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Abstract

Given that in practice training data is scarce for all but a
small set of problems, a core question is how to incorporate
prior knowledge into a model. In this paper, we consider
the case of prior procedural knowledge for neural networks,
such as knowing how a program should traverse a sequence,
but not what local actions should be performed at each
step. To this end, we present an end-to-end differentiable
interpreter for the programming language Forth which
enables programmers to write program sketches with slots
that can be filled with behaviour trained from program
input-output data. We can optimise this behaviour directly
through gradient descent techniques on user-specified
objectives, and also integrate the program into any larger
neural computation graph. We show empirically that our
interpreter is able to effectively leverage different levels
of prior program structure and learn complex behaviours
such as sequence sorting and addition. When connected
to outputs of an LSTM and trained jointly, our interpreter
achieves state-of-the-art accuracy for end-to-end reasoning
about quantities expressed in natural language stories.

1. Introduction

A central goal of Artificial Intelligence is the creation of
machines that learn as effectively from human instruction
as they do from data. A recent and important step towards
this goal is the invention of neural architectures that
learn to perform algorithms akin to traditional computers,
using primitives such as memory access and stack ma-
nipulation (Graves et al., 2014; Joulin & Mikolov, 2015;
Grefenstette et al., 2015; Kaiser & Sutskever, 2015; Kurach
et al., 2016; Graves et al., 2016). These architectures can
be trained through standard gradient descent methods,
and enable machines to learn complex behaviour from
input-output pairs or program traces. In this context, the
role of the human programmer is often limited to providing
training data. However, training data is a scarce resource
for many tasks. In these cases, the programmer may have
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partial procedural background knowledge: one may know
the rough structure of the program, or how to implement
several subroutines that are likely necessary to solve the
task. For example, in programming by demonstration (Lau
et al., 2001) or query language programming (Neelakantan
et al., 2015a) a user establishes a larger set of conditions on
the data, and the model needs to set out the details. In all
these scenarios, the question then becomes how to exploit
various types of prior knowledge when learning algorithms.

To address the above question we present an approach that
enables programmers to inject their procedural background
knowledge into a neural network. In this approach, the
programmer specifies a program sketch (Solar-Lezama
et al., 2005) in a traditional programming language. This
sketch defines one part of the neural network behaviour. The
other part is learned using training data. The core insight
that enables this approach is the fact that most programming
languages can be formulated in terms of an abstract machine
that executes the commands of the language. We implement
these machines as neural networks, constraining parts of the
networks to follow the sketched behaviour. The resulting
neural programs are consistent with our prior knowledge
and optimised with respect to the training data.

In this paper, we focus on the programming language
Forth (Brodie, 1980), a simple yet powerful stack-based
language that facilitates factoring and abstraction. Under-
lying Forth’s semantics is a simple abstract machine. We
introduce 04, an implementation of this machine that is
differentiable with respect to the transition it executes at
each time step, as well as distributed input representations.
Sketches that users write define underspecified behaviour
which can then be trained with backpropagation.

For two neural programming tasks introduced in previous
work (Reed & de Freitas, 2015) we present Forth sketches
that capture different degrees of prior knowledge. For
example, we define only the general recursive structure of
a sorting problem. We show that given only input-output
pairs, 04 can learn to fill the sketch and generalise well
to problems of unseen size. In addition, we apply 04 to
the task of solving word algebra problems. We show that
when provided with basic algorithmic scaffolding and
trained jointly with an upstream LSTM (Hochreiter &
Schmidhuber, 1997), 04 is able to learn to read natural
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language narratives, extract important numerical quantities,
and reason with these, ultimately answering corresponding
mathematical questions without the need for explicit
intermediate representations used in previous work.

The contributions of our work are as follows: i) We present
aneural implementation of a dual stack machine underlying
Forth, ii) we introduce Forth sketches for programming
with partial procedural background knowledge, iii) we
apply Forth sketches as a procedural prior on learning
algorithms from data, iv) we introduce program code
optimisations based on symbolic execution that can speed
up neural execution, and v) using Forth sketches we obtain
state-of-the-art for end-to-end reasoning about quantities
expressed in natural language narratives.

2. The Forth Abstract Machine

Forth is a simple Turing-complete stack-based program-
ming language (ANSI, 1994; Brodie, 1980). We chose Forth
as the host language of our work because 1) it is an estab-
lished, general-purpose high-level language relatively close
to machine code, ii) it promotes highly modular programs
through use of branching, loops and function calls, thus
bringing out a good balance between assembly and higher
level languages, and importantly iii) its abstract machine is
simple enough for a straightforward creation of its contin-
uous approximation. Forth’s underlying abstract machine
is represented by a state S = (D, R, H,c), which contains
two stacks: a data evaluation pushdown stack D (data
stack) holds values for manipulation, and a return address
pushdown stack R (return stack) assists with return pointers
and subroutine calls. These are accompanied by a heap or
random memory access buffer H, and a program counter c.

A Forth program P is a sequence' of Forth words (i.e.
commands) P =w1...w,,. The role of a word varies, encom-
passing language keywords, primitives, and user-defined
subroutines (e.g. DROP discards the top element of the
data stack, or DUP duplicates the top element of the data
stack).? Each word w; defines a transition function between
machine states w; : S — S. Therefore, a program P itself
defines a transition function by simply applying the word at
the current program counter to the current state. Although
usually considered as a part of the heap H, we consider
Forth programs P separately to ease the analysis.

An example of a Bubble sort algorithm implemented in
Forth is shown in Listing 1 in everything except lines
3b-4c. The execution starts from line 12 where literals
are pushed on the data stack and the SORT is called. Line
10 executes the main loop over the sequence. Lines 2-7

"Forth is a concatenative language.
’In this work, we restrict ourselves to a subset of all Forth
words, detailed in Appendix A.

: BUBBLE ( al ...
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
{ observe DO D-1 -> permute D-1 DO RO}
1- BUBBLE R>
{ observe DO D-1 -> choose NOP SWAP }

an n-1 —— one pass )

R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN
;
: SORT ( al .. an n —— sorted )

1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP

i
2 4 2 7 4 SORT \ Example call

Listing 1: Three code alternatives (white lines are common
to all, coloured/lettered lines are alternative-specific): i)
Bubble sort in Forth (a lines — green), ii) PERMUTE sketch
(blines —blue), and iii) COMPARE sketch (c lines — yellow).

denote the BUBBLE procedure — comparison of top two
stack numbers (line 3a), and the recursive call to itself (line
4a). A detailed description of how this program is executed
by the Forth abstract machine is provided in Appendix B.
Notice that while Forth provides common control structures
such as looping and branching, these can always be reduced
to low-level code that uses jumps and conditional jumps
(using the words BRANCH and BRANCHO, respectively).
Likewise, we can think of sub-routine definitions as labelled
code blocks, and their invocation amounts to jumping to the
code block with the respective label.

3. 04: Differentiable Abstract Machine

When a programmer writes a Forth program, they define
a sequence of Forth words, i.e., a sequence of known state
transition functions. In other words, the programmer knows
exactly how computation should proceed. To accommodate
for cases when the developer’s procedural background
knowledge is incomplete, we extend Forth to support the
definition of a program sketch. As is the case with Forth
programs, sketches are sequences of transition functions.
However, a sketch may contain transition functions whose
behaviour is learned from data.

To learn the behaviour of transition functions within a pro-
gram we would like the machine output to be differentiable
with respect to these functions (and possibly representa-
tions of inputs to the program). This enables us to choose
parameterised transition functions such as neural networks.

To this end, we introduce 94, a TensorFlow (Abadi et al.,
2015) implementation of a differentiable abstract machine
with continuous state representations, differentiable words
and sketches. Program execution in 04 is modelled by
a recurrent neural network (RNN), parameterised by the
transition functions at each time step.
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Figure 1: Left: Neural Forth Abstract Machine. A forth sketch P is translated to a low-level code Py, with slots {. . . }
substituted by a parametrised neural networks. Slots are learnt from input-output examples (x,y) through the differentiable
machine whose state S, comprises the low-level code, program counter c, data stack D (with pointer d), return stack R
(with pointer r), and the heap H. Right: BiLSTM trained on Word Algebra Problems. Output vectors corresponding to a
representation of the entire problem, as well as context representations of numbers and the numbers themselves are fed into
H to solve tasks. The entire system is end-to-end differentiable.

3.1. Machine State Encoding

We map the symbolic machine state S = (D, R, H, ¢)
to a continuous representation S = (D, R, H, ¢) into
two differentiable stacks (with pointers), the data stack
D = (D,d) and the return stack R = (R,r), a heap H, and
an attention vector c indicating which word of the sketch Py
is being executed at the current time step. Figure 1 depicts
the machine together with its elements. All three memory
structures, the data stack, the return stack and the heap, are
based on differentiable flat memory buffers M € {D,R H},
where D, R,H € R for a stack size [ and a value size v.
Each has a differentiable read operation

readpg(a) =a’ M
and write operation
writens (x,a) : M« M—(al”)oM+xa’

akin to the Neural Turing Machine (NTM) memory (Graves
et al., 2014), where ® is the element-wise multiplication,
and a is the address pointer.> In addition to the memory
buffers D and R, the data stack and the return stack contain
pointers to the current top-of-the-stack (TOS) element
d,r € R!, respectively. This allows us to implement pushing
as writing a value x into M and incrementing the TOS
pointer as:

pushy (x) : writen (X,p) (side-effect: p +—inc(p))
where p € {d,r}, inc(p) = p? R+, dec(p) =p’ R, and
R+ and R'— are increment and decrement matrices (left
and right circular shift matrices).

3The equal widths of H and D allow us to directly move vector
representations of values between the heap and the stack.

Popping is realized by multiplying the TOS pointer and the
memory buffer, and decreasing the TOS pointer:

popp () =readni(p) (side-effect: p <—dec(p))
Finally, the program counter ¢ € RP is a vector that, when
one-hot, points to a single word in a program of length
p, and is equivalent to the ¢ vector of the symbolic state
machine.* We use S to denote the space of all continuous
representations S.

Neural Forth Words It is straightforward to convert
Forth words, defined as functions on discrete machine
states, to functions operating on the continuous space S.
For example, consider the word DUP, which duplicates the
top of the data stack. A differentiable version of DUP first
calculates the value e on the TOS address of D, ase=d”D.
It then shifts the stack pointer via d <+ inc(d), and writes
e to D using writep (e,d). The complete description of im-
plemented Forth Words and their differentiable counterparts
can be found in Appendix A.

3.2. Forth Sketches

We define a Forth sketch Py as a sequence of continuous
transition functions P = w; ...w,,. Here, w; € S — S
either corresponds to a neural Forth word or a trainable
transition function (neural networks in our case). We will
call these trainable functions slots, as they correspond to
underspecified “slots” in the program code that need to be
filled by learned behaviour.

We allow users to define a slot w by specifying a pair of
a state encoder we,. and a decoder wg... The encoder

*During training ¢ can become distributed and is considered as
attention over the program code.
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produces a latent representation h of the current machine
state using a multi-layer perceptron, and the decoder
consumes this representation to produce the next machine
state. We hence have W = Wgee © Wepe. TO use slots within
Forth program code, we introduce a notation that reflects
this decomposition. In particular, slots are defined by the
syntax { encoder —-> decoder } where encoder
and decoder are specifications of the corresponding slot
parts as described below.

Encoders We provide the following options for encoders:

static produces a static representation, independent of
the actual machine state.

observe e;...e,,: concatenates the elements e ...e,, of
the machine state. An element can be a stack item D1
at relative index ¢, a return stack item R1i, etc.

linear N, sigmoid, tanh represent chained trans-
formations, which enable the multilayer perceptron
architecture. Linear N projects to N dimensions,
and sigmoid and tanh apply same-named functions
elementwise.

Decoders Users can specify the following decoders:

choose wj...w,,: chooses from the Forth words wy ...w,,.
Takes an input vector h of length m to produce a
weighted combination of machine states Y "h; w;(S).

manipulate e;...e,,: directly manipulates the machine
state elements e; ... e, by writing the appropriately
reshaped and softmaxed output of the encoder over the
machine state elements with writens.

permute e;...e,,: permutes the machine state elements
e1...ey, via a linear combination of m/! state vectors.

3.3. The Execution RNN

We model execution using an RNN which produces a state
S,+1 conditioned on a previous state S,,. It does so by
first passing the current state to each function w; in the
program, and then weighing each of the produced next
states by the component of the program counter vector c;
that corresponds to program index ¢, effectively using c as
an attention vector over code. Formally we have:

1P|
Sn—i—l :RNN(SnaPG) = Zciwi(sn)
i=1

Clearly, this recursion, and its final state, are differentiable
with respect to the program code Py, and its inputs. Further-
more, for differentiable Forth programs the final state of this
RNN will correspond to the final state of a symbolic execu-
tion (when no slots are present, and one-hot values are used).

01234 01234
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8 DROP Plc DROP DROP DROP

Figure 2: 04 segment of the RNN execution of a Forth
sketch in blue in Listing 1. The pointers (d, r) and values
(rows of R and D) are all in one-hot state (colours simply
denote values observed, defined by the top scale), while
the program counter maintains the uncertainty. Subsequent
states are discretised for clarity. Here, the slot {. . .} has
learned its optimal behaviour.

3.4. Program Code Optimisations

The 04 RNN requires one-time step per transition. After
each time step, the program counter is either incremented,
decremented, explicitly set or popped from the stack. In
turn, a new machine state is calculated by executing all
words in the program and then weighting the result states
by the program counter. As this is expensive, it is advisable
to avoid full RNN steps wherever possible. We use two
strategies to avoid full RNN steps and significantly speed-up
04: symbolic execution and interpolation of if-branches.

Symbolic Execution Whenever we have a sequence of
Forth words that contains no branch entry or exit points, we
can collapse this sequence into a single transition instead
of naively interpreting words one-by-one. We symbolically
execute (King, 1976) a sequence of Forth words to calculate
anew machine state. We then use the difference between the
new and the initial state to derive the transition function of
the sequence. For example, the sequence R> SWAP >Rthat
swaps top elements of the data and the return stack yields the
symbolic state D =ryds...d;. and R=d;r3...r;. Compar-
ing it to the initial state, we derive a single neural transition
that only needs to swap the top elements of D and R.

Interpolation of If-Branches We cannot apply symbolic
execution to code with branching points as the branching
behaviour depends on the current machine state, and we
cannot resolve it symbolically. However, we can still
collapse if-branches that involve no function calls or loops
by executing both branches in parallel and weighing their
output states by the value of the condition. If the if-branch
does contain function calls or loops, we simply fall back to
execution of all words weighted by the program counter.
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3.5. Training

Our training procedure assumes input-output pairs of
machine start and end states (x;,y;) only. The output y;
defines a target memory Y and a target pointer y¢ on
the data stack D. Additionally, we have a mask K; that
indicates which components of the stack should be included
in the loss (e.g. we do not care about values above the stack
depth). We use Dr(0,x;) and dr(6,x;) to denote the final
state of D and d after 1" steps of execution RNN and using
an initial state x;. We define the loss function as

L‘(G):’H(KiQDT(e,Xi)aKiQYiD)

where H(x,y) = —x logy is the cross-entropy loss,
and 0 are parameters of slots in the program P. We can
use backpropagation and any variant of gradient descent
to optimise this loss function. Note that at this point it
would be possible to include supervision of the interme-
diate states (trace-level), as done by the Neural Program
Interpreter (Reed & de Freitas, 2015).

4. Experiments

We evaluate 94 on three tasks. Two of these are simple
transduction tasks, sorting and addition as presented in
(Reed & de Freitas, 2015), with varying levels of program
structure. For each problem, we introduce two sketches.

We also test 94 on the more difficult task of answering
word algebra problems. We show that not only can 04 act
as a standalone solver for such problems, bypassing the
intermediary task of producing formula templates which
must then be executed, but it can also outperform previous
work when trained on the same data.

4.1. Experimental Setup

Specific to the transduction tasks, we discretise memory
elements during testing. This effectively allows the trained
model to generalise to any sequence length if the correct
sketch behaviour has been learned. We also compare against
a Seq2Seq (Sutskever et al., 2014) baseline. Full details of
the experimental setup can be found in Appendix E.

4.2. Sorting

Sorting sequences of digits is a hard task for RNNs, as they
fail to generalise to sequences even marginally longer than
the ones they have been trained on (Reed & de Freitas,
2015). We investigate several strong priors based on Bubble
sort for this transduction task and present two 04 sketches in
Listing 1 that enable us to learn sorting from only a few hun-
dred training examples (see Appendix C.1 for more detail):

Table 1: Accuracy (Hamming distance) of Permute and
Compare sketches in comparison to a Seq2Seq baseline on
the sorting problem.

Test Length 8 Test Length: 64
Train Length: 2 3 4 2 3 4
Seq2Seq 262 292 391 133 136 159
04 Permute 100.0 100.0 19.82 100.0 100.0  7.81
04 Compare  100.0 100.0 49.22 100.0 100.0 20.65

PERMUTE. A sketch specifying that the top two elements
of the stack, and the top of the return stack must be per-
muted based on the values of the former (line 3b). Both
the value comparison and the permutation behaviour
must be learned. The core of this sketch is depicted in
Listing 1 (b lines), and the sketch is explained in detail
in Appendix D.

COMPARE. This sketch provides additional prior proce-
dural knowledge to the model. In contrast to PERMUTE,
only the comparison between the top two elements on the
stack must be learned (line 3c). The core of this sketch is
depicted in Listing 1 (c lines).

In both sketches, the outer loop can be specified in 94 (List-
ing 1, line 10), which repeatedly calls a function BUBBLE. In
doing so, it defines sufficient structure so that the behaviour
of the network is invariant to the input sequence length.

Results on Bubble sort A quantitative comparison of our
models on the Bubble sort task is provided in Table 1. For a
given test sequence length, we vary the training set lengths
to illustrate the model’s ability to generalise to sequences
longer than those it observed during training. We find that
04 quickly learns the correct sketch behaviour, and it is able
to generalise perfectly to sort sequences of 64 elements after
observing only sequences of length two and three during
training. In comparison, the Seq2Seq baseline falters when
attempting similar generalisations, and performs close to
chance when tested on longer sequences. Both 04 sketches
perform flawlessly when trained on short sequence lengths,
but under-perform when trained on sequences of length 4
due to arising computational difficulties (COMPARE sketch
performs better due to more structure it imposes). We
discuss this issue further in Section 5.

4.3. Addition

Next, we applied 04 to the problem of learning to add two
n-digit numbers. We rely on the standard elementary school
addition algorithm, where the goal is to iterate over pairs
of aligned digits, calculating the sum of each to yield the
resulting sum. The key complication arises when two digits
sum to a two-digit number, requiring that the correct extra
digit (a carry) be carried over to the subsequent column.
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: ADD-DIGITS
(al bl...an bn carry
DUP 0 = IF

DROP

ELSE

>R\

{ observe DO D-1 D-2 —-> tanh —-> linear 70
—> manipulate D-1 D-2 }

DROP

{ observe DO D-1 D-2 —> tanh
—> choose 0 1 }

{ observe D-1 D-2 D-3 —-> tanh —-> linear 50
—> choose 0 1 2 3456789}
>R SWAP DROP SWAP DROP SWAP DROP R>

R> 1- SWAP >R |\

n —rlr2...r.{n+1} )

.

put n on R

—> linear 10

new_carry n-1

ADD-DIGITS \
R> \ put rememb
THEN

7

Listing 2: Manipulate sketch (a lines — green) and the
choose sketch (b lines — blue) for Elementary Addition.
Input data is used to fill data stack externally

We assume aligned pairs of digits as input, with a carry for
the least significant digit (potentially 0), and the length of
the respective numbers. The sketches define the high-level
operations through recursion, leaving the core addition to
be learned from data.

The specified high-level behaviour includes the recursive
call template and the halting condition of the recursion (no
remaining digits, line 2-3). The underspecified addition
operation must take three digits from the previous call, the
two digits to sum and a previous carry, and produce a single
digit (the sum) and the resultant carry (lines 6a, 6b and 7a,
7b). We introduce two sketches for inducing this behaviour:

MANIPULATE. This sketch provides little prior procedu-
ral knowledge as it directly manipulates the 94 machine
state, filling in a carry and the result digits, based on the
top three elements on the data stack (two digits and the
carry). Depicted in Listing 2 in green.

CHOOSE. Incorporating additional prior information,
CHOOSE exactly specifies the results of the computa-
tion, namely the output of the first slot (line 6b) is the
carry, and the output of the second one (line 7b) is the
result digit, both conditioned on the two digits and the
carry on the data stack. Depicted in Listing 2 in blue.

The rest of the sketch code reduces the problem size by one
and returns the solution by popping it from the return stack.

Quantitative Evaluation on Addition In a set of ex-
periments analogous to those in our evaluation on Bubble
sort, we demonstrate the performance of 94 on the addition
task by examining test set sequence lengths of 8 and 64
while varying the lengths of the training set instances
(Table 2). The Seq2Seq model again fails to generalise

Table 2: Accuracy (Hamming distance) of Choose and
Manipulate sketches in comparison to a Seq2Seq baseline
on the addition problem. Note that lengths corresponds to
the length of the input sequence (two times the number of
digits of both numbers).

Test Length 8 Test Length 64
Train Length: 2 4 8 2 4 8
Seq2Seq 379 578 998 150 135 133
04 Choose 100.0 100.0 100.0 100.0 100.0 100.0
04 Manipulate 98.58 100.0 100.0 99.49 100.0 100.0

to longer sequences than those observed during training.
In comparison, both the CHOOSE sketch and the less
structured MANIPULATE sketch learn the correct sketch
behaviour and generalise to all test sequence lengths (with
an exception of MANTPULATE which required more data to
train perfectly). In additional experiments, we were able to
successfully train both the CHOOSE and the MANIPULATE
sketches from sequences of input length 24, and we tested
them up to the sequence length of 128, confirming their
perfect training and generalisation capabilities.

4.4. Word Algebra Problems

Word algebra problems (WAPs) are often used to assess the
numerical reasoning abilities of schoolchildren. Questions
are short narratives which focus on numerical quantities,
culminating with a question. For example:
A florist had 50 roses. If she sold 15 of them and then later
picked 21 more, how many roses would she have ?
Answering such questions requires both the understanding
of language and of algebra — one must know which
numeric operations correspond to which phrase and how to
execute these operations.

Previous work cast WAPs as a transduction task by mapping
a question to a template of a mathematical formula, thus
requiring manuall labelled formulas. For instance, one
formula that can be used to correctly answer the question
in the example aboveis (50 — 15) + 21 = 56. In pre-
vious work, local classifiers (Roy & Roth, 2015; Roy et al.,
2015), hand-crafted grammars (Koncel-Kedziorski et al.,
2015), and recurrent neural models (Bouchard et al., 2016)
have been used to perform this task. Predicted formula
templates may be marginalised during training (Kushman
et al., 2014), or evaluated directly to produce an answer.

In contrast to these approaches, 94 is able to learn both, a
soft mapping from text to algebraic operations and their
execution, without the need for manually labelled equations
and no explicit symbolic representation of a formula.

Model description Our model is a fully end-to-end
differentiable structure, consisting of a 94 interpreter, a
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Table 3: Accuracies of models on the CC dataset. Asterisk

\ first copy data from H: vectors to R and numbers to D
ﬁ °§5er"e ig ij i:; Ej = P:m“tef? D*i ?*2 } denotes results obtained from Bouchard et al. (2016). Note
{ observe RO R-1 R-2 R-3 -> choose SWAP NOP } that GeNeRe makes use of additional data
{ observe RO R-1 R-2 R-3 -> choose + - * / }
\ lastly, empty out the return stack Model Accuracy (%)
Listing 3: Core of the Word Algebra Problem sketch. The Template Mapping
full sketch can be found in the Appendix. Roy & Roth (2015) 55.5
Seq2Seq* (Bouchard et al., 2016) 95.0
o ) GeNeRe™* (Bouchard et al., 2016) 98.5
sketch, and a Bidirectional LSTM (BiLSTM) reader.
Fully End-to-End
The BiLSTM reader reads the text of the problem and 94 96.0

produces a vector representation (word vectors) for each
word, concatenated from the forward and the backward pass
of the BILSTM network. We use the resulting word vectors
corresponding only to numbers in the text, numerical values
of those numbers (encoded as one-hot vectors), and a vector
representation of the whole problem (concatenation of the
last and the first vector of the opposite passes) to initialise
the 04 heap H. This is done in an end-to-end fashion,
enabling gradient propagation through the BiLSTM to the
vector representations. The process is depicted in Figure 1.

The sketch, depicted in Listing 3 dictates the differentiable
computation.’  First, it copies values from the heap H
— word vectors to the return stack R, and numbers (as
one-hot vectors) on the data stack D. Second, it contains
four slots that define the space of all possible operations
of four operators on three operands, all conditioned on the
vector representations on the return stack. These slots are i)
permutation of the elements on the data stack, ii) choosing
the first operator, iii) possibly swapping the intermediate
result and the last operand, and iv) the choice of the second
operator. The final set of commands simply empties out
the return stack R. These slots define the space of possible
operations, however, the model needs to learn how to utilise
these operations in order to calculate the correct result.

Results We evaluate the model on the Common Core (CC)
dataset, introduced by Roy & Roth (2015). CC is notable for
having the most diverse set of equation patterns, consisting
of four operators (+, —, X, <), with up to three operands.

We compare against three baseline systems: (1) a local
classifier with hand-crafted features (Roy & Roth, 2015),
(2) a Seq2Seq baseline, and (3) the same model with a data
generation component (GeNeRe) Bouchard et al. (2016).
All baselines are trained to predict the best equation, which
is executed outside of the model to obtain the answer. In
contrast, 04 is trained end-to-end from input-output pairs
and predicts the answer directly without the need for an
intermediate symbolic representation of a formula.

Results are shown in Table 3. All RNN-based methods

SDue to space constraints, we present the core of the sketch
here. For the full sketch, please refer to Listing 4 in the Appendix.

(bottom three) outperform the classifier-based approach.
Our method slightly outperforms a Seq2Seq baseline,
achieving the highest reported result on this dataset without
data augmentation.

5. Discussion

04 bridges the gap between a traditional programming lan-
guage and a modern machine learning architecture. How-
ever, as we have seen in our evaluation experiments, faith-
fully simulating the underlying abstract machine architec-
ture introduces its own unique set of challenges.

One such challenge is the additional complexity of per-
forming even simple tasks when they are viewed in terms of
operations on the underlying machine state. As illustrated
in Table 1, 94 sketches can be effectively trained from small
training sets (see Appendix C.1), and generalise perfectly
to sequences of any length. However, difficulty arises when
training from sequences of modest lengths. Even when
dealing with relatively short training length sequences,
and with the program code optimisations employed, the
underlying machine can unroll into a problematically large
number states. For problems whose machine execution is
quadratic, like the sorting task (which at input sequences
of length 4 has 120 machine states), we observe significant
instabilities during training from backpropagating through
such long RNN sequences, and consequent failures to train.
In comparison, the addition problem was easier to train due
to a comparatively shorter underlying execution RNNs.

The higher degree of prior knowledge provided played an
important role in successful learning. For example, the
COMPARE sketch, which provides more structure, achieves
higher accuracies when trained on longer sequences.
Similarly, employing softmax on the directly manipulated
memory elements enabled perfect training for the MANIP-
ULATE sketch for addition. Furthermore, it is encouraging
to see that 94 can be trained jointly with an upstream LSTM
to provide strong procedural prior knowledge for solving a
real-world NLP task.
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6. Related Work

Program Synthesis The idea of program synthesis is as
old as Atrtificial Intelligence, and has a long history in com-
puter science (Manna & Waldinger, 1971). Whereas a large
body of work has focused on using genetic programming
(Koza, 1992) to induce programs from the given input-
output specification (Nordin, 1997), there are also various
Inductive Programming approaches (Kitzelmann, 2009)
aimed at inducing programs from incomplete specifications
of the code to be implemented (Albarghouthi et al., 2013;
Solar-Lezama et al., 2006). We tackle the same problem of
sketching, but in our case, we fill the sketches with neural
networks able to learn the slot behaviour.

Probabilistic and Bayesian Programming Our work
is closely related to probabilistic programming languages
such as Church (Goodman et al., 2008). They allow users
to inject random choice primitives into programs as a way
to define generative distributions over possible execution
traces. In a sense, the random choice primitives in such
languages correspond to the slots in our sketches. A core
difference lies in the way we train the behaviour of slots:
instead of calculating their posteriors using probabilistic
inference, we estimate their parameters using backprop-
agation and gradient descent. This is similar in-kind to
TerpreT’s FMGD algorithm (Gaunt et al., 2016), which
is employed for code induction via backpropagation. In
comparison, our model which optimises slots of neural
networks surrounded by continuous approximations of
code, enables the combination of procedural behaviour and
neural networks. In addition, the underlying programming
and probabilistic paradigm in these programming languages
is often functional and declarative, whereas our approach
focuses on a procedural and discriminative view. By using
an end-to-end differentiable architecture, it is easy to seam-
lessly connect our sketches to further neural input and output
modules, such as an LSTM that feeds into the machine heap.

Neural approaches Recently, there has been a surge of
research in program synthesis, and execution in deep learn-
ing, with increasingly elaborate deep models. Many of these
models were based on differentiable versions of abstract
data structures (Joulin & Mikolov, 2015; Grefenstette et al.,
2015; Kurach et al., 2016), and a few abstract machines,
such as the NTM (Graves et al., 2014), Differentiable
Neural Computers (Graves et al., 2016), and Neural GPUs
(Kaiser & Sutskever, 2015). All these models are able to
induce algorithmic behaviour from training data. Our work
differs in that our differentiable abstract machine allows us
to seemingly integrate code and neural networks, and train
the neural networks specified by slots via backpropagation.
Related to our efforts is also the Autograd (Maclaurin et al.,
2015), which enables automatic gradient computation in

pure Python code, but does not define nor use differentiable
access to its underlying abstract machine.

The work in neural approximations to abstract structures
and machines naturally leads to more elaborate machin-
ery able to induce and call code or code-like behaviour.
Neelakantan et al. (2015a) learned simple SQL-like
behaviour—querying tables from the natural language
with simple arithmetic operations.  Although sharing
similarities on a high level, the primary goal of our model
is not induction of (fully expressive) code but its injection.
(Andreas et al., 2016) learn to compose neural modules to
produce the desired behaviour for a visual QA task. Neural
Programmer-Interpreters (Reed & de Freitas, 2015) learn
to represent and execute programs, operating on different
modes of an environment, and are able to incorporate
decisions better captured in a neural network than in many
lines of code (e.g. using an image as an input). Users inject
prior procedural knowledge by training on program traces
and hence require full procedural knowledge. In contrast,
we enable users to use their partial knowledge in sketches.

Neural approaches to language compilation have also been
researched, from compiling a language into neural networks
(Siegelmann, 1994), over building neural compilers (Gruau
et al., 1995) to adaptive compilation (Bunel et al., 2016).
However, that line of research did not perceive neural in-
terpreters and compilers as a means of injecting procedural
knowledge as we did. To the best of our knowledge, 04
is the first working neural implementation of an abstract
machine for an actual programming language, and this
enables us to inject such priors in a straightforward manner.

7. Conclusion and Future Work

We have presented 04, a differentiable abstract machine
for the Forth programming language, and showed how it
can be used to complement programmers’ prior knowledge
through the learning of unspecified behaviour in Forth
sketches. The 04 RNN successfully learns to sort and
add, and solve word algebra problems, using only program
sketches and program input-output pairs. We believe 04,
and the larger paradigm it helps establish, will be useful for
addressing complex problems where low-level representa-
tions of the input are necessary, but higher-level reasoning
is difficult to learn and potentially easier to specify.

In future work, we plan to apply 94 to other problems in
the NLP domain, like machine reading and knowledge
base inference. In the long-term, we see the integration of
non-differentiable transitions (such as those arising when
interacting with a real environment), as an exciting future
direction which sits at the intersection of reinforcement
learning and probabilistic programming.
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Appendix

A. Forth Words and their implementation

We implemented a small subset of available Forth words in 04. The table of these words, together with their descriptions
is given in Table 4, and their implementation is given in Table 5. The commands are roughly divided into 7 groups. These
groups, line-separated in the table, are:

Data stack operations {num}, 1+, 1-, DUP, SWAP, OVER, DROP, +, —, =*, /
Heap operations @, !

Comparators >, <, =

Return stack operations >R, R>, @R

Control statements IF..ELSE..THEN, BEGIN..WHILE..REPEAT, DO..LOOP
Subroutine control :, {sub}, ;, MACRO

Variable creation VARIABLE, CREATE..ALLOT

Table 4: Forth words and their descriptions. TOS denotes top-of-stack, NOS denotes next-on-stack, DSTACK denotes the
data stack, RSTACK denotes the return stack, and HEAP denotes the heap.

Forth Word Description

{num} Pushes {num} to DSTACK.

1+ Increments DSTACK TOS by 1.

1- Decrements DSTACK TOS by 1.

DUP Duplicates DSTACK TOS.

SWAP Swaps TOS and NOS.

OVER Copies NOS and pushes it on the TOS.

DROP Pops the TOS (non-destructive).

+, =, *, / Consumes DSTACK NOS and TOS. Returns NOS operator TOS.

@ Fetches the HEAP value from the DSTACK TOS address.

! Stores DSTACK NOS to the DSTACK TOS address on the HEAP.

>, <, = Consumes DSTACK NOS and TOS.

Returns 1 (TRUE) if NOS > | < | = TOS respectivelly, 0 (FALSE) otherwise.

>R Pushes DSTACK TOS to RSTACK TOS, removes it from DSTACK.

R> Pushes RSTACK TOS to DSTACK TOS, removes it from RSTACK.

@R Copies the RSTACK TOS TO DSTACK TOS.

IF..ELSE..THEN Consumes DSTACK TOS, if it equals to a non-zero number (TRUE), executes
commands between IF and ELSE. Otherwise executes commands between
ELSE and THEN.

BEGIN..WHILE..REPEAT Continually executes commands between WHILE and REPEAT while the code
between BEGIN and WHILE evaluates to a non-zero number (TRUE).

DO. .LOOP Consumes NOS and TOS, assumes NOS as a limit, and TOS as a current index.
Increases index by 1 until equal to NOS. At every increment, executes commands
between DO and LOOP.

: Denotes the subroutine, followed by a word defining it.

{sub} Subroutine invocation, puts the program counter PC on RSTACK, sets PC to the
subroutine address.

; Subroutine exit. Consumest TOS from the RSTACK and sets the PC to it.

MACRO Treats the subroutine as a macro function.

VARIABLE Creates a variable with a fixed address. Invoking the variable name returns its
address.

CREATE. .ALLOT Creates a variable with a fixed address. Do not allocate the next N addresses to

any other variable (effectively reserve that portion of heap to the variable)
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Table 5: Implementation of Forth words described in Table 4. Note that the variable creation words are implemented as fixed
address allocation, and MACRO words are implemented with inlining.

Symbol Explanation

M Stack, M€ {D,R}

M Memory buffer, M e {D,R,H}

o) Pointer, pe{d,r,c}

R+ Increment and decrement matrices (circular shift)

1+ J1 i£1=j(modn))
|

0 otherwise
RT R ,R* ,R/ Circular arithmetic operation tensors
riort _[1 i{op}j=k(modn))
ijk 0 otherwise
Pointer and value manipulation Expression
Increment a (or value x) inc(a)=aTR*
Decrement a (or value x) dec(a)=a’R1~
Algebraic operation application {op}(a,b)=a’Ri°P}b
Conditional jump a jump(c,a):p=(popp()=TRUE)
c+pct+(1-pla
a~! Next on stack, a+aT R~
Buffer manipulation
READ from M ready(a) =aTM
WRITE to M writep (x,2): M+—M—-—a®l-M+x®a
PUSH x onto M pushy (x): writepm(x,a)  [side-effect: d +—inc(d)]
POP an element from M popm () =readni(a)  [side-effect: d <—dec(d)]
Forth Word
Literal x pushp (x)
1+ writep (inc(readp(d)),d)
1- writep (dec(readp(d)),d)
DUP pushp (readp(d))
SWAP r=readp(d), y=readp(d~1)
wwritep (d,y) , writep(d~1,x)
OVER pushp (readp(d))
DROP popp ()
+, = ok, ] writep ({op} (readp (d—1),readp(d)),d)
@ readg(d)
! writerr(d,d 1)
< SWAP >
> er =" Jixd;, ea=3"""tixd; !
P=¢puwi(e1—ez), where ¢,y (x) =min(max(0,2+0.5),1)
pl+(p—1)0
= p:¢pwl(d7d71)
pl+(p—1)0
>R pushgr(d)
R> popr()
@R writep (d,readgr(r))
IF..,ELSE..,THEN p=(popp()=0)
BEGIN. .WHILE. .,REPEAT .1 jump(c,..2)
DO. .LOOP start = c,current =inc(popp()),limit=popp ()

p=(current=1limit)
jump(p,.),gumplc,start)
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B. Bubble sort algorithm description

An example of a Forth program that implements the Bubble sort algorithm is shown in Listing 1. We provide a description
of how the first iteration of this algorithm is executed by the Forth abstract machine:

The program begins at line 11, putting the sequence [2 4 2 7] on the data stack D, followed by the sequence length 4.° It then
calls the SORT word.

D R comment
1 [ [ 11 execution start
2 | [24274] (] pushing sequence to D, calling

SORT subroutine puts Agorr to R

For a sequence of length 4, SORT performs a do-loop in line 9 that calls the BUBBLE sub-routine 3 times. It does so by
decrementing the top of D with the 1- word to 3. Subsequently, 3 is duplicated on D by using DUP, and 0 is pushed onto D.

3 | [24273] [Asorr] 9 1-
4 | [242733] [Asort] 9 DUP
6 [[2427330] | [Asorr] 9 0

DO consumes the top two stack elements 3 and O as the limit and starting point of the loop, leaving the stack D to be
[2,4,2,7,3]. We use the return stack R as a temporary variable buffer and push 3 onto it using the word >R. This drops 3 from
D, which we copy from R with R@

7 [2 427 3] [AddrSORT] 9 DO
8 [2427] [Addrsort 3] 9 >R
9 | [24273] [Addrsorr 3] 9 @R

Next, we call BUBBLE to perform one iteration of the bubble pass, (calling BUBBLE 3 times internally), and consuming 3.
Notice that this call puts the current program counter onto R, to be used for the program counter ¢ when exiting BUBBLE.

Inside the BUBBLE subroutine, DUP duplicates 3 on R. IF consumes the duplicated 3 and interprets is as TRUE. >R puts 3
on R.

10| [24273]
11| [242733]
12| [24273]
13| [2427]

Calling OVER twice duplicates the top two elements of the st

the result is TRUE (0),
14| [242727]
15| [24271]
16 | [2427]
17 | [2472]

[Asort 3 ApusBLE] 0
[Asort 3 ApuBBLE] 1
[Asorr 3 ApuBsLE] 1
[Asorr 3 AussLE 3] 1

which it is, so it executes SWAP.

[Asorr 3 ApussLE 3] 2
[Asorr 3 AussLE 3] 2
[Asort 3 AussLE 3] 2
[Asorr 3 AuBsLE 3] 2

calling BUBBLE subroutine puts
ApuggLE to R

DUP

IF

>R

ack, to test them with <, which tests whether 2 < 7. IF tests if

OVER OVER
<

IF

SWAP

To prepare for the next call to BUBBLE we move 3 back from the return stack R to the data stack D via R>, SWAP it with the
next element, put it back to R with >R, decrease the TOS with 1- and invoke BUBBLE again. Notice that R will accumulate
the analysed part of the sequence, which will be recursively taken back.

18 | [24723]
19| [24732]
20 | [2473]
21| [2472]
22| [2472]

[Asorr 3 ApuBsLE] 3
[Asorr 3 AuBsLE] 3
[Asorr 3 AuBsLE 2] 3
[Asort 3 AussLE 2] 3
[Asorr 3 AussLE 2] 0

R >

SWAP

>R

1-
..BUBBLE

When we reach the loop limit we drop the length of the sequence and exit SORT using the ; word, which takes the return
address from R. At the final point, the stack should contain the ordered sequence [7 4 2 2].

®Note that Forth uses Reverse Polish Notation and that the top of the data stack is 4 in this example.
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C. Learning and Run Time Efficiency
C.1. Accuracy per training examples

Sorter When measuring the performance of the model as
the number of training instances varies, we can observe the
benefit of additional prior knowledge to the optimisation
process. We find that when stronger prior knowledge is
provided (COMPARE), the model quickly maximises the
training accuracy. Providing less structure (PERMUTE)
results in lower testing accuracy initially, however, both
sketches learn the correct behaviour and generalise equally
well after seeing 256 training instances. Additionally, it
is worth noting that the PERMUTE sketch was not always
able to converge into a result of the correct length, and both
sketches are not trivial to train.

In comparison, Seq2Seq baseline is able to generalise only
to the sequence it was trained on (Seq2Seq trained and
tested on sequence length 3). When training it on sequence
length 3, and testing it on a much longer sequence length of
8, Seq2Seq baseline is not able to achieve more than 45%
accuracy.

1.0 compare PS
—&— permute
Seq2Seq (test 3)
—— Seq2Seq (test 8)

0.8

Accuracy
o
o

ﬁ/

0.4

0.2

4 8 16 32 64 128 256 512 1024
# training examples

Figure 3: Accuracy of models for varying number of
training examples, trained on input sequence of length 3 for
the Bubble sort task. Compare, permute, and Seq2Seq (test
8) were tested on sequence lengths 8, and Seq2Seq (test 3)
was tested on sequence length 3.

Adder We tested the models to train on datasets of
increasing size on the addition task. The results, depicted in
Table 4 show that both the choose and the manipulate sketch
are able to perfectly generalise from 256 examples, trained
on sequence lengths of 8, tested on 16. In comparison, the
Seq2Seq baseline achieves 98% when trained on 16384
examples, but only when tested on the input of the same
length, 8. If we test Seq2Seq as we tested the sketches, it is
unable to achieve more 19.7%.

1.0 choose
—&— manipulate
Seq2Seq (test 8)
—— Seq2Seq (test 16)

0.8

Accuracy
o
o

o
~

02

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
# training examples

Figure 4: Accuracy of models for varying number of
training examples, trained on input sequence of length 8 for
the addition task. Manipulate, choose, and Seq2Seq (test
16) were tested on sequence lengths 16, and Seq2Seq (test
8) was tested on sequence length 8.

C.2. Program Code Optimisations

We measure the runtime of Bubble sort on sequences of
varying length with and without the optimisations described
in Section 3.4. The results of ten repeated runs are shown
in Figure 5 and demonstrate large relative improvements
for symbolic execution and interpolation of if-branches
compared to non-optimised 94 code.

Relative Runtime Improvement [%]

Ot ——
2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5: Relative speed improvements of program code
optimisations for different input sequence lengths (bottom).

D. 04 execution of a Bubble sort sketch

Listing 1 (lines 3b and 4b — in blue) defines the BUBBLE
word as a sketch capturing several types of prior knowledge.
In this section, we describe the PERMUTE sketch. In it, we
assume BUBBLE involves a recursive call, that terminates at
length 1, and that the next BUBBLE call takes as input some
function of the current length and the top two stack elements.

The input to this sketch are the sequence to be sorted and
its length decremented by one, n —1 (line 1). These inputs
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are expected on the data stack. After the length (n — 1)
is duplicated for further use with DUP, the machine tests
whether it is non-zero (using IF, which consumes the TOS
during the check). If n—1> 0, it is stored on the R stack for
future use (line 2).

At this point (line 3b) the programmer only knows that
a decision must be made based on the top two data stack
elements DO and D-1 (comparison elements), and the top
return stack, RO (length decremented by 1). Here the precise
nature of this decision is unknown but is limited to variants
of permutation of these elements, the output of which pro-
duce the input state to the decrement —1 and the recursive
BUBBLE call (line 4b). At the culmination of the call, RO,
the output of the learned slot behaviour, is moved onto the
data stack using R>, and execution proceeds to the next step.

Figure 2 illustrates how portions of this sketch are executed
on the 04 RNN. The program counter initially resides at >R
(line 3 in P), as indicated by the vector c, next to program
P. Both data and return stacks are partially filled (R has 1
element, D has 4), and we show the content both through
horizontal one-hot vectors and their corresponding integer
values (colour coded). The vectors d and r point to the top
of both stacks, and are in a one-hot state as well. In this
execution trace, the slot at line 4 is already showing optimal
behaviour: it remembers the element on the return stack (4)
is larger and executes BUBBLE on the remaining sequence
with the counter n subtracted by one, to 1.

E. Experimental details

The parameters of each sketch are trained using
Adam (Kingma & Ba, 2015), with gradient clipping
(set to 1.0) and gradient noise (Neelakantan et al., 2015b).
We tuned the learning rate, batch size, and the parameters
of the gradient noise in a random search on a development
variant of each task.

E.1. Seq2Seq baseline

The Seq2Seq baseline models are single-layer networks
with LSTM cells of 50 dimensions.

The training procedure for these models consists of 500
epochs of Adam optimisation, with a batch size of 128,
a learning rate of 0.01, and gradient clipping when the
L2 norm of the model parameters exceeded 5.0. We vary
the size of training and test data (Fig. 3), but observe no
indication of the models failing to reach convergence under
these training conditions.

E.2. Sorting

The Permute and Compare sketches in Table 1 were trained
on a randomly generated train, development and test set

containing 256, 32 and 32 instances, respectively. Note
that the low number of dev and test instances was due to the
computational complexity of the sketch.

The batch size was set to a value between 64 and 16,
depending on the problem size, and we used an initial
learning rate of 1.0.

E.3. Addition

We trained the addition Choose and Manipulate sketches
presented in Table 2 on arandomly generated train, develop-
ment and test sets of sizes 512, 256, and 1024 respectively.
The batch size was set to 16, and we used an initial learning
rate of 0.05

E.4. Word Algebra Problem

The Common Core (CC) dataset (Roy & Roth, 2015) is par-
titioned into a train, dev, and test set containing 300, 100,
and 200 questions, respectively. The batch size was set to
50, and we used an initial learning rate of 0.02. The BILSTM
word vectors were initialised randomly to vectors of length
75. The stack width was set to 150 and the stack size to 5.

F. Qualitative
Analysis on BubbleSort of PC traces

In Figure 6 we visualise the program counter traces. The
trace follows a single example from start, to middle, and the
end of the training process. In the beginning of training, the
program counter starts to deviate from the one-hot represen-
tation in the first 20 steps (not observed in the figure due to
unobservable changes), and after two iterations of SORT, 04
fails to correctly determine the next word. After a few train-
ing epochs 04 learns better permutations which enable the
algorithm to take crisp decisions and halt in the correct state.
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(a) Program Counter trace in early stages of training.
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(b) Program Counter trace in the middle of training.
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(c) Program Counter trace at the end of training.
Figure 6: Program Counter traces for a single example at different stages of training BubbleSort in Listing 1 (red: successive
recursion calls to BUBBLE, green: successive returns from the recursion, and blue: calls to SORT). The last element in the
last row is the halting command, which only gets executed after learning the correct slot behaviour.
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G. The complete Word Algebra Problem sketch

The Word Algebra Problem (WAP) sketch described in Listing 3 is the core of the model that we use for WAP problems.
However, there were additional words before and after the core which took care of copying the data from the heap to data
and return stacks, and finally emptying out the return stack.

The full WAP sketch is given in Listing 4. We define a QUESTION variable which will denote the address of the question
vector on the heap. Lines 4 and 5 create REPR_BUFFER and NUM_BUFFER variables and denote that they will occupy
four sequential memory slots on the heap, where we will store the representation vectors and numbers, respectively. Lines
7 and 8 create variables REPR and NUM which will denote addresses to current representations and numbers on the heap.
Lines 10 and 11 store REPR_BUFFER to REPR and NUM_BUFFER to NUM, essentially setting the values of variables REPR
and NUM to starting addresses allotted in lines 4 and 5. Lines 14-16 and 19-20 create macro functions STEP_NUM and
STEP_REPR which increment the NUM and REPR values on call. These macro functions will be used to iterate through the
heap space. Lines 24-25 define macro functions CURRENT_NUM for fetching the current number, and CURRENT _REPR for
fetching representation values. Lines 28-32 essentially copy values of numbers from the heap to the data stack by using
the CURRENT_NUM and STEP _NUM macros. After that line 35 pushes the question vector, and lines 36-40 push the word
representations of numbers on the return stack.

Following that, we define the core operations of the sketch. Line 43 permutes the elements on the data stack (numbers) as a
function of the elements on the return stack (vector representations of the question and numbers). Line 45 chooses an operator
to execute over the TOS and NOS elements of the data stack (again, conditioned on elements on the return stack). Line 47
executes a possible swap of the two elements on the data stack (the intermediate result and the last operand) conditioned on
the return stack. Finally, line 49 chooses the last operator to execute on the data stack, conditioned on the return stack.

The sketch ends with lines 52-55 which empty out the return stack.
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\ address of the question on H

VARIABLE QUESTION

\ allotting H for representations and numbers
CREATE REPR_BUFFER 4 ALLOT

CREATE NUM_BUFFER 4 ALLOT

\ addresses of the first representation and number
VARIABLE REPR

VARIABLE NUM

©® NN R W —

10| REPR_BUFFER REPR
11| NUM_BUFFER NUM !

13| \ macro function for incrementing the pointer to numbers in H
14| MACRO: STEP_NUM

15 NUM @ 1+ NUM !

16| ;

18| \ macro function for incrementing the pointer to representations in H
19| MACRO: STEP_REPR
20 REPR @ 1+ REPR
21| ;

23| \ macro functions for fetching current numbers and representations
24| MACRO: CURRENT_NUM NUM @ @ ;
25| MACRO: CURRENT_REPR REPR @ @ ;

27| \ copy numbers to D
28| CURRENT_NUM

29| STEP_NUM

30| CURRENT_NUM

31| STEP_NUM

32| CURRENT_NUM

S O ©

]

34| \ copy question vector, and representations of numbers to R
35| QUESTION @ >R

36| CURRENT_REPR >R

37| STEP_REPR

38| CURRENT_REPR >R

39| STEP_REPR

40| CURRENT_REPR >R

S G

©

42| \ permute stack elements, based on the question and number representations
43| { observe RO R-1 R-2 R-3 -> permute DO D-1 D-2 }

44| \ choose the first operation

45| { observe RO R-1 R-2 R-3 -> choose + - % / }

46| \ choose whether to swap intermediate result and the bottom number

47| { observe RO R-1 R-2 R-3 —> choose SWAP NOP }

48| \ choose the second operation

49| { observe RO R-1 R-2 R-3 -> choose + - % / }

51| \ empty out R
52| R> DROP
53| R> DROP
54| R> DROP
55| R> DROP

Listing 4: The complete Word Algebra Problem sketch
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