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H I G H L I G H T S

• Double manifolds to scale-out two-phase flows are modelled with a resistance network.

• Statistical descriptors are proposed to characterise maldistribution in manifolds.

• Scaling laws proposed maintain constant flow maldistribution in parallel channels.

• Double manifold design criteria are proposed for incompressible two-phase flows.
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A B S T R A C T

In this paper, double manifolds are theoretically investigated for the scale-out of two-phase incompressible flows
in small channels. Statistical descriptors are proposed to characterise the maldistribution of the total flow rate
and the ratio of the flow rates in the two-phase channels, based on the variances and covariance of the flow rates
of the two fluids. A novel resistance network model is developed that relates the flowrates of the fluids in the
two-phase channels to the hydraulic resistances of the manifold. The statistical descriptors and the resistance
network model are then used to develop relationships between the maldistribution coefficients and the hydraulic
resistances of the double manifold, the overall pressure drop and the pumping power requirements for different
parallel channel numbers. Based on these, scaling laws are proposed that maintain a constant degree of mal-
distribution for a scale-up factor up to 102. Double manifolds designed using these scaling laws have a constant
pressure drop as the number of channels increases, whilst the power requirements increase linearly. The power
requirements are inversely proportional to the phase ratio maldistribution descriptor. Recommendations for the
design of double manifolds for the scale-out of two-phase systems are proposed.

1. Introduction

Over the last few years there have been many studies on small-scale
units aiming at the intensification of multiphase processes, including
(bio)chemical syntheses [1,2], absorptions [3], extractions [4,5], and
(nano)crystallisations [6]. Multiphase processes carried out in small
channels are characterised by fast mixing, high heat and mass transfer
rates, and narrow residence time distributions when compared to
conventional equipment [7,8]. These advantages, in an industrial con-
text, would translate to reduced costs, energy savings, diminished waste
production, enhanced safety, and increased product quality [9–11]. The
benefits of operating in small channels stem from the reduction in
length scales which result in short diffusion distances, increased im-
portance of interfacial forces over inertial, viscous, and gravitational
ones, large interfacial area-to-volume ratio (beneficial for mass

transfer), and large channel surface-to-volume ratio (beneficial for heat
transfer). The transition of these novel and efficient devices from bench-
scale to the industrial application involves increasing the throughput,
often by using many of the single small-scale units in parallel (scale-out
or numbering-up). This contrasts with the traditional scale-up where
the volume of the unit increases. However, the transition is hampered
by the difficulty in reproducing the flow conditions of a single channel
in many parallel ones. Well-characterised flow distribution manifolds
are key to scale-out of small-scale devices via parallelisation.

There has been a significant amount of work on flow distributors for
single-phase flows in small channels [12–20]. To bring together two
fluids, double manifolds are used where both phases are distributed
separately before they mix and flow together in the main contacting
section (Fig. 1). The distribution of the individual phases takes place in
consecutive manifolds similar to the ones used in single phase flows
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[12–17]. This type of two-phase flow distributor has inherent benefits,
including simple arrangement, small footprint, modularity, and passive
control.

The negative effects of flow maldistribution in manifolds have been
well documented for single-phase flows [19–21]. The various channels
may have different flowrates and residence times, which can affect
selectivity or yield. Al-Rawashdeh et al. [22–24] studied the effects of
fabrication tolerances to maldistribution in double manifolds for ga-
s–liquid Taylor flows [22–24]. Schubert et al. [25] found that mal-
distribution of the phases in the flow manifold of a monolith reactor
severely reduced the selectivity and conversion of glucose hydrogena-
tion reactions. Flow maldistribution in single-phase flow distributors is
usually quantified with statistical dispersion descriptors
[12,15,16,19,26–30]. However, to quantify maldistribution in two-
phase flows of immiscible fluids, the statistical descriptors must con-
sider the bivariate nature of the system, where both the flowrate and
the fraction of the phases can vary.

In this work, the design of double manifold distributors that bring
together two fluid phases is studied for incompressible flows. The ef-
fects of the design variables on the flow maldistribution and the pres-
sure drop and pumping power in the manifold are examined. In what
follows, first a technique to quantify maldistribution in parallel chan-
nels for two-phase flows is proposed and appropriate statistical

descriptors are suggested, based on multivariate statistical analysis. The
double manifolds are then modelled using a resistance network ap-
proach which reduces the large number of design variables into two
resistance ratios. The resistance model and the statistical analysis are
subsequently used to quantify the maldistribution and pumping re-
quirements for a large number of channels. Based on the relationships
between the hydraulic resistances and the maldistribution descriptors
scaling laws are suggested, using regression analysis. These can be used
to calculate the dimensions of the double manifold as the throughput
increases. Finally, the methodology for designing double manifolds for
two-phase incompressible flows is summarised.

2. Quantification of two-phase flow maldistribution

The most common metrics of flow distribution used in single phase
flow distributors are shown in Table 1, where Qj is the flow rate in the j-
th channel, Q is the mean flow rate, and N is the number of parallel
channels. The coefficient of variation (CV), defined as the standard
deviation of the flowrates relative to the mean, is the most common
maldistribution metric. The mean value of the flow rate (Q) (also
termed as nominal or design flow rate) plays an important role because
it is the flow rate all channels should have if the flow is perfectly dis-
tributed.

Single-phase maldistribution metrics must be modified before they
can be applied to two-phase cases. In addition to the overall flow rate,
the ratio of the flow rates of the two phases is also important. Previous

Nomenclature

a ellipse major axis length, m3 s−1

b ellipse minor axis length, m3 s−1

CV coefficient of variation
d channel diameter, m
I identity matrix
L channel length, m
m eigenvector slope
N number of main channels
Δp pressure drop, Pa
P power, W
PRM phase ratio maldistribution
Q flow rate, m3 s−1

Q flow rates vector, m3 s−1

r flow rate ratio
R hydraulic resistance, Pa s m−3

R hydraulic resistance matrix
R2 Pearson correlation coefficient
RCV rotated coefficient of variation
S solution vector, m3 s−1

v eigenvectors of covariance matrix
X exponent in Eqs. (46)–(50)
Y exponent in Eqs. (46)–(50)

Greek letters

θ correlation angle, °
λ eigenvalues of covariance matrix, m6 s−2

μ dynamic viscosity, Pa s
π diameter-perimeter ratio of a circumference
ρ correlation coefficient
Σ covariance matrix, m6 s−2

σ standard deviation, m3 s−1

Subscripts

A1, A2 distribution sections
B1, B2 barrier sections
C collection section
eq equivalent
i either phase or fluid
j A given channel in a section of the double manifold
k A given channel in a section of the double manifold
N1, N2 number of channels in scale-up
R main section
T total
T,1ch total, for one channel

Fig. 1. 3D Schematic of a double manifold with one inlet for each fluid, dis-
tribution sections (A1, A2), barrier sections (B1, B2), and main channels (R).
After the main channels, a separation, collection or further processing units can
be connected.

Table 1
Examples of single phase flow maldistribution metrics.

Maldistribution equation Measure of Dispersion Reference

∑ −Qj Q

NQ
Mean absolute deviation [31]

−max(Qj) min(Qj)

max(Qj)
Range relative to
maximum

[19]

−max(Qj) min(Qj)

Q
Range relative to mean [14,32]

∑ −1
N

(Qj Q)2

Q

Coefficient of variation
(CV)

[12,15,16,19,26–29,33]
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works have only reported the CV either of one of the phase flow rates,
of the total flow rate, of the bubble velocity in plug flows [24,34] or of
both phase flow rates [23,35–37]. These metrics are not sufficient in the
multiphase cases because they do not consider the maldistribution of
the ratio of the phases.

The maldistribution in the flow of two immiscible and in-
compressible phases is studied here with a method derived from prin-
cipal component analysis (PCA), a common statistical approach for
multivariate data [38]. Following this analysis, all factors affecting
maldistribution can be studied with the least number of variables. To
completely characterise the dispersion of a two-variable system, in this
case the maldistribution of two fluids in parallel channels, a 2× 2
covariance matrix is required. The covariance matrix (Σ) for a bivariate
distribution, shown in Eq. (1), is a symmetric matrix with the variances
(σ12, σ22) and the covariance terms (cov(1,2), cov(2,1)) in the two di-
agonals.

= ⎡

⎣
⎢

⎤

⎦
⎥Σ

σ cov(2, 1)
cov(1, 2) σ

1
2

2
2

(1)

∑= − =
=

σ 1
N

(Q Q ) ( i 1, 2)i
2

j 1

N
j,i i

2
(2)

∑= = − −
=

cov(1, 2) cov(2, 1) 1
N

(Q Q )(Q Q )
j 1

N
j,1 1 j,2 2 (3)

= =ρ cov(1, 2)
σ σ

cov(2, 1)
σ σ1 2 1 2 (4)

N is the number of the parallel channels of the manifold, Qj,i is the flow
rate of the i-th phase in the j-th channel, and Qi is the average or
nominal flow rate of the i-th phase in the channels. Σ can be calculated
given the flow rate of each phase in every channel of the manifold (the
Qj,i data). The correlation coefficient (ρ), defined in Eq. (4), is a di-
mensionless number calculated as the ratio of the covariance term and
the product of the standard deviations of the two variables, σ1 and σ2. It
follows from the symmetry of Σ that three scalar variables are necessary
to characterise the maldistribution completely.

According to PCA the eigenvalues and eigenvectors of Σ are first
calculated and then used to define new variables that best describe the
dispersity of the data; these new variables are linked to the physical
properties of the system. Eigenvalues satisfy the characteristic equation,
det(Σ− λI)= 0; and eigenvectors satisfy the eigenvalue equation
(Σ− λI)v= 0, where I is the identity matrix. The eigenvalues, the ei-
genvector slope (m), and the angle of correlation of the variables (θ) are
calculated as follows:

=
+ ± − +

λ
σ σ (σ σ ) 4ρ σ σ

21,2
1
2

2
2

1
2

2
2 2 2

1
2

2
2

(5)

= =
−

m tan θ
λ σ
ρσ σ

1 1
2

1 2 (6)

If |ρ| is small (i.e.< 0.05), Σ is approximated by a diagonal matrix
(elements outside the main diagonal are insignificant) and the flow
rates of each phase are uncorrelated. It follows from Eq. (5) that the
eigenvalues are equal to the variances and in this case, two CVs, as
defined by Eq. (7), can completely characterise the maldistribution in
the flow distributor.

= =CV σ
Q

( i 1, 2)i
i

i (7)

However, if |ρ| is not small (i.e. > 0.05), the flow rates of the two
phases are correlated. In this case, λ1, λ2, and m, characterise mal-
distribution. In order to have a dimensionless measure of the mal-
distribution, the rotated coefficient of variation (RCV) is defined (Eq.
(8)), which is analogue to CV in Eq. (7).

= =RCV
|λ |
Q

( i 1, 2)i
i

i (8)

The eigenvector slope defined in Eq. (6) is related to the ratio of
flow rates of both phases. The closer the value of m is to the value of the
ratio, the better the fluids are distributed with respect to the flow rate
ratio. Eq. (9) defines the phase ratio maldistribution descriptor (PRM).

= −PRM 1 m
Q
Q

2
1 (9)

PRM measures how different the eigenvector slope and the design phase
ratio are. It tends to zero as the two values approach each other.

There is an extreme case for correlated flow rates. When |ρ| is close
to unity (i.e. > 0.95), the flow rate distribution of the two phases is
highly correlated. In this situation λ2 and RCV2 are very small, and only
RCV1, and PRM are necessary to describe the maldistribution. For the
highly correlated case, the two descriptors can be interpreted as fol-
lows:

• RCV1 indicates the maldistribution of the total flow rate in each of
the parallel channels, independently of the ratio of the phases.

• PRM indicates the differences in the phase ratio in the parallel
channels from the required ratio. PRM is independent of the total
flow rate in each channel and its maldistribution.

Three possibilities of correlation are illustrated in Fig. 2 in a map of
flow rates, with Q1 and Q2 as coordinates. Fig. 2a shows an un-
correlated case where maldistribution is quantified with the standard
deviations, non-dimensionalised as shown in Eq. (7). Fig. 2b shows a
correlated case with both eigenvectors shown. Both eigenvalues and the
eigenvector slope, non-dimensionalised with Eqs. (8) and (9), are used
to measure maldistribution in this case. In Fig. 2c, a highly correlated
case is presented and the points nearly form a line segment. Only one
eigenvalue and the eigenvector slope are needed to quantify mal-
distribution in this case.

The analysis above describes a novel and rigorous way to measure
maldistribution of two fluids in parallel channels. The three cases, de-
pendant on the correlation coefficient, are summarised in Table 2.

In addition to the methodology above, Q1, Q2, λ1, λ2, and θ can be
used to calculate confidence ellipses in flow rate maps. This two-di-
mensional confidence interval is centred in (Q1, Q2) and is tilted at an
angle θ. The major and minor axes lengths, a and b respectively, depend
on the eigenvalues and the degree of confidence selected. The axes
lengths are proportional to the square-root of the chi-squared critical
value.

=a 2 5.991λ1 (10)

=b 2 5.991λ2 (11)

For a confidence of 95%, the chi-squared critical value for 2 degrees
of freedom is 5.991 [39]. The confidence ellipse together with the flow
rate map of the particular system can be used to define the maximum
tolerable maldistribution of the system.

If the flowrates Qji can be measured before the fluids are mixed
together then the statistical analysis above can also be applied to mis-
cible fluids. In some cases, it may be more useful to use mass flow rates
rather than volumetric flow rates.

3. Resistance network model

Flow distributors, such as double manifolds, can be modelled using
resistance network models, as reviewed by Oh et al. [40]. This type of
modelling is preferred over computational fluid dynamics due to the
simplicity and speed to setup and run parametric studies [12]. The
resistance network model considers the analogy between fluid flow in
hydraulic circuits and electrons flow in electric circuits. This modelling
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approach has been used extensively to design and optimise single-phase
flow distributors [12–14]. The overall pressure drop and fabrication
tolerances of the designed manifold were also considered by Amador
[41].

The analogy is extended here to account for two-phase in-
compressible flows. The model considers volumes are additive, which
means that it cannot be used when there are large volume changes due
to compressibility or mass transfer.

A manifold for incompressible two-phase flows and its electrical-
circuit analogue are shown in Fig. 3a and 3b respectively. Kirchhoff’s
current law (KCL) and Kirchhoff’s voltage law (KVL) are used to solve
the circuit in Fig. 3b. KCL is analogous to mass conservation, while KVL
is analogous to energy conservation. Eqs. (12) and (13) are the alge-
braic representations of KCL and KVL respectively for flow systems.

∑ =
=

Q 0
k 1

n

k
(12)

∑ = =
=

Δp R Q 0
i 1

j

i i i
(13)

where Q is the volumetric flow rate, Δp is the pressure drop, and R is
the hydraulic resistance defined as the ratio of pressure drop over vo-
lumetric flow rate. The sum in Eq. (12) applies at every node of the
circuit. The sum in Eq. (13) adds the pressure drops in a closed loop in
the circuit. In a double manifold with N main channels, 2(N−1) loops
can be independently defined. Between the j-th and (j+1)-th main
channels, two loops are defined. These loops are highlighted in Fig. 4.
Fig. 4a, shows a loop including channels labelled A1,j+1; B1,j+1; R,j
+1; C,N-j+1; R,j; and B1,j, while Fig. 4b shows the other independent
loop containing channels labelled A2,j+1; B2,j+1; R,j+1; C,N-j+1;
R,j; and B2,j.

For these two loops, Eqs. (14) and (15) are obtained by applying the
KVL. In total, there are N−1 equations for each type of loop.

+ + − − −

= = … −

+ + + − +(QR) (QR) (QR) (QR) (QR) (QR)

0 ( j 1 N 1)

A1,(j 1) B1,(j 1) R,(j 1) B1,j R,j C,(N j 1)

(14)

+ + − − −

= = … −

+ + + − +(QR) (QR) (QR) (QR) (QR) (QR)

0 ( j 1 N 1)

A2,(j 1) B2,(j 1) R,(j 1) B2,j R,j C,(N j 1)

(15)

Applying KCL along the distribution channels (Sections A1 and A2)
at each junction, Eqs. (16) and (17) are obtained.

∑ ∑ ∑= − = = … −+
=

=

=

=

= +

=

Q Q Q Q ( j 1 N 1)A1,(j 1)
k 1

k N

B1,k
k 1

k j

B1,k
k j 1

k N

B1,k
(16)

∑ ∑ ∑= − = = … −+
=

=

=

=

= +

=

Q Q Q Q ( j 1 N 1)A2,(j 1)
k 1

k N

B2,k
k 1

k j

B2,k
k j 1

k N

B2,k
(17)

The same procedure along the collection channels (Section C) yields
Eq. (18).

∑= = … −− +
=

=

Q Q ( j 1 N 1)C,(N j 1)
k 1

k j

R,k
(18)

Additionally, Eq. (19) is the result of applying KCL for the junctions
where both manifolds meet before entering the main channels (Sections
B1, B2, R). There are N equations like this, one per main channel.

Fig. 2. Geometric interpretation of the maldistribution descriptors in flow rate
maps. a) Distribution with no correlation and the maldistribution is measured
with standard deviations (Eq. (7)). b) Correlated case where the eigenvalues
and the eigenvector slope are used to measure the maldistribution (Eqs. (8) and
(9)). c) Highly correlated distribution where the points nearly form a line
segment; the length and slope of this line segment describe the maldistribution
(Eqs. (8) and (9)).

Table 2
Maldistribution cases and descriptors with respect to the correlation coefficient.

Maldistribution Case Correlation Criteria Maldistribution Descriptors

Uncorrelated |ρ| < 0.05 CV1, CV2

Correlated 0.05 < |ρ| < 0.95 RCV1, RCV2, PRM
Highly correlated |ρ| > 0.95 RCV1, PRM
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+ − = = …Q Q Q 0 ( j 1 N)B1,j B2,j R,j (19)

Finally, Eqs. (20) and (21) express the mass balance at the respective
manifold of each phase:

∑ =
=

Q Q
k 1

N

B1,k A1,1
(20)

∑ =
=

Q Q
k 1

N

B2,k A2,1
(21)

Eqs. (16)–(18) are substituted in Eqs. (14) and (15). The resulting
equations are divided by RR,j to yield Eqs. (22) and (23). As in the case
for Eqs. (14) and (15), there are N−1 equations for each type of loop.

∑

∑

+ + − −

− = = … −

= +

=
+

+
+

+
+

=

=
− +

Q
R

R
Q

R
R

Q
R

R
Q

R
R

Q

Q
R

R
0 ( j 1 N 1)

k j 1

k N

B1,k
A1,(j 1)

R,j
B1,(j 1)

B1,(j 1)

R,j
R,(j 1)

R,(j 1)

R,j
B1,j

B1,j

R,j
R,j

k 1

k j

R,k
C,(N j 1)

R,j (22)

∑

∑

+ + − −

− = = … −

= +

=
+

+
+

+
+

=

=
− +

Q
R

R
Q

R
R

Q
R

R
Q

R
R

Q

Q
R

R
0 ( j 1 N 1)

k j 1

k N

B2,k
A2,(j 1)

R,j
B2,(j 1)

B2,(j 1)

R,j
R,(j 1)

R,(j 1)

R,j
B2,j

B2,j

R,j
R,j

k 1

k j

R,k
C,(N j 1)

R,j (23)

Eqs. (19)–(23) form a system of 3N linear equations for N main
channels. 2N−2 equations are obtained with the KVL analogy (Eqs.
(22) and (23)), there are N equations describing the mixing of the
manifolds (Eq. (19)) and 2 equations for the overall mass balance (Eqs.
(20) and (21)). The system can then be solved for 3N variables. These
variables are the flow rates in the barrier channels for both phases (2N)
and the main channels (N). Furthermore, with these results, and using
Eqs. (16)–(18), the flow rates in the rest of the channels (distributing
and collecting sections) can be calculated. Eqs. (24) and (25) represent
the system to solve and the solution using matrix inversion,

=R Q S· (24)

=Q R Sinv( )· (25)

where R is the resistances matrix, Q is the flow rates vector and S, the
solution vector, is the right-hand-side of Eqs. (19)–(23). The value of Q
depends only on the values of resistance ratios in matrix R, which is
dimensionless, and the inlet flow rates of both liquids, QA1,1 and QA2,1

in vector S.
Eq. (25) can be solved for Q in a single step when all the hydraulic

resistances are independent of the flow rate. When the resistance terms
are not independent of the flow rates, Eq. (25) needs to be solved

Fig. 3. a) Schematic of a double manifold. b) Schematic of the corresponding resistance network. A1 and A2 are the distribution sections, B1 and B2 are the barrier
sections, R is the main section and C is the collection section; Q1 and Q2 refer to the flow rates of each fluid.

Fig. 4. The j-th loops considered in the application of the Kirchhoff’s Voltage
Law.
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iteratively. In this case, the solution for the independent resistances can
be used as initial guess. The model is applicable if the volumes are
conserved (i.e. the densities of both phases change by less than 5%).

In the single phase flow sections (distribution and barrier), the hy-
draulic resistances are independent of the flow rates if the flow is la-
minar and incompressible. For these conditions, the Hagen-Poiseuille
equation (Eq. (26)) can be applied and the hydraulic resistance depends
on the channel geometry.

=
μL

π
Δ p

128
d

Q4 (26)

The pressure drop in fittings such as reducers, expansions, elbows,
and tees is not significant at low Reynolds numbers; however, these
effects can also be included in the pressure drop correlation if neces-
sary. For the pressure drop in the main channels with both phases
present, two options can be considered: Either the multiphase flows
have hydraulic resistances independent of the flow rate, e.g. homo-
geneous model [42,43]; or the resistances depend on the flow rates. In
the latter case Eq. (25) is solved iteratively using a non-linear pressure
drop model for the two-phase flows; Al-Rawashdeh et al. [22] showed
this procedure.

In this work, the homogeneous model was selected for the two-
phase flow channels for two main reasons. With this model, Eq. (25)
can be solved in a single step and a wide range of parameters can be
studied with minimal computational costs. In addition, the effects of the
design variables (the hydraulic resistance of each section) on the mal-
distribution and pumping requirements can be isolated from complex
pressure drop correlations.

In vector S, the two inlet flow rate variables (QA1,1, QA2,1) can be
written in terms of the total flow rates in the main channels and the
inlet flow rate ratio of the two phases, as follows:

= = +Q Q N Q QT T,1ch A1,1 A2,1 (27)

=r
Q
Q

A1,1

A2,1 (28)

where QT, QT,1ch, and r, are the total inlet flow rate, the total flow rate
in one main channel (assuming perfect distribution) and the ratio of the
inlet flow rates, respectively. Both QT,1ch and r are independent of N,
which makes them more suitable for the scale-out studies of double
manifolds than QA1,1 and QA2,1. From the above:

=
+

=
+

Q Q r
r 1

Q N r
r 1A1,1 T T,1ch (29)

=
+

=
+

Q Q 1
r 1

Q N 1
r 1A2,1 T T,1ch (30)

Both inlet flow rates, the only non-zero elements in S, have QT (or
QT,1chN) as a factor, therefore Eq. (25) can be non-dimensionalised
dividing by QT (or QT,1chN).

Matrix R has as many variables as the number of channels in the
manifold. In what follows, in each of the different manifold sections
(distribution of the single phases, barrier, main, collection) the channels
are assumed to have the same resistance. In this case the number of

variables is reduced from 6N+3 (one for the number of main channels,
two for the inlet flow rate of each phase and 6N for each resistor) to 7
variables (N, QT, r, RA, RB, RR, RC). Furthermore, if the collection sec-
tion is not included (RC=0), as is the case when the output of each
main channel is collected separately, one less variable is needed.
Additionally, it follows from Eqs. (22) and (23) that only the ratios of
resistances are necessary, which eliminates one more variable. Thus, 5
input variables are necessary for using the model under these as-
sumptions, namely N, QT (or QT,1ch), r, RB/RR, and RA/RR (or any other
combination of the resistance ratios). Of these input variables, RA and
RB are the design variables of the double manifold; the rest of the
variables depend on the throughput required and the requirements of
the process in the single channel. The resistance network model and the
flow maldistribution characterisation are studied with an in-house built
Matlab code.

4. Results and discussion

The methodologies developed above are first used to demonstrate
the effects of the hydraulic resistances on the flow maldistribution in
manifolds with a certain number of parallel channels. In addition to
flow distribution, the overall pressure drop and power requirements are
then estimated. The effects of increasing the number of the parallel
channels in the manifold on the flow distribution and on the pressure
drop and power requirements are finally investigated.

4.1. Flow maldistribution and pressure drop as a function of hydraulic
resistances

4.1.1. Effect of hydraulic resistances on flow maldistribution in the double
manifold

As an example of the resistance network model and the application
of the flow maldistribution descriptors, a parametric study of a double
manifold with 5 channels was carried out as shown in Table 3. The
input variables are the flow rate ratio (r= [1,5]), and the resistance
ratios (RA/RR=RB/RR= [0.1,10]). For all cases, ρ > 0.05 and only
for case 6 ρ < 0.95 thus requiring both RCVs and PRM to characterise
the maldistribution (Table 2).

The cases in Table 3 where the flow rate ratio is 1, show consistent
values of ρ=1 and PRM=0. In these cases, the maldistribution is
completely described by RCV1. The lowest RCV1 value, thus lowest
maldistribution, corresponds to case 3 where RA/RR=0.1 and RB/
RR=10; this case is plotted in Fig. 5a to c. As can be seen in Fig. 5a and
5b the flow rate in each main channel is close to the equal distribution
line. For both phases, channels 1 and 2 have more flow rate than the
average and channels 3–5 have slightly lower flow rates. Fig. 5c shows
the flow rates of the two phases in each main channel in a flow rate
map, together with the point of perfect distribution. In the same graph,
the 95% confidence ellipse is plotted. This ellipse has its centre in the
point of perfect distribution and is rotated by angle, θ=45°, calculated
from Eq. (6). The major and minor axes lengths are calculated from Eqs.
(10) and (11). PRM in this case is zero which indicates the ratio in all

Table 3
Maldistribution descriptors for r: 1 and 5, RA/RR: 0.1 and 10, RB/RR: 0.1 and 10. The double manifold modelled has 5 channels and total flow rate of
6×10−6 m3 s−1.

case r RA/RR RB/RR ρ RCV1 RCV2 PRM θ/° a/10−6 m3s−1 b/106m3s−1

1 1 0.1 0.1 1.00 0.219 0.00 0.00 45 0.643 0.00
2 1 10 0.1 1.00 2.32 0.00 0.00 45 6.81 0.00
3 1 0.1 10 1.00 0.0419 0.00 0.00 45 0.123 0.00
4 1 10 10 1.00 1.47 0.00 0.00 45 4.32 0.00
5 5 0.1 0.1 Channeling
6 5 10 0.1 0.853 1.78 0.588 0.451 6.3 8.71 0.576
7 5 0.1 10 1.00 0.0322 0.00 0.434 6.5 0.158 0.00
8 5 10 10 0.997 1.08 0.0672 0.163 9.5 5.31 0.0658
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the channels is equal to the inlet ratio and thus the eigenvector slope
(m= tan (θ)) is equal to 1/r. Since the minor axis length is zero (from
ρ=1 and Eqs. (5) and (11)), the confidence ellipse collapses into a line
segment.

Case 5 in Table 3, with r= 5, and both RA and RB smaller than RR

presents channeling, where one of the phases flows into a channel of the
opposite phase. In this case, channeling occurs because phase 1, with a
larger flow rate (r= 5) has a much larger pressure than phase two and
flows into a barrier channel of phase 2. In the model this is indicated by
a negative flow rate (opposite to the positive-defined direction) in the
channel where channeling has occurred. The rest of the cases with
r= 5, have ρ > 0.05 and thus both RCVs and PRM are used to describe
maldistribution. The largest maldistribution descriptors occur when
RA/RR=10 and RB/RR= 0.1 (case 6). Case 7 with RA/RR= 0.1 and
RB/RR=10 has the lowest maldistribution with the smallest RCV1

(ρ > 0.95 so RCV2 is not considered). Case 7 is plotted in Fig. 5d–f. The
distribution profiles are similar to the r= 1 case although the ranges for
each phase are different because of the different phase ratio. The flow
rates in Fig. 5f fall in a straight line (as in Fig. 5c) for r= 5 though the
slope of the eigenvector (m=0.113) is different to the inverse of r (1/

r= 0.2). This difference represents the maldistribution of the phase
ratio in each main channel, as measured by the PRM descriptor.

Case 8, with high both RA and RB compared to RR has a larger RCV1

but smaller PRM than case 7. These conflicting results show that further
considerations should be taken into account when characterising mal-
distribution in double manifolds. For both r= 1 and 5, RCV1 is the
smallest when RA/RR= 0.1 and RB/RR= 10. These ratios compare the
resistances of Sections A and B with R. However, they also indirectly
compare the resistances between Sections A and B:

=R
R

A

B

R
R
R
R

A
R
B
R (31)

For both flow rate ratios analysed, the lowest RCV1 values are
achieved when RA/RB is the smallest. This suggests RA/RB describes
RCV1 better than the other combinations of resistance ratios. Fig. 6
presents logarithmic contour plots of RCV1 and PRM in RA/RB− RB/RR

planes for N=5 and r=5. For the whole range of resistance ratios
plotted, ρ is larger than 0.95 and is increasingly closer to unity as RA/RB

decreases and RB/RR increases in the range plotted.

Fig. 5. Distribution profiles and flow rate maps for cases 3 (a–c) and 7 (d–f) from Table 3 (N=5, QT=6×10−6 m3s−1). a, b, d, e) Flow rates of each phase in the
channels; the perfect distribution line is calculated as QAi,1/N. c, f) Flow rate maps. The circle indicates the perfect distribution case, calculated as (QA1,1/N, QA2,1/N).
The 95% confidence ellipses are also shown; the minor axis length, b, is zero in both cases and the ellipses collapse into line segments.
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Results in Fig. 6a show RCV1 decreases steeply as RB increases with
respect to RA. This is shown by both the quasi-vertical contour lines and
the arrows. By contrast, the ratio between RB and RR has very limited
influence on the behaviour of RCV1. Similar results were found for
r= 1. Furthermore, the model predicts channeling at log10(RB/
RR) < 0.5 for the range of RA/RB plotted, which means that the flow
distribution is severely disrupted at RB < 3RR. Fig. 6b presents the
log10PRM in the same plane as Fig. 6a. The results show that RB/RR has
a stronger influence over PRM than RA/RB. However, the influence is
less as RA/RB increases, where the arrows and the curvature of the
contour lines show that both resistance ratios affect PRM. If the arrows
of greatest decent in both Fig. 6a and 6b are superimposed, they are
almost perpendicular to each other. This means that the different re-
sistance ratios affect the maldistribution descriptors practically in-
dependently. RCV1, which is analogous to total flowrate and residence
time distribution widening, depends mostly on RA/RB. PRM, which is
related to flow rate ratio distribution, is dependent on RB/RR primarily.

The current model is compared against the results of the two-phase
resistance network developed by Al-Rawashdeh et al. [22,23]. The-
authors suggested channeling occurs when the resistivity of the barrier
sections is different for each phase and the flow rates of the phases are
equal [23]. This contrasts with the findings of the current model which
predicts channeling only for flow rate ratios different to unity and when
RB/RR is below a threshold value. Regarding flow maldistribution, Al-

Rawashdeh’s model used a single maldistribution descriptor which
decreases as RA/RR decreases and RB/RR increases. In contrast, results
of the current work show maldistribution is completely characterised
with at least two descriptors and these descriptors indicate that the
residence time and the flow rate ratio distributions become narrower as
RA/RB is reduced and RB/RR is increased.

4.1.2. Effect of hydraulic resistances on the pressure drop and power
requirements of the double manifold

The pressure drop in the double manifold and the associated power
requirements are discussed here for different channel resistance ratios.
The equivalent resistance (Req) is the resistivity of a single resistor that
has the same resistance as the whole network. Since a double manifold
distributes two phases, this definition is modified and two equivalent
resistances are defined by Eq. (32), one for each phase.

= =Δp R Q ( i 1, 2)i eq,i i (32)

where Δpi is the pressure drop of the i-th fluid and is numerically equal
to the head required by the i-th pump and Qi is the total flow rate of the
i-th phase. To compute Req,i for each phase, the following are con-
sidered. First, for each phase, only the sections where that phase flows
affect its Req; this is true as long as there is no channeling. Second, and
as in the previous discussion, no collection section is included in the
double manifold. The equivalent resistance for each phase in double
manifolds with 2 and 3 main channels can be calculated by Eqs. (33)
and (34) respectively. These equations show that even for a small
number of channels, the calculation of Req,i is complex.
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However, when RAi≪ RBi (necessary for reducing maldistribution) the
denominator in the second term of the right-hand-side depends only on
RBi+RR. An approximation can then be made to find the value of Req,i

for any number of channels, given by:
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(35)

Eq. (35) shows that the dimensionless equivalent resistance increases
linearly with RB/RR. Fig. 7 shows plots of Req,i/RR over RA/RB for dif-
ferent number of channels, N, at constant RB/RR both from the exact
solutions (Eqs. (33) and (34)) and the approximation (Eq. (35)). As can
be seen, the approximation improves as RA/RB decreases. This figure
also shows that Req,i/RR decreases as N increases.

The overall pressure drop for each phase can then be calculated

Fig. 6. Contour plots of a) log10RCV1 and b) log10PRM in log10-log10 planes of
RA/RB vs. RB/RR. The double manifold modelled has 5 channels,
QA1,1= 5×10−6 m3s1, QA2,1= 1×10−6 m3s−1 (r= 5). The arrows show the
direction of greatest decrease for the maldistribution descriptors.

Fig. 7. Equivalent resistances as a function of RA/RB and N. The dashed lines (–
– –) show exact solutions using Eqs. (33) and (34) and the solid lines show
approximations using Eq. (35). Calculations are for RB/RR= 0.1.
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from Eqs. (36) and (37) and the total pumping power required from Eq.
(38). These equations are derived using Eqs. (29), (30), (32), and (35).
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where PT is the total pumping power required, and ηi is the efficiency of
the pumping system for the i-th fluid. The right-hand-side of these
equations depends on the design of the double manifold. Both pressure
drops and the power requirement increase linearly with RB/RR, while
PRM (Fig. 6b) decreases with RB/RR. The pressure drop estimates, from
Eqs. (36) and (37), can be used to calculate the changes in density if one
of the fluids is a gas, and assess the validity of the model in Section 3. A
contour plot of PT/(QT

2RR) in a log–log plane of RA/RB− RB/RR is
presented in Fig. 8, for a 5-channel manifold operating at a flow rate
ratio of 5. The efficiency of both pumps is set to be 80%. Arrows of
steepest descent for the dimensionless power requirement are also in-
cluded. Fig. 8 is plotted in the same range of resistance ratios as Fig. 6
for comparison. Figs. 6b and 8 have arrows pointing at opposite di-
rections, showing that a reduction in maldistribution is directly asso-
ciated with increased pressure drop and pumping power requirements.
The prevalence of the RR factors in Eqs. (33)–(38) indicates the im-
portance of the pressure drop correlation in the main channels for the
calculation of the pumping requirements. These results show quanti-
tatively for the first time how the pumping requirements are linked to
the flow maldistribution in a manifold.

4.2. Effect of increasing number of channels on flow maldistribution and
pressure drop

4.2.1. Effect of increasing number of channels on flow maldistribution
The purpose of double manifolds is to increase the throughputs

compared to single channels. The effect of the number of main channels
on flow maldistribution and the changes needed in the channel re-
sistances to reduce or keep constant the maldistribution during scale-
out are considered here. In this section QT,1ch (defined in Eq. (27)) is
used instead of QT because it is independent of N.

Fig. 9 shows flow rate maps for three cases with 5, 50 and 500
channels. The same QT,1ch, flow rate ratio, and resistance ratios are used
for all cases. As can be seen, the distributions are highly correlated,
with ρ close to unity. As the number of channels increases, mal-
distribution increases with respect to RCV1 but not with respect to PRM.
The increase in RCV1 with N means that the residence time distribution
becomes wider. RCV1 increases by a factor of 84 and of 732 as the
number of main channels increases from 5 to 50 and 500, respectively.
In the 500 channels distributor, there is significant maldistribution with
several channels having flow rates close to zero. PRM, which compares
the flow rate ratios in the channels with the inlet flow rate ratio, shows
the opposite trend to RCV1 as N increases. It decreases by 18% and by
65% when N increases from 5 to 50 channels and then from 50 to 500
channels, respectively. In all cases, PRM is very small and the flow rate
ratios are very similar in all channels despite the large maldistribution
measured by RCV1.

The effect of resistance ratios on flow maldistribution as the number
of channels increases was also analysed. Fig. 10 presents the

logarithmic plots of both maldistribution descriptors as function of N
for flow rate ratio equal to 5. These plots present four cases for RA/RB

equal to 10−3 or 10−2 and RB/RR equal to 101 or 102. The results show
that the trends observed for 5 channels (Fig. 6) also apply when N is
further increased. RCV1 depends predominantly on RA/RB while the
effect of RB/RR is not significant. RCV1, and the flow maldistribution it
describes, are reduced with reducing RA/RB values. In addition, RCV1

increases with the number of channels; the rate of increase is high at
low N values and is reduced at high N values. This trend can be ex-
plained by considering the flow rates in the main channels for N=500.
In this case, the maldistribution is very high and some channels have
flow rates very close to zero (Fig. 9c); as a result the increase of RCV1,
which is statistical in nature, is not as pronounced for large channel
numbers. The results for PRM in Fig. 10b are also in agreement with
those of Fig. 6b. PRM depends mainly on RB/RR and less on RA/RB.
PRM, and thus the distribution of flow rate ratios, are reduced when
RB/RR is increased. PRM is constant at low values of N and reduces to a
lower constant value at large values of N. This transition is also affected
by the channels with zero flow rates at high N values, similar to RCV1

described above. The value of N at which the PRM transition occurs
depends on RA/RB.

To facilitate the use of the above observations in the design of
manifolds with many parallel channels, scaling laws are suggested
below, based on regression analysis. The equations will allow the design
of manifolds with channel resistances that result in a given flow mal-
distribution or vice versa.

The variables investigated in Figs. 6 and 10 and their ranges are
presented in Table 4. The first case examined is for inlet flow rate ratio
equal to 1. The results for the whole range analysed have ρ larger than
0.95 and PRM equal to zero. Therefore, RCV1 fully describes the mal-
distribution (Table 2). The regression coefficients are given in Eq. (39).

⎜ ⎟= × × ⎛
⎝

⎞
⎠

=RCV 0.0688 N R
R

(R 0.981)1
1.787 A

B

0.894
2

(39)

RB/RR does not appear in Eq. (39) because its p-value in the regression
is larger than 0.05 (p-value=0.62) and it does not affect RCV1 sig-
nificantly. The exponents for N and RA/RB have 95% confidence in-
tervals of± 5.8% and±4.6%, respectively. Al-Rawashdeh et al. [15]

Fig. 8. Contour plot of log10PT/(QT
2RR) in a log10-log10 plane of RA/RB vs. RB/

RR. The double manifold modelled is symmetrical, has 5 main channels,
QA1,1= 5×10−6 m3s1, QA2,1= 1×10−6 m3s−1. The pumping efficiencies are
80%.The arrows show the direction of greatest decline for the dimensionless
pumping power.
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presented a similar correlation even though they measured mal-
distribution differently. Their correlation agrees with the results pre-
sented here in that the exponent for N is positive and larger than one.

A second regression is performed for the same variables and the
inlet flow rate ratio varying between 2 and 8 (Table 4). For the range of
variables analysed, ρ is larger than 0.95. Therefore, the two descriptors,
RCV1 and PRM, contain all the statistical information needed to de-
scribe maldistribution (Table 2). Eqs. (40) and (41) present the

coefficients for RCV1 and PRM as functions of N, RA/RB, RB/RR, and
inlet flow rate ratio.

⎜ ⎟= × × ⎛
⎝

⎞
⎠

=RCV 0.0583 N R
R

(R 0.981)1
1.787 A

B

0.894
2

(40)

Fig. 9. Flow rate maps for different number of main channels. For all figures,
QT,1ch= 1.2×10−6 m3s−1, r= 5, RA/RB= 10−3, RB/RR= 102. In panel a) the
axes do not start in the origin.

Fig. 10. Maldistribution descriptors as functions of the number of channels for
representative resistance ratios. For both panels, QT,1ch= 1.2× 10−6 m3s−1,
r= 5. Four combinations of resistance ratios are plotted; lines of the same type
(solid and dashed) have equal RB/RR values. For all points ρ is larger than 0.95.

Table 4
Variables and their ranges used on the regressions of the
maldistribution descriptors. One regression is calculated for
r= 1 and a separate regression is made for r > 1.

Variable Range

Number of channels, N 2–500
RA/RB 10−8–10−2

RB/RR 101–107

Inlet flow rate ratio, r 1, 2–8
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Neither RB/RR nor the inlet flow rate ratio appear in Eq. (40) be-
cause their p-values are larger than 0.05 (0.48 and 0.50, respectively).
The 95% confidence intervals of the N and RA/RB exponents in Eq. (40)
are± 2.8% and±2.2%, respectively. Since RCV1 is independent of r,
the results for one value of r apply for other flow rate ratios within the
range of r considered in the regression (2≤ r≤ 8). In the PRM re-
gression all the variables have p-values below 0.05. N, RA/RB, RB/RR,
and r have 95% confidence intervals of± 17%,±15%,± 0.71%,
and±5.8%, respectively.

With respect to RCV1, the regression for the cases where r > 1
show very similar results to the r= 1 case. The exponents are almost
identical and the additional variable, the inlet flow rate ratio, has a very
minor influence. When the flow rate ratio is larger than unity, PRM is
different to zero and important for describing maldistribution. The
exponent of N in Eq. (41) is negative and close to zero, which means
that the maldistribution does not become worse as the number of
channels increases. The negative exponents in the resistance ratios
factors imply that PRM increases as these ratios decrease. The RB/RR

exponent is 21 times larger than the RA/RB exponent; this confirms that
PRM is dominated by RB/RR. Additionally, the exponent for RB/RR in
Eq. (41) is almost −1 while, as was discussed, the pumping require-
ments increase linearly with RB/RR (Eqs. (35)–(38)). This indicates that
maldistribution and pumping requirements are inversely associated to
each other. The flow rate ratio has the largest exponent in Eq. (41),
which indicates effective flow distribution is harder to achieve the
larger the flow rate ratio is.

The equations provide a powerful tool to assess the changes needed
in the manifold design to maintain good flow distribution when the
number of channels is increased. Eqs. (39)–(41) can be used to obtain
scaling laws for the resistance ratios. This is done by keeping constant
the maldistribution descriptor for two different numbers of channels,
N1 and N2. Eqs. (42) and (43) are the scaling laws for double manifolds.
They calculate the changes in the resistance ratios required to maintain
the flow distribution quality as the number of channels changes, for the
same main channel resistance (RR) and inlet flow rate ratio (r). The
values of the exponents are given in Table 5 for both cases of r equal to
or larger than one.
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The ratio N1/N2 in Eqs. (42) and (43) is equal to the throughput
ratio of manifolds with N1 and N2 main channels. RB does not change
with the number of channels for r= 1. The confidence interval for Y
when r > 1 is large, but since the exponent is close to zero, it only has
a minor effect on the RB(N2) calculation and design. For example, when
100 times more channels (and throughput) are considered, the un-
certainty on the design of RB(N2) is around 11%.

The scaling laws proposed above are applied to the scale-out of the
double manifolds modelled in Fig. 9. The double manifold with 5 main
channels has a very low degree of maldistribution. However, when the
number of channels increased by one or two orders of magnitude, the
maldistribution worsened. The scale-out in Fig. 9 was performed by
keeping the resistances constant as the number of channels increased.
With the scaling laws proposed in Eqs. (42) and (43), the resistances are
changed as a function of the number of channels and the improved
results are shown in Fig. 11. The resistance ratios for the N=5 case are
the same as in Fig. 9a, RA/RB=10−3, RB/RR=102. The cases with
N=50 and 500, have the following resistance ratios: RA/
RB= 2.08× 10−5, and 4.33× 10−7; RB/RR= 97.5, and 95.0,

respectively. In all cases, the inlet flow rate ratio is 5 and QT,1ch is
1.2× 10−6 m3s−1. For the three cases in Fig. 11, ρ is larger than 0.95
and the maldistribution is described by both RCV1 and PRM (Table 2).

By comparing Figs. 9 and 11 the improvements achieved with the
scaling laws are evident. In the case of N=50, when the resistances are
not scaled, RCV1 increases 84 times from N=5; when the resistances
are scaled, RCV1 increases by only 12%. This is not zero because the
Eqs. (42) and (43) do not fit perfectly the results of the double manifold
model. Similarly, when N increases from 5 to 500 without the adjust-
ment in resistances, the flow is severely maldistributed. In contrast,
when the resistances are adjusted following Eqs. (42) and (43), RCV1

for N=500 is only 4.4 times RCV1 for N=5 (instead of 732 times).
The results are very similar for the PRM indicator. These findings have
implications on the modularity of double manifolds. Modular double
manifolds designed for large throughputs will be suitable for lower
throughputs, while the opposite is not true. It should be noted that the
improvements in the flow distribution are accompanied by changes in
the resistances, which affect the pressure drop and power requirements;
this is explored in the next section.

4.2.2. Resistance network model results for pressure drop and power
requirements

The effects of increasing the number of channels on the pressure
drop in the manifold and the pumping power requirements are in-
vestigated, using the scaling laws presented in Eqs. (42) and (43). The
change in pressure drop for either fluid as the number of channels in-
creases is given by Eq. (44). The change in total pumping power with
increasing number of channels is given by Eq. (45), or Eq. (46) for
symmetrical double manifolds (with identical distributing and barrier
sections for phases 1 and 2).

=
+ +

+ +
=

( ) ( )Δp
Δp

N2 1

N1 1
( i 1, 2)i,N2

i,N1

R
R

N1
N2

X R
R

N1
N2

Y

R
R

R
R

Ai,N1

R

Bi,N1

R
Ai,N1

R

Bi,N1

R (44)

=

+ +

+ + +

+ + + + +

− −

− −

( )
( )

( ) ( )

( ) ( )
( ) ( )

η

η

η η

P
P

r N2 1

N2 1

r N1 1 N1 1

T,N2

T,N1

1
2 R

R
N1
N2

X 1 R
R

N1
N2

Y 1

2
R

R
N1
N2

X 1 R
R

N1
N2

Y 1

1
2 R

R
R

R 2
R

R
R

R

A1,N1

R

B1,N1

R

A2,N1

R

B2,N1

R

A1,N1

R

B1,N1

R

A2,N1

R

B2,N1

R

(45)

=
+ +

+ +

− −( ) ( )P
P

N2 1

N1 1
T,N2

T,N1

R
R

N1
N2

X 1 R
R

N1
N2

Y 1

R
R

R
R

A,N1

R

B,N1

R
A,N1

R

B,N1

R (46)

The X and Y exponents are given in Table 5. Both the change in
pressure drop and total pumping power depend on the values of N1 and
N2 and not only on their ratio. The base case double manifold modelled
above in Figs. 9 and 11 (N1=5, r= 5, RA/RB= 10−3, and RB/
RR=102) is used to illustrate how the pressure drop and the pumping
requirements change as the number of main channels increases using
the scaling laws given by Eqs. (42) and (43). As can be seen from
Fig. 12a, the pressure drop of either phase remains almost constant with
increasing number of main channels. For example for 500 main chan-
nels, the pressure drop is 0.95 ± 10% times the pressure drop for 5
main channels. This shows that a double manifold scaled by keeping the

Table 5
Values for the exponents in Eqs. (42)–(46). The choice of exponents depends on
the inlet flow rate ratio, r. The uncertainties correspond to 95% confidence
intervals.

Flow rate ratio X Y

r=1 1.998 ± 7.4% 0
r > 1 1.682 ± 3.3% 0.011 ± 210%
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maldistribution descriptors constant, also keeps pressure drop constant.
The power requirements, however, increase as the number of

channels increases, as shown in Fig. 12b and the change is almost
linear. The line of best fit is given by Eq. (47).
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, 1

0.988 2

(47)

The 95% confidence intervals for the coefficient and exponent in Eq.
(47) are 3.8% and 2.3% respectively. Eq. (47) is not a generalised
scaling law because it is based on a specific case; however, it shows that
despite the complexity of Eqs. (45) and (46), the pumping power scales
almost linearly with the number of channels.

The almost linear increase of the pumping power with the number
of channels has cost implications for the scale-out and indicates near-
absence of economies of scale. Annual pumping costs depend mostly on
the energy consumption (> 85%) [44]; also, pumps have large scaling
exponents (∼0.9) on capital cost [45]. While the linearity of cost curves
for the capital investment of microreactor technology had been pro-
posed in the literature [46], the linearity of the pumping costs curve has
not been shown before.

4.3. Design methodology for two-phase double manifolds

Based on the previous findings, a general methodology is proposed
below for the design of double manifolds for incompressible two-phase
flows or the mixing of miscible incompressible fluids. A general design
methodology, including pumps and control systems selection, has been
given by Zhang et al. [7].

Fig. 11. Flow rate maps of scaled-out double manifolds using the scaling laws
in Eqs. (42) and (43) for QT,1ch= 1.2× 10−6 m3s−1, r= 5. The axes do not
start in the origin. The resistance ratios are RA/RB= 10−3 RB/RR=102 for
N=5, RA/RB=2.08× 10−5 RB/RR= 97.5 for N=50, and RA/
RB=4.33×10−7 RB/RR= 95.0 for N=500.

Fig. 12. Pressure drop and pumping power requirements for scaled-out double
manifolds obtained using Eqs. (44) and (46), respectively. The 95% confidence
intervals lines in red dashed lines are plotted using the confidence intervals in
Table 5. The base case has N1=5, r= 5, RA/RB=10−3, and RB/RR=100.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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1) Single channel investigations. These studies will reveal key para-
meters, such as optimal geometry (channel diameter and length)
and flow rates for each phase (QT,1ch and r) to achieve the required
conversion and yield (in the case of reactors), and a function of the
pressure drop with respect to the flow rate of each phase. It will be
difficult to avoid maldistribution in the scale-out configurations. For
this reason, it is important that the single channel studies include a
maldistribution sensitivity analysis which will show how mal-
distribution affects key properties, such as conversion, and what
level of maldistribution parameters (i.e. RCV1, RCV2 and PRM) are
acceptable.

2) Design the double manifold for a required throughput. Eqs.
(39)–(41) should be used to determine the hydraulic resistances of
the distribution and barrier sections for values of the maldistribution
parameters decided in step 1.
The coefficients of Eqs. (39)–(41) are valid if the assumptions made
in Sections 2 and 3 are applicable, namely incompressible systems
with linear variation of pressure drop with flowrate. Other pressure
drop equations can also be used, but in this case Eq. (25) may have
to be solved iteratively (see Section 3) and the coefficients in Eqs.
(39)–(41) will be different.

3) Calculate the dimensions (length and diameter) of the distribution,
barrier, and main channels using the resistances estimated in step 2
and the appropriate pressure drop correlation.

4) Calculate the pumping and power requirements using Eqs.
(36)–(38). At this stage, the trade-off between power requirements
and maldistribution parameters should be considered; if the power
requirements are high, different, less stringent, maldistribution
coefficients may need to be used in step 2.

5. Conclusions

In this paper, the design of double manifolds (Fig. 1) for the scale-
out of incompressible two-phase processes in small channels was stu-
died. A statistical method, derived from principal component analysis,
was developed to quantify maldistribution of both phases in two-phase
flow distributors. It showed that two descriptors, RCV1 and PRM, are
relevant in most cases. The former is a measure of the total flow rate
and residence time distribution in the main scale-out channels, while
the latter is a measure of the distribution of the flow rate ratio in the
main channels. The flow distribution was modelled using a resistance
network model for incompressible flows. In the cases studied, the hy-
draulic resistances were considered to be independent of the flow rates
and only depended on the sizes of the channels. The methodology can
also be used when the resistances depend on the flow rates, but in this
case the network model has to be solved iteratively.

Using the statistical and the resistance network methods, relation-
ships between the design variables and maldistribution descriptors
were found (Eqs. (39)–(41)). It was shown that RCV1 decreased as the
ratio RA/RB decreased. The descriptor PRM decreased as RB/RR in-
creased. Scaling laws of the hydraulic resistances for the distribution
and barrier sections were also obtained which can be used to scale-out
double manifolds, while maintaining the same degree of maldistribu-
tion. When the scaling laws were applied, the total pressure drop of a
double manifold did not change significantly with increasing number of
channels. The pumping power requirements, however, increased line-
arly with increasing number of channels and throughput. The trade-off
between flow maldistribution and power requirements and the im-
plications on economies-of-scale were discussed. Based on these results,
criteria for the design of double manifolds were presented.
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