in L Llog log10 IR 10 dense¢– space
using cells 0.75 dex wide in both dimensions. We
then compare the distribution of the gridded data with
the model data from the MC realizations in the

L Llog log10 IR 10 dense¢– plane by counting the number of
data points falling in each cell for each combination of
{A, N, ò}. After renormalizing the MC grid to have the
same amount of data as the observed grid, we calculate a
goodness-of-fit estimate, which is referred to as χ2

following Blanc et al. (2009):
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where the sum is over all grid cells and Ni
obs and Ni

model
are the number of observed and model data points,
respectively, in grid cell i.

3. We take a bootstrapping approach to estimate the errors
in the parameters {A, N, ò} by randomly resampling the
data points in each grid cell and performing the above
MC analysis. The bootstrap procedure is repeated 1000
times for each solution, and we measure the resulting
standard deviation of the parameter values {A, N, ò}.

Figure 11 shows the reduced χ2 for the three parameters
{A, N, ò} in the fit, marginalized over the other two. Similar to
Figure 14 of Blanc et al. (2009), the best-fit value for each
parameter is obtained by fitting a quadratic function to the
minimum χ2 for each parameter value sampled. We adopt the
1σ dispersion of the χ2 distributions obtained through a
bootstrapping approach for the estimate of the uncertainty in
the parameters {A, N, ò} (see Figure 12).
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Figure 11. Reduced χ2 for the three parameters {A, N, ò} in the MC fitting of the L LIR HCN 4 3¢– ( – ) relation (top row) and the L LIR HCO 4 3¢ +– ( – ) relation (bottom row) ,
marginalized over the other two. Red plus signs show the χ2 obtained for each sampled combination of parameters. The best-fit χ2 is obtained by fitting a quadratic
function to the minimum χ2 at each parameter value sampled. The best-fit quadratic function is shown as a green line, and the best-fit χ2 together with the 1σ, 2σ, and
3σ levels are shown as horizontal dotted lines. The vertical dashed lines represent the best-fit parameter and its 1σ uncertainty, which is estimated by a bootstrapping
method.
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