
Giga Science, 7, 2018, 1–11

doi: 10.1093/gigascience/giy016
Advance Access Publication Date: 23 March 2018
Technical Note

TECHNICAL NOTE

Boutiques: a flexible framework to integrate
command-line applications in computing platforms
Tristan Glatard1,∗, Gregory Kiar2,3, Tristan Aumentado-Armstrong2,3,
Natacha Beck2,3, Pierre Bellec4, Rémi Bernard2,3, Axel Bonnet5,
Shawn T Brown2,3, Sorina Camarasu-Pop5, Frédéric Cervenansky5,
Samir Das2,3, Rafael Ferreira da Silva6, Guillaume Flandin7, Pascal Girard5,
Krzysztof J. Gorgolewski8, Charles R.G. Guttmann9, Valérie Hayot-Sasson1,
Pierre-Olivier Quirion4, Pierre Rioux2,3, Marc-Étienne Rousseau10

and Alan C. Evans2,3

1Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada, 2McGill
University, Montreal, Canada, 3Montreal Neurological Institute, Montreal, Canada, 4Centre de Recherche de
l’Institut de Gériatrie de Montréal CRIUGM, Montréal, QC, Canada, 5University of Lyon, CNRS, INSERM,
CREATIS, Villeurbanne, France, 6University of Southern California, Information Sciences Institute, Marina del
Rey, CA, USA, 7Wellcome Trust Centre for Neuroimaging, London, UK, 8Department of Psychology, Stanford
University, Stanford, California, USA, 9Center for Neurological Imaging, Department of Radiology, Brigham
and Women’s Hospital,, Boston, Massachusetts, USA and 10Compute Canada, 155 University Ave, Suite 302,
Toronto, ON M5H 3B7, Canada
∗Correspondence address. Tristan Glatard, Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve
Blvd. W., EV 3.139, Montreal, Quebec, Canada H3G 1M8. E-mail: tristan.glatard@concordia.ca

Abstract

We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across
computational platforms. Boutiques applications are installed through software containers described in a rich and flexible
JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications.
Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of
applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in
computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open
Science.

Keywords: application integration; containers; neuroinformatics

Received: 7 November 2017; Revised: 1 February 2018; Accepted: 20 February 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

http://www.oxfordjournals.org
mailto:tristan.glatard@concordia.ca
http://creativecommons.org/licenses/by/4.0/

2 Glatard et al.

Introduction

Computational platforms such as web services, portals, science
gateways, workflow engines, and virtual research environments
commonly integrate third-party applications to enable various
types of data processing. Applications, however, are often man-
ually and repeatedly integrated in such platforms, whereas au-
tomating and sharing this effort would improve computational
reproducibility [1, 2] and contribute to Open Science. Mean-
while, container systems such as Docker1 and Singularity [3]
have emerged to facilitate the sharing andmigration of software
by defining immutable, reusable execution environments.

We present Boutiques, a system to publish, integrate, and ex-
ecute command-line applications across platforms (see Fig. 1).
In Boutiques, a command line is described using a flexible tem-
plate comprising the inputs it requires and the outputs it pro-
duces. Inputs may be passed directly on the command line or
through configuration files. They may also be interdependent,
for instance, mutually exclusive. Such formal descriptions, sim-
ply referred to as descriptors, can be parsed in any programming
language, describe command lines regardless of their imple-
mentation, and link to a container image where the application
is installed. Boutiques descriptors allow for automatic applica-
tion integration in platforms and advanced validation of input
values to prevent errors. Boutiques descriptors are intended to
be produced by application developers, stored alongside their
application, indexed by common repositories, and consumed by
execution platforms. A set of core tools facilitates the construc-
tion, validation, import, execution, and publishing of Boutiques
descriptors.

The remainder of this article describes the Boutiques system
and reports on its adoption by platforms and applications in the
neuroinformatics domain, our primary field of interest. It closes
on a discussion and comparison with related systems.

System description

In Boutiques, applications are described with a JSON descrip-
tor that specifies the command-line template, inputs, and
outputs. The descriptor may point to a container where the ap-
plication and all its dependencies are installed. It may also con-
tain an invocation schema used for input validation (this will
be created at runtime if it is not found). At runtime, the execu-
tion platform builds the command line from the descriptor and
the values entered by the user. The platform runs the command
line on the execution infrastructure, e.g., a server, a cluster, or a
cloud, within a container whenever available. To build and run
the command line, the platform may rely on the Boutiques core
tools, in particular, the validator and executor, packaged through
the bosh command-line utility.

Command-line description

The core component of the descriptor is a command-line tem-
plate complying to the syntax of the sh UNIX shell, the de-
fault shell on most of the Linux distributions and on OS X.
The command-line template is a single string that may contain
placeholders for input and output values, called value keys. It
may also encompass several commands separated by sh con-
structs such as semicolons, pipes (|), or ampersands (&), to facil-
itate the embedding of basic operations on the command line,

1 https://www.docker.com

Figure 1. Publication, integration, and execution of applications with Boutiques.

for instance, directory creation, input decompression, or output
archival.

Here is an example of a typical command-line template:
exampleTool 1 [CONFIG FILE] [STRING INPUT] [FILE INPUT] —
exampleTool 2 [FLAG INPUT] [NUMBER INPUT] >> [LOG].txt
The template contains five value keys, identified by square

brackets, that will be replaced by values and file names accord-
ing to the user input when the application is executed. Flags will
also be added wherever appropriate, with customizable separa-
tors. Value keys have to be unique but do not have to comply to
any particular syntax. Note the use of the | operator to chain ap-
plications and of the>> operator to redirect the standard output
to a file.

Input description

General properties Inputs must have a name, a unique identifier,
and a type. They may be optional, have a description, a value
key, a flag and flag separator, and a default value. Inputs may
also be ordered lists; in this case, value keys are substituted by
the space-separated list of input values.

Types Inputs may be of type String, Number, Flag, or File.
File may also represent a directory. Types can be restricted to a
specific set of values or to a specific range.

Groups and dependencies Groups of inputsmay be definedwith
an identifier, name, and list of input identifiers. Groups may
be used to improve the presentation in a graphical user in-
terface and to specify the following constraints among inputs:
(1) mutually-exclusive: only one member in the group may
have a value; (2) one-is-required: at least one member in the
groupmust have a value; (3) all-or-none: if any of themembers
have a value, then all members must have a value. Dependen-
cies among inputs may also be defined regardless of a particular
group: an input may (1) require a list of inputs and (2) disable a
list of inputs.

Listing 1 shows the definition of an input in the command
line exemplified above. According to this definition and assum-
ing that the input value entered by the user is 0.3, the string
[NUMBER INPUT] will be replaced by -n=0.3 on the command
line.

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

https://www.docker.com

The Boutiques application integration framework 3

Listing 1. Example of a Number-type input.

Listing 2. Example of an output leveraging path-template search-and-
replacement.

Output

Application outputs are files and directories that need to be de-
livered to the user once the execution is complete. Outputs need
to be specified so that computing platforms can identify the files
thatmust be saved after the execution and raise errors if they are
not present.

In Boutiques, output files must have a unique identifier, a
name, and a path template that specifies the file or directory
name. Path templates may include input value keys in case out-
put files are named after the input values. In this case, input
valuesmay be stripped from specific strings, e.g., file extensions,
before being substituted in the path template. Output files may
also have a description, a command-line flag, a flag separator,
and a value key in case they appear on the command line. They
may be optional in case the file is not always produced by the
application, for instance, when it is produced only when a par-
ticular flag is activated. They may also be lists; in this case, the
path template must contain a wildcard (*) matching any string
of characters and defining the pattern used to match the output
files in the list.

Listing 2 shows the definition of an output file in the com-
mand line exemplified before. According to this definition and
assuming that the string input value entered by the user is
foo.csv, the string [LOG] will be replaced by log-foo on the
command line.

Configuration files

A large number of applications rely on configuration files rather
than command-line options to define their input and output pa-

Listing 3. Example of a configuration input file. The file template is defined as
an array of strings to allow for multi-line strings in JSON.

rameters. As the number of parameters increases, command
lines rapidly become long and cumbersome, whereas configu-
ration files allow for better structure and documentation.

Configuration files may be complex though and specified in
any language. For this reason, Boutiques allows application de-
velopers to specify their own template containing input and out-
put value keys. Configuration files are specific types of output
files that must have a file template that defines how they will
be named and where they will be written. They may also have a
value key and a flag in case they need to be passed on the com-
mand line. Listing 3 shows an example.

Command-line construction

At runtime, a value is assigned to all the mandatory and some
of the optional inputs. Algorithm 1 shows how the command
line is constructed from the descriptor and the values entered. It
substitutes all the value keys in the command line, output path
templates, and configuration files and writes the configuration
files.

Invocation schema

Rigorous input validation is an important motivation for
Boutiques. For this purpose, Boutiques relies on an application-
specific JSON schema, called invocation schema, to specify the
input values accepted by an application. Platforms can rely on
invocation schemas to validate inputs using any JSON validator,
without having to develop specific code.

Invocation schemas, however, are complex JSON objects. Ba-
sically, they must represent the properties described above in
a formal way, including dependencies between inputs. List-
ing 4 shows an example of how dependencies between mutu-
ally exclusive parameters are defined in the invocation schema.
To relieve application developers from the burden of having
to write JSON schemas, invocation schemas can be generated
automatically by the bosh command-line utility. The invoca-
tion schema is stored as an optional property of the Boutiques
descriptor.

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

4 Glatard et al.

Algorithm 1 Command-line construction

(Substitute input value keys in output path templates,
configuration files and command line.
for input in inputs do

if input has a value-key then
for output in outputs do

stripped value = input value

if input type is File then
In stripped value, remove all elements in

path-template-stripped-extensions.
end if
In path-template, replace all occurrences of

value-key by stripped value.
if output has a file-template then

In any line of file-template, replace all occur-
rences of value-key by stripped value.

end if
end for
Prepend command-line-flag and

command-line-flag-separator to input value.
In command-line, replace all occurrences of value-key

by input value.
end if

end for
(Substitute output value keys in configuration files and

command line.
for output in outputs do

if output has a value-key then
for output in outputs do

if output has a file-template then
In any line of file-template, replace all occur-

rences of value-key by path-template.
Input value-key have been substituted in

path-template previously.
end if

end for
Prepend command-line-flag and

command-line-flag-separator to path-template.
In command-line, replace all occurrences of value-key

by path-template.
end if

end for
Write all configuration files.
for output in outputs do

if output has a file-template then
Write file-template in path-template

Value keys have been substituted in file-template

previously.
end if

end for

Workflow support

Boutiques does not specify a particular language to build work-
flows from descriptors, due to the large amount of specialized
frameworks to do so. However, workflows can be both composed
from and described as Boutiques descriptors; workflow engines
can leverage the bosh tools to call Boutiques applications from
their descriptors; in turn, workflows can be described as Bou-
tiques descriptors. Such a “task encapsulation”model allows for
a scalable and reliable execution of workflows expressed in a va-
riety of languages, as detailed in [4].

Listing 4. Excerpt from invocation schema showing dependencies between two

mutually exclusive parameters num input and str input.

Containers

Applications may be installed in a container image comply-
ing to the Docker, Singularity, or rootfs format. We inten-
tionally support multiple container formats as we anticipate
that they will be used for different purposes. For instance,
Docker is well suited for developers and users who manipu-
late applications on their local workstations or the cloud. It is
well documented well maintained and has a rich ecosystem
of tools to build and run containers on most operating sys-
tems. Singularity is more suited for users and platforms that
need to run applications on shared computing clusters. Bridges
exist among these container formats to convert container im-
ages across frameworks. For instance, a platform dedicated
to high-performance computing may accept descriptors re-
ferring to Docker containers to facilitate application integra-
tion by developers and run these images on clusters using
Singularity.

Container images are defined from their URL (rootfs) or image
name in a Docker or Singularity index. Descriptors may specify
a working directory where the application has to be run, they
may indicate if the image has an entry point, and they may also
report a hash to accurately identify container images and detect
updates.

Containers were adopted because they allow for an auto-
mated and lightweight integration of application implementa-
tions in platforms. They are extremely useful to improve the
reproducibility of analyses, as variations in the software envi-
ronment may have an important impact on the computed re-
sults. They also have limitations, in particular, they do not spec-
ify the hardware architecture required to execute an application,
which can be an issue in some cases.

Resource requirements

Boutiques descriptors may contain requirements regarding the
number of CPU cores or nodes, the amount of RAM or disk stor-
age, and the total walltime expected for a typical execution of
the application. Such properties are called “suggested resources”

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

The Boutiques application integration framework 5

as we are well aware that the actual resource requirements usu-
ally depend on the input data, parameters, and hardware infras-
tructure.

Custom properties

Custom properties may be added to the Boutiques specification
without restriction. Custom properties are grouped together in
a specific JSON object to facilitate validation. They may be use-
ful to implement platform-specific features, but they should be
usedwith care to avoidmaking applications dependent on a par-
ticular platform or replacing existing functionality already rep-
resented in the Boutiques schema.

Core tools

Boutiques is available on Python through the PyPi package
repository as “boutiques.” The Boutiques package exposes a
command-line utility to the user, bosh, which contains en-
try points for all core functions within Boutiques. The core
tools provided by Boutiques are the validator, executor (for both
launch and simulation), invocation schema handler, importer,
and publisher. The tools exposed through the command-line in-
terface are also available consistently through a Python API by
importing the Boutiques package. Though not a component of
the Boutiques tool chain, a Jupyter Notebook tutorial exists to
facilitate new users getting started with Boutiques.

Validator The Boutiques validator checks conformance of
JSON descriptors to the Boutiques schema using a basic JSON
validator. It also performs the following checks that cannot be
easily implemented in JSON schema: value keys are unique
among inputs, input and output identifiers are unique, input and
output value keys are all included in the command line, identi-
fiers with the same value key are mutually exclusive, value keys
are not contained within each other (which would puzzle sub-
stitution), output path templates are unique (to avoid results to
overwrite each other), inputs of type Flag have a command-line
flag, are optional and are not lists, the default value of restricted
types is part of the restriction, an input cannot both require and
disable another input, required inputs cannot require or disable
other parameters, groupmember identifiers must correspond to
existing inputs and cannot appear in different groups, mutually
exclusive groups cannot have members requiring other mem-
bers, one-is-required groups should never have required mem-
bers, and all-or-none group members must not be required.

Executor The executor has two modes of operation: simulate
and launch. The simulate mode can generate hypothetical com-
mand lines from random values given the descriptor (and corre-
sponding invocation schema) for debugging purposes or display
the command that would be executed given a provided valid
invocation. The launch mode can execute command line from
a Boutiques descriptor and a set of input values represented
in JSON file complying with the invocation schema. It runs the
command in a container provided that the required framework
(e.g., Docker) is installed. The executor can be used by applica-
tion users to run applications locally or by platforms to generate
command lines to be run on the execution infrastructure.

Invocation SchemaHandler The invocation schema handler can
create an invocation schema from a Boutiques descriptor and
validate input data against it using a regular JSON validator. It
can be used to add invocation schemas to existing descriptors.
It is used by the executor if no invocation schema is present in
the Boutiques descriptor being deployed.

Importer The importer takes Boutiques descriptors from older
versions and updates them to be compliantwith themost recent
version of the schema. This tool can also create descriptors from
selected application collections, such as BIDS apps [5].

Publisher As Boutiques has primarily been adopted in the
neuroinformatics community, the publisher gets more informa-
tion about the described application (such as author, website)
and adds an index to it on NeuroLinks2, a repository containing
links to neuroinformatics resources and tools. We intentionally
opted for publishing descriptors to an index such as NeuroLinks
rather than to a common Boutiques repository so that descrip-
tors remain in the tool repositories and can be maintained by
the tool developers directly. We are currently extending bosh to
enable users to search for Boutiques tools in NeuroLinks using
the command-line or Python API. The publishing functionality
could be extended to new repositories for other domains, such
as Bioconductor for bioinformatics [6].

Results
Supported platforms

The import and execution of Boutiques applications are cur-
rently supported in the platforms enumerated below.

CBRAIN
CBRAIN (http://github.com/aces/cbrain) [7] is a web platform to
process data distributed into multiple storage locations on com-
puting clusters and clouds. CBRAIN offers transparent access
to remote data sources, distributed computing sites, and an ar-
ray of processing and visualization tools within a controlled, se-
cure environment. The CBRAIN service deployed at the Mon-
treal Neurological Institute relies on the infrastructure provided
by Compute Canada [8]. It currently provides 500+ collaborators
in 22 countries with web access to several systems, including
six clusters of the Compute Canada high-performance comput-
ing infrastructure (totaling more than 100,000 computing cores
and 40 PB of disk storage) and Amazon EC2. CBRAIN transiently
stores about 10 million files representing more than 50 TB dis-
tributed in 42 servers. Also, 51 public data processing applica-
tions are integrated and more than 340,000 processing batches
have been submitted since 2010.

Applications in CBRAIN are integrated as Ruby classes that
create web forms, validate parameters, and run command lines
on computing resources. Boutiques is supported through a set
of templates that generate such classes from the application de-
scriptor. Two application integration modes are available:

� The descriptor is stored in a CBRAIN plugin and the Ruby
classes are generated on-the-fly when CBRAIN starts. This
mode allows CBRAIN developers to update all Boutiques ap-
plications at once by editing the templates. However, it does
not allow for customization beyond the Boutiques schema.
To provide more flexibility, we added a custom property
(cbrain:inherits-from-class) to the Boutiques descriptor
to define the Ruby class that should be used as the parent
class for the application.

� Ruby classes are generated from descriptors through an of-
fline process and integrated in CBRAIN as any other applica-
tion. This mode allows developers to customize applications
by editing the generated Ruby classes, but the resulting ap-
plications are difficult to maintain in the long term, in par-
ticular, when the descriptors are updated.

2 https://brainhack101.github.io/neurolinks

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

http://github.com/aces/cbrain
https://brainhack101.github.io/neurolinks

6 Glatard et al.

We also extended CBRAIN to enable the parallelization of
workflows wrapped as Boutiques descriptors. Applications with
the cbrain:can-submit-new-tasks custom property may sub-
mit subtasks by creating Boutiques invocations in their work-
ing directory. CBRAIN periodically scans working directories,
submits the requested subtasks, and writes back an invocation
identifier in the same directory. This parallelization model is
simple; the application only needs to write Boutiques invoca-
tions and communication happens through the file system, and
it is also powerful as it enables the parallelization of complex
workflows such as the Niak ones described later.

We also introduced a new listmechanism in CBRAIN to facili-
tate the iteration of Boutiques applications on large sets of files.
CBRAIN lists are specific files that contain references to other
CBRAIN files. When a list is passed to a Boutiques application,
the elements in the list are either concatenated in a single com-
mand line (when the corresponding Boutiques input is a list)
or a new command line is generated for every element in the
list (when the input is not a list). Supporting lists as a specific
CBRAIN file type allows for improved validation. For instance,
lists that contain references to nonexistent or deleted files can
be detected. It also allows users to edit lists using their own tools
such as scripts or spreadsheet applications.

Nipype
Nipype (http://nipype.readthedocs.io/en/latest) [9] is a workflow
engine widely used in neuroinformatics. Nipype workflows can
be composed from Boutiques applications using the Python API.
As an example, we implemented NipBIDS3, a Nipype workflow,
to process BIDS datasets using BIDS apps imported as Boutiques
applications. NipBIDS iterates participant analyses on all the
subjects found in a BIDS dataset and runs a group analysis if
requested.

SPINE
SPINE (http://spinevirtuallab.org), which stands for Structured
Planning and Implementation of New Explorations, is a web-
based, collaborative platform (virtual laboratory) designed to
support the design and execution of experiments centered on
specific scientific questions. SPINE enables distributed data col-
lection and management, as well as experiment design, exe-
cution, and review. Boutiques will serve as SPINE’s algorithm
and workflow repository and enables unequivocal referencing
of specific workflows applied to specified datasets within an ex-
periment, thereby describing the provenance and facilitating the
reproducibility of image-derived measurements. Workflows in
SPINE may combine human image annotation with automated
image processing algorithms. Future development will focus on
extending Boutiques workflow descriptors to include the identi-
fication and characterization of human operators and their spe-
cific historic performance on the required tasks. SPINE is cur-
rently hosted at Brigham & Women’s Hospital in Boston, and
supports several international projects.

VIP
The Virtual Imaging Platform (VIP) [10] is a web portal for med-
ical simulation and image data analysis. VIP makes applica-
tions available as services and connects them to the biomed
Virtual Organization (VO) in the European Grid Infrastructure4.
The biomed VO interconnects approximately 65 computing sites

3 https://github.com/big-data-lab-team/sim/tree/master/sim/other wf
examples/nipype

4 https://www.egi.eu

world-wide and provides access to 130 computing clusters and
5 PB of storage. The VIP service is deployed at the Creatis
Laboratory5 in Lyon France, and it uses the DIRAC French na-
tional service6 to execute jobs on EGI grid and cloud resources.
As of October 2017, VIP counts more than 1,000 registered users
and a growing number of available applications.

Until recently, applications were manually integrated in VIP
as workflows written in the Gwendia [11] language and exe-
cuted with the MOTEUR [12] engine. As of today, Boutiques is
supported through an importer tool that parses the JSON de-
scriptor and automatically generates the corresponding appli-
cation workflow and the wrapper script that handles, among
other things, the execution of the command line. In VIP, ap-
plication workflows enable (1) iterations on input lists, (2) the
generation of parallel tasks, and (3) the concatenation of multi-
ple applications. For example, the applications used in the MIC-
CAI challenges described below required workflows to evaluate
results using the metrics defined by the challenge. Application
concatenation is handled at the importer level based on prede-
fined workflow templates.

Integrated applications

Dozens of neuroinformatics applications were integrated in
CBRAIN or VIP using Boutiques. Themain ones are described be-
low. Several Boutiques descriptors were published in Neurolinks
through the bosh publisher.

Anatomical imaging
FSL Several MRI analysis applications from the FMRIB Software
Library (FSL [13]) were integrated in CBRAIN using Boutiques:
BET, fsl anat, FAST, and FIRST. Descriptors are on Neurolinks.
Anima. animaN4BiasCorrection, an ITK-based bias field correc-
tion application from the Anima7 project was made available in
VIP through Boutiques.

Functional MRI (fMRI)
Niak. The Niak fMRI preprocessing pipeline [14], executed with
the Pipeline System for Octave and Matlab (PSOM) [15], was in-
tegrated in CBRAIN through Boutiques. The integration uses the
CBRAIN subtasking mechanism described earlier so that even
the invocations processing a single subject can be parallelized.
It also allows CBRAIN to leverage the efficient agent model
used in PSOM, as described in [16]. The integration required
some work in PSOM to facilitate its invocation as a noninter-
active command-line application. The resulting CBRAIN plugin
is available at https://github.com/SIMEXP/cbrain-plugins-psom.
Descriptors are on Neurolinks.

GinFizz. We integrated the GinFizz8 Nipype-based fMRI pre-
processing pipeline in VIPwith Boutiques. A few technical issues
coming from themanagement of users in Docker containers had
to be addressed. To enable the execution in Boutiques, we had
to override the permissions of files and folders in the GinFizz
container. We also had to install all the GinFizz pipeline compo-
nents in a single container while multiple ones were used by the
application initially.

5 https://www.creatis.insa-lyon.fr
6 https://dirac.france-grilles.fr
7 https://github.com/Inria-Visages/Anima-Public/wiki
8 https://github.com/thomashirsch/ginfizz

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

http://nipype.readthedocs.io/en/latest
http://spinevirtuallab.org
https://github.com/big-data-lab-team/sim/tree/master/sim/other_wf_examples/nipype
https://github.com/big-data-lab-team/sim/tree/master/sim/other_wf_examples/nipype
https://www.egi.eu
https://github.com/SIMEXP/cbrain-plugins-psom
https://www.creatis.insa-lyon.fr
https://dirac.france-grilles.fr
https://github.com/Inria-Visages/Anima-Public/wiki
https://github.com/thomashirsch/ginfizz

The Boutiques application integration framework 7

Diffusion imaging
MRTrix3 A few applications from the MRtrix3 package [17]9 for
diffusionMRI processing were alsomade available in VIP, as well
as a pipeline developed at Creatis, that combines MRtrix3 and
FSL applications.

ndmg. The NeuroData MRI to Graphs one-click connectome
estimation pipeline [18], developed in Python and leveraging
FSL, was exported to Boutiques and is available at https://github.
com/neurodata/boutiques-tools. The ndmg pipeline is deployed
in CBRAIN via its Boutiques descriptor and is available both
through Docker and Singularity container environments.

Image simulation
CreaPhaseTheCreaPhase phase-contrast simulator, developed at
Creatis, was integrated in VIP through Boutiques. The inputs had
certain particularities (some needed to be enclosed in simple
quotes, others were vectors of variable size enclosed in brack-
ets) that required the post-processing of the wrapper script gen-
erated by the Boutiques importer.
ODIN. The Odin MRI simulator [19]10 was integrated in VIP
through Boutiques. Since Odin requires important amounts of
computing resources, it is executed by VIP on the EGI grid that
currently does not support Docker. The Docker image was used
just for compilation and testing; the Odin executable was ex-
tracted from the Docker image, and the Odin wrapper script was
modified accordingly.

BIDS apps
BIDS apps [5], an effort for the adoption of the Brain Imaging
Data Structure (BIDS) in common neuroimaging pipelines, re-
quire a standardized set of input and output parameters. We
developed a tool as part of the Boutiques importer to generate a
descriptor for any such BIDS app. We validated this tool by im-
porting BIDS apps containing the Statistical Parametric Mapping
toolbox (SPM) [20] and the ndmg pipeline mentioned above. De-
scriptors are on Neurolinks.

2016 MICCAI challenges
We used Boutiques to integrate 23 pipelines in the VIP platform
in the context of two challenges organized by theMICCAI Confer-
ence in 2016, related to the segmentation of multiple-sclerosis
lesions inMR images (MSSEG challenge11) and of tumor volumes
in PET images (PETSEG challenge [21]). The pipelines were inte-
grated in VIP and executed on 205 patients in a few weeks only.
Some pipelines had to be adjusted manually once integrated in
the platform for the following reasons:

� A pipeline required a GPU, which we enabled through the
nvidia-docker12tool not supported in Boutiques, although it
could be a possible extension.

� A pipeline required more than 10 GB of data dependencies
(atlas data), which exceeded the maximum size allowed for
Docker containers in our setup. We solved the issue by in-
stalling the data in a directory of the host server that we
mounted in the container.

� A pipeline wrote more than 10 GB of intermediate data in a
temporary directory of the container located on a 2 GB parti-
tion. We solved the issue by mounting a host directory in the
temporary directory.

9 http://www.mrtrix.org/
10 http://od1n.sourceforge.net
11 https://portal.fli-iam.irisa.fr/msseg-challenge/overview
12 https://github.com/NVIDIA/nvidia-docker

Listing 5. A minimal Boutiques descriptor.

Two custom properties (vip:miccai-challenger-email and
vip:miccai-challenge-team-name) were also added to the Bou-
tiques descriptor to help post-process results in the specific con-
text of MICCAI challenges.

Discussion

With Boutiques, developers can integrate their applications once
and execute them in several platforms. Boutiques removes the
technological dependency to a particular platform and facili-
tates application migration. Although the motivating use cases
were taken from neuroinformatics, our primary field of interest,
nothing prevents the system from being used in other domains.

Boutiques descriptor

The Boutiques descriptor specification allows the description of
a wide range of applications, but it is also getting increasingly
complex through additions such as invocation schemas and de-
pendencies among inputs. Extending the Boutiques descriptor
has two main goals: (1) validation: incorrect input values and
execution results are more precisely detected when the applica-
tion descriptor is comprehensive; (2) automation: a rich descrip-
tor schema reduces the need for custom application wrappers,
which is particularly useful for containerized applications.

Nonetheless, a complex descriptor schema has a cost for ap-
plication developers and platforms, which we address as fol-
lows. For developers, wemaintain the set of mandatory descrip-
tor properties as small as possible so that simple applications
can be described in a few lines only (see Listing 5). For plat-
forms, we aim at supporting as many features as possible in
the bosh executor so that only the following steps need to be
implemented in a platform, regardless of the complexity of the
descriptor:

(1) Input entry: generate the interface to enter inputs.
(2) Input validation: create a JSON invocation from the inter-

face, validate it against the invocation schema.
(3) Input delivery: transfer the input files to the application ex-

ecution location.
(4) Execution: pass the invocation to the bosh executor to run

the application.

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

https://github.com/neurodata/boutiques-tools
https://github.com/neurodata/boutiques-tools
http://www.mrtrix.org/
http://od1n.sourceforge.net
https://portal.fli-iam.irisa.fr/msseg-challenge/overview
https://github.com/NVIDIA/nvidia-docker

8 Glatard et al.

(5) Output delivery: from the descriptor, identify the output files
and deliver them to the user.

In particular, command-line generation and advanced vali-
dation features such as dependencies between inputs are em-
bedded in bosh, without requiring the platform to support the
related descriptor properties.

Workflow support

Boutiques intentionally does not provide a workflow language
to compose applications, as this is already possible with nu-
merous workflow engines. Workflows can be either composed
from Boutiques applications, as we illustrated with the Nipype
and MOTEUR engines, or described as Boutiques applications,
as we demonstrated with the Niak fMRI preprocessing pipeline.
Furthermore, the CBRAIN platform has a subtasking mecha-
nism that allows Boutiques applications to submit tasks, which
is used to parallelize workflows wrapped as Boutiques applica-
tions. Based on the CBRAIN experience, wemay specify the sub-
tasking mechanism in Boutiques so that other platforms can
benefit from it. This model is powerful because it shields the
Boutiques specification from specific workflow constructs and
it allows a wide range of workflow engines to be described and
used uniformly.

Reproducibility

Boutiques helps computational reproducibility through contain-
ers and formal command-line descriptions. With Boutiques,
complete sets of applications could be easilymigrated across ex-
ecution platforms, including high-performance computing clus-
ters and individual laptops, to reproduce analyses. The Bou-
tiques descriptor describes the parameters and implementation
of the application, and the invocation schema describes the pa-
rameter values.

However, reproducibility is a large problem that Boutiques
only partially addresses. At the command-line execution level,
containers help freeze a large fraction of the software ecosystem
but they do not shield against discrepancies arising from differ-
ent Linux kernel versions or hardware platforms. For instance,
containers may not execute consistently on different CPUs that
comply with the x86 64 architecture (e.g., Intel and AMD) when
the application is compiled with architecture-specific flags such
as GCC’s -march.

In addition, important runtime parameters, for instance, re-
lated to multi-threading or available resources (storage, RAM),
may be set by the execution platform without being specified
in the Boutiques descriptor. Such runtime parameters may im-
pact reproducibility in some cases. To properly cover this issue,
Boutiques descriptors should be complemented by a provenance
framework that captures a detailed trace of the execution. We
plan to leverage the provenance format being defined by the
NeuroImaging Data Model-Workflow [22] initiative for this pur-
pose.

Application types

So far, Boutiques has focused on the description of noninterac-
tive command-line applications. While such applications cover
a large fraction of the applications involved in scientific data
processing, other types of programs exist such as web services,
interactive applications, and applications with a graphical user
interface (GUI). Such application classes could be described in
Boutiques through a command-line mapping. For instance, web

services may be wrapped as command-line applications using
tools such as curl or wget. Interactive applications may also be
transformed to noninteractive ones through configuration files.
Finally, nothing prevents a Boutiques application from popping
up a window for a user to provide input through a GUI. This
should, however, be specified as an extension to the descriptor
since most platforms would not support this feature by default.
Graphical output produced by applications executed in contain-
ers should also be treated specifically.

Limitations

A few limitations remain that should be addressed in the fu-
ture. First, Boutiques moves the application integration bottle-
neck from integration to validation. Using Boutiques, functions
can be automatically exported from frameworks such as Nipype
and SPM, creating hundreds of richly described applications po-
tentially usable by end users. However, the automated validation
of such applications remains challenging. A Boutiques-specific
testing framework could be designed and potentially fed by ex-
isting frameworks to address this issue.

Another limitation is related to the security of containerized
applications. Since containers are usually controlled by appli-
cation developers rather than platforms, which is a good thing
to reduce application integration bottlenecks, nothing prevents
developers from embeddingmalicious code in their container at
any stage of the process, possibly after a platform administra-
tor inspected the container. Containers are bulky file archives
that are cumbersome to inspect. Tools need to be developed
to allow for an easier characterization of container contents,
for instance, through comparison digests with respect to vali-
dated base images. Singularity containers have reduced security
risks as compared to Docker containers, but the issue of content
transparency is still not avoided.

Related work

Several frameworks have been developed to describe and inte-
grate applications in various types of platforms. Boutiques fo-
cuses on (1) fullyautomatic integration of applications, includ-
ing deployment on heterogeneous computing resources through
containers, (2) comprehensive input validation through a strict
JSON schema, and (3) flexible application description through a
rich JSON schema.

Common Workflow Language

The Common Workflow Language (CWL13) is the work most
closely related to Boutiques as it provides a formal way to
describe containerized applications. In particular, CWL’s Com-
mand Line Tool Description overlapswith the Boutiques descrip-
tor. This section highlights the main differences between CWL
and Boutiques, based on version 1.0 of the CWL Command Line
Tool Description14. According to GitHub, CWL started 6 months
before Boutiques (September 2014 vs. May 2015).

Conceptual differences
The following differences are conceptual in the sense that they
may not be easily addressed in CWL or Boutiqueswithout deeply
refactoring the frameworks.

13 http://www.commonwl.org
14 http://www.commonwl.org/v1.0/CommandLineTool.html

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

http://www.commonwl.org
http://www.commonwl.org/v1.0/CommandLineTool.html

The Boutiques application integration framework 9

First, CWL has a workflow language whereas Boutiques does
not. In Boutiques, workflows are integrated as any other applica-
tions, except that they may submit other invocations to enable
workflow parallelism. This fundamental difference has conse-
quences on the complexity of CWL application descriptions and
on the possibility to reuse existing workflows in Boutiques. The
adoption of ontologies in CWLmay also be another consequence
(see below).

CWL imposes a strict command-line format, while Boutiques
is more flexible. CWL specifies command lines using an ar-
ray containing an executable and a set of arguments, whereas
Boutiques only uses a string template. Boutiques’ template ap-
proach may create issues in some cases, but it also allows
developers to add simple operations to an application without
having to write a specific wrapper. For instance, a Boutiques
command line may easily include input decompression using
the tar command in addition to themain application command.
Importantly, Boutiques’ template system allows supporting con-
figuration files.

CWL uses ontologies, while Boutiques does not. Ontologies
allow for richer definitions but they also have an overhead. The
main consequences are the following:

� CWL uses a specific framework for validation, called SALAD
(Semantic Annotations for Linked Avro Data), whereas Bou-
tiques uses plain JSON schema. Themain goal of SALAD is to
allow “working with complex data structures and document
formats, such as schemas, object references, and names-
paces.” Boutiques only relies on the basic types required to
describe and validate a command line syntactically. While
the use of SALAD certainly allows for higher-level validation
andmay simplify the composition and validation of complex
workflows, it also introduces a substantial overhead in the
specification, and platforms have to use the validator pro-
vided by CWL. On the contrary, a regular JSON validator can
be used in Boutiques.

� CWL has a rich set of types, whereas Boutiques only has
simple types. This may again be seen as a feature or as an
overhead depending on the context. Boutiques tries to limit
the complexity of the specification to facilitate its support by
platforms where applications will be integrated.

Major differences
The following differences are major but they may be addressed
by the CWL and Boutiques developers as they do not undermine
the application description model:

� CWL applications have to write in a specific set of directo-
ries called “designated output directory,” “designated tem-
porary directory,” and “system temporary directory.” Applica-
tions are informed of the location of such directories through
environment variables. Having to write in specific directories
is problematic because applications have to be modified to
enable that. In Boutiques, the path of output files is defined
using a dedicated property.

� CWL types are richer, not only semantically but also syn-
tactically. For instance, files have properties for basename,
dirname, location, path, checksum, etc.

� Boutiques supports various types of containers (Docker, Sin-
gularity, rootfs), while CWL supports only Docker. Both tools
have rich requirements: for instance, they may include RAM,
disk usage, and walltime estimate. CWL has hints, i.e., rec-
ommendations that only lead to warnings when not re-
spected.

� In Boutiques, dependencies can be defined among inputs,
e.g., to specify that an input may be used only when a partic-
ular flag is activated. This is a very useful feature to improve
validation, in particular for applicationswith a lot of options.

� In Boutiques, named groups of inputs can be defined, which
improves the presentation of long parameter lists for the user
and enables the definition of more constraints within groups
(e.g., mutually exclusive inputs).

BIDS apps

BIDS apps [5] specify a framework for neuroimaging applications
to process datasets complying to the Brain Imaging Data Struc-
ture (BIDS). They share common goals with Boutiques, in par-
ticular, reusability across platforms through containerization.
Conceptually, however, BIDS apps and Boutiques are different
since BIDS apps intend to standardize application interfaces,
while Boutiques intends to describe them as flexibly as possi-
ble. BIDS apps have a specific set of inputs and outputs, for in-
stance, the input dataset, that have to be present in a specific
order on the command line for the application to be valid. The
specification adopted by BIDS apps simplifies the integration of
applications in platforms as they all comply to the same inter-
face. However, it is also limited to the subset of neuroimaging
applications that process BIDS datasets and it does not formally
describe application-specific inputs. All in all, BIDS apps and
Boutiques complement each other. BIDS apps provide a practical
way to integrate neuroimaging applications, while Boutiques of-
fers a formal description of their specific parameters. Boutiques
descriptors can be generated from BIDS apps using the bosh im-
porter.

Other frameworks

Several other frameworks have been created to facilitate the in-
tegration of command-line applications in platforms. In neu-
roinformatics, many platforms define a formal interface to
embed command-line applications. Among them, the Com-
mon Toolkit15 interoperates with several platforms such as 3D
Slicer [23], NiftyView [24], GIMIAS [25], MedInria [25], MeVis-
Lab [26], and MITK workbench [27]. The framework, however, re-
mains tightly bound to the Common Toolkit’s C++ implementa-
tion, which limits its adoption, e.g., in web platforms.

In the distributed computing community, systems were also
proposed to facilitate the embedding of applications in plat-
forms. The Grid Execution Management for Legacy Code Archi-
tecture [28]was used towrap applications in grid computing sys-
tems. Interestingly, it has been used to embed workflow engines
in the SHIWA platform [29], in a similar but different way than
proposed by Boutiques.

The recent advent of software containers requires a new gen-
eration of application description frameworks that are indepen-
dent from any programming language and that expose a rich set
of properties to describe command lines, as intended by Bou-
tiques.

Conclusion

Boutiques is available at https://github.com/boutiques. We
welcome feedback, issue reporting, and pull requests. Bou-
tiques adopts a bottom-up approach where new features are

15 http://www.commontk.org

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

https://github.com/boutiques
http://www.commontk.org

10 Glatard et al.

progressively added based on feedback from applications and
platforms. Beyond the technicalities discussed here, the avail-
ability of a solid core of applications and platforms in the
framework is key to its success, which we plan to continuously
enhance.

Availability of supporting source code and
requirements
� Project name: Boutiques
� Project RRID: SCR 016073
� Project home page: http://boutiques.github.io
� Operating system(s): Platform independent
� Programming language: Python and JSON schema
� Other requirements: None
� License: MIT

Availability of supporting data

Boutiques is available on GitHub (https://github.com/
boutiques/boutiques) and Zenodo [30]. This article is based
on release 0.5.5.

Abbreviations

BIDS: Brain Imaging Data Structure; CWL: common workflow
language; FSL: FMRIB Software Library; GUI: graphical user inter-
face; SALAD: Semantic Annotations for Linked Avro Data; SPM:
Statistical Parametric Mapping.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

Pipeline integration for the MICCAI 2016 challenge was funded
by the French National Agency for Research through “France
Life-Imaging.” We also thank Compute Canada and Calcul
Québec for providing a computing infrastructure supporting
Docker and Singularity containers. This research was under-
taken thanks in part to funding from the Canada First Research
Excellence Fund, awarded to McGill University for the Healthy
Brains for Healthy Lives initiative. We also thank the developers
of all the applications described with Boutiques.

REFERENCES

1. Peng RD. Reproducible research in computational science.
Science 2011; 334(6060):1226–7.

2. Stodden V, McNutt M, Bailey DH et al. Enhancing re-
producibility for computational methods. Science 2016;
354(6317):1240–1.

3. Kurtzer GM, Sochat V, Bauer MW. Singularity: scien-
tific containers for mobility of compute. PloS One 2017;
12(5):e0177459.

4. Glatard T, Étienne Rousseau M, Camarasu-Pop S et al. Soft-
ware architectures to integrate workflow engines in sci-
ence gateways. Future Generation Computer Systems 2017;
75(Supplement C):239–55.

5. Gorgolewski KJ, Alfaro-Almagro F, Auer T et al. BIDS apps:
improving ease of use, accessibility, and reproducibility of
neuroimaging data analysis methods. PLoS computational
biology 2017; 13(3):e1005209.

6. Gentleman RC, Carey VJ, Bates DM et al. Bioconductor: open
software development for computational biology and bioin-
formatics. Genome biology 2004; 5(10):R80.

7. Sherif T, Rioux P, Rousseau ME et al. CBRAIN: a web-
based, distributed computing platform for collaborative neu-
roimaging research. Frontiers in Neuroinformatics 2014;
8(54).

8. Das S, Glatard T, MacIntyre LC et al. The MNI data-sharing
and processing ecosystem. NeuroImage 2016; 124:1188–95.

9. Gorgolewski K, Burns CD, Madison C et al. Nipype: a flexible,
lightweight and extensible neuroimaging data processing
framework in python. Frontiers in neuroinformatics 2011;5.

10. Glatard T, Lartizien C, Gibaud B et al. A virtual imaging
platform for multi-modality medical image simulation. IEEE
Transactions on Medical Imaging 2013; 32(1):110–8.

11. Montagnat J, Isnard B, Glatard T et al. A data-driven work-
flow language for grids based on array programming princi-
ples. In: Workshop on Workflows in Support of Large-Scale
Science (WORKS’09); 2009.

12. Glatard T, Montagnat J, Lingrand D et al. Flexible and ef-
ficient workflow deployment of data-intensive applications
on grids with MOTEUR. Journal of High Performance Com-
puting and Applications 2008; 22(3):347–60.

13. Jenkinson M, Beckmann CF, Behrens TE et al. Fsl. Neuroim-
age 2012; 62(2):782–90.

14. Bellec P, Carbonell F, Perlbarg V et al. A neuroimaging anal-
ysis kit for Matlab and Octave. In: Proceedings of the 17th
International Conference on Functional Mapping of the Hu-
man Brain; 2011. p. 2735–2746.

15. Bellec P, Lavoie-Courchesne S, Dickinson P et al. The Pipeline
System forOctave andMatlab (PSOM): a lightweight scripting
framework and execution engine for scientific workflows.
Frontiers in neuroinformatics 2012; 6(7).

16. Glatard T, Quirion PO, Adalat R et al. Integration between
PSOM and CBRAIN for distributed execution of neuroimag-
ing pipelines. In: Meeting of the Organization for Human
Brain Mapping Geneva, Switzerlad; 2016.

17. Tournier J, Calamante F, Connelly A et al. MRtrix: diffusion
tractography in crossing fiber regions. International Journal
of Imaging Systems and Technology 2012; 22(1):53–66.

18. Kiar G, Bridgeford E, Chandrashekhar V et al. A compre-
hensive cloud framework for accurate and reliable human
connectome estimation and meganalysis. bioRxiv 2017;p.
188706.

19. Jochimsen TH, VonMengershausenM. ODIN-object-oriented
development interface for NMR. Journal of Magnetic Reso-
nance 2004; 170(1):67–78.

20. PennyWD, FristonKJ, Ashburner JT et al. Statistical paramet-
ric mapping: the analysis of functional brain images. Aca-
demic press; 2007.

21. Hatt M, Laurent B, Ouahabi A et al. The first MICCAI chal-
lenge on PET tumor segmentation. Medical Image Analysis
2018; Under minor revision.

22. Ghosh S, Auer T, Flandin G et al. Capturing and reusing com-
putation details with the Neuroimaging Data Model (NIDM).
In: AnnualMeeting of the Organisation of Human BrainMap-
ping (OHBM 2017); 2017.

23. Pieper S, Halle M, Kikinis R. 3D Slicer. In: IEEE International
Symposium on Biomedical Imaging: Nano to Macro IEEE;
2004. p. 632–635.

24. Craddock RC, Bellec P, Margules DS et al. 2015 Brainhack Pro-
ceedings. GigaScience 2016; 5(1):1–26.

25. Larrabide I, Omedas P, Martelli Y et al. GIMIAS: an open
source framework for efficient development of research

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

http://boutiques.github.io
https://github.com/boutiques/boutiques
https://github.com/boutiques/boutiques

The Boutiques application integration framework 11

tools and clinical prototypes. In: International Conference
on Functional Imaging and Modeling of the Heart Springer;
2009. p. 417–426.

26. Heckel F, SchwierM, PeitgenHO. Object-oriented application
developmentwithMeVisLab and Python. In: GI Jahrestagung;
2009. p. 1338–1351.

27. Nolden M, Zelzer S, Seitel A et al. The medical imaging
interaction toolkit: challenges and advances. International
journal of computer assisted radiology and surgery 2013;
8(4):607–620.

28. Delaitre T, Kiss T, Goyeneche A et al. GEMLCA: Running
legacy code applications as grid services. Journal of Grid
Computing 2005; 3(1-2):75–90.

29. Terstyanszky G, Kukla T, Kiss T et al. Enabling scien-
tific workflow sharing through coarse-grained interoper-
ability. Future Generation Computer Systems 2014; 37:
46–59.

30. Glatard T, Kiar G, Aumentado-Armstrong T et al., Bou-
tiques: Release 0.5.5; 2018. https://doi.org/10.5281/zenodo.
1164290.

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/5/giy016/4951979
by Institute of Child Health/University College London user
on 23 July 2018

https://doi.org/10.5281/zenodo.1164290
https://doi.org/10.5281/zenodo.1164290

