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RESEARCH PAPER

Energy use and height in office buildings
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Design, London, UK; dDesign Engineering and Mathematics, Faculty of Science and Technology, Middlesex University, London, UK

ABSTRACT
The relationship between energy use and height is examined for a sample of 611 office buildings in
England and Wales using actual annual metered consumption of electricity and fossil fuels. The
buildings are of different ages; they have different construction characteristics and methods of
heating and ventilation; and they include both public and commercial offices. When rising from
five storeys and below to 21 storeys and above, the mean intensity of electricity and fossil fuel
use increases by 137% and 42% respectively, and mean carbon emissions are more than
doubled. A multivariate regression model is used to interpret the contributions of building
characteristics and other factors to this result. Air-conditioning is important, but a trend of
increased energy use with height is also found in naturally ventilated buildings. Newer buildings
are not in general more efficient: the intensity of electricity use is greater in offices built in
recent decades, without a compensating decrease in fossil fuel use. The evidence suggests it is
likely – although not proven – that much of the increase in energy use with height is due to the
greater exposure of taller buildings to lower temperatures, stronger winds and more solar gains.
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Introduction

Taking the domestic and non-domestic sectors together,
the average annual turnover of the UK building stock is
only 1% (Jones, Patterson, & Lannon, 2007). Conse-
quently, significant improvements are required across
both new and existing buildings to meet long-term
national emissions-reduction targets. In order to ensure
that any decisions about changes to the existing stock
or the design of new buildings are made effectively, an
understanding is required about the relationships
between building characteristics and energy use.

Historically, global trends in high-rise construction have
reflected changing technologies, planning policies, architec-
tural interests and broader societal concerns (Oldfield,
Trabucco, & Wood, 2009). In recent years, the UK has
been building taller. In 2015, approximately one-third of
the UK’s 100 tallest buildings had been completed in the
previous five years; by 2020, this trend is expected to accel-
erate further (Skyscraper Center; http://www.skyscraper
center.com/). However, despite perceptions that tall build-
ings are necessary to achieve high urban densities, research

has shown that this is not the case. It is often possible to
achieve the same densities as tall, freestanding towers
with lower-rise buildings designed as slabs, terraces or
courtyards (Steadman, 2014). Since the turnover of build-
ings is so slow, and the need for high-rise is debatable, it
is particularly important to examine the impact of built
form design choices on energy performance.

This paper examines the energy consumption of
offices in England and Wales, using information for
611 buildings, collected from three sources of disaggre-
gate data: the Display Energy Certificate (DEC) scheme,
the Better Buildings Partnership (BBP) and the London
Mayor’s Energy Challenge (EC) databases. The analysis
focuses on the impact of building height on electricity
and fossil fuel use, as well as emissions.

Energy, height and the external environment of
buildings

The structural design of high-rise buildings is typically
more complex than low-rise buildings due to the
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increased load effects associated with height (Tamošai-
tienė&Gaudutis, 2013). Consequently, embodied energy
intensity increases substantially as buildings get taller
(Resch, Bohne, Kvamsdal, & Lohne, 2016; Treloar, Fay,
Ilozor, & Love, 2001), although this ‘height premium’
can be partly mitigated through design and material
choices (Ali & Moon, 2007; Chau, Hui, Ng, & Powell,
2012; Foraboschi, Mercanzin, & Trabucco, 2014). Typi-
cally, however, embodied energy accounts for only 10–
20% of the overall lifecycle of buildings compared with
80–90% associated with operational energy (Ramesh,
Prakash, & Shukla, 2010).

Energy consumption in the operation of buildings is
determined by a large number of variables, including dis-
tinct architectural and engineering design choices, as well
as broader factors such as occupancy behaviour and the
external environment. Analyzing the drivers of building
performance, Baker and Steemers (1994) suggest that
building design, including height, can account for a 2.5
times variation in energy use, while the systems and occu-
pancy behaviour each account for a 2.0 times variation.
This analysis was expanded to consider urban geometry,
which was found to account for approximately a 10% vari-
ation in energy use (Ratti, Baker, & Steemers, 2005).

Other things being equal, the primary direct impact of a
building’s height on its energy consumption is through
interactions with the external environment.1 Climate
changes with altitude, affecting thermal transfer and
infiltration rates. For example, external air temperature
and wind speed fall and rise with altitude respectively,
although the magnitude of change varies with local con-
ditions (CIBSE, 2006). Access to daylight and solar gains,
meanwhile, is determined by the height and location of a
building relative to its surroundings. While the effect of
each separate factor may be straightforward to estimate,
the net impact on energy consumption for any specific
building will depend on variables including the installed
systems, occupancy behaviour and exposed thermal
mass. For example, increased daylight availability will
only reduce a building’s demand for artificial lighting if
the controls are somehow linked to daylight, and there
are no adverse effects that encourage occupants to close
blinds, such as excessive glare, solar gains or privacy issues.

Many of the studies that consider building height use
thermal modelling to estimate the performance of theoreti-
cal built forms. Analyzing simple forms introduces the
complication that the number of storeys, total floor area
and area per floor are interlinked. Parasonis, Keizikas,
and Kalibatiene (2012) and Hemsath and Bandhosseini
(2015) show that, maintaining total floor area, building
height correlates positively with heat loss and modelled
residential energy use, largely driven by resulting changes
in overall compactness. Significantly, height was found to

have a greater impact on residential energy use than con-
struction materials, depending on the climate (Hemsath
& Bandhosseini, 2015). A small number of studies model
the energy performance for case study buildings. Ellis and
Torcellini (2005) showed that total heating and cooling
energy use in a simple rectangular office skyscraper in
Manhattan increases between the lowest and highest
floors. The net increase in energy consumption was rela-
tively small (approximately 3% rise between the bottom
and top storeys). However, by repeating the analysis mul-
tiple times with different model settings, they illustrated
that the driving force for this trend was the change in over-
shadowing from surrounding buildings, suggesting that a
key factor is the relative form of a building compared
with its surroundings. This is echoed in a case study in Sin-
gapore that estimated that 4.7% of building cooling demand
was associated with the relative height of the surrounding
buildings (Wong et al., 2011). Similarly, Steemers (2003)
notes that in order to minimize energy demand, glazing
ratios should reduce considerably between lower and
upper floors, reflecting the variation in local obstructions
with height. For London, mean glazing ratios of 38% and
25% are proposed for ground level and at 30 m respectively.

While building simulation enables controlled tests to
be undertaken, a comparison with empirical data high-
lights the difficulty of accounting for factors such as
occupancy behaviour (Wright, 2008). Furthermore,
assumptions about building characteristics may not be
straightforward. For example, a survey of offices in the
US and the UK found no correlation between airtight-
ness and building age or materials, but found that taller
buildings tended to have lower infiltration rates (Emmer-
ich & Persily, 1998). The need for actual energy and
building data to form the basis of research into the
built environment, rather than relying solely on mod-
elled energy demand and theoretical building character-
istics, is urged by Hamilton et al. (2013) who propose a
greater focus on empirical methods such as ‘energy epi-
demiology’. They highlight the need for large-scale (pre-
ferably population-level) analyses to be carried out where
possible, and for smaller studies to be undertaken within
the context of the overall population. Moreover Gon-
çalves and Bode (2011) note that the need to analyze
metered energy data is especially pertinent for tall build-
ings, where energy reductions can be particularly chal-
lenging to achieve.

In recent years, a small number of large-scale studies
of disaggregate energy data have been undertaken using
publicly available data for the UK (Armitage, Godoy-Shi-
mizu, Steemers, & Chenvidyakarn, 2015; Godoy-Shi-
mizu, Armitage, Steemers, & Chenvidyakarn, 2011;
Hong & Steadman, 2013) and the US (Yalcintas &
Aytun Ozturk, 2007). A recent survey, examining the
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energy data of schools in England, found no significant
variation in energy with height (Hong, Paterson, Mumo-
vic, & Steadman, 2014). However, this likely reflects the
building type, which is predominantly naturally venti-
lated and very low-rise (Tian & Choudhary, 2012). In
contrast, an analysis of aggregate energy use in London
found that domestic gas consumption was higher in
areas marked by tall buildings when accounting for
other influencing factors (Hamilton et al., 2017). No
equivalent variation in domestic electricity use was
found. Elsewhere, a study examining the data from a sur-
vey of 20 all-electric air-conditioned offices in Hong
Kong reveals a 43% increase in mean electricity use inten-
sity between buildings below 11 storeys and those above
20 storeys (Lam, Chan, Tsang, & Li, 2004).2 Electrical
equipment and heating, ventilation and air-conditioning
(HVAC) accounted for the largest absolute increase in
mean intensity, rising by 43 and 40 kWh/m2 respectively.
Interestingly, mean lighting intensity increased by 20%
between the shortest and tallest buildings, despite a corre-
sponding rise in glazing level and reduction in overshad-
ing from surrounding buildings.

Taken as a whole, the literature highlights the need for
further large-scale, empirical examination of the
relationship between building height and energy use.
While the influence on embodied energy is well under-
stood, relatively few studies have examined the impact
of height on operational energy. A number of studies
have found a positive correlation between energy con-
sumption and height. However, many of these rely on
modelled, rather than actual, energy data and the empiri-
cal studies that do exist typically consider small numbers
of buildings. The work reported here is new in consider-
ing energy and height, using actual metered energy data,
for a large number of buildings.

Structure of this paper

This paper examines the performance of several hundred
offices in England and Wales, using disaggregate energy
data gathered from three sources. The data were com-
bined with other pre-existing information, alongside
the results of a desktop survey undertaken by the
authors. This combined data set has been analyzed to
evaluate how energy use varies with building height.

The paper is structured as follows. The next section
summarizes data that were collected and outlines the
processing undertaken to produce a unified buildings
database. Next, the overall energy performance of the
sample is assessed, including the variation with height,
and a generalized linear modelling (GLM) is produced.
Finally, the results are discussed, with proposals for
further work.

Methods

The key underlying requirement for statistical building
studies of this nature is actual, metered disaggregate
energy-use data, available for a large sample of buildings.
A small number of recent studies have analyzed the per-
formance of the UK stock in this way, using energy data
from DECs (Godoy-Shimizu et al., 2011; Hong et al.,
2014). The DEC database is a collection of energy
records gathered since 2008 mostly for public buildings
in England and Wales, and originally introduced to
improve public understanding about energy use in the
building stock (Department of Energy and Climate
Change (DECC), 2013). Aside from unavoidable factors
such as human error, using data from a single source
ensures that the collection and processing of the under-
lying data remains consistent. However, it also means
that the analysis will reflect any biases within the original
sample. For example, it has been found that public sector
offices have different energy profiles compared with pri-
vate offices (Department for Business, Energy & Indus-
trial Strategy (BEIS), 2016). Consequently, an
examination of the DEC database, which is predomi-
nantly public, will not reflect the behaviour of the non-
domestic stock as a whole. Naturally, the impact of any
biases will depend on the area of study. For example,
public buildings form a greater proportion of the overall
stock and total floor area in education than in the office
or retail sectors.

For this study, energy data were gathered from three
separate sources; the DEC, the BBP and the London
Mayor’s EC databases. The BBP is a consortium of pri-
vate sector property companies devoted to improving
the performance of the commercial building stock. The
Mayor’s Energy Challenge was a competition to encou-
rage improvements in London’s buildings. It should be
noted that while using these sources together may ensure
that the analysis covers a wider range of buildings than
any individual source, biases will still exist within the
overall sample. For example, all three sources skew
towards buildings with large floor areas. Again, the data-
bases are each connected with energy saving initiatives.
Therefore, the buildings within the sample may tend to
be operated with a greater focus on energy performance
than the overall office stock. The energy data were orig-
inally collected in the periods 2009–14, pre-2011 and
2010–14 for the BBP, DEC and EC respectively.

Within the UK, a single register of disaggregate built
form data does not exist. Therefore, the energy data
were combined with additional information about the
physical and operational characteristics of the sample
from several different sources. These can be grouped
into two broad categories:
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. Existing data
Information was gathered from three sources: the UK
government’s database of property information e-
PIMS (https://data.gov.uk/dataset/epims), and two
websites for tall buildings: Emporis (https://www.
emporis.com/) and Skyscraper Center (http://www.
skyscrapercenter.com/).

. Additional data collection
Further data were gathered by the authors through an
implementation of 3DStock, a comprehensive model
of the physical characteristics of buildings in England
and Wales and the activities they house, generated
using digital maps and property taxation data
(Evans, Liddiard, & Steadman, 2017). A desktop sur-
vey was also carried out using imagery from Google
Maps (https://www.google.co.uk/maps) and Bing
Maps (https://www.bing.com/maps).

The information gathered from the different sources
was originally collected at different times, and for differ-
ent purposes. Consequently, considerable work was

necessary for checking, processing and combining the
separate files. Figure 1 summarizes the approach taken.
For full details, see the Appendix in the supplemental
data online.

As the basis of the study, the energy data were pro-
cessed first (step A in Figure 1). Addresses and construc-
tion ages were used to match entries associated with the
same buildings. Next, each of the additional data sources
was matched in turn (step B), and further data collection
was undertaken (step C). Due to inconsistencies between
the files, it was necessary to recheck old matches after
each new source was added. For example, two entries
might appear to cover separate buildings based on the
addresses in the energy data. However, matching with
the Skyscraper Center data might reveal that they are
actually part of the same building. Finally, the different
files were combined into a single database, using weather
correction to adjust for differences in the collection
periods for energy data (step D).

The final combined file consisted of information for
708 offices across England and Wales. However, the

A. ENERGY DATA 
(DECs; BBP; EC) 

A1. INITIAL PROCESSING 
Remove doubtful and incomplete entries 

A2. STANDARDISE 
Unify formatting and units between files 

A3. MATCH DATA 
Match between and within files 
Assign unique refs 

B. OTHER DATA* 

(e-PIMS; Emporis; Skyscraper Center) 

B1. MATCH 
Match to energy data 
Assign unique refs 

B2. PROCESS & STANDARDISE 
Process and unify data to energy data 

C. DATA COLLECTION* 

(3DStock; Desktop survey) 

C1. SELECT BUILDINGS 
Select buildings to be surveyed 

C2. COLLECT DATA 
Run 3DStock 
Carry out desktop survey 

C3. PROCESS 
Process results to identify doubtful data 

D. FINAL DATABASE 
(The high-rise buildings database) 

D1. COMBINE 
Combine the separate files based on refs 

D2. FINAL PROCESSING 
Check for inconsistencies or doubtful data 
Weather correction of energy data 

* After each new dataset is matched, re-check the existing matched data. 

Figure 1. Summary of the methodology used to produce the final database.
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analysis that follows was carried out only on the 611
buildings for which the main heating fuel was identified
as not being electricity. References to the ‘high-rise build-
ings data’ in this paper refer to this cleaned and com-
bined final data set, and the analysis that follows was
carried out on these data (or subsets of it) rather than
on any of the original raw files. Table 1 summarizes
the information within the final database. Variables in
the original data that do not form part of this study are
not listed. The desktop survey was designed as part of
a broad study of built form and urban density. Conse-
quently, several variables were included that were not
used in this study. For full details of these, see Appendix
in the supplemental data online.

Results and discussion

This section examines the energy performance of the
buildings within the high-rise database. The analysis is
presented in two parts:

. Height and energy performance
The overall relationship between height and energy
use is summarized. Within the literature, different
approaches exist to categorizing building height.
Studies have used between 10 and 20 storeys as the
‘high-rise’ boundary. Furthermore, while some
sources identify buildings as simply being either
‘high-’ or ‘low-rise’, others also use ‘mid-rise’ (Tamo-
šaitienė & Gaudutis, 2013; https://www.
designingbuildings.co.uk/). For this analysis, ‘low-’,
‘mid-’ and ‘high-rise’ are used, defined as ≤ 5, 6–10
and ≥ 11 above-ground storeys respectively. Single-
factor analysis of variance (ANOVA) tests were car-
ried out using a 95% confidence level to determine
the likelihood that mean energy use or emissions
differ between groups. Where energy use or emissions
were found to vary significantly with height, post-hoc
Tukey honest significant difference (HSD) tests were
undertaken to determine where the variation occurs.

. Multivariate regression
The results of the multivariate regression are then pre-
sented. GLM was carried out in R version 3.3.3 (R
Development Core Team, 2008) to produce simple
models of electricity and fossil fuel use and emissions
for the sample. Tests were carried out to determine the
most appropriate GLM distribution and link function,
using the Akaike Information Criterion (AIC).
A gamma distribution was found to be most suitable,
reflecting the non-normal data. A log-link function,
where each variable acts multiplicatively rather than
additively, was also used. For further information
about GLM, including an overview of the different

options, see Barber and Thompson (2004). Stepwise
regression was used to identify the key variables
from the available data.

It should be noted that statistical studies of this nature
cannot prove the causes of any observed trends. How-
ever, where appropriate, possible explanations are dis-
cussed and further research is suggested.

Height and energy performance

The box and whisker plot diagrams summarize the per-
formance for the overall sample. Figure 2 shows the dis-
tribution of energy use intensity (kWh/m2) split between
electricity and fossil fuels, as well as total consumption
(top) and the corresponding total emissions (kgCO2/
m2) (bottom). In each graph, the median and interquar-
tile range can be read from the box. The whiskers rep-
resent the 10th and 90th percentiles, and the floating
point is the mean. The median and first quartiles are
sometimes used to define ‘typical’ and ‘good practice’
benchmarks respectively (DETR, 1998). For each vari-
able, the overall performance is presented alongside the
low/mid/high-rise split. The sample size for each result
is provided on the x-axis label after the comma. The
underlying data are also provided in Table 2.

The graphs in Figure 2 reveal increasing energy con-
sumption and emissions with height. Comparing the
low- and high-rise categories, mean and median electri-
city use increase by 76% and 85% respectively, while
smaller rises are observed for fossil fuel (19% mean
and 21% median). Gas represents approximately 95%
of the total fossil fuel use in the sample. Consequently,
its lower carbon intensity compared with mains electri-
city means that the emissions trend follows the electrical
result: 67% and 63% increases in mean and median
annual emissions respectively. In addition to increases
in the typical performance, the emissions interquartile
range rises by a factor of 2.3 between low- and high-
rise buildings showing that it is likely to be much more
difficult to achieve low-energy tall buildings compared
with low-rise.

Significant differences are found with height for
energy consumption (electricity, fossil fuel and total)
and emissions (ANOVA, p < 0.05). Interestingly, how-
ever, the trends for energy use and height differ between
electricity and fossil fuels. The Tukey HSD tests suggest
that for electricity use the significant step is from low- to
mid-rise buildings (low-to-mid and low-to-high p < 0.05;
mid-to-high p > 0.05), whereas for fossil fuels the signifi-
cant increase is from low- to high-rise (low-to-high and
mid-to-high p < 0.05; low-to-mid p > 0.05). This differ-
ence may reflect the underlying relationships between
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Table 1. Summary of data collected for this study.
Energy Other data Further data collection

BBP DEC EC Emporis
Skyscraper
Center e-PIMS 3DStock

Desktop
survey

Number of buildings in the final database with data from each source

Overall (out of 708) 217 341 192 213 13 277 708 660 (glazing 84)

Excluding predominantly electrically heated buildings
(out of 611)

175 311 142 175 8 270 611 572 (glazing 72)

Building location

Address × × × × × × × ×

Latitude and longitude × × × ×

Energy consumption data

Annual energy-use data (kWh) × × × (some, but not
used)

Main heating fuel type ×

Building design

Floor area (m2) × (NLA/GIA) × (GIA) × (GIA) (limited, not used) (limited, not used) (yes, not used) (not used)

Internal use × (main
use)

× (list of
uses)

× (main and side
uses)

× (main and side
uses)

× (main use) × (main use) × (detailed
breakdown)

Height (storeys) × (very limited) × (detailed) × (detailed) × (very limited) × (detailed) × (estimated)

External surface to volume ratio (/m) ×

Glazing ratio (%) × (average
ratio)

Systems

Heating ventilation and air-conditioning × (limited) × × (limited, not used) (limited, not used) (limited, not used)

Dates

Construction × × × × (limited)

Demolition × × × (limited)

Note: BBP = Better Buildings Partnership database; DEC = Display Energy Certificate scheme; EC = Energy Challenge database; NLA = Net Lettable Area; GIA = Gross Internal Area.
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energy demand, built form and the local climate. Energy
end-use breakdown information is not available for the
sample. However, all else being equal, height affects fossil
fuel heating demand directly through changes in air
temperature and wind speed, and via mechanisms such
as the stack effect. Electricity use meanwhile varies

with access to daylight and solar gains, which are affected
by the height of a building relative to the surrounding
buildings. A recent study of high-rise buildings found a
similar result, revealing that the change in daylight avail-
ability with height depends on factors such as orientation
and the neighbouring buildings (Li & Tsang, 2008).

Figure 2. Electricity, fossil fuel and total energy use (top) and emissions (bottom) for the overall sample.
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Within the database, energy-use data come from the
DEC, BBP and EC files. DECs predominantly cover public
buildings, which may possibly have different typical pat-
terns of use, internal gains and installed systems compared
with the BBP and EC offices. Furthermore, previous work
has shown that DEC offices typically have lower energy
use than the BBP offices. Depending on the office type,
the corresponding increase in median emissions between
the DEC and BBP offices can be over 50% (Armitage et al.,
2015). Therefore, if the buildings covered by the three
sources have different typical built forms, it is theoretically
possible that the observed energy–height trends simply
reflect the underlying sources of data. Figure 3 presents
the overall performance when the BBP, DEC and EC
energy data are considered separately.3

As expected, the results reveal differences in typical
energy use between the sources. While fossil fuel con-
sumption is similar, electricity use is considerably higher
for the BBP and EC offices compared with the DECs,
resulting in mean emissions for the BBP sample being
40% higher than the DEC sample, while the EC mean
is 17% higher still.

Despite the differences, however, the trend of increas-
ing energy use from low- to high-rise buildings can be
observed for each source. For a few variables, a counter
trend is observed, but these are small and statistically
insignificant. For example, mean electricity use for the
DECs decreases from mid- to high-rise buildings by
approximately 5% (p > 0.05), whereas the corresponding
increase from low-rise is significant (low-to-mid and
low-to-high p < 0.05). Across the sources and variables,
only mean fossil fuel consumption for the EC data is
found to show no statistically significant difference
with height (ANOVA, p > 0.05). This result shows that
the overall trend of increasing energy use with height
cannot be explained simply by systematic differences
associated with the three original data sources.

In order to visualize the energy–height relationship in
further detail, Figure 4 shows the overall results, with the
high-rise offices further subdivided. The tallest groups
have very small sample sizes. Consequently, ANOVA
tests were not carried out, and these results should be
treated with some caution. However, the general trend
of increasing energy use and emissions with height
remains. Comparing the extremes, mean electricity and
fossil fuel uses in the tallest group are 136% and 41%
greater than the lowest respectively, while mean emis-
sions are more than doubled (a 117% increase).

Multivariate regression

As previously discussed, energy consumption in build-
ings is driven by their design, systems and use.Ta
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Consequently, the observed energy–height trends will
partly reflect underlying differences in the typical charac-
teristics of low-, mid- and high-rise offices. Since the final
database includes several relevant variables, multivariate

analysis was undertaken to examine the impact of these
factors on the energy–height relationship.

Table 3 summarizes the characteristics of the build-
ings within the database, alongside the high-, mid- and

Figure 3. Electricity, fossil fuel and total energy use (top) and emissions (bottom) using energy data from each source independently.
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low-rise splits. Due to the mix of sources of underlying
data, complete information is not available for all of
the buildings. Therefore, Table 3 details the coverage of
each variable in parentheses. The energy performance
breakdown associated with several of the key variables
is presented for reference in Figures 5–8, along with

the variation with building height. It should be noted
that while each of the variables listed is separate, they
may not be truly independent choices for building
designers. For example, it has been acknowledged that
achieving effective natural ventilation is especially com-
plex for high-rise buildings (Gonçalves & Bode, 2011;

Figure 4. Electricity, fossil fuel and total energy use (top) and emissions (bottom) for the overall sample, with more detailed height
breakdown.
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Wood & Salib, 2013). Consequently, during the design
process, the choice of HVAC may be partly influenced
by building height.

The trends are generally unsurprising: compared with
low-rise, taller buildings are more likely to have air-

conditioning and to be located in higher density urban
areas. Also they are typically newer and have more glaz-
ing. In terms of physical form, the mean external surface
area-to-volume ratio decreases with increasing tallness.
Tall buildings, above the height of adjacent blocks,

Table 3. Summary of building characteristics of the low-, mid- and high-rise buildings, as well as the overall sample.
Variable Units Overall Low-rise Mid-rise High-rise

Sample size Number of buildings 611 263 238 110

A,BBuilding form (external envelope area/total volume)

Mean Ext Surface to Vol Ratio /m 0.202 0.251 0.157 0.149

(70.7%) (80.2%) (72.7%) (43.6%)

Glazing (overall envelope glazed percentage)

Avg Glazing Proportion 0.44 0.30 0.42 0.59

(11.8%) (9.1%) (8.8%) (24.5%)

BHVAC (main installed HVAC system)

Air Conditioned Proportion of buildings 0.58 0.37 0.74 0.72

Mech Vent Proportion of buildings 0.10 0.12 0.09 0.06

Mixed Mode Proportion of buildings 0.07 0.08 0.05 0.06

Nat Vent Proportion of buildings 0.24 0.40 0.10 0.15

Not Air Con Proportion of buildings 0.02 0.03 0.02 0.00

(99.8%) (100%) (99.6%) (100%)

BConstruction date (date of completion)

Pre-1970 Proportion of buildings 0.30 0.28 0.31 0.32

1970s Proportion of buildings 0.19 0.23 0.14 0.20

1980s Proportion of buildings 0.12 0.15 0.10 0.10

1990s Proportion of buildings 0.19 0.29 0.15 0.10

Post-1999 Proportion of buildings 0.19 0.05 0.30 0.28

(54.7%) (54.0%) (42.9%) (81.8%)

A,BRateable value (business taxation rate; correlates strongly with the data sources and may give an indication of building ‘prestige’)

Avg Rateable Value £/m2 192 187 223 122

(92.0%) (98.9%) (93.7%) (71.8%)

A,BLocal urban area (rural urban classification, a description of the building local postcode, which may give an indication of the urban density of the area surrounding
each building)

Urban major conurbation (A1) Proportion of buildings 0.69 0.48 0.87 0.84

Urban minor conurbation (B1) Proportion of buildings 0.03 0.05 0.02 0.01

Urban city and town (C1) Proportion of buildings 0.27 0.46 0.12 0.15

Urban city and town in a sparse setting (C2) Proportion of buildings 0.00 0.00 0.00 0.00

Rural town and fringe (D1) Proportion of buildings 0.00 0.00 0.00 0.00

Rural town and fringe in a sparse setting (D2) Proportion of buildings 0.00 0.00 0.00 0.00

Rural village and dispersed (E1) Proportion of buildings 0.00 0.01 0.00 0.00

Rural village and dispersed in a sparse setting (E2) Proportion of buildings 0.00 0.00 0.00 0.00

(100%) (100%) (100%) (100%)

Note: The proportion of the sample for which each variable is known is provided in parentheses. A = variables included in analysis A (full coverage); B = variables
included in analysis B (detail).

HVAC = heating, ventilation and air-conditioning.
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might be expected to have less party wall area than short
ones. However, the result means that, in general, rather
than being thinner and having less party wall area, taller
buildings are more compact than shorter ones. A recent
study of a small sample of buildings in Hong Kong found
a similar trend, with mean ratios for 1–10, 11–20 and 20
+ storey buildings of 0.20, 0.16 and 0.12/m respectively
(Lam et al., 2004).

Due to the large differences in coverage between the
variables, the multivariate regression using stepwise
selection was carried out at two scales, summarized

below. In both cases, the analysis was repeated for elec-
tricity use, fossil fuel use and emissions.

. Analysis A (full coverage): carried out using solely
those variables that can currently be collected at a dis-
aggregate level for England and Wales from the
3DStock model. The analysis included the three vari-
ables labelled with ‘A’ in Table 3, as well as ‘height’.
The sample size was 432 offices.

. Analysis B (detail): carried out using more detailed
building information. The five variables in Table 3

Figure 5. Electricity, fossil fuel and total energy use (left) and emissions (right) for the sample, split by construction date.

Figure 6. Electricity, fossil fuel and total energy use (left) and emissions (right) for the sample, split by heating, ventilation and air-
conditioning (HVAC) type.

Figure 7. Electricity, fossil fuel and total energy use (left) and emissions (right) for the sample, split by external surface-to-volume ratio.
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labelled with ‘B’ were included along with height, cov-
ering 215 offices. Glazing ratio was excluded from this
analysis due to the low coverage.

Tables 4 and 5 present the results of the GLM for elec-
tricity use, fossil fuel use and emissions for analyses A and
B respectively. The variables listed are those selected from
the stepwise regression as optimizing the models. As pre-
viously explained, a log-link function was used. Therefore,
the impact of each variable can be estimated using μ = exp
(xβ) (Barber & Thompson, 2004). For example, for analy-
sis A, each additional storey is associated with a 2.2% rise
in electricity use and a 2.4% rise in fossil fuels (calculated
from Table 4 as exp(0.0216) = 1.022 and exp(0.0233) =
1.024 respectively). Figure 9 shows the actual and pre-
dicted performance for electricity (top), fossil fuel (mid)
and emissions (bottom) for analyses A (left) and B (right).

The results show that the available data can provide a
reasonable predictor of electricity use intensity in offices.
In contrast, the variables explain very little of the variation
in fossil fuel consumption, even under the more detailed
analysis. The coefficients of determination (r2) for electri-
city and fossil fuel are 0.21 and 0.02 for the ‘full coverage’
models, but improve to 0.45 and 0.05 with the variables
included in the ‘detail’ models, as shown in Figure 9.
The emissions models follow electricity, reflecting the
relative carbon intensities of the fuels, with r2-values of
0.21 and 0.45 respectively. Interestingly, the results are
in stark contrast to the findings of comparable analyses
carried out recently for the London residential sector
(Hamilton et al., 2017). Analyzing some of the same vari-
ables, the study found no relationship of electricity con-
sumption with height, but a strong relationship for gas,
highlighting the differences in energy use between the
domestic and non-domestic sectors in Britain.

Reassuringly, the overlapping variables have similar
estimates between the two scales of analysis. For
example, a £1/m2 increase in average rateable value
(ARV) is associated with a 0.1% and 0.2% rise in

electricity consumption for the ‘full coverage’ and ‘detail’
models respectively.4 While the observed impact appears
small, the interquartile range within the sample is £180/
m2, corresponding to a 32% rise in electricity use from
the ‘detail’ model. More detailed information about the
relationship between rateable value and typical building
characteristics is required to understand the drivers of
the observed energy trends, but the variable may be a
proxy for a qualitative building ‘prestige’ factor. This
may be linked with variables such as air-conditioning,
construction materials, glazing level, as well as internal
use factors such as the presence of a gym or the intensity
of use.

The results reveal a strong correlation between HVAC
type and electricity use. Natural ventilation, for example,
is associated with a 41% reduction in electricity use com-
pared with air-conditioning, while mechanical venti-
lation is between these extremes (26% reduction). It is
interesting to note that, despite a difference in fossil
fuel use shown in Figure 6 (6.3% reduction in mean con-
sumption between air-conditioned and naturally venti-
lated buildings), HVAC type was excluded during the
stepwise process from the final fossil fuel consumption
model. This suggests that the net impact of HVAC
type is predominantly on cooling and ventilation, rather
than on heating. A similar trend can be found in DETR
(1998). The benchmarks suggest a 166% rise in typical
electricity use between naturally ventilated ‘type 2’ and
air-conditioned ‘type 3’ offices (with 40% attributable
to cooling, fans and pumps), compared with only an
18% increase in typical fossil fuel use.5

The models suggest no clear relationship between
energy consumption and location (urban/rural) as
measured by the particular metric used (rural urban
classification – RUC). This classification is included in
the ‘full coverage’ electricity and emissions models. How-
ever, the estimates show no simple trend, and the vari-
able is excluded from the ‘detail’ models. It is worth
noting, however, that RUC is a fairly crude descriptor

Figure 8. Electricity, fossil fuel and total energy use (left) and emissions (right) for the sample, split by average rateable value.
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Table 4. Results of analysis A (full coverage) generalized linear model, using a log-link function.

Parameter

Electricity-use model Fossil fuel-use model Emissions model

Estimated SE |t| Pr >|t| Estimated SE |t| Pr >|t| Estimated SE |t| Pr >|t|

Intercept 5.2007 0.1731 30.045 < 2e–16 4.5433 0.0643 70.626 < 2e–16 4.7399 0.1483 31.954 < 2e–16

Height (storeys) 0.0216 0.0103 2.097 0.0365 0.0233 0.0083 2.799 0.0054 0.0237 0.0088 2.685 0.0075

Ext Surface to Vol Ratio (/m) –2.068 0.510 –4.053 0.0001 –1.542 0.437 –3.527 0.0005

Avg Rateable Value (£/m2) 0.0009 0.0003 3.409 0.0007 –0.0003 0.0002 –1.416 0.1575 0.0007 0.0002 2.869 0.0043

RUC Type A1 0 0

RUC Type B1 –0.319 0.193 –1.652 0.0992 –0.258 0.166 –1.559 0.1198

RUC Type C1 –0.263 0.084 –3.145 0.0018 –0.210 0.072 –2.928 0.0036

RUC Type D1 0.770 0.667 1.155 0.2490 0.657 0.571 1.15 0.2508

RUC Type E1 –0.305 0.670 –0.455 0.6492 –0.429 0.574 –0.747 0.4556

AIC 5036 4657.6 4605.3

Pseudo-r2 0.2629 0.0219 0.2524

Note: AIC = Akaike Information Criterion.

Table 5. Results of Analysis B (Detail) generalized linear model, using a log-link function.

Parameter

Electricity-use model Fossil fuel-use model Emissions model

Estimated SE |t| Pr >|t| Estimated SE |t| Pr >|t| Estimated SE |t| Pr >|t|

(Intercept) –4.232 3.053 –1.386 0.1671 4.430 0.079 56.391 < 2e–16 –1.133 2.704 –0.419 0.6756

Height (storeys) 0.0237 0.0089 2.666 0.0083 0.0290 0.0095 3.056 0.0025 0.0247 0.0079 3.132 0.0020

HVAC type AC 0 0

HVAC type MM –0.033 0.116 –0.287 0.7741 –0.030 0.102 –0.29 0.7717

HVAC type MV –0.306 0.099 –3.081 0.0023 –0.208 0.088 –2.368 0.0188

HVAC type NV –0.520 0.092 –5.667 4.8e–8 –0.373 0.081 –4.592 7.6e–6

Ext Surface to Vol Ratio (/m) –1.635 0.565 –2.896 0.0042 –1.582 0.500 –3.165 0.0018

Construction date (year) 0.0047 0.0015 3.096 0.0022 0.0029 0.0013 2.194 0.0294

Avg Rateable Value (£/m2) 0.0016 0.0004 4.06 0.0001 0.0011 0.0003 3.324 0.0011

AIC 2367.3 2297.9 2169.2

Psuedo-r2 0.5704 0.0571 0.5380

Note: AIC = Akaike Information Criterion.
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of urban character and location, and that the postcode
area (at which RUC is measured) varies significantly.
Consequently, it may not provide a useful indication of
the surroundings of each building, for energy perform-
ance purposes. Alternative aggregate geographic data
are available for the UK, including land use and popu-
lation data. However, these are still broad proxies for
urban form, and provided at varying levels of aggrega-
tion. It may be better to explore the relationship between
urban form and energy use further using more detailed
quantitative metrics. 3DStock provides a detailed

description of built form at a disaggregate scale. There-
fore, work is currently ongoing to integrate calculations
that describe the physical surroundings for each building
in detail.

Regulations covering the conservation of fuel and
power were introduced for new non-domestic buildings
in the UK in 1974 and have grown progressively more
stringent over time, setting minimum requirements for
building envelope and plant characteristics, as well as
standardized methods for estimating energy consump-
tion (King, 2007). Furthermore, while modern buildings

Figure 9. Actual and predicted electricity use (top), fossil fuel use (middle) and emissions (bottom) based on analysis A, full coverage
(left) and B, detail, (right).
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may have better insulation and infiltration standards
than older ones at the point of construction, fabric and
plant efficiency may also deteriorate over time. There-
fore, it is interesting that no correlation was found
between construction date and fossil fuel use.

The results suggest that newer buildings are associated
with higher electricity use. A possible explanation for this
electricity trend may be that modern buildings are used
more intensively than older ones, through higher occu-
pancy density and information technology (IT) use. It
should be noted, however, that more intensive use typi-
cally results in higher internal gains, which may be
expected to offset some of the demand for space heating:
but this is not reflected in the fossil fuel use. Overall, the
model suggests that between offices constructed in 1974
and 2010, there is an 18.4% increase in electricity use inten-
sity. The fact that the buildings designed to meet the tough-
est regulations have the highest emissions highlights the
difficulty in improving the building stock as a whole.

The external surface-to-volume ratio provides a
description of a building’s overall compactness, account-
ing for party boundaries and building size. Theoretically,
the variable is related to the potential for heat transfer,
solar gains, daylight, natural ventilation and infiltration,
which all occur at the external envelope. In this light, it is
interesting to note that neither model finds a significant
relationship with fossil fuel use. A possible explanation
for the lack of any clear trend may be glazing ratio,
which drops from a mean of 60% to 21% from the
most to least compact buildings. Within the database,
only 45 buildings include data on both glazing and exter-
nal surface-to-volume ratio, therefore this subsample is
tiny. However, similar positive relationships between
average glazing and compactness have been observed
in two studies of high-rise buildings in Hong Kong
(Lam et al., 2004; Li & Tsang, 2008), as well as the US
(Winiarski, Halverson, & Jiang, 2008). In the former,
for example, the mean glazing ratios for the most and
least compact quartile of buildings were 47% and 30%
respectively. If it is true that building compactness corre-
lates negatively with glazing, then the corresponding
effect on building U-values may explain the trend. Sig-
nificantly, Steemers (2003) suggests that in order to
minimize energy consumption, glazing ratios should
decrease with height, while Raji, Tenpierik, and van
den Dobbelsteen (2016) suggest that window-to-wall
glazing ratios should be between 30% and 50% depend-
ing on the thermal performance of the envelope. External
surface-to-volume ratio is found in the present work to
be associated with a drop in electricity use: from the
‘detail’ model, an increase of 0.1/m corresponds to an
18% drop in electricity consumption. This suggests that
the increased access to daylight and opportunity for

natural ventilation may offset the corresponding added
exposure to solar gains.

Across both scales of analysis, the results show that
height is a significant predictor of energy use, even
accounting for other variables. This means that the
energy/height trends observed in Figure 2 are not simply
a reflection of the fact that low-, mid- and high-rise
buildings have different characteristics (Table 3). From
the ‘detail’ model, one additional storey is associated
with a 2.4% increase in electricity use and a 2.9% increase
in fossil fuel use. The corresponding impact on carbon
emissions is a rise of 2.5%. Based on the mean perform-
ance of the sample, this indicates that changing from
low- to high-rise (from five to 15 storeys) results in
increases in mean electricity and fossil fuel consumption
of 44 and 33 kWh/m2 respectively.

Building height influences energy consumption
directly through mechanisms such as changes in external
temperature and wind speed with altitude, access to day-
light and solar gains, as well as the need for lifts (eleva-
tors). However, the net impact on any specific building
will depend on factors such as occupancy behaviour,
building design and the internal systems. For example,
reductions in artificial lighting will only be achieved if
the controls are connected to daylight sensors. However,
this may not be the case: a survey of an office in the US
found poor daylight controls in reality due to issues such
as interior layouts (Day, Theodorson, & Van Den
Wymelenberg, 2012), while a survey of 15 offices in the
UK found very poor integration between the solar and
daylighting controls (Cunill, Serra, & Wilson, 2007).
Examination of energy end-uses in conjunction with
building modelling will be required to determine the
underlying drivers for the observed trends. However,
the fact that height correlates positively with both electri-
city and fossil fuel use suggests that any reduction in
artificial lighting demand in taller buildings due to
greater access to daylight is overwhelmed by other fac-
tors, such as the need to deal with increased solar gains.

Conclusions and further work

This paper presents the results of an examination of the
performance of a sample of 611 offices in England and
Wales. Disaggregate energy data from the DEC, BBP
and EC databases were used in conjunction with other
building data as well as the results of a survey undertaken
by the authors. Statistical tests were carried out to
explore the drivers of energy consumption, with a
focus on understanding the impact of building height.

Considering the overall change in performance with
height, it was found that mean electricity and fossil fuel
use increase by 77% and 20% respectively between low-
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and high-rise offices (defined as ≤ 5 and > 10 storeys
respectively), with a corresponding rise in mean CO2

emissions of 67%. The variation in 10th percentile emis-
sions with height is small, suggesting that achieving low-
carbon performance in tall buildings is possible. How-
ever, a near doubling of 75th percentile emissions indi-
cates that this is rarely achieved. Within the sample,
the low-, mid- and high-rise offices have different typical
characteristics. Therefore, GLM was used to examine the
underlying drivers of the observed energy–height trends.
Height is shown to be a significant predictor of energy,
even accounting for variables such as HVAC type and
date of construction. Each storey is associated with
2.4% and 2.9% increases in mean electricity and fossil
fuel use respectively, corresponding to a 31% increase
in emissions between low- and high-rise buildings.

The direct effects of height on energy consumption
are a result of the interaction between a building and
its local environment. For example, all other things
being equal, an increase in height will raise the amount
of daylight and solar gains entering a building, poten-
tially reducing the demand for artificial light in its per-
imeter zones, but increasing the risk of overheating.
Data on the energy end-use breakdown are not available
for this study. However, the results suggest that the
benefits associated with height, such as a reduced need
for artificial lighting, may be outstripped by factors
that increase electricity and fossil fuel use, such as an
increased demand for cooling or mechanical ventilation
associated with solar gains.

This paper is part of an ongoing study examining the
relationship between energy consumption and height
within the UK building stock. The study will continue,
focusing on two areas of interest:

. Thermal modelling
Statistical studies of the kind presented here cannot

determine causality. Work is currently ongoing to use
building modelling to examine the mechanisms that
drive the observed trends. In particular, this will
help to quantify the theoretical relative impact of
height, envelope and surrounding buildings on the
demand for electricity and fossil fuel.

. Character of the urban area
Solar gains and daylight will vary with the relative

height of a building compared with its surroundings,
rather than its absolute height. However, the existing
publicly available urban form data were found to be
insufficiently detailed for use as an indicator of build-
ing energy use. Therefore, work is ongoing to inte-
grate detailed and quantitative descriptors of urban
form into 3DStock to better describe the relationship
between each building and its local area.

The analysis presented in this paper shows that
increases in building height are associated with higher
electricity and fossil fuel consumption in offices. The dri-
vers for the observed trends are not clear cut. However,
the available data suggest that they cannot simply be
explained by factors such as the presence of air-con-
ditioning. It has previously been suggested that it is
‘undoubtedly true’ that tall buildings were, by their
nature, more energy intensive than shorter ones (Can-
gelli & Fais, 2012, p. 40). While low-emission, high-rise
buildings exist within the sample, the analysis suggests
that they are still the exceptions to the rule.

Notes

1. The character of vertical transportation is also linked to
building height. However, a study of energy end-use in
high-rise offices in Hong Kong found that this accounts
for only 3.2% of total energy use (Lam et al., 2004), in
line with similar figures for the UK (DETR, 1998).

2. This result is not actually reported but can be inferred
from data included in the paper.

3. The total sample sizes appear to be larger than the pre-
vious graph because some buildings appear in multiple
data sets.

4. Rateable value is calculated by the UK government for
the purposes of assessing property taxes or ‘rates’.

5. The office types defined by DETR (1998) include a pack-
age of characteristics, not just HVAC type, so the com-
parison should be treated with caution. However, data
are provided on the energy end-use breakdown.
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