-Supporting information-

Cu and Fe oxide dispersed on SBA-15: A Fenton type catalyst for *N*, *N*-diethyl-p-phenyl diamine degradation

S.Karthikeyan,^{a,c} M.P.Pachamuthu,^b Mark Isaacs,^c Santosh Kumar,^a Adam F. Lee^{a*}, G.Sekaran,^{c*}

^aEuropean Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom

^b Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638 401 India.

^c Environmental Technology Division, Central Leather Research Institute, Adyar, Chennai 600020, India.

* Corresponding Author

Dr. G. Sekaran,

Chief Scientist & Cluster chairman Environmental Technology Division, Central Leather Research Institute, Adyar, Chennai – 600 020, Tamil Nadu, India Tel.: +91-44-24911386 (Extn: 7141) Fax: +91-44-24452941

Email: ganesansekaran@gmail.com

Fig. S2. Low angle XRD patterns of as-prepared and spent CuFe/SBA-15 highlighting retention of ordered mesoporosity.

Fig. S3. DRUVS spectrum of as-prepared and spent CuFe/SBA-15 catalyst highlighting retention of oxide phases.

Fig. S4. Recycle tests for the oxidativbe degradation of DPD over CuFe/SBA-15. Reaction conditions: 100 mL water, 100 mg DPD, 10 mg catalyst, 25 °C and 8 mM H₂O₂. Catalyst was centrifuged, washed repeatedly with water, and placed into a fresh DPD solution.

HPLC and LC-MS analysis

Some of the degraded products were determined by HPLC (Shimadzu) using a C18 column (Phenomenex Luna 5 μ , C18 (2), 100 Å) detector UV 254 nm (acetnitrile + phosphate buffer eluent). Some of the degraded products were determined by HPLC (Shimadzu) using a C18 column (Phenomenex Luna 5 μ , C18 (2), 100 Å) detector UV 254 nm (acetonitrile + phosphate buffer eluent). A Micromass QuattroII triple quadrupole ESI LC-MS system was also used to identify the degraded products in positive ionization mode. The DPD solution was introduced to the ESI source through a syringe pump at 5 μ L/min. The ESI capillary was set at 3.5 kV and the cone voltage was 40 V, the source temperature

120 °C and the desolvation temperature 300 °C, with spectra collected in 6 s scans. A range of products were observed including N^{I} , N^{I} -diethybenzene-1,4-diamine, methanol, *N*-ethyl-*N*-(4-iminocyclohexa-2,5-dien-1-ylidene)ethanaminium salt, *N*-ethyl-*N*-(4-iminocyclohexa-2,5-dien-1-ylidene)ethanaminium, 2,2'-azanediyldiacetic acid, 2,2'-azanediyldiethanol, diethylamine, benzoquinone, acetaldehyde, acetic acid, formic acid, oxalic acid, ethanol. Typical HPLC chromatograms are shown in **Figure S1** below.

Fig. S5. HPLC chromatograms during DPD Fenton oxidative degradation over CuFe/SBA-15 as a function of reaction time.

	Volume	Purification Cost		
		GBP	USD	INR
DPD	50 g/100 L	-	-	-
CuFe/SBA-15	10 g/100 L	3.88	5.49	368.9
H_2O_2 to initiate Fenton oxidation	70 mL/100 L	7.01	9.92	666.4
Sample agitation	N/A	~1.00	1.42	95.10
Total catalyst cost to treat 100 L of DPD waste water	N/A	11.89	16.83	1130.4

Table S1. Cost analysis for purification of 100 L of DPD contaminated waste water (0.5 g DPD / L)