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SUMMARY

The olfactory bulb (OB) is the first site of synaptic odor
informationprocessing, yet awealth of contextual and
learned information has been described in its activity.
To investigate the mechanistic basis of contextual
modulation, we use whole-cell recordings tomeasure
odor responses across rapid learning episodes in
identified mitral/tufted cells (MTCs). Across these
learning episodes, diverse response changes occur
already during the first sniff cycle. Motivated mice
develop active sniffing strategies across learning
that robustly correspond to the odor response
changes, resulting in enhanced odor representation.
Evoking fast sniffing in different behavioral states
demonstrates that response changes during active
sampling exceed those predicted from feedforward
input alone. Finally, response changes are highly
correlated in tuftedcells, butnotmitral cells, indicating
there are cell-type-specific effects on odor represen-
tation during active sampling. Altogether, we show
that active sampling is strongly associated with
enhanced OB responsiveness on rapid timescales.

INTRODUCTION

The ability to respond to sensory stimuli according to learning

and context is vital for orchestrating appropriate behavior. Our

view of sensory processing has shifted away from the simplicity

of passive feedforward models driven by sensory stimuli, to one

that additionally incorporates contextual information provided by

top-down circuits into the ongoing processing (Engel et al.,

2001). This has been driven in part by observations that activity

in primary sensory cortex is widely modulated by contextual in-

formation: locomotion, attention, and experience all modulate vi-

sual cortex activity (Fiser et al., 2016; Ito and Gilbert, 1999; Niell

and Stryker, 2010), while whisking behavior and social context

modulate barrel cortex activity (Lenschow and Brecht, 2015).

The olfactory bulb (OB) is the first site to synaptically process

olfactory information, yet already modulation by multiple con-
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texts has been described in recordings of suprathreshold activity

(unit recordings and imaging). These include modulation of odor

responses by hunger state (Pager et al., 1972), task engagement

(Fuentes et al., 2008), reward association (Doucette and Re-

strepo, 2008), conditioned aversion (Kass et al., 2013), and

even non-olfactory events (Kay and Laurent, 1999; Rinberg

et al., 2006a). Recently, several studies have described changes

in mitral and tufted cell (MTC) odor responses during olfactory

learning (Chu et al., 2016; Doucette and Restrepo, 2008; Ya-

mada et al., 2017). Despite the prominence of such studies,

the mechanistic basis underlying contextual modulation of the

circuit is still unclear. In particular, rarely have contextual modu-

lations been interpreted in the framework of active sniffing

behavior, which is known to be controlled in a highly context-

dependent manner (Wachowiak, 2011). Rodents often show

development of sniffing strategies alongside the learning of

olfactory discrimination tasks (Kepecs et al., 2007; Wesson

et al., 2008, 2009; Youngentob et al., 1987), and the impact of

this on odor representation is currently not well understood.

Additionally, while it is possible to chronically record across

long timescales using unit recordings and imaging, they have

limited access to subthreshold activity, while the former may un-

der-sample from cells with low firing rate (Kollo et al., 2014; Mar-

grie et al., 2002) and have difficulties with cell-type identification.

We thus wanted to investigate to what extent active sampling

strategies account for context-dependent changes in MTC odor

responses. To this end, we recorded from identified MTCs using

blind whole-cell recordings in vivo across a range of behavioral

states. We optimized behavioral training protocols to facilitate

rapid olfactory discrimination learning, which allowed us to make

whole-cell recordings over the full learning epoch and simulta-

neously measure sniffing behavior. Altogether, we show that

changes in active sniffing behavior are strong predictors of odor

response change. These response changes exceed those pre-

dicted by feedforward input alone, occur in a cell-type-specific

wayandoverall enhance the representationofodorswithin theOB.

RESULTS

Whole-Cell Recordings during Go/No-Go Discrimination
Learning
To observe changes in odor response across olfactory learning,

we recorded from 21 MTCs in mice during learning of a simple
k Institute. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Paradigm for Behavioral Task and Whole-Cell Recording across Learning

(A) Diagram of the whole-cell (WC) recording setup (left) and schematic of go/no-go task sequence (right; described in text).

(B) Average learning curves for 21 mice for pre-training sessions (day 1, operant conditioning to the CS+; day 2, discrimination learning for the first odor pair) and

discrimination learning with a novel odor stimulus pair on day 3. Whole-cell recordings were made across this learning epoch. Green dashed line indicates

criterion of 80% correct. Error bars show SD.

(C) Example Vm traces during odor stimulus for cells recorded in passive mice, aligned to first inhalation onset.

(D) As for (C), but for cells recorded in learning mice.

(E) Heatmap of Vm responses averaged across all trials for each cell-odor pair, sorted by mean Vm response, for both passive (n = 46) and learning (n = 42)

datasets. Black bar indicates odor stimulus, aligned to first inhalation onset.

(F) Left: histograms of average 500 ms Vm responses for passively exposed (top) and learning mice (bottom). Red bars indicate significant excitation; blue bars

indicate significant inhibition. Error bars above histogram show mean ± 1 SD. Right: cumulative histograms comparing average Vm responses for passive (gray)

and learning (gold) cell-odor pairs. Passive, Vm response = �1.5 ± 1.8 mV; learning, Vm response = �1.7 ± 2.4 mV; p = 0.05, Bartlett test.
olfactory go/no-go discrimination task (Figure 1A). In this task,

two odor mixture stimuli (Figure S1) were randomly selected

and presented in a pseudorandom sequence, each preceded

by an LED cue. When the presented stimulus was the assigned

CS+, mice were required to lick the reward port in the 1 s after

odor offset to gain a reward of dilute sweetened condensed

milk, and to avoid licking if the stimulus was the assigned CS�

to prevent a time addition to the inter-trial interval (ITI). Mice

were pre-trained prior to recording on different odor pairs (Fig-

ure 1B; STAR Methods), until reaching criterion (>80% correct)

for odor discrimination. This pre-training allowed mice to un-

dergo much more rapid learning on the subsequent novel odor
pair, reaching criterion within 20 min (Figure 1B). Whole-cell

recordings took place across this rapid learning epoch. MTCs

were distinguished from interneurons as previously described

(Kollo et al., 2014), using independent component analysis

of the spike after-hyperpolarization (AHP) waveform, and

confirmed with morphological reconstruction of 11 cells (Figures

S3A–S3C; STAR Methods).

To control for time-dependent effects unrelated to discrimina-

tion learning, we also recorded from 23 MTCs in a separate

cohort of mice that were passively exposed to repeated

presentations of the same odor stimuli. To first test whether

the learning and passive states show any general difference in
Neuron 98, 1214–1228, June 27, 2018 1215



OB physiology, we applied a series of current steps and

compared the basic properties of cells. Both the passive proper-

ties (input resistance, membrane time constant, and resting Vm)

and spontaneous activity of cells revealed few detectable differ-

ences (Figures S4A–S4F).

The odor mixtures used as stimuli were intended to activate a

large portion of the dorsal OB (STAR Methods). These mixtures

evoked diverse MTC responses in both passive (Figure 1C; 46

cell-odor pairs) and learning mice (Figure 1D; 42 cell-odor pairs).

Note that all odor responses in the study are aligned on each trial

to the first inhalation onset, and we have included both CS+ and

CS� cell-odor pairs in all analyses unless otherwise stated. Aver-

aging Vm responses (membrane potentials calculated after

spike-subtraction; Figures S3D and S3E) across all trials

revealed that over 80% of cell-odor pairs responded to the

odor mixtures (Figures 1E and 1F). Firing rate (FR) responses

were also evoked with similarly high probability (Figures S4G

and S4H).

Diverse Odor Response Changes Occur in
Learning Mice
Recent imaging studies show that MTC responses can change

over long timescales in both learning and passive mice (Chu

et al., 2016; Yamada et al., 2017). Comparing Vm responses

averaged across all trials revealed that response variance was

larger across cells in learning mice relative to passive mice (p =

0.05, Bartlett test; Figure 1F). To assess whether this difference

developed across rapid learning, we compared the Vm response

of each cell-odor pair in five early trials (#2 to #6), in which the

mouse is performing at chance levels, with the response in the

five last trials, in which the mouse is performing at criterion or

above (e.g., Figures 2A and 2B). Since median reaction times

in the task were 500 ms (Figure S2A), we focused on the first

500 ms of the odor response for all analyses (unless otherwise

stated).

Diverse changes in Vm response occurred over the course of

learning, including increases in excitatory response (Figure 2C)

and increases in inhibitory response (Figure 2D), which emerged

gradually across trials (Figures S5C and S5D). Overall, in learning

mice, 30% of cell-odor pairs underwent a significant response

change across learning (p < 0.01, unpaired t test between 5 early

and 5 late trials), with 19% showing a positive change and 11%

showing a negative change (Figures 2E and S5A). The Vm

response changes often gave rise to changes in FR: increases

in excitatory Vm response were reflected by increases in excit-

atory FR response, though this was less clear for changes in in-

hibition (Figures S6A–S6E). MTCs recorded in passive mice, in

which recording durations were matched (Figure S5E), showed

significantly less response changes than learning mice (2/46

passive versus 13/42 learning cell-odor pairs, p = 0.001 Fisher’s

exact test; Figures 2E and S5B). Overall, there was significantly

higher variance in response changes for learning compared to

passive datasets (learning DVm SD = 1.5 mV; passive DVm

SD = 1.1 mV; p = 0.02, Bartlett test; Figure 2F). This dichotomy

in response changesmeant that in late trials, the learning dataset

showed significantly more variance in responses than the pas-

sive dataset, while this was not the case in early trials (Figure 2E).

Thus, response differences developed across the learning
1216 Neuron 98, 1214–1228, June 27, 2018
episode and were not due to general behavioral state differ-

ences, such as thirst state.

Response changes did not reflect the contingency of the odor:

in fact, response changes for CS+ and CS� stimuli were corre-

lated (Figures S7A–S7E). The changes also occurred within a

behaviorally relevant time window: mice could have reaction

times as low as 170 ms (Figure S2), congruent with previous

estimates (Abraham et al., 2004; Resulaj and Rinberg, 2015;

Uchida and Mainen, 2003), and 67% of identifiable Vm response

changes occurred prior to 170 ms (median DVm onset = 120 ms,

interquartile range [IQR] = 90–220 ms; Figures 2G and S5F;

STAR Methods).

Thus, diverse response changes occur specifically across

learning within a behaviorally relevant time window.

Active Sampling Strategies Emerge across Task
Learning
What are the mechanisms underlying these response changes?

Odors are acquired from the environment through sniffing

behavior, which is subject to complex contextual modulation

(Kepecs et al., 2007; Wachowiak, 2011; Wesson et al., 2009).

Since sniffing controls input to the OB, sniff changes could

potentially explain the learning-related changes in odor re-

sponses. To analyze whether sniffing changed across learning

within the short 500 ms time window of the odor stimulus, we

measured nasal flow using an external sensor and quantified

the mean inhalation duration (MID) of all inhalations completed

within this time window (Figure 3A). We chose MID because

external measurement of sniffing does not give reliable data

about sniff amplitudes (the naris can move relative to the sensor)

and because MID correlates with sniff frequency and inhalation

slope on a sniff-by-sniff basis—thus, changes in MID also reflect

changes in these parameters (Jordan et al., 2017). We again

compared five early and five late trials to quantify the change

in MID across learning (DMID). This revealed significant changes

in sniff behavior, e.g., the emergence of faster, sharper inhala-

tions (reduced MID; Figure 3B). Reductions in MID mirrored in-

creases in sniffing frequency and peak inhalation slope (Figures

3C, S8A, and S8B) and are thus indicative of faster sniffing.

Across all cell-odor pairs, 26% underwent significant changes

in MID during learning (p < 0.01, unpaired t tests), while only

11% underwent such significant changes in passively exposed

mice (Figure 3D). Learning mice displayed significantly more

variation in DMID (learning, SD = 24 ms; passive, SD = 9 ms;

p = 3 3 10�8, Bartlett test; Figure 3E) and a significantly larger

proportion of reductions in MID exceeding 20 ms (learning,

26%; passive, 2%; p < 0.01, bootstrapping; Figure 3E). Thus,

the development of rapid sniffing was specific to learning mice.

Note that, while many mice underwent significant changes in

sniff strategy across learning, MID was already significantly

lower for learning mice than for passive mice in early trials

(p = 0.001, rank-sum test; Figure 3D), indicating potential reten-

tion of sniff strategies learned during pre-training.

Similar to the MTC response changes occurring across

learning, changes in MID were correlated between CS+ and

CS� odors (Figure S8C) and occurred in the first inhalation after

odor onset (Figures 3F and S8D). This suggests that MID

changes in learning mice reflect a change in active sampling
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Figure 2. Diverse Odor Response Changes Occur in Learning Mice

(A) Example learning curves for one mouse across the recording. Percentage correct is calculated in a moving average of five CS+ and five CS� trials. Odor

responses are compared between five early trials (unlearned) and five late trials (learned) to assess learning-related changes.

(B) As for (A) but for a different mouse.

(C) Left: example odor response Vm traces in early and late trials for a cell-odor pair undergoing an increase in excitation across learning (spikes have been clipped

for display). Black bar and shaded area indicate odor stimulus (aligned to first inhalation onset). Right: heatmap showing five-trial moving average of Vm response.

Note that this example corresponds to above learning curve in (A).

(D) As for (C), but for a response undergoing an increase in inhibition (corresponds to B).

(E) Plot between mean early and late Vm responses for learning mice (left; n = 42 cell-odor pairs) and passive mice (right; n = 46 cell-odor pairs) separately. Thick

red and blue lines indicate significant positive and negative change, respectively (p < 0.01, unpaired t tests). Response variance did not differ in early trials

(learning versus passive, p = 0.17, Brown-Forsythe test) but did during late trials (p = 0.03, Brown-Forsythe test).

(F) Comparison of response changes (late-early) for learning and passive mice. Red and blue dots show significant positive and negative changes, respectively.

Error bars show SD.

(G) Response change heatmaps (late-early mean Vm response waveforms) normalized by baseline SD. Black boxes indicate onset of change (>2 or <(�2) SD for

at least 50 ms). t = 0 indicates odor onset, aligned to the first inhalation onset. t = 170 ms is indicated as the minimal reaction time (Figure S2).

Neuron 98, 1214–1228, June 27, 2018 1217
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Figure 3. Active Sampling Strategies Emerge across Task Learning

(A) Diagram to show extraction of inhalation duration from example nasal flow trace.

(B) Example nasal flow traces from one mouse showing emergence of rapid sniffing between early and late trials.

(C) MID for example in (B) calculated for each trial (first 500 ms of stimulus) in purple dots. Blue crosses show corresponding sniff frequency for each trial.

(D) Plot showing howMID changes between early and late trials, for learning (n = 38) and passive (n = 42) mice. Thick red lines show significant reductions in MID

(faster sniffing); thick blue lines show significant increases in MID (slower sniffing; p < 0.01, unpaired t tests).

(E) Cumulative histograms of MID change (late-early) for learning and passive mice. Black arrowhead shows point of significant difference (STAR Methods).

(F) Left: example flow traces showing the first inhalation after odor onset for early and late trials. Dotted gray line indicates where flow = 0 for each sniff cycle

shown. Right: heatmap showing change in inhalation duration as a function of sniff number since odor onset, sorted by DMID.

(G) Example nasal flow traces during CS+ presentations for example ‘‘high motivation’’ (left) and ‘‘low motivation’’ mice (right), for an early (top) and late (bottom)

trial. ‘‘Motivation’’ here refers to the number of licks during the odor stimulus (‘‘anticipatory’’ licks). Licks are shown as blue ticks. Droplet indicates when mouse

would receive reward. Note that sniff changes only occur for the ‘‘high motivation’’ mouse.

(H) DMID (averaged for each cell [n = 18] across CS+ and CS� stimuli) as a function of the mean number of anticipatory licks in late trials (calculated from CS+

trials only).

(I) DMID across learning (averaged for each cell across CS+ and CS� stimuli, n = 18) as a function of the reaction time calculated from divergent lick patterns

(Figure S2A).
strategy rather than changes concomitant with reward anticipa-

tion or licking response.

What causes the variance in sniff changes across mice?

Response vigor has previously been used as a measure of moti-

vation levels inmice (Berditchevskaia et al., 2016).We calculated

the amount of anticipatory licking for each mouse as a measure

of motivation for the task. Anticipatory licks were defined as licks

occurring during the CS+ odor stimulus (0.5–2 s after odor onset)

during criterion performance in late trials. Since the relevant
1218 Neuron 98, 1214–1228, June 27, 2018
response window is the 1 s after odor offset, these licks do not

contribute to the gaining of reward. Some mice showed a high

rate of anticipatory licking, while others only licked during the

designated response period (Figure 3G). Reductions in MID

were significantly correlated with higher frequency anticipatory

licking (R2 = 0.54, p = 43 10�4; Figure 3H). Since this correlation

existed for CS+ and CS� data alone (Figure S8G), these associ-

ations were not due to motor effects of licking. Consistent with

previous data (Wesson et al., 2008), reduced MID was also



significantly associated with shorter reaction time (Figure 3I; R2 =

0.23, p = 0.04). Overall, a multiple linear regression model with

terms for the vapor pressure of each odor, an interaction term

between the vapor pressure of the two odors, the anticipatory

lick rate, and MID in early trials explained most of the variation

in DMID (CS+, R2 = 0.71, p = 0.002; CS�, R2 = 0.76, p = 0.001),

indicating that several contextual variables influence the tailoring

of sniff strategy to the behavioral task.

Thus, mice developed active sampling strategies across the

learning session, dependent on motivational state.

Positive Response Changes Are Tightly Linked to
Changes in Active Sampling
We next wanted to test what impact the changes in active sam-

pling (Figure 3) had on the response changes observed across

learning (Figure 2). We first split the dataset according to MID

change: large MID change (>20 ms absolute change between

early and late trials, n = 18) and small MID change (<20 ms abso-

lute change, n = 20). We chose 20ms to constitute a ‘‘large’’ MID

change since such changes are frequent in learning mice while

rarely seen in passive mice (Figure 3E). Comparing response

changes between early and late trials for each dataset revealed

that positive changes were almost exclusively displayed along-

side large MID change (Figure 4A). There was a significant in-

crease in response variance for cell-odor pairs recorded along-

side large MID change (early SD = 1.8 mV, late SD = 3.2 mV;

p = 0.02, Bartlett test), but not for small MID change (early

SD = 2.2 mV, late SD = 2.2 mV; p = 0.98, Bartlett test;

Figure 4B). In particular, there were significantly more positive

response changes (>1 mV) occurring alongside large MID

change (39%) compared to small sniff change (5%) and

passive exposure (11%; p < 0.01, bootstrapping; STAR

Methods; Figure 4C), while response changes recorded along-

side small MID change were indistinguishable from passive con-

trols (p = 0.94, Bartlett test, n = 20 versus 46). Altogether, only

cell-odor pairs recorded alongside large MID change displayed

significantly larger response variance in late trials compared to

passive controls (small DMID versus passive, p = 0.50; large

DMID versus passive, p = 0.02, Brown-Forsythe test).

To test the strength of associations between Vm response and

active sampling further, we correlated MID and Vm response

across trials for each cell-odor pair. For cells undergoing positive

response changes across learning, this resulted in robust

correlations (e.g., Figure 4D), while those undergoing increases

in inhibition showed no such relationships (e.g., Figure 4E).

This effect across the dataset resulted in a significant positive

relationship between the response changes occurring across

learning and the R2 of the correlation betweenMID and response

across trials (R2 = 0.38, p = 4 3 10�5, n = 42; Figure 4F). These

results were consistent even when considering CS+ or CS�

cell-odor pairs alone (Figures S7F and S7G). Most cell-odor pairs

showed more positive odor responses as MID decreased, as in

Figure 4D, while the opposite trend was less common (Figures

S9A–S9C).

How did changes in active sampling impact changes in odor

representation across the dataset? To test this, we split the data-

set according to MID change as before (Figures 4A–4C), con-

structed population response vectors from each dataset, and
calculated the Euclidean distance between odor response vec-

tors and baseline data (STAR Methods; Figure S13). This pro-

vides a measure of response detectability. To look at a timescale

relevant to decision making, we analyzed the peak detectability

occurring within the first 170 ms after odor onset. We found

that an increase in peak detectability occurred in the large

DMID dataset, which was significantly greater than for the

smallDMID dataset (largeDMID, lateDpeak = 5.4 ± 1.0mV; small

DMID, late Dpeak = 0.8 ± 2.9 mV; Cohen’s d = 1.5; p = 0.009,

unpaired t test, n = 5; Figure 4G). We then used the Euclidean

distances calculated between response vectors for CS+ and

CS� stimuli as a measure of stimulus discriminability. Again, the

increase in peak discriminability was significantly greater for the

largeDMID dataset (largeDMID, lateDpeak = 5.3 ± 1.9mV; small

DMID, late Dpeak = 1.5 ± 1.2 mV; Cohen’s d = 1.5; p = 0.006, un-

paired t test, n = 5; Figure 4H). Consistent results were found for

changes in spike rate responses despite their more variable na-

ture at such short timescales (Figures S6F and S6G), indicating

that these representational changes are relevant for OB output.

No such changes in representation occurred in passive mice

(Figures S9D and S9E). Thus, sniff changes coincided with the

enhancement of odor representation.

Active Sampling and Associated Response Changes Are
Dynamically Linked to Task Engagement
We next wanted to investigate the effect of dynamic changes in

behavioral state on the changes in active sampling and odor re-

sponses observed. To do this, we recorded from eight cell-odor

pairs in a new cohort of mice that were trained to criterion on the

task prior to recording. If rapid sniffing is indeed an active strat-

egy for odor acquisition during behavior, we would expect the

strategy to disappear if the task comes to an end (i.e., transition

to passive odor exposure) and re-emerge when the task

reinitiates. To test this, we implemented a paradigm in which

task engagement could be reversibly changed by physically

removing and re-introducing the water reward spout (Figure 5A),

resulting in rapid switches between olfactory behavior and pas-

sive exposure as indicated by anticipatory licking responses

(Figure 5B). As predicted, animals robustly adapted their sniffing

strategy upon elimination of the licking response after removal

of the reward port (Figures 5C, top plot, and 5E), with MID

increasing (slower sniffing), while reintroduction of the reward

port rapidly restored fast sniff behavior (reduced MID).

If fast active sniffing determines positive response change as

predicted from learning mice (Figure 4), we would expect posi-

tive changes to occur alongside the rapid sniffing strategy. We

found that responses could change robustly and reversibly be-

tween task engagement, disengagement, and re-engagement,

with some examples showing dramatic and reversible switches

between excitation and inhibition (Figures 5C, 5D, and S10A–

S10D). Consistent with the learning-related changes, positive

response changes always occurred alongside reducedMID (Fig-

ures 5E–5G) and were again tightly linked to MID on a trial-by-

trial basis (Figures 5H and 5I). Strikingly, response changes

could occur within only a single trial upon recognition of task

re-engagement (Figures 5D and S10E), emphasizing the dy-

namic nature with which changes in active sampling state influ-

ence neural responses.
Neuron 98, 1214–1228, June 27, 2018 1219
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Figure 4. Positive Response Changes Are Tightly Linked to Changes in Active Sampling

All data are from the learning dataset.

(A) Response change heatmaps (late-early average Vm response) normalized by baseline SD, for small MID change (jDMIDj <20 ms) and large MID change

(jDMIDj >20 ms).

(B) Plot of early and late Vm responses for cell-odor pairs with large and small DMID separately. Thick red and blue lines indicate significant positive and negative

changes, respectively (p < 0.01).

(C) Cumulative histograms of Vm response changes. Black arrowheads indicate significant differences between large DMID and both small DMID and passive

histograms (STAR Methods). Large DMID, SD = 1.9 mV, n = 18; small DMID, SD = 1.1 mV; p = 0.002, Bartlett test.

(D) Left: example nasal flow and Vm traces for early and late trials for a cell-odor pair undergoing significant increase in excitation across learning. Spikes have

been clipped for display. Right: scatterplot betweenMID and Vm response across trials for this cell-odor pair. Points have been colored according to trial number.

(E) As for (D), but for a cell undergoing a significant increase in inhibition across learning.

(F) Scatterplot between the response change across learning, and the R2 value for correlations as in (D) and (E), colored according to the p value of the correlation.

Labeled points 1 and 2 refer to examples in (D) and (E), respectively.

(G) Left plots: Euclidean distance between population response vectors and baseline data (measure of response detectability; Figure S13) for cell-odor pairs

recorded alongside large DMID and small DMID. Shaded area shows SD. Dashed gray line indicates odor onset. Dotted black plots show data for early trials for

comparison. Right: plot to show change in peak detectability within the first 170ms of the stimulus for early, mid-point, and late trials, relative to themean for early

trials. Error bars show SD. Two-way ANOVA; DMID, p = 4 3 10�12; time, p = 0.0003; interaction, p = 0.02.

(H) As for (G), but for the Euclidean distance between population response vectors for CS+ and CS� (measure of response discriminability). Large DMID is

assigned to cells with >20ms change for both CS+ and CS� (n = 8). Small MID change is assigned to all other cells (n = 11). Two-way ANOVA;DMID, p = 23 10�7;

time, p = 0.0003; interaction, p = 0.008.
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Figure 5. Active Sampling and Associated

Response Changes Are Dynamically Linked

to Task Engagement

For all panels, green, task engaged (Eng.); black,

task disengaged (Dis.).

(A) Experimental paradigm for switches in task

engagement.

(B) Left: lick raster across task switches for CS+

and CS� stimuli for an example mouse. Blue-

shaded region shows 1 s response window after

odor offset. Right: plot showing changes in antic-

ipatory lick rate between engaged and disen-

gaged trials for the CS+ for each mouse.

(C) Top: plot showing MID across trials for an

example cell-odor pair. Middle: corresponding

plot to show odor FR response for the same cell-

odor pair across trials. Bottom: corresponding plot

to show Vm responses (after spike subtraction)

across trials. Traces on the right show example

nasal flow and Vm traces for trials corresponding

to those indicated by dotted lines on the left plots.

(D) Example traces for a different cell-odor pair

during task engagement (top trace, trial #14),

disengagement (middle trace, trial #22), and re-

engagement (bottom trace, trial #23). Note that

response valence can change within a single trial

depending on task engagement.

(E) For all eight cell-odor pairs, changes in MID

between task engagement, disengagement, and

re-engagement (asterisks denote result of paired

t tests). Error bars show SD.

(F) As for (E), but for changes in 2 s FR responses.

(G) As for (E), but for changes in 500 ms Vm

responses.

(H) Scatterplot of MID versus Vm response across

trials for an example cell-odor pair.

(I) Left: boxplots to show R2 values (as for example

in H) for all six FR responses showing significant

changes between engagement shifts, alongside

those for shuffled data. Right: as for left, but for Vm

responses.
OdorResponseChangesAssociatedwith Active Sniffing
Are Dependent on Behavioral State
We next wanted to assess to what degree the response changes

during active sniffing arise from a purely feedforward mecha-

nism. MTC activity is patterned by the sniff cycle in anesthetized

mice, giving rise to sniff-coupling of membrane potential (Adrian,

1950; Cang and Isaacson, 2003; Fukunaga et al., 2012, 2014;

Macrides and Chorover, 1972; Margrie and Schaefer, 2003;

Schaefer et al., 2006), which we will refer to as ‘‘sniff-Vm modu-

lation.’’ Preventing rhythmic nasal flow results in an abolition of

sniff-Vm modulation (Courtiol et al., 2011; Margrie and Schaefer,

2003; Schaefer et al., 2006; Figure S11A), indicating that they
N

arise from feedforward, sniff-locked sen-

sory input from olfactory sensory neurons

(OSNs). To estimate the amount of sniff-

locked input in awake mice, we calcu-

lated the amplitude of sniff-Vm modula-

tion for each cell-odor pair (Figures 6A

and S11B), revealing a wide range of am-
plitudes up to 7 mV during odor stimulation (Figure 6B). It is thus

possible that rapid sniffing can evoke changes in response via

changes in the sniff-locked input pattern from OSNs.

If response changes during active sniffing arise purely from

feedforward input, then similar sniff changes should evoke com-

parable response changes even in absence of an olfactory task.

We found that unexpected tactile stimulation briefly increased

sniff rates in passive mice (Figure 6C), quantitatively reproducing

(and even exceeding) the sniff changes seen during learning (Fig-

ure S11C). When paired with odor delivery, this resulted in a va-

riety of largely positive odor response changes (DVm response =

0.45 ± 0.96mV, p = 0.01, paired t test, n = 30; Figure 6D). If these
euron 98, 1214–1228, June 27, 2018 1221
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A B Figure 6. Response Changes Associated

with Sniff Changes Are Dependent on

Behavioral State

(A) Left: example Vm trace from a cell (recorded

in a passive mouse) showing strong modulation

by the sniff cycle. Right: average Vm as a function

of sniff phase during the odor stimulus for

this example cell. Shaded area shows SD. Sniff-Vm

modulation amplitude is calculated as the

difference between the minimal Vm and the

value of Vm at the preferred phase, as shown

(Figure S11B).

(B) Histogram of sniff-Vm modulation amplitudes

across cell-odor pairs recorded in learning mice

(n = 38) and passive (n = 42) mice.

(C) Left: experimental setup for tactile stimulation of

passive mice. Middle traces show nasal flow and

Vm from an example cell: top, control trial (slow

sniffing); bottom, tactile stimulus trial (fast sniffing).

Right plot shows mean Vm responses for five slow

and five fast sniff trials for this example cell. Error

bars show SD.

(D) Plot to show mean responses averaged across

5 ‘‘slow’’ and 5 ‘‘fast’’ sniff trials for 30 cell-odor

pairs. Red line indicates example in (C).

(E) Scatterplot of absolute response change (be-

tween slow and fast sniff trials) versus sniff-Vm

modulation amplitude during the odor. Red point

shows example in (C).

(F) Experimental set up for controlled nasal flow

via double tracheotomy in anesthetized mice.

Example traces show nasal flow and Vm trace for

one cell: top = slow sniff trial (3.3 Hz); bottom = fast

sniff trial (6.6 Hz). Right plot shows mean Vm re-

sponses for five slow and five fast sniff trials for this

example cell. Error bars show SD.

(G) As for (D), but for ‘‘controlled-flow’’ anesthetized mice (n = 9 cells).

(H) As for (E), but for ‘‘controlled-flow’’ anesthetized mice (n = 9 cells).

(I) As for (E) and (H), but for cell-odor pairs recorded during learning (circles) or task engagement (triangles), where jDMIDj >20 ms. Yellow line indicates linear

regression for these data, while purple line indicates that for pooled data from (E) and (H), which was used to calculated ‘‘expected’’ jDresponsej values.
(J) Plot comparing deviation of response changes from expected values (see I), for controlled-flow, passive, and behaving mice.

(K) Cumulative histograms to show R2 values for correlations betweenMID and Vm response calculated across trials for each cell odor pair undergoing large MID

change in behaving mice (n = 26, gold line and data points) and pooled data (purple line) from controlled-flow (blue data points, n = 9) and passive mice (purple

data points, n = 30). Behaving, median = 0.16, IQR = 0.03–0.27; passive and controlled flow, median = 0.07, IQR = 0.02 to 0.15; p = 0.07; rank-sum test; p = 0.09,

Brown-Forsythe test.
are mediated by changes in sniff-locked input, we may expect

the changes to correlate with the degree to which the response

is sniff coupled. Indeed, the response changes were strongly

correlated with the amplitude of sniff-Vm modulation, such that

highly sniff-locked cells underwent the largest changes when

sniffing was altered (R2 = 0.69, p = 1 3 10�8, n = 30; Figure 6E).

These response changes are unlikely to be due to changes in

arousal or from somatosensory input, since they were similarly

present in anesthetizedmice, where using a double tracheotomy

the frequency of artificial sniffing (nasal flow) could be controlled

independently of free tracheal breathing (Figures 6F and 6G).

Response changes in these ‘‘controlled-flow’’ mice were also

significantly correlated with sniff-Vm modulation amplitude

(R2 = 0.67, p = 0.006, n = 9; Figure 6H). Thus, in absence of olfac-

tory behavior, evoking sniff changes results in response changes

that depend on the amount of sniff-locked input to the cell.

We next wanted to assess whether this was the case for

response changes during active sniffing in behaving mice. We
1222 Neuron 98, 1214–1228, June 27, 2018
thus pooled response changes from learning and task-engaged

mice in which MID underwent a change exceeding 20 ms,

yielding 26 ‘‘behaving’’ cell-odor pairs in total. In contrast to

passive and controlled-flow mice, there was no correlation be-

tween response changes and sniff-Vm modulation amplitudes

(R2 = 0.02, p = 0.56, n = 26; Figure 6I). Using the linear model re-

sulting from the correlation for pooled data from passive and

controlled-flow mice (DVex = 0.17*T + 0.29 mV, where DVex =

expected absolute Vm response change and T = sniff-Vm modu-

lation amplitude), we generated ‘‘expected’’ values for Vm

response change based on the sniff-Vm modulation amplitude

of each cell odor pair. Response changes in behaving mice

significantly exceeded those expected based on their sniff-Vm

modulation amplitude (actual-expected difference = 0.72 ±

1.1 mV, n = 26, p = 0.002, paired t test; Figure 6J), while (by con-

struction) this was not the case for cells from passive (actual-

expected difference = 0.08 ± 0.33 mV, p = 0.16, paired t test,

n = 30 cell-odor pairs) or controlled-flow mice (actual-expected



difference = �0.21 ± 0.25 mV, p = 0.05, paired t test, n = 9 cell-

odor pairs). This effect could not be explained by variance in

DMID, since the result was the same when we used a model

including a term for the magnitude of DMID (Figures S11D

and S11E).

While this suggests that sniff-evoked response changes in

behaving mice exceed those expected based purely on sniff-

locked feedforward input, this does not mean that such

response changes are any less linked to the sampling behavior

of the animal. When comparing R2 values for the correlation be-

tween MID and Vm response across trials for each cell-odor pair,

we found that Vm responses in behaving mice showed slightly

more robust correlations with MID on a trial-by-trial basis than

in passive or controlled-flow mice (Figure 6K).

Thus, in odor-attentive mice, response changes during active

sniffing exceed those expected based only on the feedforward

input to the cell, indicating a potential top-down component

contributing to these response changes.

Effect of Fast Sniffing in Absence of Applied Odor
Depends on Feedforward Input in Learning and
Passive Mice
Since the baseline activity of MTCs is widely modulated by the

sniff cycle (Cang and Isaacson, 2003; Fukunaga et al., 2012,

2014; Macrides and Chorover, 1972; Figure S4F), it is likely

that sniff changes would cause activity changes even in absence

of applied odor stimulus. We thus wanted to test whether the

enhancement of response change during active sniffing in

behaving mice (Figures 6I and 6J) was restricted to the odor

sampling period.

To examine this, we made use of spontaneous bouts of rapid

(>5 Hz) sniffing that occur in awake mice during the ITI—i.e., in

absence of applied odor. Consistent with previous data (Kato

et al., 2013), overt depolarization or hyperpolarization would

occur in some cells coinciding with such rapid sniff bouts (Fig-

ure 7A). Quantifying the change in mean Vm during fast sniffing

across 26 MTCs revealed that almost two-thirds showed signifi-

cant changes,with 7depolarizing and 9hyperpolarizing (p < 0.05,

bootstrapping; STARMethods; Figure 7A). These changes corre-

lated well with the sniff-Vm modulation amplitudes of each cell

(R2 = 0.46, p = 0.001, n = 26; Figure 7B), indicating that these

changes are again likely the result of changes in feedforward

input. Comparing the actual Vm change to that expected based

on the linear regression model in Figure 7B (DVex = 0.31*T +

0.01 mV, where DVex = expected absolute Vm change and

T = sniff-Vm modulation amplitude) showed that actual and ex-

pected Vm changes did not significantly differ for either passive

(0.17 ± 0.57 mV, p = 0.37, paired t test, n = 10) or behaving cell-

odor pairs (�0.11 ± 0.36 mV, p = 0.25, paired t test, n = 16; Fig-

ure 7C), and the actual – expected difference was indistinguish-

able between passive and behaving datasets (p = 0.14, unpaired

t test; Cohen’s d = 0.25; p = 0.1, Bartlett test). Altogether, this in-

dicates that enhanced response change during rapid sniffing in a

behaving animal only occurs during the odor sampling period.

Since cells could either depolarize or hyperpolarize during fast

sniffing, we sought to determine whether the sign of response

change was also predictable from sniff-locking properties. Evi-

dence from anesthetized mice suggests that MCs are driven
by feedforward inhibition and lock to inhalation, while TCs are

driven by feedforward excitation and lock to exhalation (Fuku-

naga et al., 2012, 2014). To test this in awakemice, we recovered

9 morphologies of MTCs (e.g., Figure 7D) and identified them as

MCs (n = 5) or TCs (n = 4). Congruent with the previous data, the

two cell types had membrane potentials that locked to distinct

phases of the sniff cycle: MCs locked to inhalation, while TCs

locked to exhalation (Figure 7E). We next examined the relation-

ship between phase preference and the effect of fast sniffing

across the full sample of cells. The sign of the Vm change during

fast sniffs was strongly related to the sniff-phase preference of

the cell (Figure 7F), with inhalation-locked cells hyperpolarizing

and exhalation-locked cells depolarizing. We calculated the

phase boundaries for best separation of hyperpolarizing and de-

polarizing cells (as shown in Figure 7F; STAR Methods). Cells

within the inhalation boundaries (0.39–4.11 rad; putative MCs)

showed significantly more hyperpolarizing effects of fast sniffing

than those within the exhalation boundaries (putative TCs; Fig-

ure 7G). Indeed, the phase preferences of morphologically iden-

tified MCs and TCs conformed to these boundaries (Figure 7F,

red triangles and blue diamonds).

Thus, in absence of applied odor, the effect of fast sniffing on

Vm is predicted by the sniff-driven input of the cell regardless of

behavioral state, indicating that enhanced response changes

during active sniffing in behaving mice only occur during odor

sampling.

Tufted Cells Show More Highly Correlated Changes
Than Mitral Cells
Since previous work has suggested that both learning and neu-

romodulatory activity may have divergent effects on MC and TC

odor responses (Kapoor et al., 2016; Yamada et al., 2017), we

next wanted to compare response changes for the two groups

of cells. To this end, we used the phase preference boundaries

(Figure 7F) to designate putative mitral (pMC) and tufted cell

(pTC) phenotype. Consistent with the idea that these boundaries

can separate TCs and MCs, mean FR responses to odors in

pTCs showed a significant tendency toward strong excitation

compared to pMCs (Figure S12), congruent with previous data

(Fukunaga et al., 2012; Nagayama et al., 2004).

The distribution of Vm responses in early trials did not signifi-

cantly differ between pMCs and pTCs, though pTC responses

tended to show less inhibition (p = 0.26, unpaired t test; Fig-

ure 8A). Response changes across learning for putative MCs

and TCs also did not significantly differ in terms of mean or vari-

ance but tended to be more positive for pTCs (pTCs, 0.64 ±

1.7 mV; pMCs,�0.14 ± 1.4 mV; p = 0.1, unpaired t test, Cohen’s

d = 0.52; p = 0.46, Bartlett test; Figure 8B). Thismeant that, in late

trials, pTCs showed significantly more positive responses

compared to pMCs (p = 0.01, rank-sum test; Figure 8A), consis-

tent with previous findings that TCs receive less inhibition than

MCs (Christie et al., 2001). Comparing the R2 values for the

correlations between MID and Vm response across trials also

indicated that, in general, pMCs and pTCs do not show differing

effects of sniffing on responses (Figure 8C).

We next compared response changes for CS+ and CS� stimuli

for pMCs and pTCs individually. For pTCs, response changes for

the two stimuli were strongly correlated (R2 = 0.65, p = 0.002,
Neuron 98, 1214–1228, June 27, 2018 1223
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Figure 7. Response Changes in Absence

of Applied Odor Are Dependent on Sniff-

Locked Input

(A) Left: example traces showing spontaneous fast

sniff bouts during inter-trial interval and concurrent

Vm traces. Spikes are clipped for display. Right:

histogram to show distribution of Vm changes

during spontaneous rapid sniffs (>5 Hz) for

26 MTCs in which there were >20 fast sniffs. Black

bars indicate cases showing a significant change

in Vm.

(B) Scatterplot of absolute Vm change (between

slow and fast sniffs) against sniff-Vm modulation

amplitude. Gray dots show data from passive

mice (n = 10); gold dots show data from behaving

mice (n = 16).

(C) Plot to show differences between actual and

expected Vm change (expected Vm change is

calculated based on sniff-Vm modulation ampli-

tudes using linear regression in B).

(D) Morphologies of a reconstructed TC (left) and

MC (right), with mean Vm as a function of sniff

phase shown below (shaded area = SD). Phase

preferences are indicated with dotted lines. Bb,

brain border; GL, glomerular layer; EPL, external

plexiform layer; MCL, mitral cell layer.

(E) Phase plot to show preferences of five re-

constructedMCs (red) and four reconstructed TCs

(blue). 0/2p radians = inhalation onset.

(F) Vm change (between fast and slow sniffs) as a

function of the sniff-phase preference of the cell.

Black filled dots show significant Vm changes.

Red-shaded region shows phases that best

encompass hyperpolarizing cells (putative MCs),

and remaining blue region best encompasses

depolarizing cells (putative TCs). Symbols show

phase preferences of morphologically recovered

cells: red triangles, MCs; blue diamonds, TCs.

(G) Comparison of Vm change due to fast sniffing

for putative TCs and MCs defined by the phase

boundaries shown in (F). pMCs, median DVm =

�0.39mV, IQR =�0.66 to�0.17mV, n = 16; pTCs,

median DVm = 0.19 mV, IQR = 0.08 to 0.66 mV,

n = 11; p = 9 3 10�4, rank-sum test.
n = 12 cells), whereas this was weaker for pMCs (R2 = 0.21,

p = 0.13, n = 13 cells; Figure 8D). The same difference was

seen when looking at the R values for correlations between

MID and Vm response across trials (Figure 8E). Given this

difference, we next compared the changes in response discrim-

inability across learning. Using the Euclidean distance between

population response vectors for CS+ and CS� stimuli, we found

that pMCs underwent a significantly larger increase in peak dis-

criminability by late trials compared to pTCs (pMCs, lateDpeak =

4.8 ± 1.0 mV; pTCs, late Dpeak = 0.7 ± 2.4 mV; Cohen’s d = 1.5;

p = 0.009, unpaired t test, n = 5; Figure 8F). Both cell types

contributed to increased detectability of the stimulus across

learning, though this was more pronounced for pTCs than

pMCs (pMCs, late Dpeak = 2.9 ± 1.1 mV; pTCs, late Dpeak =

5.6 ± 1.8 mV; Cohen’s d = �1.4; p = 0.02, unpaired t test,

n = 5; Figure 8G).

Thus, changes in active sniffing are associated with cell-type-

specific effects on odor representation.
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DISCUSSION

Active sampling behavior is a fundamental feature of sensory in-

formation acquisition. Theoretical and psychophysical evidence

has driven hypotheses that active sampling strategies during

behavior may be used to optimize sensory information flow

(Ahissar and Assa, 2016; Laing, 1983; Yang et al., 2016). Here,

we provide new evidence for modulation of early sensory pro-

cessing in the OB during active sampling epochs, which serves

to enhance early odor representation.

Sniffing Strategy Is Highly Context Dependent
Rodents alter their sniffing pattern in many contexts (Wacho-

wiak, 2011), both in the presence (Kepecs et al., 2007; Roland

et al., 2016; Wesson et al., 2009; Youngentob et al., 1987) and

absence (Bramble and Carrier, 1983; Ikemoto and Panksepp,

1994; Wesson et al., 2008) of a task-relevant odor stimulus.

Consistent with previous reports (Wesson et al., 2009), we find
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Figure 8. Tufted Cells Show More Highly

Correlated Changes Than Mitral Cells

All data are from the learning dataset unless

indicated.

(A) Plot between early and late Vm responses for

pTCs (n = 16 cell-odor pairs) and pMCs (n = 26 cell-

odor pairs) separately. Thick black lines show sig-

nificant changes (p < 0.01, unpaired t tests). Early,

pTCs,�1.1± 1.9mV; pMCs,�1.8 ± 2mV; p = 0.26,

unpaired t test; late, pTCs, median = 0.3 mV, IQR =

�1.3 to 1.1 mV; pMCs, median = �2.1 mV, IQR =

�3.2 to 0.5 mV; p = 0.01, rank-sum test.

(B) Comparison of response changes (late-early)

for pTCs and pMCs. Black dots show significant

changes (p < 0.01, unpaired t test).

(C) Comparison of R2 values for correlations be-

tween MID and Vm response across trials for pTCs

and pMCs. Color shows p value of the correlation

(�log10). pTCs, median R2 = 0.09, IQR = 0.01 to

0.29; pMCs, median R2 = 0.06, IQR = 0.03 to 0.18;

p = 0.88, rank-sum test; p = 0.35, Brown-Forsythe

test.

(D) Scatterplots between response changes for

CS+ and CS� odors. Triangles show data from

task-engagement recordings (as in Figure 5;

response change = engaged – disengaged). Cir-

cles are from learning data.

(E) As for (D), but for R values from the correlations

between MID and Vm response across trials for

each cell.

(F) Left: Euclidean distance between population response vectors for CS+ and CS� (a measure of discriminability) for pTCs and pMCs independently. Shaded

area shows SD. Black dotted plot shows data for early trials for comparison. Right: plot showing change in peak discriminability (relative to mean for early trials)

in the first 170 ms of the stimulus for early, mid-point, and late trials for pTCs (blue) and pMCs (red). Error bars show SD across five trial subsets. Two-way

ANOVA; cell type, p = 8 3 10�6; time, p = 0.002; interaction, p = 0.02.

(G) As for (F), but for Euclidean distances between odor response and baseline data (a measure of detectability). Two-way ANOVA; cell type, p = 43 10�18; time,

p = 3 3 10�7; interaction, p = 0.06.
wide variance in sniff strategy across mice (Figure 3D), a large

portion of which can be explained by motivational state (Fig-

ure 3H). Further taking into account other variables (the sniff

strategy already being displayed in early trials and the vapor

pressures of the odors being discriminated) can altogether

explain more than 70% of the variation. Thus, active sampling

strategies are highly context dependent and appear to be a func-

tion of (1) previous learning, (2) the properties of the odor pair be-

ing discriminated, and (3) the motivational level of the mouse.

The active sniffing strategy we describe here is characterized

by a short bout of fast sniffs (around 3–4 sniff cycles), which

occur prior to lick onset (Figure S8E), while previous work indi-

cates that mice can perform such tasks within a single sniff cycle

(Abraham et al., 2004, 2010; Resulaj and Rinberg, 2015; Uchida

and Mainen, 2003). During criterion performance, inhalation du-

rations were perfectly correlated between the CS+ and CS� in

the first inhalation after odor onset and remained significantly

(though less robustly) correlated for the second and third sniff

cycle (Figure S8F), indicating that, while mice were certainly

capable of performing the task in one sniff cycle, some may

have taken a second or third sniff into account. Since sniff

changes depended to some degree on the odor pair being

discriminated, and previous work has shown that more difficult

discriminations can increase reaction times (Abraham et al.,

2004; Rinberg et al., 2006b), the persistence of sniffing over
several sniff cycles could be due to the nature of the odor pair be-

ing discriminated, and because responding as fast as perceptu-

ally possible does not benefit the mouse in our task structure.

Sniff Change as a Mechanism for Context-Dependent
OB Responses
Previous studies into the effects of sniff variance on OB activity

have often used controlled flow in tracheotomized preparations

(Carey and Wachowiak, 2011; Cenier et al., 2013; Courtiol et al.,

2011; Oka et al., 2009), or natural sniffing during passive expo-

sure (Blauvelt et al., 2013; Cenier et al., 2013; Shusterman

et al., 2017), while fewer cases have looked at OSN activity dur-

ing task-engaged sniffing (Wesson et al., 2009; Verhagen et al.,

2007). Altogether these show various effects of fast sniffing on

odor responses in OSNs and MTCs: onset latency is reduced,

while both response amplitude and patterning of activity by the

sniff cycle are attenuated. Here, we further show that in absence

of olfactory behavior, sniff changes will alter membrane poten-

tials depending on the amount of feedforward sniff-locked input

received by the cell (Figures 6E and 6H).

We advance these findings by observing changes in MTC re-

sponses during the development of active sniffing strategies

within an odor task. We show that active sniff change is associ-

ated with a profound effect on a wide range of cells independent

of their sniff-locking properties (Figures 6I and 6J), and that this
Neuron 98, 1214–1228, June 27, 2018 1225



effect is characterized largely by increased excitation to the odor

(Figures 4 and 5) and enhances representation of odor stimuli in

a cell-type-specific manner (Figures 4G, 4H, 8F, and 8G). This

enhancement of odor representation could explain the improve-

ment in discrimination performance (Kepecs et al., 2007) and

faster reaction times (Figure 3I; Wesson et al., 2008) of mice dis-

playing active sniffing strategies.

While context-dependent responses are described in a large

number of studies on MTC activity (Chu et al., 2016; Fuentes

et al., 2008; Kay and Laurent, 1999; Pager et al., 1972; Rinberg

et al., 2006b; Yamada et al., 2017), it is notable that sniffing

behavior is modulated by very similar contexts (Blanchard

et al., 2001; Ikemoto and Panksepp, 1994; Kepecs et al.,

2007; Wesson et al., 2008, 2009). While their precise nature

is dependent on behavioral context, changes in activity during

sniff changes occur in all behavioral states (Figure 6). Changes

in sniffing could therefore provide a common mechanistic ba-

sis for a number of different contextual modulations described

in OB activity. However, we note that some variance in

response change (such as the increases in inhibition during

learning; Figures 4E and 4F) could not be explained by the sniff

parameters we measured here. These could constitute a

different form of plasticity altogether, or they may be explained

by parameters of sniffing that we could not reliably measure

using external sensors (such as amplitudes or inhalation

volume).

Putative Top-Down Influences during Active Sniffing
While response changes during fast sniffing were dependent

on sniff-locked OSN input in passive and anesthetized mice,

response changes far exceeded those predicted by the sniff-

locked input in task-engaged/learning mice (Figure 6). This

suggests the involvement of top-down centers that serve to co-

ordinate sensory processing at the periphery with the active

sampling state of the animal (Wachowiak, 2011). The evoked

sniff changes in passive mice, and particularly the controlled

sniff changes in anesthetized mice (Figure 6), causally address

the feedforward component of response changes during active

sniffing. However, the brain centers involved in the control of

volitional active sniffing—which may provide a top-down influ-

ence on OB processing—are not yet well understood. Several

neuromodulatory centers that project to the OB interact with

respiratory control centers in the brainstem: raphe nuclei proj-

ect to both to the OB and the respiratory brainstem, while the

locus coeruleus projects to the OB and is modulated by the

preBötzinger complex (Dugué and Mainen, 2009; Yackle

et al., 2017). We find a cell-type specificity in the effect of active

sampling on response changes, and neuromodulatory centers

can have divergent effects on MCs and TCs (Kapoor et al.,

2016). Thus, neuromodulators are a prime candidate to

coordinate OB state with active sampling behavior. Future

investigation will be required to address which centers are acti-

vated during active sampling, alongside their targets within the

OB circuit.

Complex orchestration similarly occurs for other active

sampling behaviors including whisking (Mitchinson et al., 2007)

and eye movements (Rayner et al., 2007), with both behaviors

affecting sensory cortical activity (Crochet and Petersen, 2006;
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McFarland et al., 2015). Whether and how directed adjustments

to these sampling behaviors might also improve early stimulus

representations remains to be seen.

In conclusion, we find that early sensory activity in the OB is

overtly modulated during dynamic adjustments in active sniffing,

yielding enhanced sensory representation for olfactory behavior.
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METHOD DETAILS

Head-fixation
For surgical procedures, strict sterile technique was adhered to. Mice were anesthetized with isoflurane in oxygen (5% for induction,

1.5%–3% for maintenance), and received general analgesia (Carprofen, 5mg/kg s.c.) as well as local analgesia around the dorsal

surface of the head (Levobupivicaine or Mepivicaine, 0.5% s.c.). A custom-made stainless steel headplate was affixed to the intra-

parietal and parietal skull plates with a combination of cyanoacrylate and dental cement, while a recording chamber was constructed

upon the bone overlying the right OB using a plastic ring and dental cement. The chamber was filled with silicone (Quik-Cast - World

Precision Instruments, Florida, USA) and sealed during the recovery and training periods prior to recordings. After 48 hours recovery,

mice going on to passive experiments were head-fixed under very light isoflurane anesthezia (identical to the trainedmice, see below)

and allowed to awaken on a custom-made treadmill. Mice were allowed to accustom themselves to the treadmill in this initial 20 min-

ute session, by the end of whichmice showed no stress behavior and learned to walk and sit calmly on the treadmill. Mice going on to

behavioral training underwent 2 days of additional water scheduling prior to head-fixation, and in the initial head-fixation sessionwere

additionally allowed access to abundant free rewards (diluted sweetened condensed milk) upon licking at the reward spout.

Go/No-Go behavior
The day following head-fixation habituation, mice undergoing Go/No-Go training progressed to two more days of pre-training for

acquisition of the Go/No-Go task. On the first daymice were presented only the CS+ odor and were trained to acquire the ‘go’ licking

pattern following odor offset via a delay classical conditioning procedure. Note that no measure was in place to prevent or punish

licking behavior during the odor stimulus, and some mice would additionally lick during the odor stimulus prior to the allotted

response time after odor offset (termed ‘anticipatory licking’). Following successful learning of this lick pattern, the next day mice

were presented both the CS+ and CS- on a pseudorandom basis. Mice had to learn to respond to these odors differentially, learning

to inhibit responses (‘no-go’ behavior) for the CS- to avoid a 5 s addition to the ITI. Only when mice had successfully demonstrated

learning of this task (two consecutive 10-trial blocks of at least 80% correct responses) they were moved on to whole-cell recording

procedures the next day (see below). After successful acquisition of a recording, mice were presented a novel pair of odor stimuli

assigned each to CS+ or CS-, and had to learn the Go/No-Go behavior for these new stimuli. Criterion within a recording was consid-

ered one block of at least 80% correct performance. Learning of the task with the second pair of stimuli was always far more rapid

than for the original acquisition (Figure 1B), well within whole-cell recording timescale in awake mice. For mice undergoing the task

engagement/disengagement paradigm, acquisition of the task occurred prior to recording such that criterion performance was

already achieved from the start of the recording. After 20-30 trials, the water port was manually moved away to disengage the

task. Mice would continue to attempt to lick (as detected by infrared beam) for a variable number of trials before ‘giving up’ (i.e.,

5 consecutive ‘miss’ trials), after which the port was returned. Often a free reward was used as a salient stimulus to the mouse

that the task was re-engaged.

Odor delivery
Odor stimuli were delivered using a custom-made airflow dilution olfactometer with electronic dilution control. All odor stimuli were

calibrated using a mini photoionization detector (miniPID, Aurora Scientific, Ontario, Canada) to form square-pulses of 1% concen-

tration (relative to maximum recorded vapor-pressure in air; Figure S1). Odor stimuli used for initial go/no-go training purposes con-

sisted of peppermint oil and almond oil - components that were not present in the odor mixtures later presented in recordings. For

stimuli during whole-cell recordings, twowere randomly selected from four potential odormixtures (Figure S1), and for behavingmice

randomly assigned to CS+ or CS-. Odor mixtures were comprised of four to six monomolecular odorants selected for their reported

ability to activate dorsal glomeruli (Takahashi et al., 2004), grouped according to similarity of vapor pressure, and added to the

mixture in an undiluted quantity inversely proportional to their relative vapor pressures (Figure S1). Odors were presented with a min-

imum ITI of 10 s. To minimize contamination, a high flow clean air stream was passed through the olfactometer manifolds during this

time. Constant air-flow going to the animal was achieved using a final valve, minimizing any tactile component accompanying the

odor stimulus.

Whole-cell recordings
Animals were anaesthetized under isoflurane as before, and recording chambers were re-opened. A 1-2 mm craniotomy and durec-

tomy was made over the right OB. The craniotomy was then covered with a 0.5-1 mm layer of 4% low melting-point agar, which

greatly contributed to the stability of recordings. This layer was removed and re-applied after every descent of a recording micropi-

pette. The recording chamber was then filled with cortex buffer (125mMNaCl, 5mMKCl, 10mMHEPES, 2mMMgSO4, 2mMCaCl2,

10 mM glucose), and the mice were transitioned to head-fixation and allowed 30 minutes to recover from anesthesia. After this time,

behaving animals would demonstrate retention of go/no-go behavior acquired the day previously prior to attempt for a recording.

Micropipettes were prepared with a resistance of 5-8 MU from borosilicate glass capillaries (Hilgenberg, Malsfeld, Germany), and

filled with intracellular solution (130 mM KMeSO4, 10 mM HEPES, 7 mM KCl, 2 mM ATP-Na, 2 mM ATP-Mg, 0.5 mM GTP,

0.05 mM EGTA, and in some cases 10 mM biocytin). Signals were amplified using an Axoclamp 2B amplifier (Molecular devices –

West Berkshire, UK) and digitized by a Micro 1401 (Cambridge Electronic Design – Cambridge, UK) at 25 kHz. Drift in membrane
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potential, corrected for by spike thresholds, between the start and end of recordings was 0.9 ± 1 mV, with an average duration of

14 ± 4 minutes, and access resistance of 36 ± 19 MU.

Sniff measurement
Tominimally perturb sampling behavior, sniffing behaviorwas recorded eitherwith apressure sensor or flowsensor (Sensortechnics –

Rugby, UK), externally located in close proximity to the left naris (contralateral to recording side). The precise orientation relative to the

nostril wasmanually optimized prior to each recording in order to acquire the full sniff waveform in spite of anymovement of the naris.

Double tracheotomy
Two mice were anaesthetized with ‘sleep-mix’ (0.05 mg/kg Fentanyl, 5 mg/kg Midazolam, 0.5 mg/kg Medetomidine), and both local

and general analgesia applied as above for head-fixation. After the head-plate surgery, a double tracheotomy was performed by

exposing the trachea and inserting two catheters, one directed to the lungs through which the mouse could freely breathe, and

the other directed to the nasal passages through which flowwas controlled. Tomimic sniffing, a peristaltic pump (Ismatec,Wertheim,

Germany) was used to generate flow inward through the nares, with a flow controller to buffer out fluctuations and the periodic open-

ing of a 3-way valve used to simulate regular inhalations, either at 3.3 Hz (100 ms opening times), or 6.6 Hz (50 ms opening times).

Number of recordings
Altogether we report here recordings from 66 mitral and tufted cells. We report data from 42 cell-odor pairs from behaving animals

over the timescale of learning (21 cells from 20 animals), 46 cell-odor pairs from passively exposed animals (23 cells from 20 animals),

8 cell-odor pairs from animals undergoing the task engagement/disengagement paradigm (4 cells from 4 animals), 30 cell-odor pairs

from passive mice undergoing the unexpected puff experiment (23 cells from 20 animals), and 9 cells from two anaesthetized mice

with a double tracheotomy. None of these cohorts are overlapping. Of the cells frommice across learning, 2 were excluded from any

sniff analysis due to poor sniff signals (resulting in 38 cell-odor pairs, 20 accompanied by small (< 20 ms) sniff changes, 18 by large

sniff changes), and 2 were excluded similarly from the passively exposed dataset (42 cell-odor pairs).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data was pre-processed in Spike2 version 7.1 (Cambridge Electronic Design – Cambridge, UK) and analyzed in MATLAB 2015b

(MathWorks - Massachusetts, USA) and R using custom scripts and functions.

Statistics
In all cases, 5%–95% confidence intervals were used to determine significance unless otherwise stated. In all figures, a single

asterisk denotes p < 0.05, double asterisk denoted p < 0.01 and a triple asterisk denotes p < 0.001. Where these are preceded

by ‘SD’, the p value refers to the variances rather than the averages of the datasets. Means and error bars showing a single standard

deviation either side are used in all cases for normally distributed data (as tested for using a Lilliefors test) of equal variance. The test

for variance depended on whether the dataset was deemed normally distributed or not using the Lilliefors test – in the case of normal

distributions, a Bartlett test was conducted, and in the case of non-normal distributions, a Brown-Forsythe test was conducted.

Average values were then statistically compared using tests depending on whether a) the data was normally distributed and b) dis-

played equal variance. If both were true, unpaired two-sided Student’s t tests were used for comparison of means, unless otherwise

stated. For datasets which violated at least one of these assumptions, Ranksum tests were used to compare the medians, unless

otherwise stated. Where boxplots are used to represent data, the median is plotted as a line within a box formed from 25th (q1)

and 75th (q3) percentile. Points are drawn as outliers if they are larger than q3 + 1.5 x (q3 - q1) or smaller than q1 – 1.5 x (q3 - q1).

To determine points of significant difference between cumulative histograms, a bootstrapping method was used. First, data under-

lying the two histograms would be shuffled between datasets, and cumulative histograms would be calculated from these shuffled

sets. The difference at each point between the two histograms would then be calculated. This was repeated 10,000 times, and the

differences between the real cumulative histograms would then be compared to the shuffled distribution at each point. An arrowwas

drawn on the points at which the actual difference exceeded the 99th percentile of the shuffled distribution.

Sniffing analysis
To extract inhalation durations, first inhalation peakswere detected as any peak above a certain threshold set according to the ampli-

tude of the signal. Inhalation onset was set at the nearest point pre-peak that the flow trace crossed zero, while inhalation offset was

set at the nearest point post-peak that the flow trace crossed zero. The distance between these points was taken as the inhalation

duration. The mean inhalation duration for the first 500ms of each odor presentation was calculated from the duration of all complete

inhalations within that time period.

Principal cell identification
Mitral and tufted cells were distinguished from interneurons as previously (Kollo et al., 2014). The current dataset was pooled with the

entire dataset of neurons recorded in the OB of awake mice acquired previously (Kollo et al., 2014), and independent component
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analysis was performed on the AHP waveform (2 to 25 ms from spike onset) to reveal three independent components, upon which

hierarchical cluster analysis was used to band the cells into two groups, ‘principal’ and ‘other’. Based on cell morphologies from the

previous dataset, and an additional 11 acquired in the current dataset, 100% of the 22 morphologies obtained from the ‘principal’

group were confirmed as mitral/tufted cells, while 86% of the 11 morphologies from the ‘other’ group were confirmed interneurons.

Morphologies from the current dataset were acquired as previously (Fukunaga et al., 2012; Kollo et al., 2014): mice were perfused

following recordings with cold phosphate-buffered saline, followed by 4% (wt/vol) paraformaldehyde solution in phosphate-buffered

saline. Fixed OBs were embedded in porcine gelatin (10% wt/vol), before being fixed overnight in 4% paraformaldehyde. The OBs

were then cut into 150 mm slices with a vibratome (Thermo Scientific – Massachusetts, USA) and stained with avidin-biotinylated

peroxidase (ABC kit - Vector Labs, California, USA) and the DAB reaction. Biocytin-stained cells were traced using a Neurolucida

system (MBF Bioscience, Vermont, USA). Principal cells were identified via soma size, cell body location with respect to the mitral

cell layer, an apical dendrite reaching the glomerular layer and lateral dendrites branching in the external plexiform layer. MCs were

distinguished from TCs based on proximity to the mitral cell layer.

Passive and spontaneous properties
Within the first 30 s of the recording, a current-voltage curve was calculated (Figure S4). In current-clamp, a series of current steps

were applied to the cell three times, starting from�0.2 nA and increasing in 0.05 steps to 0.15 nA. At each 10ms time point, themean

membrane potential (averaged across the three repeats) was plotted against the applied current, and a linear regression fitted.Where

this model intersected the y axis (at 0 nA), the resting membrane potential was estimated. The slope of the curve represented the

linear sum of input resistance and access resistance. To estimate the relative contribution of the two resistances, the mean voltage

response waveform was taken for the most hyperpolarising (�0.2 nA) current pulse. A double exponential curve was fitted to the

voltage trace between 0 and 20 ms, with a slow and fast time constant. The relative amplitude of the slow and fast components

represented the relative contribution of input resistance and access resistance respectively, and was used to calculate each. The

time constant for the slow exponential was used as a measure of membrane time constant. Spontaneous FR was calculated as

the average FR in the 4 s prior to odour stimulus across all trials.

Odor responses and changes
For all analyses, the first presentation of each odor was excluded due to the elicitation of high frequency sniffing by the novel odorant,

which rapidly decayed by the second presentation (Wesson et al., 2008). General response calculations: All traces were aligned to

first inhalation onset following final valve opening. For Vm response calculations, spike waveforms, including the AHP, were sub-

tracted from the Vm trace (�5 to 20 ms after spike peak; Figures S3D and S3E). Responses for each trial were calculated as the

mean Vm within the first 500 ms post odor onset, normalized to the baseline membrane potential in the 2 s prior to odor onset. FR

responses were calculated as the mean number of spikes per 0.25 s time bin in the first 500 ms post odor onset, normalized to

that calculated for 2 s prior to odor onset. Significant responses were determined for both Vm and FR using a paired t test to compare

baseline and odor-evoked activity for all trials. For response changes across learning: Significant changes between early and late

trials for each odor response were identified by comparing the five ‘early trials’ in block 1 (stimulus presentation #2 to 6), with

the 5 last presentations of the stimulus (‘late trials’). Significant change was determined using an unpaired t test, p < 0.05. To deter-

mine onset of response change: For each response, the mean Vm response waveform calculated for early trials was subtracted from

that calculated from late trials, to generate a response change waveform at each time-point from odor onset. This was then normal-

ized by the standard deviation of this resulting waveform during the baseline period 2 s prior to odor onset. Response change onset

was detected where the response changemagnitude first exceeded 2 standard deviations and remained there for at least 50ms. For

task engagement/disengagement changes: The first 500 ms of the stimulus was analyzed for Vm responses, and the full 2 s for FR

responses. 5 trials of initial engagement were defined as the last 5 trials of each stimulus prior to physical port removal,

disengagement trials were defined as 5 trials with at least 3 consecutive misses within the block, and re-engagement trials were

based on the first 5 trials of the stimulus after the mouse initiates licking after port return.

Detectability and discriminability analysis
Visual aid for this analysis is in Figure S13. For each response, five mean Vm response waveforms were generated from different sets

of 3 early trials, 3 mid-point trials and 3 late trials (aligned to first inhalation post odor onset). Five mean baseline waveforms were

similarly generated from Vm traces (triggered by a random inhalation onset) during the ITIs corresponding to the trials from which

odor response waveforms were drawn. Population response vectors were then constructed from these mean response waveforms

for all cell-odor pairs recorded. At each time point relative to inhalation onset, the Euclidean distance was calculated between

response and baseline vectors, and this was repeated for each trial subset to gain a mean detectability over time, and a standard

deviation. The average baseline Euclidean distance 200 ms prior to odor onset was subtracted from the trace, normalizing the base-

line to zero. Peaks of detectability were defined as the maximum detectability within the first 170ms after odor onset. Discriminability

was analyzed similarly, however the response vectors used to calculate the Euclidean distances were calculated between CS+ and

CS- mean Vm response waveforms for the five sets of early, mid-point and late trials, i.e., the Euclidean distance was generated be-

tween population responses for CS+ and CS- separately. Where we analyzed changes in discriminability for cell-odor pairs recorded

alongside large and small changes in MID (Figure 4H), only cases where DMID was large for both odors were considered in the large
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DMID group. This is because cases showing a large DMID only for one odor represent selective sniffing responses to the CS+, i.e.,

occurring after the first sniff and after discrimination has already been made – thus changes of this nature would not give rise to

changes in representation in the timescale analyzed.

For detectability and discriminability of FR responses, FR responses were calculated by first counting the number of spikes in

50 ms time bins, and then averaging these spike counts across 5 sets of trials from early and late time periods. A moving average

was then applied to these averaged spike counts with a 200 ms (4 time bin) window. Next, the resulting averages were converted

to Z-scores by taking each average spike count waveform for a given cell odor pair and subtracting the mean of all time bins and

dividing by the standard deviation of all time bins. Euclidean distances were then calculated from the population vectors as for mem-

brane potential data. Euclidean distances were normalized to baseline by subtracting the average Euclidean distance in the 1 s prior

to odor onset, and peak values detected within the first 250 ms from odor onset.

Sniff-Vm modulation amplitudes and preferences
Visual aid for this analysis is in Figure S11B. The sniff-Vmmodulation properties of each cell were calculated as previously (Fukunaga

et al., 2012). Baseline sniff-Vm modulation: due to the high variability of sniff behavior in awake mice, analysis was restricted to sniff

cycles between 0.25 and 0.3 s in duration, where also the preceding sniff cycle was within this range. Mean Vm from the spike-sub-

tracted Vm trace was taken as a function of sniff cycle phase for at least 150 sniffs, and this was plotted as Cartesian coordinates. The

angle of themean vector calculated by averaging theseCartesian coordinates was taken as the phase preference of the cell, while the

difference between the mean Vm at the preferred phase, and the minimum value on the mean Vm waveform was taken as the ampli-

tude ofmodulation. Odor sniff-Vmmodulation: This was calculated as for baseline, but based on the first four sniffs post odor onset for

the 10 trials of lowest sniff rates. As odor responses can have both tonic and sniff-modulated components, the phase-Vm trace for

each sniff had to be normalized according to the linear vector connecting the Vm at the beginning and end of the sniff. To determine

significance, a bootstrapping methodwas used: 100ms segments of Vm data were randomly selected for each cell and connected to

form a shuffled dataset. The phase analysis was then performed on these shuffled datasets, and a modulation amplitude calculated

and this was repeated 100 times. Significant modulation was assigned when the actual modulation amplitude exceeded that of the

95th percentile of shuffled data amplitudes.

Putative mitral cell versus tufted cell identification
For each ITI, the mean Vm was calculated during sniffs of duration of < 200 ms where also the preceding sniff was within this duration

range (‘fast sniffs’). This mean Vm was then normalized by subtracting the mean Vm during sniffs of duration 0.25 and 0.3 s within the

same ITI to calculate the ‘fast-sniff evoked Vm’. Only cells with at least 20 such ‘fast sniffs’ within the recording were considered

for the analysis. To determine significance, a bootstrapping method was used: the mean Vm for all sniffs within a trial was randomly

shuffled, and the shuffled data analyzed as before 100 times. The actual fast-sniff evoked Vm was then compared to the 5th and 95th

percentiles of the shuffled distribution in order to assign significance.

We noted that, consistent with anaesthetized mice (Fukunaga et al., 2012), there was a bimodal distribution of phase preferences

for the sniff cycle in baselinemembrane potential, onewithin exhalation phase, and another within inhalation phase.We hypothesized

that these may correspond to MC and TC phenotypes respectively, as reported previously for anaesthetized animals (Fukunaga

et al., 2012). The phase boundaries for separating putative MCs and TCs were selected as those which produced the lowest p value

when comparing the Vm change during fast sniffing (in absence of odor) for cells in each of the two boundaries (rank-sum test). The

putative assignment to MC or TC was confirmed morphologically for 8 cells (Figure 7F), with MC and TC distinction based largely on

soma location relative to the mitral cell layer, as dendritic reconstruction was in many cases incomplete.

Unexpected tactile stimulus experiments in passive mice
In 10 passive mice, odors were presented as before, but this time with a random chance of an unexpected tactile stimulus to accom-

pany the odor (25% chance) to evoke fast sniffing. Since the sniffing response to the tactile stimulus eventually habituated, for each

response, the five trials with lowestMIDwere selected and compared to the five trials with highest MID. The difference in response for

these sets of trials was then calculated for the first 500 ms of the stimulus as for learning mice.

Reaction times
Reaction time calculations were based on 10 or more trials of 80% correct performance. From lick behavior: For each CS+ and CS-,

lick probability was calculated in a moving time window of 100 ms, aligned to the first inhalation after final valve opening. The differ-

ence between the probability of licking for CS+ and CS- for each time window was calculated, and the leading edge of the first win-

dow at which this calculated difference significantly deviated from the values calculated from the 2 s window prior to odor onset was

considered the reaction time (Figure S2A). From sniff behavior: Inhalation and exhalation duration values were calculated for CS+ and

CS- as a function of sniff number from odor onset. These values were compared between those calculated for CS+ and CS- using a

t test, and the decision timewas calculated based on the first inhalation or exhalation within the series to show a significant difference

(Figure S2B). For 12/21 mice there was a significant difference between CS+ and CS- sniffing within the first two sniff cycles.
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