
Throughput Optimization for Admitting NFV-Enabled Requests in Cloud
Networks

Zichuan Xu1, Weifa Liang2, Alex Galis3, Yu Ma2, Qiufen Xia1,∗, Wenzheng Xu4

Abstract

Network softwarization is emerging as a techno-economic transformation trend that impacts the way that

network service providers deliver their network services significantly. As a key ingredient of such a trend,

network function virtualization (NFV) is shown to enable elastic and inexpensive network services for

next-generation networks, through deploying flexible virtualized network functions (VNFs) running in virtual

computing platforms. Different VNFs can be chained together to form different service chains for different

network services, to meet various user data routing demands. From the service provider point of view, such

services are usually implemented by VNF instances in a cloudlet network consisting of a set of data centers

and switches. In this paper we consider provisioning network services in a cloud network for implementing

VNF instances of service chains, where the VNF instances in each data center are partitioned into K types

with each hosting one type of service chain. We investigate the throughput maximization problem with the

aim to admit as many user requests as possible while minimizing the implementation cost of the requests,

assuming that limited numbers of instances of each service chain have been instantiated in data centers.

We first show the problem is NP-Complete, and propose an optimal algorithm for a special case of the

problem when all requests have identical packet rates; otherwise, we devise two approximation algorithms

with approximation ratios, depending on whether the packet traffic of each request is splittable. If arrivals

of future requests are not known in advance, we study the online throughput maximization problem by

proposing an online algorithm with a competitive ratio. We finally conduct experiments to evaluate the

performance of the proposed algorithms by simulations. Simulation results show that the performance of the

proposed algorithms are promising.

Keywords: Throughput maximization; cost minimization; approximation algorithms; online algorithms;

network function virtualization; algorithm analysis.

∗Corresponding author. Tel.: +8641162274368. Email address: qiufenxia@dlut.edu.cn
Email addresses: z.xu@dlut.edu.cn (Zichuan Xu), wliang@cs.anu.edu.au (Weifa Liang), a.galis@ucl.ac.uk (Alex

Galis), u5108648@anu.edu.au (Yu Ma), qiufenxia@dlut.edu.cn (Qiufen Xia), wenzheng.xu@scu.edu.cn (Wenzheng Xu)
1Dalian University of Technology, P. R. China
2the Australian National University, Australia
3University College London, UK
4Sichuan University, Chengdu, P. R. China

Preprint submitted to Computer Networks June 14, 2018

1. Introduction

Network services traditionally make use of dedicated devices and equipments to implement various

network functions, such as network address translation (NAT), firewall, and intrusion detection, to name a

few. To meet ever-growing traffic demands on network services, network service providers may continuously

purchase, add and operate new physical equipments into their operational networks. This usually leads to

a high capital expenditure (CAPEX) and operational expenditure (OPEX) to purchase and manage the

deployed network equipments. For example, it is expected that the total CAPEX of worldwide network

service providers reaches US$374 billion in 2019 [18] and this cost still grows at a rate of 1.3 percent each

year. Underpinned by the techniques of computing virtualization in cloud computing, network resource

virtualization, Network softwarization enabled by the technique of Network Function Virtualization (NFV) is

emerged as a paradigm to bring significant benefits in terms of reducing the CAPEX and OPEX of network

service providers [5, 17, 22, 26], by deploying network services as software running in virtualized resources.

In this paper we consider a cloud network that is operated by a network service provider and consists of

data centers and switches interconnected by links, providing various network services as virtualized network

functions (VNFs) in its data centers. To enable different types of network services, a number of instances for

different types of VNFs are instantiated in each data center, where it is assumed that there are K different

types of service chains. Considering that network service providers aim to maximize their profits by fully

utilizing the instantiated instances of service chains, one fundamental and challenging problem for them

is how to efficiently allocate VNF instances such that the network throughput is maximized, while the

cost of realizing user requests is minimized. Unlike conventional user requests, each NFV-enabled request

has a service chain requirement that requires to steer its traffic along a sequence of VNFs in a specified

orderprior to reaching its destination. Furthermore, different requests have different stringent end-to-end

delay requirements. Meeting such stringent requirements is crucial to guarantee the quality of network

services and user satisfactions.

There are several studies focusing on the provisioning of network services via the NFV technique [13,

17, 21, 23, 27, 32]. Most of them however assumed that the instances of service chains cannot be reused

among different requests and for each newly arrived request it has to instantiate a new instance of its

required service chain for its implementation. This significantly reduces the network throughput and increases

the implementation cost due to new service instantiation, since some network services, e.g., anti-virus

services, can be instantiated only once and then reused by later requests. On the other hand, some of them

developed novel architectures and built systems for networks to support the NFV technique, by formulating

Integer Linear Programming (ILP) solutions with the aim to optimize network performance, e.g., network

throughput [5, 20, 32]. Such ILP solutions however suffer from poor scalability when the problem size is quite

large. Others did not consider the end-to-end delay requirement of user requests or ignore the computing

2

resource constraint [17]. This can significantly degrade the quality of network services.

To the best of our knowledge, we are the first to study the throughput maximization problem in a cloud

network consisting of multiple data centers to provide different types of service chains, where a number

of instances of service chains have been instantiated in each data center in advance. We aim to admit as

many user requests as possible while minimizing their accumulative implementation costs and meeting their

end-to-end delay requirements. We consider a dynamic setting with user requests arriving at the network in

an online manner, and VNF instances in each data center can be reused by later requests to further maximize

the throughput and reduce the implementation cost. In addition, unlike existing studies focusing on heuristic

solutions without performance guarantees, we devise the very first approximation and online algorithms

with performance guarantee for the problem, which describes the distances of the obtained solutions from

the optimal ones via theoretical analysis. Specifically, we develop efficient approximation algorithms with

approximation ratios for the problem. In addition, if there is no knowledge of future request arrivals, we study

the online throughput maximization problem by devising an online algorithm with a provable competitive

ratio.

The main contributions of this paper are as follows. We first formulate the throughput maximization

problem in a cloud network and show that the problem is NP-Complete. We then devised an optimal solution

if all requests have identical packet rates. Otherwise, we propose two approximation algorithms with provable

approximation ratios, depending on whether the packet traffic of each request is splittable. We also devised a

primal-dual online algorithm with a competitive ratio, if the future arrivals of user requests are not known in

advance. We finally evaluate the performance of the proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 introduces the

system model and notations, and define the problem. Section 4 presents an exact solution to the problem.

Section 5 proposes novel algorithms for the throughput maximization problem if the request arrivals are known

in advance; otherwise a new online algorithm with a competitive ratio is devised for the online throughput

maximization problem in Section 6. Section 7 evaluates the performance of the proposed algorithms through

simulations, and Section 8 concludes the paper.

2. Related Work

The NFV technique is expected to enable network service providers to use software to set up, configure,

and manage network services in their networks automatically and dynamically [3, 23, 28]. In particular, NFV

enables elastic resource usage on a pay-as-you-go basis. This means that virtualized network functions of

different network services can be instantiated once by a network service provider and reused among different

user requests.

Much recent attention has been focusing on the placement of virtualized network functions (VNF) [23, 6, 31],

3

traffic steering given placed network functions [26], joint traffic steering and VNF placement [17], availability

of service chains [7, 36, 35], and dynamic network function chaining [32]. For example, Qazi et al. developed

SIMPLE [26] that enforces high-level routing policies for middlebox-specific traffic, they however did not

consider virtualization or dynamic network function placements. Fayazbakhsh et al. proposed FlowTags [8] for

flow scheduling in a network in the presence of dynamic modifications performed by middleboxes. Martins et

al. [23] introduced a platform to improve network performance, by revising existing virtualization technologies

to support the deployment of modular, virtual middleboxes on lightweight VMs. Qu et al. [27] studied the

problem of delay-aware scheduling and resource optimization with NFV in a virtual network. Wang et al. [32]

studied the problem of dynamic network function composition, and proposed a distributed algorithm, using

Markov approximation method for the problem. Huang et al. [17] studied the problem of jointly routing of

user requests and placing their required network functions to some servers in a data center, with the aim

to maximize the network throughput while meeting various capacity constraints of the network and the

end-to-end delay requirement of each user requests. Vizarreta et al. [31] investigated the VNF placement with

an aim to reduce the expenditures incurred by function placements, and the availability of VNF functions

for offering network services is considered. An ILP based solution is proposed for small problem sizes, and

then an efficient heuristic is adopted for large scale networks. Dynamic placement of VNFs and re-use of

existing VNF instances however are not considered. Most of the mentioned studies that are designed for

communication networks may not be suitable for a cloud network consisting of multiple data centers, since

they assumed that each network function is solely used by a user request. Although there are extensive

studies on resource allocations for Virtual Machines (VMs) [24, 29], most of them do not jointly consider

routing and VNF placement. Their solutions thus cannot be directly applied into networks that support the

NFV technique.

There are several studies focusing on the provisioning of network services in cloud platforms [5, 13, 17, 20, 9].

Most of them focused on a single data center [13, 17, 20]. Li et al. [20] aim to provide real-time guarantees

for user requests in a data center. Gu et al. [13] investigated dynamic service chaining in an NFV market

of a single data center, by devising efficient and truthful auction mechanisms and assuming some of the

instantiated network functions can be reused by later requests. Their solutions however may not be applicable

to a cloud network with geo-graphically distributed data centers. Cheng et al. [5] studied a similar problem in

an SDN with some switches having instances of network functions, which can be shared among different service

chains. They focused on developing Integer Linear Programming (ILP) solutions or simulated annealing

algorithms that are not scalable or take prohibitively long time to converge. Feng et al. [9] consider the

provisioning of service chains in a distributed cloud, by proposing approximation algorithms for the joint NFV

placement and routing. However, the end-to-end delay requirement of each user request is not considered. In

our earlier conference version [35], we performed preliminary study on the throughput maximization problem

in a cloud network. Based on the study, we investigate a new throughput maximization problem with the

4

objective to maximize the network throughput, while minimizing the implementation cost of all admitted

requests, assuming that the requests dynamically arrive at the network one-by-one. We also propose an

exact solution to the problem. More evaluation results on the performance of all algorithms on real network

topologies are also conducted.

3. Preliminaries

In this section, we first introduce the system model and notations, and then define the problem precisely.

3.1. System model

We consider a network G = (V ∪ DC, E) operated by a cloud service provider, where V is the set of

switches, DC is the set of data centers connected to some of the switches, and |DC| � |V |. E is the set of links

between switches and switches and data centers. Each data center DCi ∈ DC has computing resource capacity

to implement network functions as software, referred to as VNFs. Following existing studies [33, 34], we focus

on inter-datacenter networking of the data centers in DC. Provisioning VNFs at different data centers incurs

different costs, as servers in different data centers have different amounts of energy consumptions [33, 34].

Furthermore, data transfers at each link e ∈ E incur transmission delays. Let de be the delay of implementing

a unit packet along link e. Figure 1 is an example of a cloud network.
DC1 DC2

v1
v2

v3 DC3

Figure 1: A cloud network G with a set DC = {DC1, DC2, DC3} of data centers that are connected by a set V = {v1, v2, v3} of
switches.

3.2. Service chains, user requests, and SLA requirements

Different users typically require different types of services. For example, some enterprise users may require

a service chain consisting of a sequence of a firewall and a load balancer, while video content providers may

require a sequence of a firewall, a transcoder, and a load balancer. Following existing studies [32], we consider

an ordered sequence of VNFs as a service chain, as shown in Fig. 2.

Source NAT Firewall IDS Destination
Figure 2: An example of a service chain.

Without loss of generality, we assume that the service chains of all user requests are classified into K types.

There are a number of instances for each type of service chains that have been instantiated in each data

5

center and can be reused by later requests. Let SCki be the set of instances of type-k service chains at data

center DCi, and denote by |SCki | the number of instances of a type-k service chain at DCi with 1 ≤ k ≤ K.

Following existing studies [5, 13], we assume that each instance SCki of a type-k service chain in data center

DCi represents an atomic network service, and many of such atomic network services can be composed

together to form a network service with a larger processing capability when necessary. Therefore, each service

chain instance is allocated with enough computing resources that can process a minimum packet rate ρ, and

different instances of the same type in DCi can be composed together to handle requests with higher packet

rates. Notice that the number of instances of each type of service chains that can be instantiated in a data

center may vary with the amount of available resource in the data center. Such numbers of instantiated

service chains however do not affect the scale in/out of a specific network service; specifically, to scale out

the number of instances allocated to a network service can be expanded as long as there are idle instances,

while it can be reduced to scale in by releasing some instances.

Request rj requires to route its packets from a source node sj to a destination node tj with a given

packet rate ρj , such that its traffic passes through one instance of a type-k of service chains. Request rj has

an end-to-end delay requirement that specifies the maximum time experienced by its traffic from the source

node to the destination node in terms of both the processing delay at a data center and the transfer delay

at links. Let Dj be the end-to-end delay requirement of rj . Assuming an instance SCki of type-k service

chains at data center DCi is assigned to process the traffic of rj , then the delay experienced by rj from sj to

tj consists of the transfer delay d(sj , DCi) from sj to DCi, the processing delay d(SCki) by instance SCki
at data center DCi, and the transfer delay d(DCi, tj) from DCi to tj . Assuming d(rj , DCi) is the delay

experienced by request rj if its traffic is processed at data center DCi, the end-to-end delay requirement Dj

of rj is

d(rj , DCi) = d(sj , DCi) + d(SCki) + d(DCi, tj) ≤ Dj , (1)

For simplicity, rj is represented by rj = (sj , tj ;SC
k, ρj , Dj).

3.3. Cost model

Cloud service providers provide network services on a pay-as-you-go basis [33, 34], and aim to maximize

their profits through minimizing the cost of implementing requests. Specifically, the implementation cost

of request rj = (sj , tj ;SC
k, ρj , Dj) consists of the cost of computing resource consumption, i.e., the use of

an instance of type-k service chains at a data center DCi, and the communication cost of transferring its

traffic from sj to the data center DCi for processing then transferring the processed data from DCi to its

destination tj . Without loss of generality, we assume that such costs are monetary costs that represent the

amount of money for resource usages. Let c(SCki) be the cost of implementing an instance of a type-k service

chain of rj in DCi, and c(e) be the cost of transferring a unit packet rate for request rj through link e ∈ E.

6

To utilize bandwidth resources in an economical way, we assume that the traffic of request rj is routed via

shortest paths from its source to the chosen data center DCi and from DCi to its destination tj , i.e., psj ,DCi

and pDCi,tj . Then, the implementation cost c(rj , DCi) of implementing unit packet rate of rj at data center

DCi is

c(rj , DCi) =
(
c(SCki) +

∑
e∈psj,DCi

c(e) +
∑

e∈pDCi,tj

c(e)
)
, (2)

where py,z is the shortest path in G from node y to node z.

3.4. Problem definition

Given a network G = (V ∪ DC, E), let R be a set of requests with each being represented by rj =

(sj , tj ;SC
k, ρj , Dj)), and denote by Radm the set of admitted requests delivered by an algorithm. For the

sake of clarity, we use Rk to represent the set of requests that require instances of type-k service chain to

process its traffic, and clearly ∪Kk=1Rk = R. We define the following optimization problems.

Problem 1. The throughput maximization problem in G is to admit as many requests in R as possible, with

the aim to maximize the network throughput that is defined as the total packet rates of requests that can be

admitted by network G, i.e.,
∑
rj∈Radm

ρj , while minimizing the accumulative implementation cost of all

admitted requests, subject to the processing capacity of each type-k service chain instances in each data

center, i.e., ρ · |SCki |.

Problem 2. Assuming that requests in R arrive at the system one-by-one and the arrivals of future requests

are not known in advance, the online throughput maximization problem in G is to admit as many requests

as possible, with the objective to maximize the network throughput, while minimizing the accumulative

implementation cost of all admitted requests, subject to the processing capacity of each type-k service chain

instances in each data center, i.e., |SCki | · ρ.

Lemma 1. The decision version of the throughput maximization problem in a cloud network G = (V ∪DC, E)

is NP-complete.

Proof. The decision version of the throughput maximization problem is NP-Complete, by a polynomial

time reduction from the partition problem [10]. Specifically, given a set S of positive integers, the partition

problem is to decide whether the integers in S can be partitioned into two subsets S1 and S2 such that

the sum of the numbers in S1 equals the sum of the numbers in S2. Given any instance of the partition

problem, we can construct a special case of the throughput maximization problem in a network G without

considering implementation costs and end-to-end delay requirements of users, by adding a request for each

integer in S with packet rate as the value of the integer and including two data centers with equal numbers

of instances of a single type of service chains that can process a total packet rate that equal to the half of the

sum of the integers in S. A solution to the partition problem will return a feasible solution to the throughput

7

maximization problem, without taking into account the implementation costs and request end-to-end delay

requirements.

For the sake of convenience, symbols used in this paper are summarized in the following table.
Table 1: Symbols

Symbols Meaning
G = (V ∪ DC, E) a network with a set V of switches, a set DC of data centers, and a set E of edges
DCi a data center DCi in DC
e and de link e ∈ E and the delay of implementing a unit packet along link e
K the number of service chain types
SCki and |SCki | the set of instances of type-k service chains at data center DCi, where 1 ≤ k ≤ K and its cardinality
SCk type-k service chains
SCki an instance of type-k service chains at data center DCi
R and Rk the set of requests and the set of requests that require instances of type-k service chain
rj , sj , tj a request, its source and destination nodes in G
ρj and ρ (= ρmin) packet rate of request rj and the minimum packet rate of all requests in R
ρmax the maximum packet rate of all requests in R
Dj the end-to-end delay requirement of rj
d(rj , DCi) the delay experienced by rj if its traffic is processed by an instance at data center DCi
d(sj , DCi) and d(DCi, tj) the transfer delays of rj from sj to DCi and from DCi to tj
d(SCki) the processing delay by instance SCki at data center DCi
c(SCki) the cost of implementing an instance of type-k service chain in data center DCi
c(e) the cost of transferring a unit packet rate for request rj through link e ∈ E
psj ,DCi

and pDCi,tj the shortest paths from sj to DCi and from DCi to tj
c(rj , DCi) the implementation cost of implementing unit packet rate of rj at data center DCi
xij indicator variable indicates whether request rj is assigned to an instance of type-k service chain in DCi
G′ = (V ′, E′) the auxiliary graph constructed in the optimal algorithm for a special case with identical packet rates
s0 and t0 virtual source and sink node in V ′ for all requests
〈x, y〉 a directed edge in G′ from node x to node y
G′′ = (V ′′, E′′) the auxiliary graph constructed based on G′, which is used in the approximation algorithm Appro-Split
γ = ρmax

ρmin

r′j1, r
′
j2, · · · , r′jγj virtual requests of request rj , with each virtual request having an identical packet rate ρ (= ρmin)

L and DCl the number of data centers to which the virtual requests of rj are assigned and the lth data center.
DCl0 The data center with the maximum number of virtual requests of rj among the L data centers
ε the accuracy parameter in Garg and K’́onemman’s algorithm
βkj , λik, µikj , and θ the dual variables for constraints (4), (5), and (6) in the LP.
Pi the shadow price of each data center DCi
I∗ the maximum resource usage of requests.
DCi∗ arg minDCi∈DC Pi
∆ a constant which equals to I∗

ε
cp(vi) the processing cost at datacenter vi
B the budget of implementing requests

4. Integer Linear Programming

In this section we formulate the throughput maximization problem as an Integer Linear Program (ILP)

when the problem size is small. This exact solution will serve as the benchmark for the online throughput

maximization problem.

The objective of the throughput maximization problem is to admit as many requests in R as possible.

Specifically, to admit a request rj , a data center DCi with at least one instance of the required type of

service chain by the request need to be selected. Then, the traffic of rj will be routed via the shortest path

from sj to DCi and then from DCi to tj . Recall that Rk is the set of requests that require instances of

8

type-k service chain to process its traffic. We thus use an indicator variable xij to indicate whether request

rj ∈ Rk is assigned to an instance of type-k service chain in DCi to process its traffic. The objective of the

throughput maximization problem is

LP : max
∑

DCi∈DC

K∑
k=1

∑
rj∈Rk

xijρj , (3)

subject to the following constraints,

|DC|∑
i=1

xij ≤ 1, ∀rj ∈ Rk, 1 ≤ k ≤ K (4)∑
rj∈Rk

xij · ρj ≤ ρ|SCki |, ∀DCi, 1 ≤ k ≤ K (5)

xij · d(rj , DCi) ≤ Dj , ∀DCi, rj ∈ Rk, 1 ≤ k ≤ K (6)∑
DCi∈DC

K∑
k=1

∑
rj∈Rk

xij · ρj · c(rj , DCi) ≤ B (7)

xij ∈ {0, 1} ∀DCi, rj ∈ Rk, 1 ≤ k ≤ K, (8)

where constraints (5) indicate that the accumulative packet rates of the requests with type-k service chains

should not exceed the capacity of all available instances in SCki , if the requests are assigned to DCi for

to process their traffic. Constraints (6) say that the end-to-end delay requirement Dj of each admitted

request rj should not be violated. In constraint (7), B is a pre-defined budget for the cost of implementing

all requests in R. In the proposed online algorithm (Section 6), budget B can be set to a large value, and

easily tuned afterwards. Also, B is used in finding the dual of LP for online algorithm design. It determines

the update step of the shadow price variable related to cost and represents the accuracy in updating the

shadow price, and thus has an impact on the derived competitive ratio of the online algorithm. This will be

elaborated in Section 6. Constraints (8) impose the integral constraint of indicator variable xij .

5. Approximation Algorithms for the Throughput Maximization Problem

In this section we devise approximations algorithms for the throughput maximization problem, since the

problem is NP-Complete. To this end, we first consider a special case of the problem where all requests have

identical packet rates ρ, for which we devise an optimal algorithm. Based on the proposed optimal algorithm,

we then consider the throughput maximization problem where different requests may have different packet

rates, by devising an approximation algorithm for it, if the traffic of each request is splittable. Otherwise, we

propose another approximation algorithm by extending the proposed approximation algorithm.

9

5.1. Optimal algorithm for a special case with identical packet rates

Assuming that each request rj with the minimum packet rate ρ denotes that one instance of its required

type-k service chain will be used to process its traffic, since each instance is assumed to be able to process a

packet rate of ρ. This means that given a set R of requests, a number |R| of instances are needed to fulfill

their demands. Maximizing the throughput of network G thus is to admit as many requests as possible, by

assigning each admitted request rj to one instance of its type-k service chain, without violating the number

|SCki | of instances of a type-k service chain at data center DCi. The basic idea of the proposed algorithm is

to transfer the throughput maximization problem in G into the minimum-cost maximum flow problem in an

auxiliary graph G′ = (V ′, E′). The solution to the latter in turn will return a feasible solution to the former.

Given a set R of requests to be admitted by G, we now construct the auxiliary graph G′ = (V ′, E′) as

follows.

We first construct the node set V ′ of G′. For each data center DCi, we add K service chain nodes

into V ′ with each service chain node SCki corresponding the set of instances of type-k service chains, i.e.,

V ′ = V ′ ∪ {SCki | 1 ≤ k ≤ K, and 1 ≤ i ≤ |DC|}. For each request rj ∈ R, a request node rj is added into

V ′ too, i.e., V ′ = V ′ ∪ {rj}. Furthermore, a virtual source s0 and a virtual sink t0 is added into V ′.

We then add edges into set E′ of G′, and set edge capacities and costs. There is a directed edge from the

virtual source s0 to each request node rj , i.e., E′ = E′ ∪ {〈s0, rj〉 | 1 ≤ j ≤ |R|}; its cost is set to zero, and

capacity is set to 1. Also, there is a directed edge 〈rj ,SCki 〉 in E′ from each request node rj to a service chain

node SCki if the sum of the transfer delay from its source sj to DCi, the process delay at DCi, and the transfer

delay from DCi to tj meets the delay requirement Dj of request rj . The cost of edge 〈rj ,SCki 〉 is set to the

implementing cost of request rj at DCi, i.e., c(〈rj ,SCki 〉) = ρ(
∑
e∈psj,DCi

c(e) +
∑
e∈pDCi,tj

c(e) + c(SCki)).

The capacity of edge 〈rj ,SCki 〉 is set to 1. In addition, there is an edge 〈SCki , t0〉 from each type of service

chain node SCki to the virtual sink t0. Its cost is zero, and its capacity is set to |SCki |, i.e., the number of

available instances of a type-k service chain in DCi. Fig. 3 illustrates an example of G′.

s0 t0

r1

r2

r3

SC11

SC21

SC31

SC12

SC2
2

SC3
2

Figure 3: A constructed auxiliary graph G′ based on a network with two data centers DC1 and DC2 and three requests to be
admitted, i.e., r1, r2, and r3, where requests r1, r2, and r3 require instances of type 1, 2, and 3 service chains, respectively, and
DC2 is too far from the source of r1 to meet its delay requirement.

Having constructed the auxiliary graph G′, the problem then is to find an integral minimum-cost maximum

flow f in G′ from s0 to t0 without violating the capacity constraints of edges in G′. The detailed algorithm

10

Algorithm 1 An optimal algorithm for a special case of the throughput maximization problem where all
requests have identical packet rates ρ
Input: A network G(V ∪ DC, E), a set R of requests, an identical atomic packet rate ρ of all requests in R, and a set SCki of

instances of type-k service chains in each data center DCi ∈ DC.
Output: Admit or reject each request in R, and an assignment of admitted requests to instances of service chains in data

centers in DC.
1: Construct an auxiliary graph G′ = (V ′, E′) from network G(V ∪ DC, E) as illustrated in Fig. 3;
2: Set edge costs and capacities for each edge in E′, by setting the capacity of edge 〈rj ,SCki 〉, to 1, the cost of edge 〈rj ,SCki 〉

to ρ(c(SCki) +
∑
e∈psj,DCi

c(e) +
∑
e∈pDCi,tj

c(e)), the cost of edge 〈SCki , t0〉 to 0, and the capacity of 〈SCki , t0〉 to |SCki |;
3: Find a minimum cost maximum flow f in the auxiliary graph G′ by applying the algorithm in [1];
4: The requests that are assigned into service chain node SCki in the flow f will be processed by an instance of a type-k service

chain in data center DCi;
5: All other requests that are not assigned in flow f will be rejected;
6: return The assigned service chain for each admitted request, and requests that are rejected.

is given in Algorithm 1, which is referred to as algorithm Optimal.

5.2. Approximation algorithm with splittable traffic

The basic idea of the algorithm is to treat each request into a number of virtual requests with a minimum

packet rate ρ, and then reduce the problem into a minimum-cost multicommodity problem in an auxiliary

graph G′′ = (V ′′, E′′). The construction of G′′ is similar to the auxiliary graph G′ = (V ′, E′) in the previous

section, with slightly different edge capacity settings.

We now detail the approximation algorithm. Let ρmax and ρmin be the maximum and minimum packet

rates of requests in R, respectively. Without loss of generality, we assume that γ = ρmax

ρmin
is a given constant

and the packet rate ρj of request rj is dividable by ρmin. We further assume that ρ = ρmin. We treat each

request into multiple virtual requests with each having a minimum packet rate ρ, by treating each request rj

as γj (=
ρj
ρ) virtual requests r

′
j1, r

′
j2, ..., r

′
jγj

with identical packet rate ρ.

We then construct the auxiliary graph G′′(V ′′, E′′), by letting V ′′ = V ′ and E′′ = E′. The only difference

between G′′ and G′ is the capacities for edges 〈s0, rj〉 and 〈rj ,SCki 〉, which are both set to γj . The capacity

and cost settings for all other edges are the same as those in G′.

Given the constructed auxiliary graph G′′, we treat each request rj as a commodity with demand γj that

need to be routed in G′′ from s0 to t0. We then find a minimum-cost multicommodity flow f ′ in G′′, by

using the approximation algorithm due to Garg and Könemann [11]. The obtained flow f ′ corresponds to a

splittable assignment of virtual requests of each request into data centers in network G. The details of the

proposed algorithm are given in Algorithm 2.

5.3. Approximation algorithm with unsplittable traffic

If the traffic of each request is not splittable, the solution delivered by Algorithm 2 is infeasible, since

the virtual requests derived from each request may be assigned to different data centers for processing. To

modify the solution to make it feasible, we perform adjustments such that the traffic of each admitted request

implements its service chain in one data center. Specifically, for each request rj whose virtual requests are

11

Algorithm 2 Approximation algorithm Appro-Split for the throughput maximization problem with
splittable traffic
Input: A network G(V ∪ DC, E), a set R of requests with each request rj having a packet rate ρj , a set SCki of instances of

type-k service chains at each data center DCi ∈ DC, and the minimum packet rate ρ that can be processed by each service
chain instance.

Output: Admit or reject each request in R, and an assignment of admitted requests to instances of service chains in the data
centers in DC.

1: Let ρmax and ρmin be the maximum and minimum packet rates of all requests in R, respectively, and assume that ρ = ρmin;
2: Divide each request rj ∈ R into γj (= ρj

ρ
) virtual requests with each virtual request having a packet rate of ρ.

3: Construct an auxiliary graph G′′ = (V ′′, E′′) following the construction procedure of algorithm 1, i.e., steps 1 and 2 in
algorithm 1.

4: Set the capacities for edges 〈s0, rj〉 and 〈rj ,SCki 〉 to γj , and the capacities, costs of all other edges are the same as those in
G′;

5: Find a minimum-cost multicommodity flow f ′ from s0 to t0 in G′′ by invoking the algorithm due to [11], by considering
each rj as a commodity with demand γj that needs to be routed from s0 to t0 in G′′;

6: return The assigned service chain for each admitted request, and the requests that are rejected.

Algorithm 3 Approximation algorithm Appro-Unsplit for the throughput maximization problem with
unsplittable traffic
Input: A cloud network G(V ∪DC, E), a set R of requests with each request rj having a packet rate ρj , a set SCki of instances

of type-k service chains at each data center DCi ∈ DC, and the minimum packet rate ρ that can be processed by each
service chain instance.

Output: Admit or reject each request in R, and an assignment of admitted requests to instances of service chains in the data
centers in DC.

1: Invoke Algorithm 2 to obtain a solution that may assign the virtual requests of each request rj into multiple data centers
for processing;

2: For each request rj , let DC1, ..., DCl, ..., DCL be the L data centers to which its virtual requests are assigned. Denote
by DCl0 be the data center that is assigned with the highest number of virtual requests of rj ;

3: Move the virtual requests of rj that are assigned to other data centers to data center DCl0 ;
4: return The assigned service chain for each admitted request, and the requests that are rejected.

assigned to multiple data centers, we use DC1, ..., DCl, ..., DCL to denote the L data centers to which

the virtual requests of rj are assigned, where 2 ≤ l ≤ |DC|. Denote by DCl0 be the data center with the

maximum number of virtual requests of rj . We merge the virtual requests assigned to other data centers

to the ones in data center DCl0 . Notice that, such merging may violate the number of available instances

of service chains in that data center. To avoid such violations, we can scale down the number of available

instances of a type of service chain in each data center DCi ∈ DC by a factor of |DC|, before applying

Algorithm 2. That is, the number of instances in set SCki is
⌊ |SCki |
|DC|

⌋
. The proposed approximation algorithm

is described in Algorithm 3.

5.4. Algorithm analysis

We now analyze the performance of algorithms 1, 2 and 3, in theorems 1, 2, and 3, respectively.

Theorem 1. Given a cloud network G(V ∪ DC, E) with a set V of switch nodes, a set DC of data centers

that are data centers that are attached to some of the switches and there is an optical cable interconnecting

the switch and the attached data center, a set R of requests that have identical packet rates ρ, and a set SCki
of instances of a type-k service chain at data center DCi, there is an algorithm for this special case of the

throughput maximization problem, i.e., Algorithm 1, which delivers an optimal solution.

12

Proof. See Appendix.

Theorem 2. Given a network G(V ∪ DC, E) with a set R of requests with each having a packet rate of

ρj, and a set SCki of instances of type-k service chains with each being able to process a minimum packet

rate ρ, assume that the ratio of the maximum packet ratio to the minimum packet rate of all requests, i.e.,

ρmax/ρmin, is a given constant and ρ = ρmin. There is an approximation algorithm for the throughput

maximization problem, Algorithm 2, which delivers an approximate solution with an approximation ratio of

(1 − 3ε). The algorithm takes O∗(K2|DC|2|R|2 + (|V |+ |DC|)2)5 time to deliver an approximate solution,

where ε is the accuracy parameter in Garg and Könemman’s algorithm with 0 < ε ≤ 1/3.

Proof. See Appendix.

Theorem 3. Given a network G(V ∪ DC, E) with a set R of requests with each having a packet rate of

ρj, and a set SCki of instances of type-k service chains with each being able to process a minimum packet

rate ρ, assume that the ratio of the maximum packet rate to the minimum packet rate, i.e., ρmax/ρmin, is a

given constant and ρ = ρmin. There is an approximation algorithm for the throughput maximization problem,

Algorithm 3 that delivers an approximate solution with an approximation ratio of 1−3ε
|DC| , where |DC| can be

considered as a given constant with |DC| � |V |.

Proof. See Appendix.

6. Online Algorithm for the Online Throughput Maximization Problem

We now consider the online throughput maximization problem where requests arrive in one-by-one without

the knowledge of future arrivals. We propose an online algorithm with a competitive ratio for it.

6.1. Overview

The proposed online algorithm is based on the idea of primal-dual update. The rationale of this approach

is to maintain shadow price variables for data centers in DC, which parsimoniously abstract the state of

resource usages in data centers [4, 15]. On the arrival of a request, the algorithm compares the price of

the cheapest data center in terms of the shadow price to a given threshold that will be defined later, and

the request is then either rejected or admitted. The shadow price variables are then updated accordingly.

This procedure is triggered on the arrival of each request. Let βkj , λik, µikj , and θ be the dual variables for

constraints (4), (5), (6), and (7) in LP in Section 4, respectively.

5O∗(f(n)) = O(f(n) · logO(1) n)

13

6.2. Online algorithm

Considering that the future arrivals of requests are not known in advance, myopic admission of current

requests may harm the admissions of future requests. We thus need an admission policy to regulate the

admissions of current requests and a metric on how much resources should be reserved for future requests. To

this end, we define the shadow price Pi of each data center DCi, the maximum resource usage I∗ of requests,

and a constant ∆ to adjust resource reservations for future requests. First, the shadow price Pi of each data

center DCi represents the marginal increase of strengthening the capacity and budget constraints (5) and (7)

of the LP if request rj is admitted by DCi. It thus can be defined as

Pi =
(
λik + θ · c(rj , DCi)

)
. (9)

Second, we give the definition of I∗ to capture the maximum of the strengthenings of constraints (5) and

(7) of the LP over all data centers for the requests with unit packet rate, i.e., the maximum of computing

resource usage and costs of implementing requests in data centers. This constant regulates how much the

resource and delay constraints in the LP can be approached in the worst case, when admitting a request

with unit packet rate.

I∗ = max
{

1, max
DCi∈DCj ,rj∈Rk

(d(rj , DCi)

ρj
, c(rj , DCi)

)}
(10)

Third, to define the metric on how much resources should be reserved for future requests, we use a constant

∆ that is a function of the defined constant I∗ and a given parameter ε with 0 < ε ≤ 1, where

∆ =
I∗

ε
. (11)

Parameter ε is also used to provide a tradeoff between the competitiveness of the proposed online algorithm

and the degree of violating the constraints in LP. Namely, a larger ε will lead to less network throughput

while a lower degree of violations on the resource capacities of G and the delay requirement of requests.

Given the definitions of Pi, I∗, and ∆, we now describe the admission policy of the algorithm. Specifically,

for request rj ∈ Rk, we find the data center with the minimum shadow price Pi∗ , that is DCi∗ ←

arg minDCi∈DCj Pi, where DCj is the set of data centers that can meet the delay requirement of rj . If

Pi∗ ≥ 1− (d(rj , DCi))
2

∆ ·Dj · ρj
, (12)

request rj will be rejected; otherwise, it will be accepted. The rationale behind this threshold setting of Pi∗

is to keep the dual feasibility of the dual variables. Notice that the term (d(rj ,DCi))
2

∆·Dj ·ρj in the right hand side of

inequality (12) is to ensure only data centers that can meet the delay requirement of rj to be considered.

14

Algorithm 4 An online algorithm for the online throughput maximization problem.
Input: A cloud network G(V ∪ DC, E), and requests that arrive at the network one by one.
Output: Admit or reject each arrived request, and an assignment of admitted requests to instances of service chains in the

data centers in DC.
1: for each arrival of request rj do
2: Let DCj be the set of data centers that can met the delay requirement of rj ;
3: DCi∗ ← arg minDCi∈DCj Pi;

4: if Pi∗ ≥ 1− (d(rj ,DCi∗))2

∆·Dj ·ρj
then

5: Reject request rj ;
6: else
7: Assign request rj to an instance of type-k instances at data center DCi∗ ;
8: Update dual variables βkj , λi∗k, µi∗kj , and θ, following rules in (13), (14), (15), and (16);

Having defined the admission policy, we then describe how to regulate the resource preservation for future

requests, by giving the rules of updating dual variables. Each defined dual variable is set to zero initially. If

a request rj ∈ Rk is assigned to data center DCi∗ ← arg minDCi∈DCj Pi, the values of dual variables βkj ,

λi∗k, µi∗kj , and θ are updated according to the following rules

βkj ← ρj
(
1− Pi∗

)
(13)

λi∗k ← λi∗k

(
1 +

ρj

ρ · |SCki∗ |

)
+

ρj

∆ · ρ · |SCki∗ |
(14)

µi∗kj ←
d(rj , DCi∗)

∆ ·Dj
(15)

θ ← θ
(

1 +
ρj · c(rj , DCi∗)

B

)
+
ρj · c(rj , DCi∗)

∆ ·B
. (16)

The details of the proposed algorithm are given in Algorithm 4, which is referred to as algorithm Online.

6.3. Algorithm analysis

In the following we analyze the competitive ratio of the proposed online algorithm as follows.

We first give the dual of the LP in Section 4, i.e., its objective is to

min
∑

DCi∈DC

K∑
k=1

ρ · λik|SCki |+
∑

DCi∈DC

K∑
k=1

∑
rj∈Rk

µikj ·Dj + θ ·B +

K∑
k=1

∑
rj∈Rk

βkj .

subject to

∑
DCi∈DC

K∑
k=1

∑
rj∈Rk

(
λik · ρj · |SCki |+ µikj · d(rj , DCi) + θ · ρj · c(rj , DCi)

)
+

K∑
k=1

∑
rj∈Rj

βkj ≥ ρj . (17)

For the sake of simplicity, we re-write inequality (17) as

K∑
k=1

∑
rj∈Rj

βkj ≥ ρj −
∑

DCi∈DC

K∑
k=1

∑
rj∈Rk

(
λik · ρj · |SCki |+ µikj · d(rj , DCi) + θ · ρj · c(rj , DCi)

)
(18)

15

Given the dual of the LP, we show the dual feasibility of the defined updating rules defined in inequalities

(13), (14), (15), and (16), in the following lemma.

Lemma 2. The updating rules in (13), (14), (15), and (16) preserve the dual feasibility of the dual variables.

Proof. See Appendix.

We then show the upper bound on the increase of the dual objective in Lemma 3, if a request is admitted.

Lemma 3. Whenever a request rj is admitted, the increase of the objective function value of the dual program

is no more than (1 + ε)ρj.

Proof. See Appendix.

We finally show how much the computing capacity, delay requirement, and budget constraint in the LP

can be violated. Let Lik(j) and λik(j) be the total packet rate of requests that are admitted by type-k

instances in data center DCi and the value of dual variable λik, after the admission of request rj . We have

Lemma 4. The admission policy of Algorithm 4 can make the end-to-end delay requirement of each admitted

request met, and the violation of the computing capacity and budget constraints in the LP is at most by a

multiplicative O(logN + log(1/ε)), where N = maxi,k,j{|SCki |, Dj , B}.

Proof. See Appendix.

Theorem 4. Given a network G(V ∪ DC, E) with requests arriving in the network one-by-one without the

knowledge of future arrivals, and a set SCki of instances of type-k service chains with each being able to process

a minimum packet rate ρ that have been instantiated in data center DCi. There is an online algorithm for the

online throughput maximization problem, Algorithm 4, which delivers a solution with a competitive ratio of

(1− 3ε, O(logN + log(1/ε))), where the throughput achieved by it is at least (1− 3ε) times of the optimal one

while the violation of constraints (5), (6), and (7) is no more than a multiplicative factor O(logN + log(1/ε)),

where N = maxi,k,j{|SCki |, Dj , B}, 0 < ε ≤ 1/3.

Proof. See Appendix.

Remarks: The budget B, the number |SCki | of instances of type-k service chain in data center DCi , and

the delay requirement Dj of rj determine the violation of constraints (5), (6), and (7) . For example, if

N = maxi,k,j{|SCki |, Dj , B} = B, budget B has an impact on the violation ratio, which means a larger budget

will incur a higher violation of resource constraints because more requests may be admitted. This gives a

conservative of setting the value of B. Specifically, given the number of available instances for each type of

service chain, the budget can be set as the total cost of using all the instances and bandwidth resources along

16

the longest path in the network G. Due to such conservative way of setting budget, the resource capacities

can be violated. Such resource violations however can be avoided by scaling down the number of available

instances of each type of service chain by the ratio of O(logN + log(1/ε)), and then invoke Algorithm 4.

7. Simulations

In this section, we evaluate the performance of the proposed algorithms through experimental simulations.

7.1. Experiment Settings

We consider networks that are generated by the tool GT-ITM [12] and two real network topologies

including an European network GÉANT [14] and an ISP network AS1755 [30] in our simulations. There are

nine data centers for the GÉANT topology as set in [14] and the number of data centers in ISP networks

are provided in [26]. The transmission delay of a link varies between 2 milliseconds (ms) and 5 ms [19].

The costs of transmitting and processing 1 GB (approximately 16,384 packets with each having size of

64 KB) of data are set within [$0.05, $0.12] and [$0.15, $0.22], respectively, following typical charges in

Amazon EC2 with small variations [2]. We consider five categories of network functions: Firewall, Proxy,

NAT, IDS, and Load Balancing (LB). Each service chain instance has at most five network functions. The

processing delay of a packet for each network function is randomly drawn from 0.045 ms to 0.3 ms [23],

and the processing delay of a service chain instance is the sum of processing delays of its network functions.

The number of service chain types K is 5. The number of instances of each type of service chains in a data

center is randomly drawn from [10, 50]. The minimum packet rate of a service chain instance is set to 400

packets/second [23]. Each request rj ∈ R is generated as follows, given a network G = (V ∪ DC, E), two

nodes from V are randomly drawn as its source sj and destination tj . Its packet rate ρj is randomly drawn

from 400 to 4, 000 packets/second [20], the delay requirement varies from 10 ms to 200 ms [25], and its type

of service chain is randomly assigned from one of the five types. Parameter ε in the online algorithm is

set to 0.2. The running time is obtained based on a machine with a 3.40GHz Intel i7 Quad-core CPU and

16 GiB RAM. Unless otherwise specified, these parameters will be adopted in the default setting. Table 2

summarizes the above-mentioned settings of main parameters used in the experiments.
Table 2: Parameter Settings

Parameters Range Distributions References
Transmission delay of a link [2, 5] ms Uniform [16, 27, 35]
Dj [10, 200] ms Uniform and Zipf [16, 25]
The costs of transmitting 1 GB [$0.05, $0.12] Uniform [2]
The costs of processing 1 GB [$0.15, $0.22] Uniform [2]
The processing delay of a packet [0.045 to 0.3] ms Uniform [23]
The number of service chain types K 5 - [23, 20, 35]
The number of instances of each VNF type [10, 50] - -
ρ 400 packets/second Uniform [23]
ρj [400, 4,000] packets/second Uniform [20]

17

50 100 150 200 250
Network size

0

2e+005

4e+005

6e+005

8e+005

T
h
ro

u
g

h
p
u

t

Optimal
Greedy

(a) Throughput

50 100 150 200 250
Network size

0

5

10

15

20

25

30

C
o

st

Optimal
Greedy

(b) Cost

50 100 150 200 250
Network size

0

5e-006

1e-005

1.5e-005

2e-005

2.5e-005

3e-005

3.5e-005

4e-005

C
o

st
/T

h
ro

u
g
h

p
u

t

Optimal
Greedy

(c) Cost/Throughput

50 100 150 200 250
Network size

0

100

200

300

400

R
u

n
n

in
g
 t

im
e

(s
ec

o
n
d

s)

Optimal
Greedy

(d) Running time (seconds)
Figure 4: The performance of algorithms Optimal and Greedy [35].

50 100 150 200 250
Network size

30000

40000

50000

60000

70000

80000

90000

1e+005

T
h

ro
u

g
h

p
u

t

Optimal
Greedy

Figure 5: The performance of algorithms Optimal and Greedy with delay requirements of requests following Zipf distribution.

We compare the proposed approximation algorithms with a greedy algorithm that aims to maximize the

throughput by always admitting requests with the smallest packet rates first, by implementing the request

in a data center that not only meets its delay requirement but also has the maximum number of available

service chain instances. For simplicity, we refer to this greedy algorithm as algorithm Greedy. The proposed

algorithms 1, 2, and 3 as algorithms Optimal, Appro-Split, and Appro-Unsplit, respectively. We also

evaluate the performance of the proposed online algorithm, i.e., Online, with an online greedy algorithm that

always assigns an arrived request to a data center that has the maximum ratio of its available computing

resource to the demand of computing resource of the request. We refer to this greedy algorithm for the

online throughput maximization problem as algorithm Online-Greedy. In addition, since the exact solution

in Section 4 is not scalable for large network sizes, we use its relaxed version that considers each variable xij

as a real value in the range of [0, 1]. The obtained solution is an upper bound on the optimal throughput of

the exact solution. We refer to this upper bound as OPT-UB.

7.2. Performance evaluation of the optimal algorithm with identical packet rates

We first study the performance of algorithms Optimal and Greedy by varying the number of switches

|V | from 50 to 250, while fixing the switch-to-datacenter ratio |V |
|DC| at 10. Fig. 4 shows the results, and

from Fig. 4 (a) and (b) we can see that algorithm Optimal achieves a throughput at least 30% more than

that by algorithm Greedy, while Optimal has a higher implementation cost for the admitted requests. The

reason is that algorithm Greedy selects the data center with the most available number of service chain

instances, leading to some requests being rejected due to that their nearby data centers (that can meet delay

requirements) do not have enough available number of service chain instances for the requests. Furthermore,

as shown in Fig. 4 (a), the throughput of all algorithms increases when the network size grows from 50

to 250, because a larger network means more data centers with more available service chain instances.

From Fig. 4 (c), we can see that algorithms Optimal and Greedy have similar performance on the cost of

18

5 10 15 20
Switch-to-datacenter ratio

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

Th
ro

ug
hp

ut

Optimal
Greedy

(a) Throughputs of algo-
rithms Optimal and Greedy in
network GÉANT

5 10 15 20
Switch-to-datacenter ratio

10

15

20

25

30

C
os

t

Optimal
Greedy

(b) Costs of algorithms
Optimal and Greedy network
GÉANT

5 10 15 20
Switch-to-datacenter ratio

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

Th
ro

ug
hp

ut

Optimal
Greedy

(c) Throughputs of algo-
rithms Optimal and Greedy
in network AS1755

5 10 15 20
Switch-to-datacenter ratio

10

15

20

25

30

C
os

t

Optimal
Greedy

(d) Costs of algorithms
Optimal and Greedy network
AS1755

Figure 6: The performance of algorithms Optimal and Greedy in networks GÉANT and AS1755.

implementing one unit of packet rate, as both algorithms aim to maximize throughput. In addition, it can

be seen from Fig. 4 (d) that algorithm Optimal takes more time than that by algorithm Greedy to deliver a

solution.

Fig. 5 shows the performance of algorithms Optimal and Greedy when the delay requirements of requests

follow Zipf distribution, with most requests have low delay requirements that account for only a small portion

of the range [10, 200] ms. From Fig. 5, it can be seen that with the increase of network sizes, the throughputs

of algorithms increase first from 50 to 100 and then drops afterwards. The reason is that most requests have

low delay requirements and each request with higher probabilities of being implemented in a longer path

with more links when the network size keeps growing, thereby increasing the probability of being rejected

due to the violation of its delay requirement.

We then evaluate the performance of algorithm Optimal against that of algorithm Greedy by varying the

switch-to-datacenter ratio from 4 to 10 in networks GÉANT and AS1755, respectively. It can be seen from

Fig. 6 (a) and Fig. 6 (c) that algorithm Optimal consistently achieves much more throughput than that by

algorithm Greedy in networks GÉANT and AS1755, when the switch-to-datacenter ratio is 10, although it

delivers higher costs (to admit more requests). Also, with the increase of |V ||DC| , the algorithms admit less

requests, since larger value of |V ||DC| means smaller number of data centers and less available number of service

chain instances, if the size |V | of a network is fixed.

7.3. Performance evaluation of the approximation algorithm with different packet rates

We first study the performance of algorithms Appro-Split, Greedy, and OPT-UB by varying the network

size from 50 to 250 while fixing the switch-to-datacenter ratio at 10. We can see from Fig. 7 (a) that the

throughput achieved by algorithm Appro-Split is better than that by algorithm Greedy, whereas the cost of

algorithm Appro-Split is far less than algorithm Greedy. Also, algorithm OPT-UB has the highest throughput

among the three algorithms. For example, when the network size is 100, algorithm Appro-Split admits

around 30, 000 higher throughput than that by algorithm Greedy. Fig. 8 (a) depicts the results of algorithms

Appro-Split, Greedy, and OPT-UP when delay requirements of requests following Zipf distributions, from

which it can be seen that the throughputs of the algorithms increases first when the network size increases

19

from 50 to 150, and decreases afterwards. Similar performance of algorithms Appro-Split, Greedy, and

OPT-UB in networks GÉANT and AS1755 can be seen in Fig. 9.

50 100 150 200 250
Network size

0

5e+05

1e+06

1.5e+06

2e+06

Th
ro

ug
hp

ut

OPT-UB
Appro-Split
Greedy

(a) Throughputs

50 100 150 200 250
Network size

0

10

20

30

40

50

C
os

t OPT-UB
Appro-Split
Greedy

(b) Costs

50 100 150 200 250
Network size

0

10

20

30

40

50

60

70

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s) OPT-UB
Appro-Split
Greedy

(c) Running times (seconds)
Figure 7: The performance of algorithms Appro-Split, Greedy, and OPT-UB [35].

50 100 150 200 250
Network size

10000

1e+005

1e+006

T
h

ro
u

g
h

p
u

t

OPT-UB
Appro-Split
Greedy

(a) Throughputs of algorithms
Appro-Split, Greedy, and
OPT-UB

50 100 150 200 250
Network size

10000

1e+005

1e+006

T
h

ro
u

g
h

p
u

t

OPT-UB
Appro-Unsplit
Greedy

(b) Throughputs of algorithms
Appro-Unsplit, Greedy, and
OPT-UB

Figure 8: The performance of algorithms Appro-Split, Appro-Unsplit, Greedy, and OPT-UB with delay requirements of requests
following Zipf distribution.

5 10 15 20
Switch-to-datacenter ratio

0

5e+05

1e+06

1.5e+06

Th
ro

ug
hp

ut

OPT-UB
Appro-Split
Greedy

(a) Throughputs of algo-
rithms Appro-Split and
Greedy in network GÉANT

5 10 15 20
Switch-to-datacenter ratio

0

10

20

30

40

50

C
os

t

OPT-UB
Appro-Split
Greedy

(b) Costs of algorithms
Appro-Split and Greedy
network GÉANT

5 10 15 20
Switch-to-datacenter ratio

0

5e+05

1e+06

1.5e+06

Th
ro

ug
hp

ut

OPT-UB
Appro-Split
Greedy

(c) Throughputs of algo-
rithms Appro-Split and
Greedy in network AS1755

5 10 15 20
Switch-to-datacenter ratio

0
10
20
30
40
50
60
70
80

C
os

t

OPT-UB
Appro-Split
Greedy

(d) Costs of algorithms
Appro-Split and Greedy
network AS1755

Figure 9: The performance of algorithms Appro-Split and Greedy in networks GÉANT and AS1755.

50 100 150 200 250
Network size

0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

Th
ro

ug
hp

ut

OPT-UB
Appro-Unsplit
Greedy

(a) Throughputs

50 100 150 200 250
Network size

0

10

20

30

C
os

t

OPT-UB
Appro-Unsplit
Greedy

(b) Costs

50 100 150 200 250
Network size

0

20

40

60

80

100

120

140

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s) OPT-UB
Appro-Unsplit
Greedy

(c) Running times (seconds)
Figure 10: The performance of algorithms Appro-Unsplit and Greedy.

We then compare the performance of algorithm Appro-Unsplit with these of algorithms Greedy and

OPT-UB by varying network size from 50 to 250 while fixing the switch-to-datacenter ratio at 10. It can be seen

from Fig. 10 that algorithm Appro-Unsplit achieves a 6% more throughput than that by algorithm Greedy,

when the network size is 250. Furthermore, by comparing the performance of algorithm Appro-Split and

algorithm Appro-Unsplit in Fig. 7 and Fig. 10, it can be seen that algorithm Appro-Split has a higher

20

5 10 15 20
Switch-to-datacenter ratio

0

2e+05

4e+05

6e+05

8e+05

Th
ro

ug
hp

ut

OPT-UB
Appro-Unsplit
Greedy

(a) Throughputs of al-
gorithms Appro-Unsplit,
Greedy, and OPT-UB in
network GÉANT

5 10 15 20
Switch-to-datacenter ratio

0

10

20

30

40

50

C
os

t

OPT-UB
Appro-Unsplit
Greedy

(b) Costs of algorithms
Appro-Unsplit, Greedy, and
OPT-UB network GÉANT

5 10 15 20
Switch-to-datacenter ratio

0

2e+05

4e+05

6e+05

8e+05

Th
ro

ug
hp

ut

OPT-UB
Appro-Unsplit
Greedy

(c) Throughputs of al-
gorithms Appro-Unsplit,
Greedy, and OPT-UB in
network AS1755

5 10 15 20
Switch-to-datacenter ratio

0

10

20

30

40

50

C
os

t

OPT-UB
Appro-Unsplit
Greedy

(d) Costs of algorithms
Appro-Unsplit, Greedy, and
OPT-UB network AS1755

Figure 11: The performance of algorithms Appro-Unsplit, Greedy and OPT-UB in networks GÉANT and AS1755.

4 5 6 7 8 9 10
ρmax / ρ

5e+05

1e+06

1.5e+06

2e+06

Th
ro

ug
hp

ut

Optimal
Greedy

(a) Throughputs of algorithms
Optimal and Greedy.

4 5 6 7 8 9 10
ρmax / ρ

0

5e+05

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

Th
ro

ug
hp

ut

OPT-UB
Appro-Split
Greedy

(b) Throughputs of of algo-
rithms Appro-Split, Greedy,
and OPT-UB.

4 5 6 7 8 9 10
ρmax / ρ

0

5e+05

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

Th
ro

ug
hp

ut

OPT-UB
Appro-Unsplit
Greedy

(c) Throughputs of of algo-
rithms Appro-Unsplit, Greedy,
and OPT-UB.

Figure 12: The performance of algorithms Appro-Unsplit, Appro-Split, Greedy, and OPT-UB.

throughput than algorithm Appro-Unsplit. Similar results for such performance can also be found in

networks GÉANT and AS1755, as shown in Fig. 11. In addition, Fig. 8 (b) shows the results if delay

requirements of requests follow Zipf distributions.

We finally study the impact of the minimum packet rate ρ on the performance of algorithms Appro-Split

and Appro-Unsplit, by varying the ratio ρmax

ρ from 4 to 10 while fixing ρmax at 4, 000 and the network

size at 100. We can see from Fig. 12 that algorithms Optimal, Appro-Split, and Appro-Unsplit perform

much better than algorithm Greedy for different values of ρmax

ρ . Also, the throughput of algorithms Optimal,

Appro-Split, and Appro-Unsplit decrease with the increase the value of ρmax

ρ . The reason is that a higher
ρmax

ρ means a lower ρ, making each instance of service chains being able to process a lower packet rate. This

reduces the total packet rate that can be processed by the data centers, which reduces the number of requests

that can be admitted.

7.4. Performance evaluation of the online algorithm

We here study the performance of algorithm Online against that of algorithms Online-Greedy and

OPT-UB, by varying network size from 50 to 250 while fixing the number of requests at 2, 000. The results are

shown in Fig. 13, and we can see from Fig. 13 (a) that algorithm Online delivers a near-optimal throughput

which is around 90% of the optimal one by algorithm OPT-UB. Also, algorithm Online outperforms algorithm

Online-Greedy and delivers a solution that is at least 10 times better than that of algorithm Online-Greedy,

while it has a higher cost to implement the admitted request. It must be mentioned that algorithm OPT-UB

21

50 100 150 200 250
Network size

0

1e+05

2e+05

3e+05

4e+05

5e+05

Th
ro

ug
hp

ut

OPT-UB
Online
Online-Greedy

(a) Throughputs of algorithms
Online, Online-Greedy, and
OPT-UB.

50 100 150 200 250
Network size

0

5

10

15

20

C
os

t

OPT-UB
Online
Online-Greedy

(b) Costs of of algorithms Online,
Online-Greedy, and OPT-UB.

50 100 150 200 250
Network size

0

10

20

30

40

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s) OPT-UB
Online
Online-Greedy

(c) Running times (sec-
onds) of algorithms Online,
Online-Greedy, and OPT-UB.

Figure 13: The performance of algorithms Online, Online-Greedy, and OPT-UB.

50 100 150 200 250
Network size

1000

10000

1e+005

T
h

ro
u

g
h

p
u

t

OPT-UB
Online
Online-Greedy

Figure 14: The performance of algorithms Online, Online-Greedy, and OPT-UB with delay requirements of requests following
Zipf distribution.

has the longest running time whereas algorithm Online-Greedy has the shortest running time. Similar

performance of algorithms Online, Online-Greedy and OPT-UB in networks GÉANT and AS1755 can be

seen in Fig. 15. In addition, Fig. 14 shows the results if the delay requirements of requests follow Zipf

distributions. It can be seen that the throughput of the algorithms decrease with the growth of network sizes,

since requests have higher probability of being assigned to longer paths in the network thereby violating

their delay requirements.

8. Conclusion

In this paper we investigated the throughput maximization problem in a cloud network, in which limited

numbers of instances of each type of service chains are instantiated in data centers. We proposed an optimal

algorithm for a special case of the problem when all requests have identical packet rates. Otherwise, we

devised two approximation algorithms with provable approximation ratios for the problem, depending on

whether the traffic of each request is splittable. If arrivals of future requests are not known in advance, we

studied the online throughput maximization problem by proposing an online algorithm with a competitive

ratio. Simulation results demonstrated that the performance of the proposed algorithms are promising. It

must be mentioned that the developed algorithms have wide applications for network operators to optimize

the performance of their networks. For example, the algorithms for throughput maximization algorithms can

be used for one-shot optimizations periodically, or in each time slot. Specifically, the time can be divided

into equal time slots, and requests are available in the beginning of each time slot. Such time slots can be set

in the length of several minutes, depending on the network environment and request characteristics. The

algorithms can be directly adopted by deciding the admissions of each request once it arrives into the system.

22

500 1,000 1,500 2,000
The number of requests

0

50,000

1e+05

1.5e+05

2e+05
Th

ro
ug

hp
ut

OPT-UB
Online
Greedy

(a) Throughputs of algorithms
Online, Online-Greedy, and
OPT-UB in network GÉANT.

500 1,000 1,500 2,000
The number of requests

0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

Th
ro

ug
hp

ut

OPT-UB
Online
Greedy

(b) Throughputs of algorithms
Online, Online-Greedy, and
OPT-UB in network AS1755.

Figure 15: The performance of algorithms Online, Online-Greedy, and OPT-UB in networks GÉANT and AS1755.

Acknowledgement

This work was partially funded by the EU 5GEx (671636), NECOS projects (777067), and the fundamental

research funds for the central universities (DUT17RC(3)061).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.

[2] Amazon Web Services, Inc. Amazon ec2 instance configuration. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

ebs-ec2-config.html.

[3] J. W. Anderson et al. xOMB: extensible open middleboxes with commodity servers. Proc. of ANCS, ACM/IEEE, 2012.

[4] N. Buchbinder and J. Naor. The design of competitive online algorithms via a primal-dual approach. Foundations and

Trend in Theoretical Computer Science, Vol. 3, Nos. 2-3, pp. 93-263, Now Publishers Inc., 2007.

[5] G. Cheng, H. Chen, H. Hu, Z. Wang, and J. Lan. Enabling network function combination via service chain instantiation.

Computer Networks, Vol. 92, pp.396–407, Elsevier, 2015.

[6] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The dynamic placement of virtual network functions. Proc.

of the Network Operations and Management Symposium (NOMS), IEEE, 2014.

[7] J. Fan, C. Guan, Y. Zhao, and C. Qiao. Availability-aware mapping of service function chains. Proc. of INFOCOM’17,

IEEE, 2017.

[8] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing network-wide policies in the presence of dynamic

middlebox actions using FlowTags. Proc. of NSDI ’14, USENIX, 2014.

[9] H. Feng, J. Llorca, A. M. Tulino, D. Raz, A. F. Molisch. Approximation algorithms for the NFV service distribution problem.

Proc. of INFOCOM’17, IEEE, 2017.

[10] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-Completeness. W.H. Freeman,

1997.

[11] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems.

Proc. of FOCS’98, IEEE, 1998.

[12] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.

[13] S. Gu, Z. Li, C. Wu, and C. Huang. An efficient auction mechanism for service chains in the NFV market. Proc. of

INFOCOM’16, IEEE, 2016.

[14] A. Gushchin, A. Walid, and A. Tang. Scalable Routing in SDN-enabled Networks with Consolidated Middleboxes.

Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization

(HotMiddlebox), 2015.

23

[15] L. Guo, J. Pang, and A. Walid. Dynamic service function chaining in SDN-enabled networks with middleboxes. Proc. of

ICNP’16, IEEE, 2016.

[16] http://www.huawei.com/minisite/5g/en/defining-5g.html, 2018.

[17] M. Huang, W. Liang, Z. Xu, M. Jia, and S. Guo. Throughput maximization in software-defined networks with consolidated

middleboxes. Proc. of LCN’16, IEEE, 2016.

[18] IHS. http://www.infonetics.com/pr/2015/1H15-Service-Provider-Capex.asp.

[19] S. Knight et al. The internet topology zoo. J. Selected Areas in Communications, Volume 29, pp. 1765–1775, IEEE, 2011.

[20] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtualization with soft real-time guarantees. Proc. of INFOCOM,

IEEE, 2016.

[21] Y. Ma, W. Liang, and Z. Xu. Online revenue maximization in NFV-enabled SDNs. To appear in Proc of IEEE ICC’18,

May, 2018.

[22] L. Mamatas, S. Clayman, and A. Galis. Information exchange management as a service for network function virtualization

environments. IEEE Transactions on Network and Service Management, Vol. 13, No. 3, pp. 564-577, IEEE, 2016.

[23] J. Martins et. al. ClickOS and the art of network function virtualization. Proc. of NSDI ’14, USENIX, 2014.

[24] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center networks with traffic-aware virtual machine

placement. Proc. of INFOCOM’10, IEEE, 2010.

[25] Microsoft. Plan network requirements for Skype for business. https://technet.microsoft.com/en-us/library/gg425841.

aspx, 2015.

[26] Z. A. Qazi et al.SIMPLE-fying middlebox policy enforcement using SDN. Proc. SIGCOMM ’13, ACM, 2013.

[27] L. Qu, C. Assi, and K. Shaban. Delay-aware scheduling and resource optimization with network function virtualization. To

appear in IEEE Transactions on Communications, IEEE, 2016.

[28] V. Sekar et al. Design and implementation of a consolidated middlebox architecture. Proc. of NSDI, USENIX, 2012.

[29] V. Shrivastava et al.. Application-aware virtual machine migration in data centers. Proc. of INFOCOM’11, IEEE, 2011.

[30] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with rocketfuel. Proc. of SIGCOMM, ACM, 2002.

[31] P. Vizarreta et al.. QoS-driven function placement reducing expenditures in NFV deployments. Proc. of ICC’17, IEEE,

2017.

[32] P. Wang et al.. Dynamic function composition for network service chain: Model and optimization. Computer Networks,

Vol. 92, pp. 408–418, Elsevier, 2015.

[33] Z. Xu and W. Liang. Minimizing the operational cost of data centers via geographical electricity price diversity, Proc. of

6th IEEE International Conference on Cloud Computing, IEEE, 2013.

[34] Z. Xu, W. Liang, and Q. Xia. Efficient embedding of virtual networks to distributed clouds via exploring periodic resource

demands. To appear in IEEE Transactions on Cloud Computing, Vol.XX, IEEE, 2016.

[35] Z. Xu, W. Liang, A. Galis, and Y. Ma. Throughput maximization and resource optimization in NFV-enabled networks.

Proc. of ICC’17, IEEE, 2017.

[36] R. Yu, G. Xue, and X. Zhang. QoS-aware and reliable traffic steering for service function chaining in mobile networks.

IEEE Journal on Selected Areas in Communications, Vol. 35, No.11, pp.2522 – 2531, IEEE, 2017.

Appendix

Proof of Theorem 1

Proof. We first show that the algorithm delivers a feasible solution. This is to show a minimum cost maximum

flow f from s0 to t0 in G′ corresponds a feasible assignment of requests to data centers in DC, and the delay

24

requirement of each admitted request is met. Since the capacity of edge 〈SCki , DCi〉 is set to |SC
k
i | that is

the number of available instances of type-k service chains in DCi, each of the requests that are assigned

to SCki in flow f will have an instance to process its traffic. We now show the delay requirement of each

admitted request is met. Since a data center is attached to its switch via an optical cable, the delay incurred

between the data center and its attach switch can be ignored. Also, considering that there will not be an

edge from a request node rj to a switch that is attached with data center DCi that cannot meet its delay

requirement in G′, the delay requirement of an admitted request will be met.

We then show that the algorithm delivers an optimal solution in polynomial time. The edge capacities of

the constructed auxiliary graph G′ are integral values. Following the well-known integrality property for the

minimum-cost maximum flow problem [1], there is an integral minimum-cost maximum flow f , which can be

found in polynomial time. That is, for each request node rj and each service chain node SCki at data center,

the flow frj ,SCkj from rj to SCkj is either 0 or 1, as the capacity of edge 〈rj ,SCkj 〉 is 1.

Proof of Theorem 2

Proof. The solution obtained is feasible if the traffic of each request rj is allowed to be split into different

data centers, following Theorem 1. In terms of the approximation ratio, since the solution obtained by

Garg and Könemman’s algorithm directly translates into a feasible solution to the throughput maximization

problem, the approximation ratio thus is the same as the Garg and Könemman’s algorithm, i.e., at least

1− 3ε times of the optimal [11].

We now analyze the running time of the proposed algorithm. It can be seen that the algorithm consists of

two phases: (1) the construction of auxiliary graph G′′, and (2) invoking Garg and Könemman’s algorithm.

Phase (1) takes O(|V ∪ DC|2) time, while phase (2) takes O∗(ε−2m(n+m)) time [11], where m = |E′′| and

n = |V ′′|, while |V ′′| = |R|+(K+1)|DC|+2 and |E′′| = O(|R|(1+K|DC|)+(K+1)|DC|) = O(K · |R| · |DC|)

, the running time of Algorithm 2 thus is O∗(K2|DC|2|R|2 + (|V |+ |DC|)2).

Proof of Theorem 3

Proof. The solution is feasible, as (1) each admitted request is assigned to an instance of its type of service

chains, and (2) its end-to-end delay requirement is met, following similar derivation in Theorem 1.

We now show the approximation ratio on the throughput of Algorithm 3. Since the available number of

each type of service chain at a data center is scaled down by a factor of |DC|, it is clear that the throughput

achieved by Algorithm 3 is no less than (1−3ε)
|DC| times of the optimal.

We finally analyze the approximation ratio on the implementation cost by Algorithm 3. Denote by c the

implementation cost by Algorithm 3 of all admitted requests, and cj the implementation cost of request rj .

Let c′ be the implementation cost due to Algorithm 2 by treating rj as d ρj
ρmin
e number of virtual requests.

Note that c is achieved by merging the virtual requests of rj that are assigned to different data centers.

25

Specifically, if the virtual requests of rj are assigned to data centers DC1, ..., DCl, ..., DCL, all other

virtual requests are assigned to data center DCl0 that is assigned with the highest number of virtual requests.

Let c′kl be the implementation cost of the virtual requests assigned to service chain SCkl at data center DCl.

Clearly,
∑L
l=1 c

′k
l > ckl0 . After moving all virtual requests to DCl0 , the implementation cost of a unit packet

rate will be the same as that of DCl0 , while the cost ckl will depend on how many virtual requests are moved

from DCl to DCl0 . Notice that both the cost of computing resource consumption and the communication

cost of a unit packet rate of the moved virtual requests will be the same as the ones in DCl0 . This is because

the moved virtual requests will be processed by the same type of service chain and their traffic will be

forwarded via the same paths as the ones in in DCl0 . In the worst case there are γ
L < γ

2 virtual requests

in data center DCl that are moved to DCl0 , since 2 ≤ L ≤ |DC|. Therefore, ckl ≤ ckl0 . This means that the

implementation cost cj of rj at DCl0 , can be maximally L · ckl0 < |DC| · c
k
l0
, i.e., cj < |DC| · ckl0 . We then have

c′ =
∑
rj∈R

L∑
l=1

c′kl ≥
∑
rj∈R

ckl0 , since
γj∑
l=1

c′kl > ckl0 ,

>
∑
rj∈R

cj
|DC|

, since cj < |DC| · ckl0 , ≥
c

|DC|
. (19)

In other words, we have c ≤ |DC|c′, meaning that the implementation cost of admitted requests will be

no greater than |DC| times of the cost by the solution achieved through treating each request rj as γj

virtual requests. Let c∗ be the optimal cost of the optimal solution to the throughput maximization problem.

Denote by c′∗ the optimal cost of the solution by treating each request as a number of virtual requests.

According to Theorem 2, we have c′ = c′∗. Clearly, c′∗ < c∗ as each virtual request of a request is moved

to the service chain with the maximum implementation cost of all the virtual requests. We thus have

c ≤ |DC|c′ = |DC|c′∗ < |DC|c∗. This means that the implementation cost of the solution by Algorithm 2 is

no more than γ times of the cost of the optimal solution.

Proof of Lemma 2

Proof. To show the dual feasibility, we need to show that the dual variables are always positive, and constraint

(18) is always met. Clearly, for the values of variables λi∗k, µi∗kj , and θ, the updating rules always keep

them to be nonnegative, as they are set to zero initially and their values can only increase in each update.

The value of variable βkj is positive due to the admission policy in inequality (12). Thus, the dual variables

are positive. For constraint (18), we consider two cases: (1) request rj is rejected; and (2) rj is admitted.

Case (1): if request rj is rejected, it is clear that the right hand side of inequality (18) is nonpositive.

Considering βkj is set to zero initially, constraint (18) holds.

26

Case (2): if request rj is admitted, we have

Pi∗ < 1− (d(rj , DCi))
2

∆ ·Dj · ρj
. (20)

Due to Eq. (13), we then have

βkj = ρj · (1− Pi∗)

≥ ρj · (1− Pi∗ −
(d(rj , DCi))

2

∆ ·Dj · ρj
),

since 0 <
(d(rj , DCi))

2

∆ ·Dj · ρj
< 1− Pi∗

= ρj · (1− λik − θ · c(rj , DCi)−
µi∗kj · d(rj , DCi)

ρj
)., (21)

where the derivation of inequality (21) is due to the definition of Pi and the updating rule for µi∗kj (i.e.,

equality (15)). Therefore, constraint (18) holds in this case. For each of other data centers in DC \ {DCi∗},

constraint (18) also holds, since dual variables are only updated if a request is assigned to data center DCi.

Also, further updates for future requests only make the right hand side of (18) smaller, thereby preserving its

feasibility.

Proof of Lemma 3

Proof. Following the rules in (13), (14), (15), if a request rj is admitted, the objective function value of the

dual program increases by

Γrj =
(
λik

ρj

ρ · |SCki |
+

ρj

∆ · ρ · |SCki |

)
ρ|SCki |+

(d(rj , DCi)

∆ ·Dj

)
Dj

+
(
θ
ρj · c(rj , DCi)

B
+
ρj · c(rj , DCi)

∆ ·B

)
B + ρj

(
1− Pi

)
=
(
λikρj +

ρj
∆

)
+
d(rj , DCi)

∆
+
(
θ · ρj · c(rj , DCi) +

ρj · c(rj , DCi)
∆

)
+ ρj − ρj · λik − ρj · θ · c(rj , DCi)

= ρj +
ρj
∆

(
1 +

d(rj , DCi)

ρj
+ c(rj , DCi)

)
≤ ρj +

ρj · 3I∗

∆
= ρj(1 + 3ε), since ∆ =

I∗

ε
. (22)

Proof of Lemma 4

Proof. As shown in Step 2 of Algorithm 4, each admitted request rj will only be assigned to one of the data

centers that can met its delay requirement.

27

The upper bound on the violation of computing capacity as well as the budget constraint is analyzed as

follows.

Initially, we have λik(j) = Lik(j) = 0 for all data centers DCi ∈ DC and all k with 1 ≤ k ≤ K. Notice

that only when a request rj is admitted, the values of λik(j) and Lik(j) will be updated,

Lik(j) = Lik(j − 1) + ρj , (23)

and

λik(j) = λik(j − 1)
(

1 +
ρj

ρ · |SCki |

)
+

ρj

∆ · ρ · |SCki |

=
ρj

∆ · ρ · |SCki |
+
(

1 +
ρj

ρ · |SCki |

)
· 1

∆

(ρj−1

ρ · |SCki |

+
(
1 +

ρj−1

ρ · |SCki |
) ρj−2

ρ · |SCki |

+
(
1 +

ρj−2

ρ · |SCki |
)(

1 +
ρj−1

ρ · |SCki |
) ρj−3

ρ · |SCki |
+ ...

+
(
1 +

ρ1

ρ · |SCki |
)
· ... ·

(
1 +

ρj−1

ρ · |SCki |
) ρj−3

ρ · |SCki |

)
≥ ρj

∆ · ρ · |SCki |
+
(

1 +
ρj

ρ · |SCki |

)
· 1

∆

(
(Lik(j − 1)

ρ · |SCki |
) ρj−2

ρ · |SCki |
+
(Lik(j − 1)

ρ · |SCki |
)2 ρj−3

ρ · |SCki |

...+
(Lik(j − 1)

ρ · |SCki |
)j−1 ρ1

ρ · |SCki |

)
, since

ρ · |SCki |+ ρj−1

ρ · |SCki |
>
Lik(j − 1)

ρ · |SCki |
(24)

≥ ρj

∆ · ρ · |SCki |
+
(

1 +
ρj

ρ · |SCki |

)
· 1

∆

(
1− 1 +

(Lik(j − 1)

ρ · |SCki |
) 1

|SCki |

+
(Lik(j − 1)

ρ · |SCki |
)2 1

|SCki |
, since ρmin = ρ

...+
(Lik(j − 1)

ρ · |SCki |
)j−1 1

|SCki |

)
≥ ρj

∆ · ρ · |SCki |
+
(

1 +
ρj

ρ · |SCki |

)
· 1

∆ · |SCki |

(
1− 1 +

(Lik(j − 1)

ρ · |SCki |
)

+
(Lik(j − 1)

ρ · |SCki |
)2

+ ...+
(Lik(j − 1)

ρ · |SCki |
)j−1

)
(25)

≥ ρj

∆ · ρ · |SCki |
+
(

1 +
ρj

ρ · |SCki |

)
· 1

∆ · |SCki |

(
exp
(Lik(j − 1)

ρ · |SCki |

)
− 1
)

(26)

=
1

∆ · |SCki |

(
exp
(Lik(j − 1)

ρ · |SCki |

)
− 1
)(

1 +
ρj

ρ · |SC|ki

)
+
ρj
ρ

)
≈ 1

∆|SCki |

(
exp
(Lik(j − 1)

ρ · |SCki |

)
exp
(

1 +
ρj

ρ|SCki |

)
− 1
)
≥ 1

∆N

(
exp
(Lik(j)

ρ · |SCki |

)
− 1
)
,

(27)

28

where the derivation from inequality (25) to inequality (26) is due to the fact that 1 + x+ x2 + x3 + · · · >

1 + x
1! + x2

2! + x3

3! + · · · = exp(x). Notice that we used the first order approximation exp(x) = 1 + x. Let

1/Z∗ = min
{

1, min
DCi∈DC,rj∈Rk

(d(rj , DCi)

ρj
, c(rj , DCi)

)}
.

If λik > Z∗, then for any data center DCi, we have

λik +
µikjd(rj , DCi)

ρj
+ θ · c(rj , DCi) > 1, (28)

which means DCi will not be selected for request rj . Since Algorithm 4 admits requests one by one, we

have λik < Z∗ in the last update of λik for the processing of request rj−1. Since one more update increases

λik at most I∗, we have

λik ≤ I∗ + Z∗. (29)

This implies
Lik(j)

ρj |SCki |
≤ log((I∗ + Z∗)N∆ + 1) = O(logN + log(1/ε)). (30)

In other words, the violation of the capacity constraint of data center DCi is at most by O(logN + log(1/ε)).

Similar results can be obtained for the budget constraint.

Proof of Theorem 4

Proof. According to Lemma 4, each constraint of the problem can be violated at most by a multiplicative

O(logN + log(1/ε)).

The rest is to show the competitive ratio of (1−3ε). By Lemma 3, the objective value of the dual program

increases by at most (1 + 3ε)ρj if request rj is admitted. As a result, the overall objective of the LP is at

least 1/(1 + 3ε) ≥ 1 − 3ε times of the objective of the dual program, when 0 < ε ≤ 1/3. Therefore, the

throughput obtained by the solution due to the fact that Algorithm 4 is at least (1− 3ε)OPT .

Zichuan Xu (M’17) received his PhD degree from the Australian National University in 2016,

ME degree and BSc degree from Dalian University of Technology in China in 2011 and 2008, all

in Computer Science. He was a Research Associate at Department of Electronic and Electrical

Engineering, University College London, UK. He currently is an Associate Professor at School of

Software, Dalian University of Technology, China. His research interests include cloud computing,

software-defined networking, network function virtualization, wireless sensor networks, routing

protocol design for wireless networks, algorithmic game theory, and optimization problems.

29

Weifa Liang (M’99–SM’01) received the PhD degree from the Australian National University in

1998, the ME degree from the University of Science and Technology of China in 1989, and the BSc

degree from Wuhan University, China in 1984, all in computer science. He is currently a professor

in the Research School of Computer Science at the Australian National University. His research

interests include design and analysis of energy efficient routing protocols for wireless ad hoc and

sensor networks, cloud computing, Software-Defined Networking, design and analysis of parallel

and distributed algorithms, approximation algorithms, combinatorial optimization, and graph theory. He is a senior

member of the IEEE.

Alex Galis is a Professor in Networked and Service Systems at University College London.

He has co-authored 10 research books and more that 250 publications in the Future Internet

areas: system management, networks and services, networking clouds, 5G virtualisation and

programmability. He was a member of the Steering Group of the Future Internet Assembly (FIA)

and he led the Management and Service-aware Networking Architecture (MANA) working group.

He acted as TPC chair of 14 IEEE conferences. He is also a co-editor of the IEEE Communications Magazine feature

topic on Advances In Networking Software. He acted as a Vice Chair of the ITU-T SG13 Group on Future Networking.

He is involved in IETF and ITU-T SG13 network slicing activities and he is also involved in IEEE SDN initiative.

Yu Ma received BSc degree in Computer Science at the Australian National University in 2014.

He currently is a PhD candidate in Computer Science at the Australian National University. His

research interests include software defined networking, Internet of Things (IoT), and Wireless

sensor networks.

Qiufen Xia received her PhD degree from the Australian National University in 2017, ME degree

and BSc degree from Dalian University of Technology in China in 2012 and 2009, all in Computer

Science. She currently is a Lecturer at International School of Information Science & Engineering,

Dalian University of Technology, China. Her research interests include big data processing, mobile

cloud computing, distributed clouds, cloud computing, and optimization problems.

Wenzheng Xu (M’15) received the BSc, ME, and PhD degrees in computer science from Sun

Yat-Sen University, Guangzhou, P.R. China, in 2008, 2010, and 2015, respectively. He currently is a

Special Associate Professor at the Sichuan University and was a visitor at the Australian National

University. His research interests include wireless ad hoc and sensor networks, mobile computing,

approximation algorithms, combinatorial optimization, online social networks, and graph theory.

He is a member of the IEEE.

30

