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ABSTRACT 

Introduction: Small vessel disease is the underlying cause of most spontaneous (non-

traumatic) ICH. Cerebral imaging markers of small vessel disease, particularly cerebral 

microbleeds (CMBs) and white matter hyperintensities of presumed vascular origin 

(WMH) offer clinicians and researchers an opportunity to further understand the 

pathogenesis and risk of ICH in patients with stroke. In this thesis I present a portfolio of 

studies aimed to show the clinical relevance of neuroimaging biomarkers of small vessel 

disease in relation to intracerebral haemorrhage (ICH). 

Methods: I ascertained patients primarily through the Clinical Relevance Of Cerebral 

Microbleeds In Stroke (CROMIS-2) study, a multicentre prospective observational study 

recruiting patients with both ICH and patients with ischaemic stroke associated with atrial 

fibrillation (AF) from 79 centres throughout the UK and one in the Netherlands. Data was 

also collected locally from ICH patients seen in the UCL Hospital’s comprehensive stroke 

service, international collaborations and through the meta-analysis of published studies. 

Main findings: 1) CMBs are associated with an increased relative risk of subsequent ICH 

in patients with ischaemic stroke (primarily treated with antiplatelet drugs) and the ICH risk 

increases more steeply with CMB burden than does the risk of ischaemic stroke; 2) In 

patients with AF anticoagulated after recent ischaemic stroke or TIA, CMB presence is 

independently associated with symptomatic intracranial haemorrhage risk, improves the 

predictive ability of clinical risk scores, and can inform anticoagulation decisions; 3) The 

presence of cerebral small vessel disease is associated with a lower risk of a macrovascular 

cause of ICH; 4) Lobar ICH location (compared to non-lobar location) is associated with 

higher recurrent ICH risk and lower new ischaemic stroke risk; 5) The CHA2DS2VASC 

score has similar modest predictive value in estimating the risk of ischaemic stroke in 

patients with ICH and concurrent AF, but risk prediction was not improved by adding SVD 

presence. 

Conclusion: These studies confirm the clinical relevance of neuroimaging markers of small 

vessel disease in the diagnosis and prediction of intracranial haemorrhage and provide a 

framework for future research  
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1.0 Introduction to Intracerebral haemorrhage 

Intracerebral haemorrhage (ICH) - bleeding into the brain parenchyma is the most 

devastating form of stroke, with a case fatality approaching 50% at one month (1) and high 

morbidity in survivors: 32 % being functionally dependent at one year. (2) A meta-analysis 

involving 122 studies of longer-term prognosis found a pooled one-year survival of 46%, 

and five-year survival of only 29% (3).  

 

ICH accounts for 10-15% of strokes in Western populations, and up 40% in some Asian 

populations. (4, 5) Whilst the incidence of ischaemic stroke has fallen (6), the incidence of 

ICH has remained static in recent decades (4). Indeed, there is evidence that the incidence 

of ICH in the elderly and in association with oral anticoagulant use is increasing, (7-9) 

making it a key research challenge in cerebrovascular disease. 

 

ICH may result from a wide range of potential causes (10). Conventionally ICH is 

classified as ‘traumatic’ or ‘spontaneous’ (i.e. ‘non-traumatic’). The spontaneous group is 

further subdivided into ‘secondary’ (due to identified causes including bleeds into tumors, 

cavernomas, arterio-venous malformations, central nervous system infection, cerebral 

venous sinus thrombosis, bleeding disorders, etc.) or ‘primary’ if there is no obvious 

underlying cause. With cumulative advances in neuroimaging and histopathological 

correlates it is now generally accepted that the main processes underlying so-called 

‘primary ICH’ are intrinsic diseases affecting cerebral small vessels (generally a few 

hundred microns and up to about 1-2mm) – usually collectively termed small vessel disease 

(SVD). This understanding has led a recent large international consensus group for 

standardized definitions in neuroimaging markers of small vessel disease to suggest the 

term ‘spontaneous intracerebral haemorrhage presumed to be due to SVD’ be preferable to 

primary ICH (11). However, it is critical to exclude “secondary” structural causes of ICH, 

including macrovascular causes (e.g. arterio-venous malformations, aneurysms, and dural 

arteriovenous fistulae), which can be treated.  

The “reference standard” for detection of a macrovascular cause is intra-arterial digital 

subtraction angiography (IADSA) or neurosurgery. IADSA is invasive, requires skilled 
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operators and is associated with a small but appreciable mortality and morbidity, especially 

in acute ICH (12). Selecting which ICH patients have a sufficiently high likelihood of a 

macrovascular cause to recommend IADSA is a common and important clinical question. 

Current practice varies widely (13): typically, the presence of pre-ICH hypertension, deep 

location of ICH and age are used as indicators of SVD to select patients unlikely to require 

IADSA(13), but the evidence supporting this is scant and often conflicting (14-16). 
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1.1 Causes of Intracerebral haemorrhage 

 

A discussion of the nature of causation is beyond the scope of this thesis, but a ‘cause’ can 

most simply be defined as something, which affects the prevalence, likelihood or clinical 

effect of a disease. For ICH, contributory causes include the underlying SVD processes, but 

also ‘risk factors’ (e.g. hypertension, diabetes, lipid profile, smoking, alcohol use, etc.) 

which may influence the clinical expression of these SVD processes. The challenge with 

many studies of ICH (particularly cross-sectional data) is that they can show associations 

but cannot provide proof (or direction) of causality. Whether an association reflects 

causation can be considered according to the strength of association; consistency; 

specificity; dose-response relationship; biological plausibility and consistency with disease 

natural history (17).  

 

SVD is highly prevalent in older populations(18) yet ICH is much less common. Thus, as in 

other types of stroke, spontaneous ICH is likely to result from an interplay between 

environmental and individual patient (e.g. genetic) factors relating to the expression of 

SVD. Indeed, recent data suggest that genetic variation plays a significant role in ICH risk 

and outcome. (19) It was estimated that 44% of ICH risk variance was accounted for by 

genetic risk factors, with a greater contribution of genetic factors (especially apolipoprotein 

E [APOE] alleles) to lobar ICH than deep ICH. (19)  

 

One model of ICH causation is that multiple acute or chronic risk factors (e.g. age, 

sustained hypertension or short-term blood pressure fluctuations, antithrombotic drugs 

(antiplatelet agents or anticoagulants), serum cholesterol levels or statin use, minor head 

trauma, etc.) interact with vulnerable damaged small vessels (subject to the influence of 

genetic or other individual patient factors), which, when a certain threshold is exceeded, 

ultimately rupture to culminate in ICH as represented in figure 1. 

 

Indeed, a population-based study suggested that ICH may result from short-term increases 

in blood pressure prior to the event (over weeks to months), by contrast with ischaemic 
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stroke where blood pressure is more stable (20). This finding suggests that consistent long-

term blood pressure control may be especially important in reducing the risk of ICH.  

 

Figure 1 Aetiology of ICH 

 

From Wilson et al: Expert Rev Neurother. 2014 Jun;14(6):661-78 

 

1.2 Epidemiology of ICH 

The epidemiology of ICH has changed over the years with an aging population, more 

aggressive treatment for hypertension and increasing use of anticoagulation. It may well 

still be changing: with the advent of the direct anticoagulants, we may expect to see an even 

higher use of anticoagulants in elderly patients. Although these drugs have about half the 

ICH risk compared to warfarin(21), their increased use may still overall lead to a higher 

prevalence of ICH in the elderly population. This is of importance as higher age is 

associated with worse outcomes (22, 23). One paper comparing ICH in the very elderly 

found those aged greater than 85 years had increased incidence of neurological deficit at 
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hospital discharge (89% vs. 58%, P < .005), and in-hospital mortality (50% vs. 27%, P < 

.01) than those younger than 85 (22). However, the cut off age could be considered 

arbitrary, and there was no significant difference in either neurological deficit or mortality 

when comparing those aged greater than 85 to those aged between 65 and 85.   

 

Whilst global ICH rates have remained stable (4) improved hypertension control seem to be 

offset by the increasing number of anticoagulation and cerebral amyloid angiopathy (CAA) 

related haemorrhages (7-9). Large cohorts, each over a 20-year period from Oxfordshire 

and Dijon have shown a decrease in the incidence of ICH in the younger age group (<75 

years, <65 years respectively) by roughly 50% (7, 8); however the Dijon cohort reported an 

80% increase in ICH incidence in those aged over 80 years.(7) A large study from 

Cincinnati looking at anticoagulation-related ICH over a 10 year period has shown that 

anticoagulant-related haemorrhage has increased five-fold (9), which closely corresponds to 

the four-fold increase in anticoagulant (Warfarin) use (per capita) over the same period (9)  

 

1.3 Role and clinical relevance of anticoagulation in ICH 

Anticoagulants should not ‘cause’ ICH per se as they only impair the body’s ability to form 

thrombin clots (at different points in the coagulation cascade depending on the medication), 

and do not lyse formed clots. It is hypothesized, however, that in vulnerable individuals 

(e.g. those with SVD) where a bleed has occurred, anticoagulants lead to larger ICH 

volumes due to impaired haemostasis. If this is the case then patients with ICH on 

anticoagulants should have larger hematoma volumes, and more hematoma expansion, than 

those not taking oral anticoagulants. Indeed, anticoagulation is generally associated with 

larger baseline haematoma volumes (24-30) and hematoma growth (29-31): in studies with 

over 100 patients which investigate this relationship (18-26), all but one (32) show a 

significant relationship between anticoagulation and hematoma size. One study revealed an 

association between anticoagulation intensity (INR) and the volume of deep ICH but not 

for lobar ICH (25) suggesting differing underlying pathology (e.g. amyloid angiopathy and 

hypertensive arteriopathy) in different brain regions may respond differently to 

anticoagulation. This finding has not been replicated, however, and further studies are 

warranted. Three studies to date show that hematoma expansion is increased by 
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anticoagulation; two of these studies were observational hospital-based studies (30, 31) 

without standardized CT timing scanning. Furthermore, neuroimaging characteristics and 

outcomes need to be explored between non-vitamin K oral anticoagulant-related ICH 

(which do not affect the extrinsic coagulation pathway) and vitamin K oral anticoagulant-

related ICH. 
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2.0 Introduction to small vessel disease 

Cerebral small vessel disease describes a group of pathological processes with various 

causes which affect the small vessels of the brain, namely: the small arteries, arterioles, 

venules, and capillaries (33). Most age-related small vessel damage is secondary to one of 

two main SVD processes (figure 2): (1) an arteriolar process often related to aging and 

other common vascular risk factors (e.g. hypertension and diabetes), characterised 

pathologically by lipohyalinosis, arteriolosclerosis or fibrinoid necrosis, and typically 

affecting the small perforating end-arteries of the deep grey nuclei and deep white matter 

(often termed “hypertensive arteriopathy”); and (2) sporadic cerebral amyloid angiopathy 

(CAA), a disease process affecting  superficial cortical and leptomeningeal vessels through 

the deposition of amyloid β. Less commonly, ICH occurs in the context of much rarer 

genetic diseases (familial cerebral amyloid angiopathies, Collagen 4A1 mutations, Fabry’s 

disease, CADASIL, CARASIL, etc.) or cerebral and systemic vasculitides, which will not 

be discussed in this thesis. A classification of small vessel diseases with their relevance to 

ICH is shown in Table 1 

 

Figure 2 Common subtypes of small vessel disease 

 

 

From Wilson et al: Expert Rev Neurother. 2014 Jun;14(6):661-78
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Table 1 Types of SVD, histopathology, the prevalence of cerebral small vessel disease and relationship to ICH

Name Histology Prevalence 
Strength of relationship to 

intracerebral haemorrhage 

Arteriolosclerosis 

Common sporadic SVD 

Hypertensive arteriopathy 

Arteriolosclerosis 

Lipohyalinosis 

Fibrinoid necrosis 

Microatheroma 

Microaneurysms 

Very common 
Common cause of deep or lobar 

ICH 

Cerebral Amyloid 

angiopathy (CAA) 

Aβ amyloid protein 

Dilated and disrupted walls 

Double barreled arterial wall 

Age related 

7% Those aged 65-74 

18% Those aged 75-84 (34) 

70% Those aged over 85 (35) 

Common cause of lobar ICH 

Inherited or genetic SVD 

CADASIL 

COL4A1 

Fabry disease  

CARASIL  

Depends on the underlying 

disease 

CADASIL >2 per 100000 

COL4A1 Very Rare prevalence 

unknown 

Fabry disease 1 per 120000 

CARASIL Very Rare, unknown 

CADASIL – ICH rare (CMBs 

common) 

COL4A1 - ICH common 

Fabry disease – ICH rare 

CARASIL – ICH rare (CMBs 

common) 

Inflammatory and 

Immunologically mediated 

SVD. (Primary angiitis CNS 

and systemic vasculitis) 

Typical of vasculitis Very rare ICH common 

Other (Radiation etc.) Depends on aetiology Rare Rare 
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2.1 Sporadic cerebral amyloid angiopathy 

Sporadic CAA is characterised by the progressive accumulation of amyloid-β peptide in the 

walls of small-to-medium-sized arteries and arterioles - and, to a lesser extent, the 

capillaries and veins - in the leptomeninges and cerebral cortex.(33) In the most severe 

form, CAA-affected small vessels become thickened and disrupted, with focal wall 

fragmentation and blood extravasation, with or without microaneurysmal dilatation, and 

sometimes show luminal occlusion. (33) The pathophysiology of sporadic CAA is poorly 

understood, but transgenic mouse models suggest an increased ratio of Aβ40:Aβ42 in the 

brain results in a shift of amyloid-β from brain parenchyma to the vasculature (36) (perhaps 

by increasing the solubility of Aβ and thus its diffusion into the vessel wall); and that 

vascular Aβ deposition largely results from impaired clearance of Aβ (rather than 

overproduction) (37), likely due to changes in the composition of capillary vascular 

basement membranes(38). The prevalence of CAA increases with age, especially over 60 

years. (34, 39). Autopsy studies have shown CAA in more than 70% of a healthy 

population above the age of 90.(35, 40). CAA may vary according to ethnicity: some 

studies suggest a higher predilection for amyloid deposition in the frontal lobe arteries in 

Eastern populations (41); it has also been suggested that Eastern populations have a lower 

prevalence of CAA, but this may in part reflect the higher relative prevalence of 

hypertension and hypertensive arteriopathy in this population (41).  

 

By contrast with other cerebrovascular diseases, CAA does not appear to be related to 

conventional vascular risk factors. Although hypertension may aggravate bleeding risk in 

CAA (42) most patients with CAA-related ICH (up to 68% in one study) are not 

hypertensive. (43, 44) Anticoagulation or antiplatelet treatments may also increase the 

likelihood of CAA-related ICH (45-48), but, apart from genetic variants there are no other 

known strong risk factors that increase the presence of CAA or its bleeding risk. APOE 

alleles are associated with CAA: A recent meta-analysis showed a dose-dependent 

association between APOE ε4 alleles and the presence of sporadic CAA (49). A more 

recent study, taking into account CAA severity, found a possible association of severe CAA 

with APOE ε4 but not APOE ε2, but was limited by the number of participants with ε2 

genotypes (50). In addition, there have been multiple studies linking both APOE alleles (ε2 
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and ε4) to the risk of recurrent haemorrhage (51-54) APOE ε2 has been shown to confer 

greater vessel fragility (55): a large genetic association study has shown carriers of APOE 

ε2 had increased ICH expansion, mortality (odds ratio [OR] 1·50, 95% CI 1·23-1·82) and 

poorer functional outcomes (modified Rankin scale score 3-6; 1·52, 1·25-1·85) compared 

with non-carriers after lobar ICH. By contrast, APOE ε4 was not associated with lobar ICH 

volume, functional outcome, or mortality (56). Several other genetic variants are also 

associated with CAA and ICH, for example, CR1 (complement component receptor), TGF-

β1, and TOMM40 but further work is needed to confirm these. (52) New genetic 

associations with CAA are sure to emerge from large international collaborative efforts in 

the coming years.  

 

There is substantial evidence supporting the hypothesis that CAA is an important 

contributory factor in causing ICH. This association between CAA and ICH was noted as 

far back as the 1970s and 1980s in a series of pathologically confirmed case reports of ICH 

(57-61); a large systematic review and meta-analysis of published histopathological studies 

confirmed an association between CAA and lobar ICH (OR 2.21, 95% CI 1.09 to 4.45) 

(62). A meta-analysis of prospective studies in ICH cohorts shows patients with CAA 

related ICH had a much higher annual ICH recurrence rate than patients with non-CAA 

related ICH (7.4% vs. 1.1% p=0.01)(63). Given the very high pathological prevalence of 

CAA in population-based studies, and the much lower incidence of CAA related ICH, most 

patients with CAA pathology do not suffer ICH.  Elucidating which patients with CAA will 

develop CAA related ICH is a key question for preventing CAA-related ICH. A 

pathological study comparing brains with CAA and ICH to those with CAA without ICH 

found CAA was more severe in the brains with cerebral haemorrhage than in those without, 

and that fibrinoid necrosis was only seen in the brains with cerebral haemorrhage [48]. 

Microaneurysms occurred only in the presence of severe, rather than moderate or mild, 

CAA (64). This suggests that mild CAA may not confer such a high risk of ICH, and that 

preventing progression of CAA may thus reduce the incidence of ICH. 

 

 

 



Part 1: Introduction to small vessel disease 

27 

  

2.2 Hypertensive arteriopathy 

Hypertensive arteriopathy is a term often used to describe multiple different (non-CAA) 

pathologies affecting mainly the deep arterial perforators (including arteriolosclerosis, 

lipohyalinosis, and fibrinoid necrosis) (65-67) some of which are not clearly directly related 

to hypertension (68, 69). Despite the different pathological findings and aetiologies, it is 

still generally considered to be one disease. Sporadic SVD is a more encompassing term 

(68), but this term may also include CAA depending on how a small vessel is defined. The 

most severe histopathological correlate of hypertensive injury is fibrinoid necrosis, which is 

more commonly found in brains from hypertensive patients than in those without 

hypertension (70-72) as well as in arterioles adjacent to deep ICH(71-74). Furthermore, a 

study from the late 1970s showed marked elevation in blood pressure can produce fibrinoid 

necrosis acutely (75). 

 

Historically, hypertension has been considered the cause of the majority of non-lobar (i.e. 

deep) ICH. This observation first arose from autopsy series from the late 50s and early 70s 

of patients with deep ICH in which classical pathological vessel changes suggested 

hypertensive arteriopathy. (71, 73). These presumed hypertensive related changes, 

including microaneurysms (‘Charcot-Bouchard’ or ‘miliary’ aneurysms), occurred in small 

penetrating arteries and arterioles subjected to high pressures such as the lenticulostriate 

arteries emanating from the middle cerebral artery, basilar and posterior cerebral artery 

perforators. These small arteries feed deep central areas of the brain such as the basal 

ganglia, thalami, and brainstem (24) corresponding to the common locations of deep ICH. 

Thus, deep ICH has for many years been commonly attributed to hypertension and termed 

‘hypertensive haemorrhage’. This theory has been challenged, primarily by the finding of a 

low prevalence of hypertension in some ICH cohorts (76, 77) as well as pathological 

studies in which findings previously attributed to hypertension have been observed in the 

absence of  hypertension (78) and associations of deep perforator SVD with other factors 

(e.g. reduced cerebral perfusion) (68, 79-85). Nevertheless, for simplicity and consistency, 

in this thesis we will use the term ‘hypertensive arteriopathy’ to include non-CAA SVD 

affecting the small deep perforating arteries. 
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Genetic studies have shown associations with the occurrence and outcome of deep ICH 

presumed due to hypertensive arteriopathy. A recent study showed a strong association 

between the size of haemorrhage, clinical outcome and known hypertension risk alleles in 

those with deep ICH (86). This study demonstrated an increase in hematoma volume by 

28% and an increased risk of a poor clinical outcome by 71% for every standard deviation 

rise in a blood pressure based genetic risk score. 

 

Attributing lobar ICH to CAA and non-lobar ICH to hypertensive arteriopathy, while 

attractive for clinicians, is clearly an oversimplification. There is evidence from a large 

systematic review and meta-analysis showing lobar haemorrhages are significantly 

associated with CAA (62), but there was no statistically significant negative association 

between CAA and deep ICH. Furthermore, hypertensive arteriopathy can affect the white 

matter perforators and thus cause a proportion of lobar ICH in addition to deep ICH (87). 

Importantly older individuals may, in fact, have a mixture of both CAA and hypertensive 

arteriopathy, as both are age-dependent (33). 

 

2.3 Neuroimaging markers of small vessel disease 

Neuroimaging, particularly with MRI, is the most useful way to visualize the consequences 

of small vessel disease. Although the small arteries are generally beyond the resolution of 

MRI, their complex effects on the brain (from both ischaemia and hemorrhagic processes) 

are clearly seen. Here we consider each neuroimaging marker in terms of its diagnostic and 

prognostic utility regarding future ICH. I present a schematic illustration of the main MRI 

markers of the small vessel diseases relevant to ICH in Figure 3 and example MRI images 

are shown in Figure 4. The focus of the thesis is predominantly on cerebral microbleeds 

(CMBs), cortical superficial siderosis cSS and white matter hyperintensities (also known as 

leukoaraiosis), thus most attention will be given to them. 
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Figure 3 Schematic showing markers of small vessel disease seen on brain imaging 

From Wilson et al: Expert Rev Neurother. 2014 Jun;14(6):661-78  
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Figure 4 MRI imaging example of small vessel disease markers.  

 

 

A) White matter hyperintensities (white arrows), B) Lacunar infarction (white arrow), C) 

Basal ganglia enlarged perivascular spaces, D) Cerebral microbleeds, E) Cortical 

superficial siderosis, F) Centrum semiovale enlarged perivascular spaces 
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2.3.1 Cerebral microbleeds 

Cerebral microbleeds (CMB) are an imaging marker defined as small homogenous round 

hypo-intense areas on blood-sensitive T2*-weighted gradient-recalled echo or susceptibility 

weighted MRI sequences. (88). A histopathological-MRI correlation study confirmed that 

small clusters of haemosiderin-laden macrophages were the pathological correlate of the 

majority of microbleeds seen on MRI (89). Further histopathological correlation studies 

showed that vessels near CMBs are affected by pathological changes of cerebral small 

vessel disease (89-93). Thus, it is inferred that most CMBs represent direct extravasations 

of blood from bleeding-prone vessels affected by small vessel diseases. Mechanisms of 

CMBs development other than direct red cell extravasation have also been postulated, for 

example, ischaemia-mediated iron store release by oligodendrocytes (94) and phagocytosis 

of red cell microemboli into the perivascular space (termed angiophagy) (95). A recent 

pathological analysis of the “oldest old” (over 85 years) found that areas of haemorrhage 

(including microscopic bleeding) were frequently associated with microinfarcts, (96) 

suggesting a “secondary” mechanism, perhaps related to haemorrhagic transformation of 

ischaemic infarcts. Indeed, a now well-cited editorial suggests a possible framework for the 

classification for CMBs: primary (artery/arteriole rupture or blood-brain barrier 

dysfunction); secondary (haemorrhagic infarction or microinfarction); and “pseudo” CMBs 

(angiophagy and ischaemia-related iron store release) (97). 

Although studies of the pathological correlates of CMBs are sparse and include only 23 

patients (93, 98) mainly with ICH or dementia, most observations suggest that CMBs are 

self-limiting regions of red cell extravasation from damaged small blood vessels. 

 

2.3.1.1 CMB location and relationship to underlying SVD subtype 

The location of CMB may be helpful in determining the underlying SVD aetiology, 

although much of the evidence for this is indirect. Deep CMB are more commonly 

associated with putative markers of hypertensive arteriopathy, whilst strictly lobar CMBs 

(cortical-subcortical) are hypothesized to reflect CAA (Figure 5). (88, 99). This hypothesis 

is supported by the association between strictly lobar CMB with APOE ε4, a known marker 

of CAA, initially in a large population-based study (100) and subsequently confirmed in 2 

meta-analyses. (101, 102) Molecular imaging studies using PET amyloid ligands suggest 

that lobar CMBs preferentially occur at site of high amyloid-β concentration (103). By 
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contrast, deep (basal ganglia and infratentorial) CMBs are related to deep ICHs (104, 105), 

cardiovascular risk factors, lacunar infarcts and white matter lesions (100) The diagnostic 

significant of CMBs in a mixed topography requires further study; it is likely that in such 

cases a mixed pathology exists. Although deep CMBs seem likely to reflect only 

hypertensive arteriopathy, lobar CMBs may result from an interaction between 

hypertensive arteriopathy and CAA (87). The Boston criteria used for the diagnosis of CAA 

related ICH relies on this topographical pattern. The criteria categorize the diagnosis into 

either definite, probable with supporting evidence, probable, or possible CAA based on the 

certainty of the diagnosis. The probable CAA group (which is the first criteria which 

doesn’t require pathological tissue) has been validated with high specificity in a clinical-

pathologic correlation study (91), potentially obviating the need for further diagnostic 

work-up and a tissue diagnosis. However, the Boston criteria have been subject to only 

limited pathological validation, mainly from the single specialist center in Boston. A study 

in 2001 (91) validated the criteria with the gold standard pathologically proven CAA and 

found a high specificity but a low sensitivity (44%) likely owing to the low use of T2*-

weighted gradient echo MRI in the study. The prevalence of CAA related lobar 

haemorrhage was high (74%) and thus the validation may not be applicable to patients 

without ICH. Further validation in amyloidosis-Dutch type patients showed that using T2* 

weighted gradient echo increased the sensitivity from 48% to 63% (106). More recently a 

different European study validated the Boston criteria with the addition of T2* against the 

gold standard (pathologically proven CAA) and found the sensitivity to be 77%.(107) Thus, 

although the Boston criteria are a key advance and remain highly specific, there is clearly a 

need for further validation studies in larger cohorts in different populations with routine 

T2* gradient echo MRI and to explore the contribution of other MRI imaging markers. 
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Figure 5: Deep and Lobar CMBs 

 

SWI imaging: Left image showing mixed CMB distribution with CMB located in the 

thalamus, basal ganglia structures, and temporal lobe. Right image showing CMBs located 

in the lobar regions 

 

2.3.1.2 CMB relationship to antithrombotics and ICH 

CMBs might be relevant for ICH risk with antithrombotic exposure: first, CMBs are 

common in populations likely to be exposed to antithrombotic drugs, including older 

community-dwelling individuals and those with ischaemic stroke, TIA or ICH (108); and 

second, longitudinal studies confirm that CMBs develop over time after ischaemic stroke, 

TIA or ICH (109, 110) (while regression of CMBs can occur, it seems to be rare). Since 

antithrombotics impair haemostasis by inhibiting platelet aggregation (antiplatelets) or 

disrupting the coagulation pathway (anticoagulants), in the presence of a CMB-related 

arteriopathy, self-limiting red blood cell extravasation (causing a CMB) could become a 

symptomatic ICH (Figure 6). 



Part 1: Introduction to small vessel disease 

 

34 

 

Figure 6 Schematic hypothesizing how ICH develops from CMBs in presence of 

anithrombotics 

 

From Wilson et al: Curr Opin Neurol. 2017 Feb;30(1):38-47 

 

Although their radiological definition is established, given the complexity of possible 

mechanisms underlying CMBs, they may not be associated with the same risks of 

haemorrhage or ischaemia in all populations. 

 

Non-stroke (older community) populations 

The diagnostic accuracy of a strictly lobar CMB pattern for CAA seems limited in non-ICH 

(community) cohorts: a histopathological study in non-hospital community patients shows 

strictly lobar CMBs have a positive predictive value for pathology-proven CAA of only 

25% (111), though participants had very few CMBs (112). There are several longitudinal 

studies in community patients exploring the relationship between CMBs and ICH. In the 

Rotterdam study of 4759 participants aged ≥45 years with mean follow-up of 4.9 years 
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(108), CMBs were associated with an increased risk of all stroke (HR 1.93; 95% CI 1.25 to 

2.99); this was lower for ischaemic stroke (HR 1.52; 95%CI 0.91 to 2.53) than for ICH (HR 

5.64; 95% CI 1.66 to 19.53). Non-strictly lobar CMBs (i.e. non-CAA pattern), were 

associated with an increased the risk of both ischaemic stroke and ICH while strictly lobar 

CMBs (indicating probable CAA) were associated only with ICH risk. Six participants with 

multiple CMBs developed a first-ever ICH during follow-up; Three had used 

antithrombotic agents (either platelet inhibitors or oral anticoagulants). However, the 

overall stroke risk associated with CMBs was not affected using antithrombotics. Pre-

existing CMBs were associated with lacunar infarction whilst new lobar CMBs were 

associated with progression of white matter lesions, suggesting shared ischaemic 

mechanisms.  

A large Japanese population-based study showed that CMB presence was associated with 

both ischaemic stroke (hazard ratio 4.48; 95 % CI 2.20 to 12.2) and ICH (hazard ratio 50.2; 

95 % CI 16.7 to 150.9)(113), but did not explore CMB burden, topography, or associations 

with antithrombotics. A hospital-based study in patients with incidental lobar CMBs 

without stroke reported ICH rates comparable to CAA-associated ICH (114) and that 

warfarin was an independent risk factor for ICH (p=0.02). However, this population had a 

median of 10 lobar CMBs, suggesting a severe microangiopathy, so these findings cannot 

be generalised to other stroke-free populations with incidentally found CMBs. 

 

In summary, in community-dwelling populations, there is no clear evidence that the 

benefits of ischaemic stroke prevention using antithrombotic drugs outweigh the risk of 

ICH in people with CMBs. Further interventional controlled clinical trials, including 

stratification according to CMB presence, burden and distribution, will be needed to 

definitively answer this question.  

 

 

Ischaemic stroke and TIA populations 

The clinical relevance of CMBs is perhaps most uncertain in the ischaemic stroke and TIA 

population because standard care includes antithrombotics for stroke secondary prevention. 

Does any increased risk of ICH in patients with CMBs outweigh the benefit in reduced 
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future ischaemic stroke risk associated with antithrombotic therapy? Although risk 

instruments can be used to assess overall future ischaemic stroke risk in AF (e.g. 

CHA2DS2VASC) or after TIA (ABCD2), as well as overall bleeding risk in AF (e.g. HAS-

BLED), there are currently very limited data on how CMBs and other brain neuroimaging 

findings might help personalise antithrombotic therapy to maximize benefit and minimize 

risk.  

In recent studies, antiplatelets (115-117) and anticoagulants (117, 118) are associated with 

the presence of CMBs and the development of new CMBs over time. However, 

establishing the clinical relevance of CMBs requires key clinical outcomes, including 

recurrent stroke.  

An aggregate data meta-analysis of 10 published prospective studies of ischaemic stroke / 

TIA cohorts found that CMBs are associated with both new ICH (OR 8.52; 95% CI4.23 to 

17.18) and recurrent ischaemic stroke (OR 1.55, 95% CI 1.12 to 2.13) although this was 

based upon very few ICH events and risk stratification by ICH burden and distribution was 

not possible(119). 

 

Data on the association between CMBs and stroke risk in patients with ischaemic stroke or 

TIA treated with anticoagulants are extremely limited. A small study in 134 patients with 

TIA or ischaemic stroke associated with AF (65% treated with anticoagulants) over a 

median follow-up of 2.4 years (120), found that CMBs were associated with an increased 

unadjusted risk of all stroke (21% vs 9%, p = 0.06) but there was only 1 ICH. A study from 

Korea in 504 patients with ischaemic stroke or TIA (97% discharged on anticoagulation) 

(121) found that strictly lobar CMBs were associated with ICH mortality (HR 5.91; 95% CI 

1.58 to 22.11) whilst increasing CMB burden was associated with all-cause mortality (HR 

1.99; 95% CI 1.03 to 3.85) and ischaemic stroke mortality (HR 3.39; 95% CI 1.39 to 8.28) 

but did not report on non-fatal ischaemic stroke or ICH. A retrospective study from the 

same Korean group including 550 ischaemic stroke patients with AF (83% discharged on 

anticoagulation) found that higher CHADS2 and CHA(2)DS(2)VASC scores were 

associated with the presence and number of CMBs. Recurrent ICH was associated with 

CMB presence (HR 3.79; 95 % CI 1.09 to 13.15) but not CHADS2 or CHA(2)DS(2)VASC 

scores; recurrent ischaemic stroke risk was not reported (122). A small prospective single 
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centre study from Japan followed 119 patients with AF (86% anticoagulated) for a median 

of 17 months (123); CMBs were not associated with recurrent stroke (both ICH and 

ischaemic stroke), but due to the small number of events ischaemic stroke and ICH risk 

could not be examined separately. 

 

ICH populations 

Recurrent ICH risk varies according to the location of the initial ICH: the annual ICH 

recurrence risk after deep (non-lobar, in the basal ganglia or brainstem) ICH is between 1.3 

to 10.6% compared with 2.5 to 28.2% after lobar ICH (3). While deep ICH is attributed to 

hypertensive arteriopathy, lobar ICH may be due to either hypertensive arteriopathy or 

CAA. Cohort studies in CAA-related ICH, diagnosed according to the Boston criteria 

indicate a high recurrence rate of ~10% per year (114). The presence, burden, and 

distribution of CMBs might increase the risk of recurrent ICH and help to judge difficult 

antithrombotic decisions. In a study of 207 survivors of ICH followed for a median of 20 

months, there were 39 recurrences of ICH (124). CMB number was associated with 

recurrent ICH in patients with lobar but not deep ICH, while antiplatelet use did not affect 

the risk of recurrent ICH in either lobar (HR 0.8; 95% CI 0.3 to 2.3, p = 0.73) or deep 

location (HR 1.2; 95% CI 0.1 to 14.3, p = 0.88). By contrast, a small single centre study in 

CAA-related ICH reported that aspirin was an independent risk factor for recurrent ICH 

(HR 3.95; 95% CI 1.6 to 8.3, p = 0.021) (125). 

 

Three other studies found that increasing CMB burden is associated with increasing ICH 

risk (125-127), but none reported on ischaemic stroke risk. Two of these studies included 

only patients with lobar ICH, whilst the third included both deep and lobar ICH. The risk of 

ICH was particularly high with >5CMBs (HR 4.12 95% CI 1.6 to 9.3 vs. no CMBs p = 

0.001 (125) with a 51% three-year cumulative risk for >5 CMBs vs. 14% three-year 

cumulative risk for 1 CMB p = 0.003(126). A meta-analysis of 10 studies in ICH cohorts 

with prospective data shows in patients with CAA, having multiple microbleeds increased 

your risk of ICH, although there was not a clear increase in risk with increasing microbleed 

burden (63). Whereas in non-CAA related ICH patients, only >10 CMBs was significantly 

associated with a higher risk of ICH recurrence when compared to patients without CMBs. 
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The use of anticoagulants following ICH thus presents a major clinical dilemma. The risk 

of ischaemic stroke without antithrombotic treatment must be weighed carefully against the 

possible increase in ICH risk associated with antithrombotic therapy. A decision analysis 

which modelled on survivors with ICH and AF suggested that in lobar ICH avoiding 

warfarin increased quality-adjusted life years by 1.9, compared with 0.3 for deep ICH; the 

authors concluded that anticoagulation for AF should not be offered to patients with lobar 

ICH and only to survivors of deep ICH if the risk of ischaemic events was high (>7% per 

year) (128). However, CMBs were not considered in this analysis. By contrast, recent real-

world studies in large datasets from ICH survivors with AF suggest that anticoagulation 

reduces mortality and ischaemic complications, without an increase in ICH (129, 130), and 

reduced hospitalization costs (131). However, none of the real-world studies stratified ICH 

by location, nor by SVD burden or distribution. Further studies in ICH cohorts phenotyped 

according to CAA diagnostic criteria, with an assessment of interactions of CMB pattern 

and burden with antithrombotic use may help clarify this enduring clinical dilemma. 

Ongoing randomised trials of antithrombotic use after ICH will also help guide clinicians in 

these decisions in future: these include RESTART (ISRCTN71907627), SoSTART 

(NCT03153150), RESTART-FR (NCT02966119), STATICH (NCT03186729), NASPAF-

ICH (NCT02998905), A3-ICH (NCT03243175), APACHE-AF (NCT02565693). 



Part 1: Introduction to small vessel disease 

 

39 

 

Table 2: Ongoing RCTs investigating antithrombotic use in ICH populations 

Study name Population Antithrombotic Medication 

RESTART Adults surviving spontaneous 

intracerebral haemorrhage who had 

taken an antithrombotic drug 

Antithrombotics or 

anticoagulants vs. No 

antithrombotics 

SoSTART Adults surviving spontaneous 

symptomatic intracranial haemorrhage 

with persistent/paroxysmal atrial 

fibrillation/flutter 

Anticoagulants vs. No 

antithrombotics 

RESTART-FR Adults surviving spontaneous 

intracerebral haemorrhage who had 

taken an antithrombotic drug 

Antithrombotics or 

anticoagulants vs. No 

antithrombotics 

STATICH Adults surviving spontaneous 

intracerebral haemorrhage who had 

taken an antithrombotic drug 

Antithrombotics or 

anticoagulants vs. No 

antithrombotics 

NASPAF-ICH Adults surviving spontaneous 

symptomatic intracranial haemorrhage 

with persistent/paroxysmal atrial 

fibrillation/flutter at high risk of 

infarction 

NOACs vs. Aspirin 

A3-ICH Adults surviving spontaneous 

symptomatic intracranial haemorrhage 

with persistent/paroxysmal atrial 

fibrillation/flutter 

Apixaban vs. Left atrial 

appendage occlusion vs. No 

antithrombotics 

APACHE-AF Adults surviving spontaneous 

symptomatic intracranial haemorrhage 

with persistent/paroxysmal atrial 

fibrillation/flutter 

Apixaban vs. Antiplatelets vs. 

No anthithrombotics 

 

  



Part 1: Introduction to small vessel disease 

40 

  

2.3.2 Cortical Superficial Siderosis (cSS) 

Cortical superficial siderosis (SS) is a condition in which haemosiderin is deposited on the 

pial surfaces of the brain and restricted to the supratentorial cerebral hemispheres (132). 

This is a distinct clinical entity, different from infratentorial superficial siderosis of the 

CNS(133) 

 

2.3.2.1 Relationship to underlying arteriopathy 

Cortical SS (cSS) is now recognized as a characteristic neuroimaging manifestation of 

CAA (134-136). It is presumed to be due to rupture of the small vessels very close to the 

cerebral convexities resulting in convexity subarachnoid haemorrhage (137, 138) followed 

by subsequent haemosiderin formation and deposition. Convexity subarachnoid 

haemorrhage has a high incidence of subsequent ICH, especially in those with a diagnosis 

of CAA (139). The true prevalence of cSS in patients with CAA is not well known: recent 

studies reported rates of 40% and 60% (136, 137) in clinical-radiological cases and 

histopathological-proven cases of CAA respectively. cSS in patients without CAA seems to 

be rare; no cases were identified in the histopathological-proven non-CAA ICH control 

group in the study above (137) and only in 0.7-0.9% of normal elderly subjects (140, 141)  

 

2.3.2.2 Relationship to ICH 

cSS and its most common cause, convexity subarachnoid haemorrhage, are both associated 

with transient focal neurological episodes (TFNE) sometimes referred to as “amyloid 

spells” (142). In a retrospective cohort of patients with TFNEs, after an average time of 14 

months, 50% (12/24) of this group went on to have a lobar ICH (143).  

Three published studies (144-146) show high occurrences of subsequent recurrent ICH in 

those found to have cSS. The first of these studies reported a subsequent haemorrhage rate 

of just under 50%, the majority of these being intracerebral (144). There was no difference 

between those with focal cSS and disseminated cSS. There was, however, no non-cSS 

control group. A study including a control group shows the ICH rate at 4 years was 25% 

(95%CI: 7.6-28.3%) for patients without siderosis; 28.9% (95%CI: 7.7-76.7%) for patients 

with focal siderosis; and 74% (95%CI: 44.1-95.7) for patients with disseminated cSS 

(affecting more than 3 noncontiguous sulci). The hazard ratio of any cSS corresponded to 
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an increased risk of 2.5 times, whilst disseminated cSS amounted to 3 times the risk when 

compared to those without cSS (145). In addition to cSS having a high recurrence rate of 

ICH, a small study from Boston shows cSS is a predictor of early ICH recurrence (defined 

as within 6 months of index event)(146). A new cSS score assessing cSS multifocality 

shows the risk of ICH increases as the degree of multifocality increases (as high as 26% per 

annum with a score of four, suggesting ICH risk increases with increasing disease severity 

(147). Furthermore, a pooled analysis of patients with convexity subarachnoid haemorrhage 

(the most common cause of cSS) who had suspected CAA, the incidence of subsequent 

ICH was 16% per patient-year and as high as 19% per patient-year in those with ‘probable 

CAA’ as diagnosed using the Boston criteria (139). Lastly, in patients with CAA and cSS 

without a history of ICH, the rate of ICH at 5 years is 19% suggesting cSS is also a marker 

of future ICH risk even in patients without ICH (148). These results suggest that cSS (and 

convexity subarachnoid haemorrhage) may be a powerful neuroimaging marker to predict 

recurrent ICH in CAA with implications for antithrombotic and preventive treatments. 

 

2.3.3 White matter hyperintensities of presumed vascular origin (leukoaraiosis) 

Leukoaraiosis (leuko = white, araisosis = rarefaction) is a broad term originally used to 

describe confluent areas of low density on CT scans (149), but subsequently applied to high 

signal areas on T2-weighted MRI scans. More recently these changes on T2 and FLAIR 

MRI have been termed “White matter hyperintensities of presumed vascular origin” 

(WMH) (11). I will use these terms interchangeably throughout this thesis, largely 

depending on the neuroimaging modality. WMH have a heterogeneous pathological 

substrate and can arise from many different mechanisms (150) but are mostly thought to be 

due to changes in cerebral microangiopathy, however, damage to the blood-brain barrier is 

another hypothetical cause(151). Thus, WMH is a non-specific marker of SVD damage. 

 

2.3.3.1 Location of WMH and relation to underlying SVD subtype 

WMH can be caused by both hypertensive arteriopathy and CAA, whilst it is hypothesized 

that posterior leukoaraiosis was more likely to reflect CAA (as CAA has a predilection for 

the parieto-occipital lobes (152-154)), two separate studies have shown that the distribution 

of WMH is similar among differing pathologies in ICH patients, (155, 156) suggesting 
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topography of leukoaraiosis may therefore not be a very useful marker of the underlying 

SVD. Whilst white matter hyperintensity location alone may not be helpful in identifying 

the predominant underlying microangiopathy the shape, size and pattern may help 

differentiate subtypes (157) although this needs to be validated in larger and representative 

cohorts 

 

2.3.3.2 Relationship to ICH 

Whilst there is considerable evidence linking leukoaraiosis to post-thrombolysis 

haemorrhage (158), the evidence in stroke patients not thrombolysed is less compelling. 

Prospective studies in patients with ischaemic stroke show conflicting results: two 

observational studies(122, 123) failed to show any statistically significant relationship 

between WMH and ICH incidence whilst one randomized control trial (RCT) in patients 

with ischaemic stroke presumed to be arterial in origin, did find an association (hazard ratio 

2.7, 95% confidence interval 1.4 to 5.3). In patients with ICH the evidence is limited to one 

longitudinal study (159) in patients with lobar ICH: The hazard for recurrent lobar ICH was 

4 times higher for patients with WMH compared to those without after controlling for 

APOE genotype and history of previous ICH, although there was not a dose-related 

response. This is also the only study in either cohort to show leukoaraiosis is an 

independent risk factor for ICH in those not on any form of antithrombotic drugs (159). 
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2.3.4 Other common neuroimaging markers of small vessel disease (not explored 

further in thesis) 

2.3.4.1 Diffusion weighted imaging hyperintense lesions (DWIHL) 

The finding of diffusion-weighted imaging hyperintensities remote from the hematoma 

after or during the acute to the sub-acute stage of ICH is a relatively new finding, as such 

there has been no standardization in nomenclature. In the literature, they have been referred 

to as “acute ischaemic brain lesions”, (160) “ICH associated diffusion-weighted lesions” 

(161) “new ischaemic lesions in setting coexisting with ICH” (162) and “silent ischaemic 

lesions” (163). Conversely, diffusion-weighted imaging hyperintense lesions have been 

suggested in some cases to represent haemorrhages (164) 

The prevalence of these lesions ranges from 13% (160) to as high as 35% (163), there is a 

strong correlation with leukoaraiosis (160, 165) and CMBs (160, 162, 163) as well as 

aggressive lowering in blood pressure in the acute setting of ICH.  

Their diagnostic and prognostic value remains undetermined until further studies are 

undertaken. They do however add to the hypothesis that SVD is likely to be a major 

contributory factor in cases of spontaneous ICH 

 

2.3.4.2 MRI-visible perivascular spaces 

Perivascular spaces are interstitial fluid-filled cavities surrounding small penetrating 

arterioles, which form important drainage pathways allowing interstitial fluid and solute 

efflux from the brain. (166-169). Inflammatory processes and SVD are thought to damage 

the blood brain-barrier and disrupt these spaces and drainage pathways. Limited 

histopathological correlation studies show arterial wall thickening and tortuosity, venular 

widening, features of inflammation and blood-brain barrier failure adjacent to these 

enlarges spaces. (170) MRI-visible perivascular spaces (PVS) have long been considered a 

‘normal’ age-related or incidental finding, but emerging evidence suggests that they may be 

another marker of underlying SVD presence, severity or subtype. 

 

Whilst PVS and their association with ischaemic and lacunar stroke have been well 

documented (171-173) there has been little interest in their association with ICH. A recent 
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paper has shown an association between CAA-related lobar ICH with severe cerebral white 

matter (i.e. centrum semiovale) PVS and deep ICH with severe basal ganglia PVS (174). 

These findings support the hypothesis that CAA might be mechanistically associated with 

centrum semiovale PVS and hypertensive arteriopathy with basal ganglia PVS.  

 

Further studies are needed to investigate PVS as a biomarker of SVD (93, 175-177) and 

their location as a possible indicator of the specific underlying type of SVD. A key question 

is whether PVS increase the sensitivity of MRI in detecting CAA, and whether they provide 

an earlier neuroimaging marker for the diagnosis of CAA.  

 

2.3.4.3 Cerebral microinfarction (CMI) 

 

CMIs are small presumed ischaemic lesions (100 µm to 5mm) naked to macroscopic 

examination on pathological evaluation. They are a common finding in cerebrovascular 

patients, especially those with CAA (178, 179). Initially considered to be invisible on in-

vivo imaging(178), recently high resolution structural MRI(180) and diffusion weighted 

imaging (181) has allowed identification of the largest CMIs without the need for tissue. 

 

CMIs have a strong association with SVD and their distribution could help define SVD 

subtypes; a large pathological study showing CMIs cortical CMIs were associated with 

CAA, whereas subcortical CMIs were associated with arteriolarsclerosis (182). A smaller 

study suggests occipital CMIs are associated with CAA, whereas frontal CMIs were not 

(183). Despite this, CMIs should not be thought of as specific to SVD as both large vessel 

disease (184, 185) and cardiac disease(186) also have strong associations with CMIs. 

 

In stroke populations CMIs have been associated with cognitive dysfunction at two years 

(187), furthermore the predicted annual incidence of CMI is thought to be higher in ICH 

populations vs. non-ICH populations(181) but little is known regarding subsequent 

ischaemic stroke or ICH. 
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3.0 Summary and thesis aims 

Advances in neuroimaging have allowed a greater understanding of small vessel disease 

and its relation to the underlying pathogenesis of ICH. Indeed, CMBs and cSS are now part 

of small vessel disease classification.  

Despite these advances, there are many important unanswered clinical questions, including 

the following:  

  

• Are the rate and risk of ICH or recurrent ischaemic stroke predicted by 

neuroimaging markers of small vessel disease in patients with ischaemic stroke 

or TIA?  

The risk of ICH associated with CMBs has largely been derived from patients with 

ICH, with only a few prospective studies in patients with ischaemic stroke. We do not 

know whether the burden or distribution of CMBs has any relation to ICH risk in these 

cohorts. This gap in scientific knowledge coupled with the more widespread 

identification of these markers in patients with ischaemic stroke has led to clinical 

uncertainty, particularly regarding the use of antithrombotics (antiplatelet and 

anticoagulant drugs) in these patients. 

 

• Can positive identification of small vessel disease provide diagnostic utility in 

identifying ‘primary ICH’? 

Primary ICH by its very definition is presumed to be caused by small vessel disease yet 

current diagnostic algorithms fail to utilize neuroimaging correlates of small vessel 

disease.  

 

• Does recurrent stroke risk differ by ICH location or SVD markers in patients 

with ICH? 

ICH location and markers of small vessel disease reflect differing SVD subtypes; these 

markers may therefore, help predict future ICH and ischaemic stroke risk.  
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3.1 Main objective of the thesis 

Based on these gaps in knowledge, the overall objective of this thesis is to explore whether 

neuroimaging of ICH and neuroimaging markers of small vessel disease can; (1) aid with 

the diagnosis of stroke due to ICH;  and (2) improve the risk prediction of subsequent 

strokes in patients with ischaemic stroke, TIA, and ICH. I accomplish this by reviewing the 

prevalence, clinical associations, and outcomes associated with markers of small vessel 

disease in different stroke populations: (1) ischaemic stroke and TIA populations; and (2) 

ICH populations. 

 

3.2 Ischaemic stroke populations 

In chapter 4 I provide a definitive synthesis of current evidence regarding CMB presence, 

burden, and distribution with stroke risk (both ischaemic and haemorrhagic) in patients 

with ischaemic stroke by undertaking a systematic review and meta-analysis. In chapter 5 I 

describe a large observational cohort (CROMIS-2) to explore whether CMBs, cSS and 

white matter hyperintensities are independent risk factors for intracerebral haemorrhage in 

patients with cardioembolic stroke who have been started on anticoagulation. I then 

describe the development of new risk prediction scores for ICH with the addition of CMBs 

and compare these to existing clinical risk scores. 

 

3.2 Intracerebral haemorrhage populations 

In chapter 6 I explore how the identification of small vessel disease helps differentiate so-

called ‘primary ICH’ from ‘secondary ICH’ and how this may tailor subsequent 

investigations. In chapter 7 I investigate associations between recurrent ICH and new 

ischaemic stroke in an ICH population with attention to markers of small vessel disease and 

ICH location. In chapter 8 I explore whether the ischaemic stroke risk prediction score 

(CHA2DS2VASC) is useful in an ICH population and whether this can be improved with 

the addition of markers of small vessel disease. 
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4.0. How does presence, burden and distribution of cerebral microbleeds 

contribute to recurrent stroke risk? 

 

Objectives: To determine associations between cerebral microbleed (CMB) burden with 

recurrent ischaemic stroke and intracerebral haemorrhage (ICH) risk after ischaemic stroke 

or TIA. 

Methods: We identified prospective studies of patients with ischaemic stroke or TIA which 

investigated CMBs and stroke (ICH and ischaemic stroke) risk during ≥ 3 months follow-

up. Authors provided aggregate summary-level data on stroke outcomes, with CMBs 

categorised according to burden (single, 2-4, and ≥5 CMBs) and distribution. We calculated 

absolute event rates and pooled risk ratios (RR) using random-effects meta-analysis. 

Results: We included 5068 patients from 15 studies. There were 115/1284 (9.6%) recurrent 

ischaemic stroke events in patients with CMBs vs. 212/3781 (5.6%) in patients without 

CMBs (pooled RR 1.8 for CMBs vs. no CMBs; 95% CI 1.4 to 2.5) There were 49/1142 

(4.3%) ICH events in those with CMBs vs. 17/2912 (0.58%) in those without CMBs 

(Pooled RR 6.3 for CMBs vs. no CMBs; 95% CI 3.5 to 11.4) Increasing CMB burden 

increased the risk of ischaemic stroke (pooled RR (95% CI): 1.8 (1.0-3.1), 2.4 (1.3-4.4), 

and 2.7 (1.5-4.9), for 1 CMB, 2-4 CMBs, and ≥5 CMBs, respectively) and ICH (pooled RR 

(95% CI): 4.6 (1.9-10.7), 5.6 (2.4-13.3) and 14.1 (6.9-29.0) for 1 CMB, 2-4 CMBs and ≥5 

CMBs, respectively).  

Conclusion: CMBs are associated with increased stroke risk after ischaemic stroke or TIA. 

With increasing CMB burden (compared to no CMBs), the risk of ICH increases more 

steeply than that of ischaemic stroke. However, ischaemic stroke absolute event rates 

remain higher than ICH absolute event rates in all CMB burden categories 
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4.1 Rationale for study 

Cerebral microbleeds (CMBs) are radiologically-defined small round or ovoid regions of 

signal loss seen on paramagnetic MRI sequences (88). In the limited available pathological 

correlation studies, CMBs mostly correspond to haemosiderin-laden macrophages close to 

vessels affected by small vessel disease (SVD) (89-91, 93). It is thus inferred that CMBs 

are a marker of direct extravasation of red blood cells from arterioles and capillaries 

damaged by bleeding-prone arteriopathies. An arteriopathy associated with systemic 

arterial hypertension and pathological changes in small perforating arteries of the deep grey 

and white matter causes CMBs in deep (basal ganglia) as well as lobar regions. In Western 

(Caucasian) people with ICH, CMBs in a strictly lobar distribution are highly specific for 

cerebral amyloid angiopathy (CAA), which causes progressive deposition of amyloid-β in 

small cortical and leptomeningeal arterial walls (99), though this pattern may not be so 

specific in Eastern (Asian) people(188) and in those without ICH (111)   

 

Multiple prospective studies in ischaemic stroke cohorts have shown that CMBs are 

associated with subsequent intracerebral haemorrhage (ICH) risk (46, 48). However, CMBs 

are also associated with increased subsequent ischaemic stroke risk (189-192). Indeed, 

suggested ischaemic mechanisms for CMBs include ischaemia-mediated iron store release 

by oligodendrocytes (94), phagocytosis of red cell microemboli into the perivascular space 

(termed angiophagy) (95), or hemorrhagic transformation of small “microinfarcts” (96). 

Indeed, in a recent community study, after adjusting for cardiovascular risk factors, CMBs 

were found to be associated with lacunes and white matter volume progression (193). Few 

data are available on how CMB burden affects the balance of ICH and ischaemic stroke 

risk in different populations. In CAA cohorts, an increasing number of CMBs is associated 

with an increased risk of ICH, suggesting a relationship between CMB number and the 

severity of bleeding-prone arteriopathy (126). Whether an increasing number of CMBs is 

also associated with an increased risk of ICH in ischaemic stroke and transient ischaemic 

attack (TIA) cohorts remains uncertain. If increasing CMB burden shifts the balance of risk 

toward ICH rather than ischaemic stroke, this could have major clinical relevance for 

antithrombotic risk-benefit decisions after ischaemic stroke and TIA. Our previous meta-

analysis of 10 prospective studies including 3067 patients with ischaemic stroke or TIA 
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found that CMB presence is associated with a higher risk of ICH than ischaemic 

stroke(119) (the odds ratio was 8.53 for ICH and 1.55 for ischaemic stroke), but was not 

able to address the key clinical question of how the number (burden) of CMBs influences 

ICH and ischaemic stroke risk.  

 

We therefore performed a pooled analysis of aggregate summary data, including CMB 

burden and distribution, to investigate the risk of subsequent ischaemic stroke and ICH in 

individuals who have had an ischaemic stroke or TIA. We tested the following hypotheses: 

(1) CMB presence is associated with an increased risk of stroke (ICH>ischaemic stroke); 

and (2) as CMB burden increases (due to a more severe bleeding-prone arteriopathy) the 

risk of ICH increases more steeply than the risk of ischaemic stroke. 
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4.2 Methods 

We searched Medline and Embase from 1996 (the year CMBs were first reported) through 

to the April 2015. Our search strategy was: 

1)  “Cerebral Microbleed*” OR CMB OR “cerebral microh?emorr*” OR “brain 

microbleed*” OR “Brain microh?emorr*”  

2) Stroke OR “Isch?emic stroke” OR TIA OR “Intrac* adj2 h?emorrhag*” OR ICH 

3) 1 AND 2 

 

We included published and unpublished studies fulfilling the following criteria: (1) 

performed paramagnetic-sensitive MRI sequences to detect CMBs at baseline; (2) assessed 

CMBs at baseline and associations with ischaemic stroke or ICH as primary or secondary 

outcomes; (3) had a prospective study design with at least 3 months of follow up; and (4) 

fulfilled at least 4 of 6 pre-defined quality indicators. We excluded cross sectional studies 

and case series. Two clinical research fellows (AC and DW) reviewed each study for 

eligibility.  

 

4.2.1 Data extraction: 

We contacted all authors to provide data on study population, size, patient year follow up, 

and antithrombotic treatment. We obtained data on outcome events of symptomatic 

ischaemic stroke and ICH, with baseline CMB number categories as follows; CMB present; 

1 CMB; >1 CMBs; 2-4 CMBs; 5-10 CMBs, >10CMBs, strictly deep CMBs, strictly lobar 

CMBs and mixed distribution CMBs. We extracted all demographic, imaging, and follow-

up outcome data from each study. 

 

All included studies were critically appraised against a checklist of 6 key quality indicators, 

with reference to the STROBE statement and the PRISMA guidelines. The quality criteria 

included assessment for bias, and all studies had a quality score of ≥4/6.  

4.2.2 Statistical Methods 

We first performed separate random effect meta-analyses to derive summary estimates of 

the pooled risk ratios of ICH and ischaemic stroke for each CMBs category vs. the 

reference category of “no CMBs”. Due to the small number of events in some studies, the 
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categories 5-10 and >10 were combined, in line with previous studies of CMB burden and 

prognosis, which demonstrated their prognostic relevance for future ICH risk (126). 

Logistic regression was then used to estimate the increased risk (odds) of ischaemic 

stroke/ICH for each additional CMB. First, CMB categories were converted to a continuous 

scale by assuming that patients in the CMB group’s 0, 1, 2-4, 5-10, and >10 had, on 

average, 0, 1, 3, 7.5, and 12.5 CMBs respectively. Then, for each study, a logistic 

regression model was fitted relating the (log) odds of ischaemic stroke or ICH to the 

(estimated) number of CMBs. These (log) odds ratios were then pooled using random 

effects meta-analysis.  

 

We calculated the I2 statistic to investigate heterogeneity. Funnel plots (Begg and 

Mazumdar) were generated to investigate publication bias. Finally, where necessary we 

undertook meta-regression of confounding covariates of biological plausibility or with 

differences between the studies (average follow up, age, hypertension prevalence, 

demographics, antithrombotic use). All analyses were performed using STATA 12.0 

(StataCorp LP, TX). 

 

4.2.3 Ethics 

Individual studies and data transfer protocols were approved by local Ethics Committees.  

No additional ethical approval was required for this meta-analysis. 
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4.3 Results 

15 studies met our inclusion criteria (12 published and 3 unpublished) including 5068 

patients (46, 122, 189-192, 194-199). Figure 7. The patient and data characteristics of each 

study are shown in table 3. 12 of the 15 studies provided data on CMBs at the time of the 

initial ischaemic stroke/TIA fully stratified into number categories and location. 8 studies 

involving 3111 of patients were from predominantly Eastern (Asian) cohorts; the remainder 

(1957 patients) were predominantly Western (Caucasian). Two studies included strictly 

TIA patients, 4 included those with TIA or ischaemic stroke, and 9 included strictly 

ischaemic stroke patients. The number of patients with CMBs was 1284, giving an overall 

pooled prevalence of 25.3%. Median follow up was 18 months (IQR 11 to 30). Overall, 

seventy-nine percent of patients were prescribed antiplatelet agents; only 15% of patients 

were prescribed anticoagulants (mainly from one study with a high proportion of patients 

on anticoagulation (87%)) (122). CMB presence was more prevalent, with higher burden in 

the Eastern cohorts compared to Western cohorts.  
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Table 3 Patient characteristics of studies included 

 

Study  

Patient 

number 

Average follow up 

(months) 

Ethnicity Cohort 

Mean 

Age 

HTN 

(%) 

Gender 

(% Male) 

Antiplatlets 

(%) 

OAC(%) Tesla 

Echo time 

(ms) 

T2*/SWI 

Huang 636 14 Eastern IS 60 67 68 100 0 1.5 NA T2* 

Imaizumi 138 22 Eastern IS 66 73.2 66 33 2 1.5 26 T2* 

Naka 183 18 Eastern IS 67 70 63 93 2 1 26 T2* 

Song 550 30 Eastern IS 70 77 59 35 87 3 16 T2* 

Soo  908 11 Eastern IS 68 68 58 93 3 1.5 30 T2* 

Fan 121 27 Eastern IS 68 69 68 80 6 1.5 30 T2* 

Mok 75 60 Eastern IS 71 85 52 96 0 1.5 NA T2* 

Kwa 397 46 Western IS 65 55 59 90 10 1.5 27.6 T2* 

Fluri 176 3 Western TIA 71 72 61 77 12 1.5 15 T2* 

Thijs 487 20 Western IS/TIA 72 64 61 73 27 1.5/3 Variable T2* 

Veltkamp 265 12 Western IS 65 80 67 78 20 3 19.7 SWI 

OXVASC 323 35 Western IS/TIA 72 63 75 83 11 1.5 14 T2* 

Boulanger 236 18 Western IS/TIA NA 60 55 NA NA 3 20 T2* 

Lim 500 3 Eastern TIA 65 66 58 91 15 NA 15-25 T2* 

CROMIS-1 68 24 Western IS/TIA 66 60 66 81 16 1.5 Variable T2* 
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Figure 7 Flow Diagram for inclusion into meta-analysis 
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CMBs and ischaemic stroke (ischaemic stroke) risk.  

The total recurrent ischaemic stroke rate was 327/5068 (6.5%). The ischaemic stroke event 

rate in those with CMBs was 9% (115/1284) vs. 5.6% (212/3781) for those without CMBs; 

thus, CMBs confer an absolute risk increase of 3.4% for ischaemic stroke. The absolute risk 

increase for ischaemic stroke for CMBs vs. no CMBs, increases as the CMB burden 

increases (1.8% for 1 CMB, 4.8% for 2-4 CMBs and 5.1% for ≥5 CMBs (table 4). 
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Table 4 Pooled relative risk for recurrent ischaemic stroke and intracerebral haemorrhage for different CMB burden and 

distribution (all risk ratios are compared to the reference category of “No CMBs”) 

CMB 

distribution / 

number 

Ischaemic stroke Intracerebral haemorrhage 

 Pooled 

absolute event 

rates 

n/N (%) 

Pooled 

absolute 

risk 

increase 

% 

Pooled 

RR 

Lower 

95% CI 

Upper 

95% CI 

Pooled 

absolute 

event rates 

n/N (%) 

Pooled 

absolute 

risk 

increase 

Pooled 

RR 

Lower 

95% CI 

Upper 

95% CI 

CMB presence 115/1284 (9) 3.4 1.8 1.4 2.5 49/1142 (4.3) 3.8 6.3 3.5 11.4 

1 CMB 31/433 (7.2) 1.8 1.8 1.0 3.1 8/354 (2.3) 1.7 4.6 1.9 10.7 

2 to 4 CMBs 44/433 (10.2) 4.8 2.4 1.3 4.4 9/383 (2.3) 1.8 5.6 2.4 13.3 

≥ 5 CMBs 34/342 (10.5) 5.1 2.7 1.5 4.9 24/274 (8.8) 8.2 14.1 6.9 29.0 

Strictly lobar  31/332 (9.3) 3.9 2.0 1.4 2.9 12/332 (3.6) 3.2 10.5 4.5 24.3 

Strictly Deep  29/437 (6.6) 1.2 1.6 1.0 2.7 6/437 (1.4) 1 3.3 1.3 8.5 

Mixed  44/411 (10.7) 5.3 2.6 1.5 4.3 25/411 (6.1) 5.7 11.1 5.5 22.6 

n=number of events in each subgroup. N=total number of patients in each subgroup. 
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The risk ratios for different CMB burden and distribution categories on ischaemic stroke 

are also shown in Table 4. The presence of CMBs (vs. no CMBs) was associated with a 

pooled risk ratio of recurrent ischaemic stroke of 1.8 (95% CI 1.4 to 2.5). Figure 8 

 

 

Figure 8 Pooled Risk Ratio of IS risk by CMB presence 
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Funnel plots revealed no evidence of publication bias (Egger’s test p=0.4). The presence of 

a single CMB (vs. no CMBs) had a pooled risk ratio for ischaemic stroke of 1.8 (95% CI 

1.0 to 3.1). The pooled risk estimates for ischaemic stroke suggest an increasing trend 

toward higher ischaemic stroke risk with increasing CMB burden. (Table 4, figure 9).  
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Figure 9 Ischaemic stroke risk by CMB burden 
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Logistic regression was used to estimate the increase in risk for each additional CMB; this 

showed an odds ratio of 1.10 (95% CI 1.06 to 1.14) per CMB increase. The risk estimates 

for ischaemic stroke for each distribution category of CMBs (vs. no CMBs) ranged from 

1.6 (95% CI 1.0 to 2.7) for strictly deep CMBs to 2.6 (95% CI 1.5 to 4.3) for mixed CMBs, 

with overlapping confidence intervals for all groups. Because we noted statistical 

heterogeneity among the cohorts for ischaemic stroke risk (I2 33%, 47%, 68% and 51% 

respectively for CMB presence, 1 CMB, 2-4 CMB and ≥5 CMB respectively), each 

potential confounder (ethnicity, average follow up, age, hypertension prevalence and 

antithrombotic use) was investigated separately using meta regression. We found only weak 

evidence for a confounding effect of hypertension showing the effect CMBs have on 

ischaemic stroke risk is less in studies with a higher prevalence of hypertension. (Figure 10)
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Figure 10 Meta-regression plots showing the relationship between intra-study variability and the effect of CMBs on the relative risk of future 

ischaemic stroke 
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CMBs and intracerebral haemorrhage (ICH) risk. 

The total ICH rate was 66/5068 (1.3%). The ICH event rate in those with CMBs was 4.3% 

(49/1142) vs. 0.5% (17/2912) for those without CMBs; thus, CMBs confer an absolute risk 

increase of 3.8% for ICH. The absolute risk increase for ICH for CMBs vs. no CMBs 

increases as the CMB burden increases (1.7% for 1 CMB, 1.8% for 2-4 CMBs and 8.2% 

for ≥5 CMBs (table 4)).  

The risk ratios for different CMB burden and distribution categories on ICH are also shown 

in Table 4. The presence of CMBs (vs. no CMBs) was associated with a pooled risk ratio of 

6.3 for subsequent ICH (95% CI 3.5 to 11.4) Figure 11. Four studies were excluded, as they 

did not report any ICH outcomes. Increasing CMB burden was associated with an increased 

risk of ICH (pooled risk ratio 4.6 (95% CI 1.9-10.7), 5.6 (95% CI 2.4-13.3); and 14.1 (95% 

CI 6.9-29.0) for 1 CMB, 2-4 CMBs and ≥5 CMBs compared to no CMBs, respectively) 

(Table 4, figure 12). Logistic regression showed an odds ratio of 1.29 (95% CI 1.21 to 1.37) 

for ICH per additional CMB. Of the CMB anatomical distribution categories (strictly lobar, 

mixed, or strictly deep), strictly lobar CMBs were associated with the highest risk of 

subsequent ICH vs. no CMBs (pooled risk ratio 10.5 (95% CI 4.5-24.3); Table 4). There 

was no publication bias within studies (Egger’s test p=0.98). Meta-regression was not 

undertaken because heterogeneity was not detected (I2 was 0%) for ICH outcomes. 
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Figure 11 Risk of ICH by CMB presence 
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Figure 12 Intracerebral haemorrhage risk by CMB burden 
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5.4 Discussion 

Our meta-analysis of 15 prospective studies, including more than 5000 patients presenting 

with ischaemic stroke or TIA, found that the presence of any CMBs is associated with an 

approximate doubling of the risk of ischaemic stroke, but with an approximately 6-fold 

increase in the risk of ICH, in keeping with two previous smaller meta-analyses (119, 200). 

Our meta-analysis also builds on these previous studies and adds new knowledge on ICH 

risk: first, we were able to increase our statistical power by including more ICH 

outcomes(119); second, by pooling aggregate data we investigated how increasing CMB 

burden affects the balance between future ischaemic stroke and ICH (including both 

relative and absolute risks); and third, we partially adjusted for confounding factors through 

meta-regression. Our most important new finding is that with increasing CMB burden the 

risk of ICH increases more steeply than that of ischaemic stroke. In patients with ≥5 CMBs 

the risk of ICH was substantially higher than that of ischaemic stroke (risk ratio for ICH 

14.1 (95% CI 6.7-29.0) vs. risk ratio for ischaemic stroke 2.73 (95% CI 1.5-4.9)). In a 

complementary logistic regression analysis, we showed that each additional CMB is 

associated with increased odds of 1.3 (95% CI 1.2 to 1.4) for ICH and 1.1 (95% CI 1.1 to 

1.1)) for ischaemic stroke, supporting a steeper increase in ICH than ischaemic stroke risk 

with higher CMB burden. However, the absolute event rate of recurrent ischaemic stroke 

was consistently higher than the absolute event rate of ICH in patients with CMBs and 

within all CMB categories, including those with ≥5 CMBs. 

A large number of CMBs (e.g. ≥5 CMB) might help identify patients at substantially higher 

risk of ICH than of ischaemic stroke. Indeed, for clinicians, the key question is what burden 

of CMBs could tip the balance of risk towards ICH sufficiently to affect clinical decisions, 

for example antithrombotic drug use. Antiplatelet agents only modestly reduce the absolute 

risk of ischaemic stroke in secondary prevention (0.5 to 2.5%)(201). Our data show the 

absolute risk of ICH increases substantially more than the absolute risk of ischaemic stroke 

as CMB burden increases; the effect is most evident with ≥5 CMBs, which is associated 

with an 8.2% absolute risk increase for ICH vs a 5.1% absolute risk increase for ischaemic 

stroke). This raises the possibility that antiplatelet drug risk-benefit assessment may favour 

avoiding their use in those with numerous CMBs (e.g. ≥5 CMBs). This could affect a 

substantial proportion of ischaemic stroke and TIA patients; of patients with CMBs, the 
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prevalence of those with ≥5 CMBs ranged from 12 to 51% in studies included in this 

analysis and varied by ethnicity (mean 17% for Western cohorts and 35% for Eastern 

cohorts).  

 

A previous meta-analysis suggested that ethnicity may be an important determinant of the 

balance of ICH and ischaemic stroke risks associated with CMBs; an increased risk for ICH 

risk was only statistically significant in Eastern cohorts, while ischaemic stroke risk was 

only significant in Western cohorts (119). In the present study we included more patients, 

and using meta-regression found that ethnicity does not confound the association between 

CMB burden and ischaemic stroke or ICH risks. Thus, based on the current study, CMB 

burden appears to be a greater predictor of ischaemic stroke and ICH risk than ethnicity.  

 

Our study has several strengths, including a large sample size from multiple cohorts from 

different countries. We only included those of high quality using systematic quality 

indicator assessment. We included data on CMB burden and distribution, and adjusted for 

confounding factors through meta-regression.  Our study thus provides best currently 

available evidence on how CMBs affect ischaemic stroke and ICH risk after ischaemic 

stroke or TIA.  

 

Our study also has limitations. Because we included aggregate summary-level data (rather 

than individual patient data), we could not explore the effect of CMB distribution free from 

the confounding effect of CMB burden. The mixed CMB category has the highest risk of 

stroke, but by definition includes only patients with multiple CMBs; by contrast, the strictly 

lobar and strictly deep CMB categories could include patients with a single CMB. 

Specifically, we could not fully investigate the independent risk associated with strictly 

lobar CMBs, critical to the diagnosis of cerebral amyloid angiopathy (CAA) (91) with high 

recurrent ICH risk (126) (108). Although we undertook meta-regression, this can only 

partially account for confounding and is unlikely to fully account for variables such as age 

and hypertension. Our logistic regression assumes an average CMB count within each 

category (difficult to estimate in the open ended ≥10 CMB category) and that the log-odds 

of ICH/ischaemic stroke increase linearly with CMB burden. However, consistent findings 
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from two complementary statistical analyses strongly support the hypothesis that increasing 

CMB burden increases the risk of ICH more than that of ischaemic stroke. Further 

limitations include the variable study sample size and follow up, which may bias our 

results, especially regarding ICH, a rare outcome with wide confidence intervals around 

risk estimates (which overlap for the different CMB burden categories). A time to event 

analysis may have been a more appropriate statistical method given the varying follow up, 

but this was not possible with the data available. Imaging protocols and analysis were 

similar but not completely uniform; field strength (202) echo time (203) and optimised 

paramagnetic sequences (204) can all influence CMB detection. However, most studies 

were performed at 1.5T with echo times within a narrow range, making this unlikely to 

affect our conclusions. Nevertheless, our results are only generalizable to patients scanned 

on 1.5 tesla MRI using gradient recalled echo and may not be applicable to SWI or MRI 

with a higher field strength. SWI increases the number of CMB detected (204, 205) 

compared to T2*-weighted images; CMB burden categories may thus have to be revised for 

SWI.  Finally, studies used different methods for CMB rating; standardised rating 

instruments (88, 206, 207) may improve the reliability of defining CMB categories, 

particularly that of a single CMB. 

 

Although our study provides important new information, to fully determine how CMBs 

might influence antithrombotic decisions, the interaction between CMBs and antiplatelet 

agents and anticoagulants needs to be further addressed in large prospective studies. 

Although the prevalence of antithrombotic and anticoagulant use did not show an 

association with either ICH or ischaemic stroke outcome in our meta-regression, most 

patients we included were treated with antiplatelet agents. Very few patients included in our 

meta-analysis were on anticoagulation; more data are therefore needed on this group, who 

may be at highest ICH risk. Ongoing prospective observational studies addressing this 

question include www.ucl.ac.uk/cromis-2(208), and 

https://clinicaltrials.gov/ct2/show/NCT02238470. Further pooled analyses of individual 

patient data from these and other observational studies – and, ultimately randomized 

controlled trials based on CMB burden - are needed to fully assess the interaction between 

CMBs and antithrombotic drugs (both antiplatelet agents and anticoagulants) after 

http://www.ucl.ac.uk/cromis-2
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ischaemic stroke and TIA. Nevertheless, we have shown that with increasing CMB burden, 

the risk of ICH increases more steeply than that of ischaemic stroke in a cohort of 

ischaemic stroke and TIA patients largely treated with antiplatelet medication. A high CMB 

burden (e.g. ≥5 CMBs) may identify patients at similar or greater risk of ICH than 

ischaemic stroke, with implications for antithrombotic treatment and future randomized 

controlled trials. 
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5.0 Cerebral microbleeds and intracranial haemorrhage risk in 

patients anticoagulated for atrial fibrillation after acute ischaemic 

stroke or transient ischaemic attack: multicentre observational cohort 

study 

 

Background: We aimed to determine whether cerebral microbleeds (CMBs) - a potential 

neuroimaging biomarker of bleeding-prone cerebral small vessel diseases – can identify 

patients at high risk of symptomatic intracranial haemorrhage when anticoagulated after 

recent ischaemic stroke or transient ischaemic attack (TIA). 

Methods: Our observational, multi-centre, prospective inception cohort study recruited 

adults from UK hospitals with non-valvular atrial fibrillation (AF) and recent acute 

ischaemic stroke or TIA, treated with warfarin or a direct oral anticoagulant, and 

followed them up for 24 months using GP and patient postal questionnaires, telephone 

interviews, hospital visits, and NHS digital data on hospital admissions or death. We 

investigated baseline predictors of symptomatic intracranial haemorrhage using 

multivariable Cox regression and developed risk prediction models that we validated 

using bootstrapping.  

Findings: We recruited 1490 participants between August 2011 and July 2015 (mean 

age 76 years; 631 (42%) female), with follow-up data available from 1447/1490 (97%) 

over a mean period of 850 (SD 373) days (3,366 patient-years). CMBs were present in 

311/1490 (21%) and there were 14 symptomatic ICHs. The symptomatic intracranial 

haemorrhage rate in patients with CMBs was 10 per 1000 patient-years (95% CI 4-20) 

compared to 3 per 1000 patient-years (95% CI 1-5) in those without CMBs (adjusted 

hazard ratio 3·67 (95% CI 1·27-10·60)). CMBs were not significantly associated with 

recurrent ischaemic stroke (adjusted hazard ratio 1·53 (95% CI 0·85-2·76)). Compared 

to the HAS-BLED (Hypertension, Abnormal liver function, Abnormal renal function, 

Stroke, Bleeding history, Labile INR, Elderly, Drugs, Alcohol) score alone (C-index 

0·41 (95% CI 0·29-0·53)), models including CMBs and HAS-BLED score (C-index 

0·66 (95% CI 0·53-0·80)) and CMBs, diabetes, anticoagulant type and HAS-BLED 

score (C-index 0·74 (95% CI 0·60-0·88)) predicted symptomatic intracranial 
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haemorrhage significantly better (C-index (diff): 0·25 (95% CI 0·07-0·43, p = 0·0065); 

and 0·33 (95% CI 0·14-0·51, p < 0·00059, respectively). 

Interpretation: In patients anticoagulated after recent ischaemic stroke or TIA, CMB 

presence is independently associated with symptomatic intracranial haemorrhage risk, 

improves the predictive ability of clinical risk scores, and can inform anticoagulation 

decisions. 

Funding: CROMIS-2 was funded by the Stroke Association and the British Heart 

Foundation. 
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5.1 Rationale for study 

Atrial fibrillation (AF) increases the risk of ischaemic stroke five-fold (209). In most 

individuals, oral anticoagulation with either vitamin K antagonists (VKAs) or direct oral 

anticoagulants (DOACs) is indicated because they reduce the risk of ischaemic stroke 

by about two-thirds, with only a minimal increase in extra-cranial haemorrhage.(210, 

211) However, a devastating and unpredictable complication of oral anticoagulation is 

anticoagulant-related symptomatic intracranial haemorrhage, which has 42% in-hospital 

mortality, and causes substantial disability in survivors (212). There is an unmet 

important clinical need to reliably predict the risk of intracranial haemorrhage, and 

differentiate this from the risk of ischaemic stroke, to allow clinicians to assess the 

likely net clinical benefit of oral anticoagulation. Risk scores including clinical factors 

such as hypertension and age have been developed to help clinicians identify patients at 

high risk of bleeding on anticoagulation, for example HAS-BLED (213), 

HAEMORR2HAGES (214) and ATRIA (215), but these are of limited value in clinical 

decision-making because they predict both ischaemic stroke and intracranial 

haemorrhage. 

Cerebral microbleeds (CMBs) are small hypointense round or ovoid areas identified on 

blood-sensitive MRI sequences (T2*-weighted gradient-recalled echo (GRE) or 

susceptibility-weighted imaging (SWI))(11, 88). In most cases CMBs correspond 

pathologically to small clusters of haemosiderin-laden macrophages resulting from 

small self-limiting haemorrhages(89, 93). Thus, CMBs are a promising radiological 

biomarker of the bleeding-prone cerebral small vessel diseases that cause most 

spontaneous intracerebral haemorrhages(11), so might be a specific and clinically useful 

predictor of anticoagulant-related intracranial haemorrhage. The increasing use of 

blood-sensitive MRI has led to increased detection of CMBs in patients with ischaemic 

stroke - including those with AF, where they are seen in up to 30% of patients (216) - 

generating considerable clinical uncertainty about the risk-benefit balance of 

anticoagulation in patients with CMBs.  

We did a large observational prospective multi-centre inception cohort study to 

determine if CMBs are independently associated with an increased risk of symptomatic 

intracranial haemorrhage in patients with recent acute ischaemic stroke or TIA with AF 

treated with anticoagulation. We also developed and internally validated a risk 

prediction score for symptomatic intracranial haemorrhage including CMB presence as 

a neuroimaging biomarker in addition to clinical risk factors.  
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5.2 Methods: 

5.2.1 Study design and participants 

CROMIS-2 (AF) is an observational multicentre prospective inception cohort study 

which recruited adults with non-valvular AF (verified by ECG), who presented with 

ischaemic stroke or TIA, and were identified by the treating physician for 

anticoagulation treatment. We did not strictly control the timing of oral anticoagulation, 

which depended on individual clinician best judgement according to standard practice in 

the UK. We excluded patients if they could not undergo MRI, had a definite 

contraindication to anticoagulation, or had previously been treated with anticoagulation. 

We collected screening logs from centres to assess selection bias. We collected detailed 

clinical and demographic baseline data, and follow-up information from patients and 

general practitioners at 6, 12 and 24 months via standardised structured postal 

questionnaires or telephone interviews. We obtained National Health Service Digital 

data regarding hospital admissions or death during follow-up. If an outcome event was 

reported, we obtained additional clinical and radiological details from treating clinical 

teams and medical records to allow central adjudication, blinded to baseline 

neuroimaging findings.  

Our planned sample size (n=1425) was calculated to detect a relative risk of 4.0 for 

intracranial haemorrhage risk associated with CMBs, assuming an annual incidence of 

intracerebral haemorrhage of 1·25% in those without CMBs, and that 20% of our 

population would have CMBs; these values were derived from previous smaller 

studies(208). 

 

5.2.2 Neuroimaging data. 

All patients underwent baseline MRI brain imaging according to a pre-defined protocol 

parameter range designed to detect relevant markers of cerebrovascular disease (208) 

which required T2*-weighted GRE (echo time (TE) 10 to 45ms), axial T1, Axial T2, 

coronal FLAIR and diffusion-weighted imaging with apparent diffusion coefficient 

maps. MRIs were analysed for markers of cerebral small vessel disease defined 

according to consensus definitions(11) using validated scales where available. We used 

the Microbleed Anatomical Rating Scale to identify and classify CMBs as lobar or non-

lobar (deep, including the basal ganglia, thalamus, deep white matter, brainstem and 

cerebellum); white matter hyperintensities were rated using the Fazekas and Age-
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Related White Mater Changes (ARWMC) scales).(207, 217, 218) Cortical superficial 

siderosis (cSS) was defined using consensus criteria(132, 137, 144). All neuroimaging 

ratings were done by a clinical research fellow (DW) trained by a professor of 

neuroradiology with specialist interest in cerebrovascular disease (HRJ). A second 

trained clinical fellow (GB) rated a random 10% of the sample for CMB presence; we 

quantified intra- and inter-rater reliability for CMB presence using Cohen's kappa 

coefficient. 

 

5.2.3 Outcome events: 

Two professors of vascular neurology (DJW and MMB) and a clinical research fellow 

(DW) adjudicated all primary outcome events (symptomatic intracranial haemorrhage; 

defined as brain-imaging evidence of non-traumatic spontaneous intracranial 

haemorrhage with appropriate clinical symptoms). A trained clinical research fellow 

(DW) adjudicated all ischaemic stroke outcomes; to ensure consistency a random 10% 

of these were adjudicated by a professor of vascular neurology (DJW) and a professor 

of neuroradiology (HRJ). All adjudication was blinded to baseline CMB ratings. In 

cases of disagreement, we reached consensus after discussion. We also collected 

information on death, cardiac ischaemic events (defined by dynamic ECG changes 

and/or troponin rise), and any major bleeding during follow-up (defined as intracranial 

bleeding or extracranial bleeding in either a critical area or requiring hospitalisation and 

two units of blood transfusion(219)). 

 

5.2.4 Statistical analysis. 

We followed a pre-specified statistical analysis plan outlined in our published 

protocol(208). We compared baseline demographics and risk factor profiles between 

those with CMBs and those without CMBs, and between those with and without our 

primary outcome event (symptomatic intracranial haemorrhage). We used appropriate 

statistical measures for categorical and continuous measures. We visually inspected the 

distribution of continuous variables using histograms, summarised as means with 

standard deviation or medians with interquartile range (IQR). Groups were compared 

using the Mann-Whitney test if they were not normally distributed or the t-test if 

normally distributed; categorical variables were compared between groups with the chi-

squared test or, where appropriate, Fisher’s exact test. Univariate Kaplan-Meier survival 
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probabilities were estimated for those with and without CMBs; we used the log-rank 

test to compare groups. We performed univariable and multivariable Cox regression 

(adjusted for age and history of hypertension, in keeping with our pre-specified 

statistical analysis plan). We did three further multivariable Cox regression sensitivity 

analyses: first, including variables strongly associated with intracranial haemorrhage in 

univariate analysis; second, including CMB presence and HAS-BLED – a commonly 

used clinical bleeding risk score(220); and third, including other neuroimaging markers 

of small vessel disease in addition to CMB presence. We assessed the proportional 

hazards assumption through visual inspection of log-log plots of the log cumulative 

hazard against log time. We calculated absolute event rates per 1000 patient-years for 

our primary outcome of symptomatic intracranial haemorrhage, and for our main 

secondary outcome of recurrent ischaemic stroke. For our secondary outcome of 

recurrent ischaemic stroke, we adjusted for variables which differed between those who 

did and did not have a recurrent ischaemic stroke at the 20% level. 

Finally, we developed two prediction models using Cox regression: in the first we 

included all predictors significantly associated with intracranial haemorrhage at the 20% 

level in univariable analysis; in the second we included CMB presence and HAS-BLED 

score. We assessed calibration using the Cox calibration slopes, and quantified 

discrimination using Harrell’s C-index. We used bootstrapping to validate the models; 

specifically, the models were re-fitted in 1000 bootstrap samples and applied to the 

original dataset. For each model, we then calculated the calibration slope and optimism-

adjusted C-index (221). We also fitted these models using the lasso(222) to investigate 

possible over-fitting.  We did all statistical analysis using STATA 12.0 (StataCorp LP, 

TX). 

 

5.2.5 Ethical approval  

CROMIS-2 was approved by the National Research Ethics Committee, London Queen 

Square. Patients with capacity gave informed written consent. When patients could not 

consent, we obtained written consent from a proxy as defined by relevant local 

legislation. 
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5.2.6 Funders 

CROMIS-2 was jointly funded by the Stroke Association and the British Heart 

Foundation and supported by researchers at the National Institute for Health Research 

(NIHR) University College London Hospitals Biomedical Research Centre. UCL acted 

as the Sponsor for CROMIS-2, with responsibility for the conduct and management of 

the study. Neither the funders nor the sponsor had input into study design; collection, 

analysis, or the interpretation of data.  
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5.3 Results 

5.3.1 Cohort characteristics 

1686 patients were potentially eligible and initially consented from 79 centres across the 

UK (and one centre in the Netherlands) between August 2011 and July 2015. Patients 

were only included in the final analysis if they underwent MRI with T2*-weighted GRE 

sequences of adequate technical quality to rate CMBs. After imaging quality assurance, 

we included 1490 participants in our final analysis (1294/1490 (87%) with 1.5 Tesla 

scans and 196/1490 (13%) with 3 Tesla scans); patient flow through the study is shown 

in Figure 13.  
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Figure 13 Study entry flow diagram 
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There were no significant differences in demographics, stroke risk factors or stroke 

severity (National Institutes of Health Stroke Score, NIHSS) between patients included 

(n=1490) compared to those consented but not included (n=196). We collected 

screening logs from 26 sites to assess selection bias; compared to those included, 614 

patients who were eligible but not consented were older (mean 80 vs. 75 years, 

p<0·0001), more likely to be female (252/640 (55%) vs. 213/506 (42%), p<0·0001), 

and had more severe strokes (median baseline NIHSS 8 vs. 5, p<0·0001).  

Of 1490 patients included, 1447 (97%) had follow-up information available. The mean 

age was 76 years (SD 10); 631 (42%) were female; other baseline characteristics are 

shown in Table 5. The 43 patients without follow-up did not differ to those followed up 

in age (76 vs. 73, p=0·1656), hypertension (23/40 (58%) vs. 907/1427 (64%), p=0·43) 

or CMB prevalence (7/43(16%) vs. 304/1447 (21%), p=0·45). 
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Table 5 Characteristics of patients with and without cerebral microbleeds at 

baseline 

Variable All patients 

n=1490 

Patients 

with CMBs 

n=311 

Patients  

without CMBs 

n=1179 

Age, years mean (SD) 76 (10) 78 (10) 75 (10) 

Sex, female, n (%) 631 (42) 129 (41) 502 (43) 

Hypertension n (%) 930 (63) 212 (70) 718 (62) 

Hyperlipidaemia n (%) 661 (45) 145 (47) 516 (44) 

Diabetes mellitus n (%) 251 (17) 55 (18) 196 (17) 

Ischaemic heart disease 243 (16) 66 (21) 177 (15) 

Previous ischaemic stroke n (%) 142 (10) 41 (13) 101 (9) 

Previous intracerebral haemorrhage n (%) 8 (0·54) 3 (1·0) 5 (0·4) 

Alcohol use units/week median (IQR) 2 (0 to 9) 2 (0 to 7) 2 (0 to 10) 

Alcohol use >14 units/week n (%) 213 (15) 43 (15) 170 (16) 

Congestive heart failure n (%) 60 (4) 20 (6) 40 (3) 

Abnormal renal function n (%) 174 (12) 46 (15) 128 (11) 

Ethnicity  White n (%) 1414 (96) 290 (95) 1124 (97) 

Asian n (%) 33 (2) 10 (3) 23 (2) 

Black n (%) 20 (1) 5 (2) 15 (1) 

CRP median (IQR) 4.6 (2 to 12) 4.4 (2 to 12) 4.9 (2 to 11) 

Platelet count median (IQR) 221 (185 to 265) 221 (185 to 265) 222 (183 to 265) 

HAS-BLED score median (IQR) 3 (2 to 3) 3 (2 to 4) 3 (3 to 4) 

CHA2DS2VASc score median (IQR) 5 (4 to 6) 5 (4 to 6) 5 (4 to 6) 

Anticoagulation started n (%) 1436 (96) 300 (96) 1136 (96) 

DOAC use n (%)  

(in the 1436 patients who started anticoagulation) 

542 (37) 121 (40) 421 (36) 

Concurrent antiplatelets n (%) 57 (4) 48 (4) 9 (3) 

Poor time in therapeutic range n (%)  133/894 (15) 24/179 (13) 109/715 (15) 

Anticoagulation stopped during follow-up  

(in the 1436 patients who started anticoagulation) 

55 (4) 13 (4) 42 (4) 

Total white matter hyperintensity (ARWMC) 

score median (IQR) 

1 (0 to 3) 2 (1 to 4) 1 (0 to 3) 

CMB median (IQR) 

CMB range  

 1 (1 to 3) 

1 to 107 

N/A 

cSS presence n (%) 5 (0·34) 1 (0·32) 4 (0·34) 
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CMBs were present in 311 (21%) of 1490 participants; in those with CMBs the median 

CMB count was 1 (IQR 1 to 3; range 1 to 107). Intra-rater and inter-rater reliability for 

the presence of CMBs were excellent (Kappa 0·93 (95% CI 0.86 to 1.00) and 0.85 (95% 

CI 0.74 to 0.96) respectively). CMBs were strictly lobar in 116 patients; strictly non-

lobar (deep) in 120 patients; and mixed in 75 patients. 46 patients (3%) fulfilled the 

modified Boston criteria for cerebral amyloid angiopathy(137). Five patients (0.34%) 

had cSS (in one patient this was disseminated). 432/1490 (29%) had severe white matter 

hyperintensities (ARWMC score(217) 2 in either basal ganglia or white matter 

regions). The characteristics of patients with and without CMBs are shown in Table 5. 

 

5.3.2 Primary outcome 

The 1,447 patients with follow-up available provided 3,366 patient-years of follow-up 

data (mean follow-up 850 days (SD 373 days)). There were 14 symptomatic intracranial 

haemorrhages: 11 intracerebral haemorrhages; two subdural haemorrhages; and one 

subarachnoid haemorrhage. Patients who had a symptomatic intracranial haemorrhage 

during follow-up had a higher prevalence of diabetes (6/14 (43%) vs. 245/1474 (17%)), 

were more likely to be on a VKA than DOAC (12/14) (86%) vs. 882/1422 (63%)) and 

more likely to have CMBs (7/14 (50%) vs. 304/1476 (21%)) and cortical superficial 

siderosis (1/14 (7%) vs. 4/1476 (0·3%)) compared to those who remained free of 

intracranial haemorrhage (Table 6).  
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Table 6 Characteristics of patients with and without symptomatic intracranial 

haemorrhage 

Variable Patients with 

symptomatic 

intracranial 

haemorrhage 

(n=14) 

Patients without 

symptomatic 

intracranial 

haemorrhage 

(n=1433) 

p value 

Age, years median (IQR) 79 (10) 76 (10) 0·32 

Sex, female, n (%) 5 (36) 606 (42) 0·62 

Hypertension n (%) 8 (57) 898 (64) 0·62 

Hyperlipidaemia n (%) 8 (57) 653 (45) 0·36 

Diabetes mellitus n (%) 6 (43) 236 (17) 0·0086 

Ischaemic heart disease 1 (7) 238 (17) 0·34 

Previous ischaemic stroke n (%) 2 (15) 138 (10) 0·50 

Previous intracerebral haemorrhage n 

(%) 

0 (0) 8 (0·6) 1·00 

Alcohol units/ week median (IQR) 1.5 (0 to 5) 2 (0 to 9) 0·51 

Alcohol use >14 units/week n (%) 1 (8) 212 (15) 0·50 

Congestive heart failure n (%) 0 (0) 59 (4) 0.44 

Abnormal renal function n (%) 169 (12) 2 (14) 0.77 

Ethnicity  White n (%) 14 (100) 1356 (97)  

Asian n (%) 0 (0) 29 (2)  

Black n (%) 0 (0) 17 (1)  

Ethnicity non-white 0 (0) 46 (3) 0.49 

CRP median (IQR) 5.5 (4.6 to 16.2) 4.4 (2 to 12) 0.11 

Platelet count median (IQR) 212 (167 to 225) 220 (185 to 264) 0.25 

CHA2DS2VASc score median (IQR) 6 (4 to 6) 5 (4 to 6) 0·23 

HAS-BLED score median (IQR) 2 (2 to 3) 3 (2 to 3) 0·14 

Anticoagulation started n (%) 14 (100) 1385(97) 0.49 

DOAC use n (%) 2 (14) 510 (37) 0·081 

Concurrent antiplatelets n (%) 1 (7) 56 (4) 0.54 

Poor therapeutic time in range n (%)  0 (0) 133/862 (15) 0.145 

Total white matter hyperintensity 

(ARWMC) score median (IQR) 

1·5 (0 to 5) 1 (0 to 3) 0·97 

CMB presence n (%) 

CMB median (IQR) 

CMB range 

7 (50) 

0.5 (0 to 3) 

0 to 12 

297 (21) 

0 (0 to 0) 

0 to 107 

0·0075 

0·0036 

N/A 

cSS presence n (%) 1 (7) 4 (0·3) <0·0001 

 
Key: Poor time in therapeutic range defined as <60%; ARWMC – age related white matter changes 

 

 

In patients with a documented INR at the time of the intracranial haemorrhage (n=7), 

the median INR was 1·9 (IQR 1·4 to 4·0, minimum 1·1, maximum 4·8).  

The symptomatic intracranial haemorrhage event rate in patients with CMBs was 10 per 

1000 patient-years (95% CI 4 to 20) compared with 3 per 1000 patient-years (95% CI 1 

to 5) in those without CMBs. The absolute rate increase associated with CMBs was 7 

(95% CI 3 to 15) per 1000 patient-years (Table 7). 
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Table 7 Absolute event rates, absolute risks, univariable and multivariable HR for symptomatic intracranial haemorrhage and recurrent 

ischaemic stroke during follow-up, according to baseline CMB presence and burden. 

 

 

 

* adjusted for age and hypertension 

** adjusted for age, sex hypertension, diabetes, previous ischaemic stroke and white matter hyperintensities 

 

 

Symptomatic intracranial haemorrhage 

 

 

Recurrent ischaemic stroke 
 

 

Absolute 

event 

rate  

(n/patien

t-years) 

Rate/1000 

patient years 

(95% CI) 

Absolute 

rate 

increase/100

0 patient 

years (95% 

CI) 

Univariable 

hazard ratio 

(95% CI) 

Adjusted 

Hazard ratio 

(95% CI)* 

Absolute 

event rate 

(n/patient 

years) 

Rate/1000 

patient years 

(95% CI) 

Absolute rate 

increase/1000 

patient years 

(95% CI) 

Univariable 

hazard ratio 

(95% CI) 

Adjusted 

Hazard ratio 

(95% CI)** 

No CMBs 7/2654 
2·6 

(1·1 to 5·4) 
Reference Reference Reference 39/2608 

15  

(10·6 to 20·4) 
Reference Reference Reference 

CMB 

presence 
7/712 

9·8 

(4·0 to 20·3) 

7.2 

(2.9 to 14.9) 

3·73 

(1·31 to 10·64) 

3·67 

(1·27 to 10·60) 
17/704 

24·1 

(14·1 to 38·7) 

9.1 

(3.5 to 18.3) 

1·62 

(0·92 to 2·87) 

1·53 

(0·85 to 2·76) 

1  

CMB 
2/367 

5·4 

(0·7 to 19·7) 

2.8 

(-0.4 to 14.3) 

2·04 

(0·42 to 9·84) 

2·03 

(0·42 to 9.83) 
9/362 

24·9 

(11·4 to 47·2) 

9.9 

(0.8 to 32.2) 

1·68 

(0·82 to 3·47) 

1·75 

(0·84 to 3·65) 

≥ 2 CMBs 5/345 
14·4 

(4·7 to 33·8) 

11.8 

(3.6 to 28.4) 

5·58 

(1·77 to 17·58) 

5·46 

(1·70 to 17·51) 
8/341 

23·4 

(10·1 to 46·2) 

8.4 

(-0.5to 25.8) 

1·56 

(0·73 to 3·35) 

1·32 

(0·60 to 2·93) 
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Using the log-rank test for equality of survivor functions, symptomatic intracranial 

haemorrhages were more frequent in patients with CMBs compared to those without 

(p=0·0081). Univariable Cox regression showed that the hazard of symptomatic 

intracranial haemorrhage for patients with CMBs was 3·73 (95% CI 1·31 to 10·64) 

times higher than that for patients without CMBs. In multivariable Cox regression 

analysis adjusted for our pre-specified covariates (hypertension and age), the risk of 

symptomatic intracranial haemorrhage was 3·67 (95% CI 1·27 to 10·60) times higher 

for those with CMBs compared to those without CMBs (Figure 14, Table 7). 
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Figure 14 Kaplan-Meier analysis showing the probability of symptomatic 

intracranial haemorrhage (ICH) according to the presence or absence of 

microbleeds 

 

Legend: CMB -cerebral microbleed, intracranial haemorrhage –symptomatic 

intracranial haemorrhage. Hazard ratio (HR), 95% confidence intervals (CI) are derived 

from model adjusted for hypertension and age 

 

The risk of symptomatic intracranial haemorrhage increased with increasing CMB 

burden categories (defined as 0, 1 and ≥2 CMBs (p=0·00134)) (Table 7 and Figure 15). 

  



Part 2: Ischaemic stroke populations 

86 

  

Figure 15 Forest plots showing the incidence and hazard ratio with 95% 

confidence intervals of symptomatic intracranial haemorrhage and recurrent 

ischaemic stroke according to CMB burden 

 

We also explored CMB distribution and rates of symptomatic intracranial haemorrhage, 

but there were too few events within each category to draw reliable conclusions (Table 

8).
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Table 8 Absolute event rates, risk increase and hazard ratios for symptomatic intracranial haemorrhage and ischaemic stroke according to 

CMB distribution 

  

Symptomatic intracranial haemorrhage 

 

Recurrent ischaemic stroke 

 Absolute event rate 

(n/patient-years) 

Rate/1000 patient 

years 

(95% CI) 

Hazard ratio 

(95% CI) 

Absolute event rate 

(n/patient years) 

Rate/1000 patient 

years 

(95% CI) 

Hazard ratio 

(95% CI) 

No CMBs 7/2654 
3 

(1 to 5) 
Reference 39/2608 

15 

(11 to 20) 
Reference 

Strictly lobar 

CMBs 
3/243 

12 

(3 to 36) 

3·31 

(0·92 to 11·90) 

4/243 

 

16 

(4 to 42) 

0·94 

(0·34 to 2·61) 

Strictly Deep 

CMBs 
1/285 

0·3 

(0·00 to 20) 

0·83 

(0·11 to 6·36) 
8/278 

29 

(12 to 57) 

1·82 

(0·86 to 3·84) 

Mixed CMBs 3/184 
16  

(3 to 48) 

5·33 

(1·23 to 23·07) 
5/183 

27 

(9 to 64) 

1·57 

(0·55 to 4·50) 

Multiple strictly 

lobar CMBs 
1/91 

11 

(0·3 to 61) 

2·45 

(0·31 to 19.03) 
2/89 

22 

(2 to 81) 

1·20 

(0·29 to 4·98) 
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We undertook three sensitivity analyses to confirm the robustness of the independent 

association of CMB presence with symptomatic intracranial haemorrhage, adjusting for 

other variables associated with this outcome; given the limited number of symptomatic 

intracranial haemorrhage events (n=14), we included a maximum of two variables in 

each multivariable analysis. CMB presence remained an independent predictor of 

intracranial haemorrhage as follows: first, adjusted for the two strongest univariable 

predictors (diabetes and anticoagulant type, but not cSS because of very few patients 

with cSS); HR 3·63; 95% CI 1·27 to 10·38 (Table 9); second, adjusted for HAS-BLED 

score (HR 5·64; 95% CI 1·79 to 17·80); and third, adjusted for other neuroimaging 

markers of small vessel disease (white matter hyperintensity score and cSS; HR 3·73 to 

4·12, Table 10). For each model, visual inspection of the log-log plots suggested that 

the proportional hazards assumption was satisfactory. 

 

Table 9 Cox regression analysis of the primary outcome (symptomatic intracranial 

haemorrhage) including CMBs and the two other strongest predictors from 

univariable analysis 

Variable HR 95% CI p value 

CMB presence 3·63 1·27 to 10·38 0·0160 

DM 3·49 1·21 to 10·10 0·0210 

DOAC use 0·31 0·07 to 1·38 0·1233 
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Table 10 Association of brain imaging markers of cerebral small vessel disease 

with symptomatic intracranial haemorrhage in univariable analyses, and effects of 

adjusting for each imaging marker on the association of CMB presence and 

symptomatic ICH 

 

Univariable hazard ratio for CMB presence alone: 3.73 (95% CI 1.31 to 10.64)  

* Defined as a ARWMS score of 2 or above in either basal ganglia or deep white matter 

regions 

** Defined as siderosis affecting 3 or more non-contiguous sulci 

 

  

Variable 
Definition of 

variable 

Univariable 

Hazard Ratio for 

symptomatic 

intracranial 

haemorrhage (95% 

CI) 

Hazard Ratio for 

CMB presence and 

symptomatic 

intracranial 

haemorrhage when 

each biomarker is 

entered as an 

‘adjustment 

variable’ 

White matter 

hyperintensities 

Total ARWMC 

score 

1·07 

(0·86 to 1·34) 

3·69 

(1·26 to 10·74) 

Posterior 

predominant 

ARWMC 

0·88 

(0·20 to 3·94) 

3·78  

(1·32 to 10·79) 

Fazekas score 

dichotimised* 

1·03 

(0·32 to 3·29) 

3·84 

(1·33 to 11·10) 

cSS 

Any 
24·78 

(3·24 to 189·68) 

4·12 

(1·42 to 11·97) 

Disseminated** N/A 
3·73 

(1·31 to 10·63) 
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Of the 1490 patients recruited and identified by their treating physician to start 

anticoagulation, 1436 (96%) did so; 54 patients did not start because: 12 had died; 13 

refused or did not attend their anticoagulation clinic appointments; 17 had medical 

contraindications; and for 12 the reason was not specified. The median time from stroke 

symptoms until starting anticoagulation was 11 days (IQR 4 to 17); 894/1490 (60%) 

patients started a VKA and 542/1490 (36%) patients started a NOAC. Repeat analyses 

including only anticoagulated participants (n=1436) did not significantly alter the 

results (univariable HR for CMB presence 3·73; 95% CI 1·31 to 10·63). The type of 

anticoagulant (DOAC or VKA) did not significantly affect the hazard of symptomatic 

intracranial haemorrhage associated with CMB presence (HR interaction term 0·88; 

95% CI 0·04 to 17·13 p=0·92).  

 

5.3.3 Secondary outcomes 

Ischaemic stroke 

There were 56 recurrent ischaemic strokes during 3312 patient-years of follow-up. The 

recurrent ischaemic stroke rate in patients with CMBs was 24 (95% CI 14 to 39) per 

1000 patient-years, compared to 15 (95% CI 11 to 20) per 1000 patient-years in those 

without CMBs; an increased ischaemic stroke rate associated with CMBs of 9 (95% CI 

3 to 19) per 1000 patient-years. (Table 7). CMB presence was not significantly 

associated with recurrent ischaemic stroke in univariable (HR 1·62 95% CI 0·92 to 

2·87) or multivariable analyses (adjusted for age, sex, hypertension, diabetes, previous 

ischaemic stroke prior to study entry, and WMH; (HR 1·53; 95% CI 0·85 to 2·76) 

(Table 7)).  

The mortality following symptomatic intracranial haemorrhage during follow-up was 

significantly higher than that of recurrent ischaemic stroke (7/14 (50%; 95% CI 23 to 

77%) vs 12/56 (21%; 95% CI 12 to 34%), p=0·041. 

 

Intracerebral haemorrhage, death, composite outcome (death, ischaemic stroke, and 

symptomatic intracranial haemorrhage)  

In multivariable analysis (adjusting for age and hypertension) CMB presence was 

associated with symptomatic intracerebral haemorrhage (HR 4·24; 95% CI 1·27 to 

14·08) but not death or our composite outcome; Figure 16. 
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Figure 16 : Forest plots of the hazard ratio for secondary outcomes in participants 

with CMBs vs. those without CMBs 

 
5.3.4 Prediction models 

In Model 1 we included variables that were statistically significant at the 20% level in 

univariable analyses: CMB presence, Diabetes, NOAC use and HAS-BLED score; we 

excluded cSS due to its rarity, and time in therapeutic range for VKA because it is 

captured within HAS-BLED. Missing alcohol score values for HAS-BLED score were 

imputed using multiple imputation with chained equations(223) (10 imputations). 

Fitting a model with all four predictors (CMB presence, Diabetes, NOAC use and HAS-

BLED score) produced an optimism-adjusted C-index of 0·74 (0·60 to 0·88).  

In Model 2 we included CMB presence and HAS-BLED score (imputed for missing 

values as above), which produced an optimism adjusted C-index of 0·66 (95% CI 0·53 

to 0·80). 

Compared to the score HAS-BLED alone (C-index 0·41; 95% CI 0·29 to 0·53), Model 

1 (C-index (diff): 0·33 (0·14 to 0·51), p < 0·00059) and Model 2 (C-index (diff): 0·25 

(0·07 to 0·43), p = 0·0065) were both statistically better in predicting symptomatic 

intracranial haemorrhage. 
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5.4 Discussion 

Our large prospective observational multi-centre cohort of patients with recent 

ischaemic stroke or TIA associated with AF clearly shows that baseline CMB presence 

is independently associated with an increased risk of symptomatic intracranial 

haemorrhage. We note, however, that the absolute rate of recurrent ischaemic stroke 

was much higher than the absolute event rate of intracranial haemorrhage, even in those 

with CMBs. We also show that the addition of an imaging biomarker (CMB presence) 

improves the predictive ability of a clinical bleeding risk scores, which can help 

clinicians identify patients at high risk of intracranial haemorrhage. 

Our results regarding CMB presence and intracranial haemorrhage risk are consistent 

with a previous smaller cohort study in a Korean hospital-based cohort study (n=550) of 

patients with ischaemic stroke and AF (122), which reported a similar increased in the 

risk of intracerebral haemorrhage associated with CMBs (HR 3·8; 95% CI 1·1 to 13·1) 

and a recent aggregate level meta-analysis(216). We found the use of DOAC rather than 

VKA was associated with a much lower incidence of intracerebral haemorrhage in 

participants with or without CMBs, consistent with the results of large randomised 

controlled trials(21). Our data therefore support previous speculation that DOACs might 

be considered in preference to VKAs in ischaemic stroke patients with AF and CMBs 

(224, 225). Our finding that diabetes is an independent risk factor for symptomatic 

intracranial haemorrhage has not, to the best of our knowledge, been previously 

reported in observational studies in ischaemic stroke patients. However, there is 

increasing evidence in non-stroke populations that diabetes is a risk for intracerebral 

haemorrhage: one large community-based study from China shows patients with 

diabetes had just over 1·5 times the risk of intracerebral haemorrhage than subjects with 

normal fasting blood sugars(226); another study in older patients with AF found 

patients with diabetes had 4·4 times the odds of major bleeding (mostly intracranial 

haemorrhages) than those who did not (227). 

Our finding that CMBs were not significantly associated with ischaemic stroke differs 

from our recent meta-analysis of patients with recent ischaemic stroke or TIA(228), 

although this meta-analysis included a different population (mostly without AF and 

treated with antiplatelet therapy). The association of CMBs with future symptomatic 

intracranial haemorrhage but not ischaemic stroke risk in our cohort supports the 

hypothesis that CMBs are a biomarker of a bleeding-prone arteriopathy relevant for 

intracranial haemorrhage associated with anticoagulation. However, the relationship 



Part 2: Ischaemic stroke populations 

93 

  

between CMB presence and recurrent ischaemic stroke risk, while not statistically 

significant, was also in favour of a positive association. Thus, CMBs, as a marker of 

overall ‘vascular fragility’ might not be able to discriminate between intracranial 

bleeding and ischaemic stroke risks, but this important question requires further study. 

Indeed, the absolute event rate of ischaemic stroke in patients with CMBs (24.1 per 

1000 patient-years) was much higher than the absolute event rate of symptomatic 

intracranial haemorrhage, even in patients with CMBs (9.8 per 1000 patient-years). By 

contrast to CMBs, white matter hyperintensities were not associated with symptomatic 

intracranial haemorrhage in our study, in keeping with data from two previous smaller 

similar cohorts(122, 123). This suggests that although both CMBs and WMH are 

markers of small vessel disease, only CMBs are related to future symptomatic 

intracranial haemorrhage bleeding risk. This observation also needs to be confirmed in 

larger cohorts.  

A recent meta-analysis explored the risk of intracerebral haemorrhage in patients with 

five or more microbleeds(216), but we chose not to present hazard ratios for this 

subgroup because of the very low number of participants and event rates, which could 

lead to statistically unreliable results and over-interpretation. Whilst the event rates of 

symptomatic intracranial haemorrhage increased as CMB burden increased (and the 

event rate of recurrent ischaemic stroke remain stable), the limited number of 

participants with high CMB counts and limited number of primary outcome events did 

not allow us to establish whether there is a CMB burden threshold at which the absolute 

event rates of intracranial haemorrhage outweigh the event rates of ischaemic stroke (or, 

in other words, a CMB threshold at which anticoagulation might be clearly associated 

with net harm as judged by absolute event rates). We found that having only a single 

CMB was not statistically associated with a higher hazard of symptomatic intracranial 

haemorrhage, which might be because one CMB reflects only minor SVD, or because 

of limited inter and intra-rater reliability for one CMB(207, 229).  

Our findings suggest that the addition of CMBs as a biomarker (‘biological marker’) to 

a clinical risk score might improve specificity and sensitivity in identifying ischaemic 

stroke and TIA patients at high risk of intracranial haemorrhage. Compared to using the 

clinical factor-based HASBLED score, the addition of CMBs to clinical risk models 

should better identify patients at high risk of intracranial haemorrhage to allow 

counselling, closer follow-up, rational anticoagulant choice, consideration of non-

anticoagulant treatment options (e.g. left atrial appendage occlusion), and more 
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aggressive management of modifiable risk factors for intracranial haemorrhage (e.g. 

hypertension, anticoagulant monitoring and compliance). Large-scale collaborations are 

clearly required to develop more robust risk prediction scores. Nevertheless, based on 

our findings, we suggest that future risk scores to identify stroke patients at risk of 

intracranial haemorrhage should include neuroimaging biomarkers (CMBs and cortical 

superficial siderosis) in addition to clinical parameters. 

 

Strengths and limitations 

Our study has important strengths. We prospectively studied a large prospective 

inception cohort of patients at multiple hospital stroke units using standardised MRI 

sequences, which were rated for neuroimaging markers of small vessel disease using 

validated scales by a single trained observer. Our follow-up rate was 97%, and 

experienced observers adjudicated all primary events blinded to baseline CMB 

presence. We undertook survival analysis to consider baseline confounding factors and 

varying lengths of follow up, and we followed a pre-specified statistical analysis plan.  

We also acknowledge limitations. Our cohort is likely to be affected by selection bias, 

as screening logs show that patients with more severe strokes were less likely to be 

enrolled. Nevertheless, our cohort is likely to be representative of patients with less 

severe strokes who are most likely to be considered for anticoagulation soon after their 

stroke. Our study had a low rate of symptomatic intracranial haemorrhage, limiting our 

ability to adjust for multiple confounders and the robustness of our risk prediction score. 

Although we standardised parameters for MR neuroimaging, the pragmatic clinical 

nature of our study meant different scanners were used, including different magnet 

strengths, which can influence CMB detection(202). Furthermore, gradient echo MRI 

sequences are less sensitive to CMBs than SWI(204), so that our interpretation of CMB-

related risk may not translate to data from SWI.  Treatment decisions might be 

influenced by clinical nihilism about intracranial haemorrhage compared to ischaemic 

stroke, so differences in judgement of the apparent severity of incident intracranial 

haemorrhage compared to ischaemic stroke may in part be artefacts of clinical 

behaviour. 

In conclusion, we show that CMB presence is independently associated with an 

increased hazard of symptomatic intracranial haemorrhage. Nevertheless, the absolute 

incidence of symptomatic intracranial haemorrhage in our population of ischaemic 

stroke patients was three-fold lower than the incidence of recurrent ischaemic stroke. 
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The low incidence of symptomatic intracranial haemorrhage makes randomised control 

trials in this field unrealistic. Large-scale international pooled collaborative analyses 

will be essential to determine whether high CMB counts might be associated with an 

increased risk of intracranial haemorrhage sufficient to identify patients at net harm 

from oral anticoagulation. 
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6.0 Developing an algorithm to identify patients with Intracerebral 

haemorrhage secondary to a macrovascular cause in young patients 

 

Abstract 

Introduction: Determining the cause of spontaneous (non-traumatic) intracerebral 

haemorrhage (ICH) is critical to guide treatment and prognosis. We investigated 

whether small vessel disease (SVD) in addition to clinical and other radiological 

findings on acute neuroimaging predicts a low risk of a macrovascular cause (e.g. an 

arterio-venous malformation, aneurysm, or dural arteriovenous fistula). 

Patients and Methods: We identified patients with acute spontaneous ICH who 

underwent acute non-contrast CT, CT angiography (CTA) and intra-arterial digital 

subtraction angiography (IADSA) at our institution from January 2010-April 2014. 

Logistic regression including CTA result, SVD, age, pre-ICH hypertension and ICH 

location was used to derive a prediction model, validated using bootstrapping. 

Results: 173 patients (46% female, median age 49) of whom 78 had a macrovascular 

cause on IADSA were included. Predictors of a macrovascular cause were: abnormal 

CTA (OR 67.4; p<0.001); absence of SVD (OR 5.0; p=0.019); and absence of pre-ICH 

hypertension (OR 3.4; p=0.05). In our internally-derived prediction model, the 

combination of CTA, SVD and pre-ICH hypertension predicted the likelihood of an 

underlying macrovascular cause (optimism-adjusted ROC area 0.919). Patients with 

negative CTA, SVD and pre-ICH hypertension have a low likelihood of an underlying 

macrovascular cause (1.8%). 

Discussion and Conclusion: A combination of CTA, SVD and pre-ICH hypertension 

predict the likelihood of finding a macrovascular cause in patients with acute 

spontaneous ICH, allowing informed decisions regarding the likely benefit and risk of 

IADSA.  
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6.1 Rationale for study 

Intracerebral haemorrhage (ICH) is devastating: mortality is 54% at 1 year (3), while 

only 12-39% of survivors recover to independence (4). Most cases (77–88%) of 

spontaneous (non-traumatic) intracerebral haemorrhage are termed “primary” (230), 

with a presumption that they are caused by small vessel disease (SVD) (33). However, 

it is critical to exclude “secondary” structural causes of ICH, including macrovascular 

causes (e.g. arterio-venous malformations, aneurysms, and dural arteriovenous fistulae), 

which can be treated.  

The “reference standard” for detection of a macrovascular cause is intra-arterial digital 

subtraction angiography (IADSA) or neurosurgery. IADSA is invasive, requires skilled 

operators and is associated with a small but appreciable mortality and morbidity, 

especially in acute ICH (12). Selecting which ICH patients have a sufficiently high 

likelihood of a macrovascular cause to recommend IADSA is a common and important 

clinical question. Current practice varies widely (13): typically, the presence of pre-ICH 

hypertension, deep location of ICH and age are used as indicators of SVD to select 

patients unlikely to require IADSA(13), but the evidence supporting this is scant and 

often conflicting (14-16). A scoring system developed in Boston incorporating pre-ICH 

hypertension and age (among other factors) to identify patients at risk of a 

macrovascular cause has been previously validated, but did not include neuroimaging 

markers of SVD and only had moderate discrimination outside of the United States. 

(231, 232). SVD can be directly identified on brain imaging by leukoaraiosis and 

lacunar infarction, even on plain CT. We therefore hypothesised that, in acute ICH 

patients, visualization of SVD will predict a low yield of a macrovascular cause; 

furthermore, we aimed to develop and internally validate an algorithm to help clinicians 

identify patients at high risk of having a macrovascular cause underlying acute 

spontaneous ICH 
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6.2 Methods  

6.2.1 Patient selection 

We retrospectively reviewed all consecutive patients who underwent IADSA (the 

reference standard for detecting a macrovascular cause of ICH) for the investigation of 

ICH from January 2010-April 2014. Inclusion criteria were: acute, symptomatic, non-

traumatic (spontaneous) ICH, with availability of diagnostic quality CTA, non-contrast 

CT and an IADSA. Patients with a primary diagnosis of subarachnoid haemorrhage 

(SAH) or subdural haemorrhage were excluded. In our centre, all patients presenting to 

our stroke unit with acute ICH have acute non-contrast CT and CTA unless there is a 

contra-indication. The need for an IADSA is decided during a weekly multidisciplinary 

vascular neuroradiological meeting where the patient’s age, ICH location and history 

(including hypertension) are considered, as per standard clinical practice. We did not 

exclude patients based on age. We recorded whether the patient had a suspicion of a 

macrovascular cause on the non-invasive imaging prior to the IADSA to explore partial 

verification bias.  

 

6.2.2 Data collection 

Variables collected were: age (dichotimised into aged 45 years or over vs. under 45, in 

keeping with current clinical practice and previous studies (15, 233)); pre- ICH 

hypertension (defined by previously documented HTN for which either lifestyle advice 

or antihypertensive medication had been provided); and location of the ICH (cerebellar, 

intraventricular (pure), lobar and deep perforator territory (brainstem and basal 

ganglia)). 

 

6.2.3 Image analysis 

A trained vascular neuroradiology fellow (AO) reviewed the acute CTA, blinded to the 

IADSA result, for the presence of any structural macrovascular cause. This CTA 

evaluation was then compared to the final clinical report (by an accredited consultant 

vascular neuroradiologist). Disagreement was reviewed by a professor of vascular 

neuroradiology (HRJ) and a consensus decision was reached. A “negative” CTA was 

defined as showing no indication of a macrovascular cause. A “positive” CTA was 

defined by the final neuroradiology assessment as being suspicious for a macrovascular 

cause (graded as either having a “possible” or “definite” underlying macrovascular 
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cause). A clinical research fellow (DW) trained in SVD rating rated the non-contrast CT 

for SVD using the simplified Fazekas scale (217) and the presence of lacunae, blinded 

to the IADSA result. SVD on CT was dichotomised into moderate-severe (Fazekas 

grade ≥2 in either periventricular or deep white matter distribution) and/or the presence 

of any lacunar infarction vs. mild/none SVD and no lacunar infarctions. SVD was rated 

in the hemisphere contralateral to the symptomatic ICH to avoid misclassification of 

peri-haematomal oedema. Haematoma location was classified using a recently 

published rating instrument (234) . The IADSA was reported by a certified consultant 

vascular neuroradiologist. The routine IADSA protocol for investigation of intracerebral 

haemorrhage at our institution includes selective catheterisation of the internal carotid, 

external carotid and vertebral arteries, with angiographic runs of each of these vessels in 

at least two projections and followed through to the venous phase. 

 

6.2.4 Statistical analysis 

Univariable odds ratios and the sensitivity and specificity (presented as ROC area under 

the curve) were undertaken for the following variables: age, ICH location, HTN, CTA 

result and SVD identification on CT against the reference standard of IADSA detected 

macrovascular causes. 

We fitted a logistic regression model to generate risk coefficients for macrovascular 

causes. We checked the fit of the model by comparing the model’s prediction to the 

observed outcomes. This model was then internally validated using bootstrap validation 

with 1000 samples. Discrimination was quantified using the ROC area and calibration 

was assessed using the Cox-Miller calibration slope. 

All analyses were performed using STATA 12.0 (StataCorp LP, TX). 

The study was conducted and reported according to reference standards described in the 

TRIPOD guidelines (https://www.equator-network.org/reporting-guidelines/tripod-

statement/) 

6.2.5 Ethical approval 

The study was approved by the Clinical Governance Committee of the National 

Hospital and the UCL Institute of Neurology and National Hospital Joint Research 

Ethics Committee. 
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6.3 Results 

We identified 204 patients with acute spontaneous ICH who had an IADSA. The 

median age was 49 (range 18 – 86, IQR 40 to 59)) and 54% were males. After quality 

assurance, we included 173 patients with diagnostic quality CTA in the study (figure 

17). 
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Figure 17 Flow chart showing patient selection 

 

 
 

Within this group there were 78 IADSA-defined macrovascular causes (68 AVMs, 7 

dural fistulas, 2 aneurysms and 1 carotid-cavernous fistula). The median CTA to 

IADSA time was 2 days (IQR 1 to 11). 3 vascular malformations were only detected on 

repeat IADSA; of these patients the median CT-repeat DSA was 264 days (IQR 78 to 

314). ICH locations in the final cohort were: lobar 83, deep perforator territory 60 (basal 

ganglia, thalamus, caudate, brainstem), Cerebellar 21, pure intraventricular: 9. (Table 

11).  
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Table 11 Characteristics of patients in study 

 

Variable Entire cohort (n=173) 

Age, years, median (IQR) [Range] 49 (40 to 59) [18 to 86] 

Gender, Female n (%) 80 (46) 

Pre- ICH HTN n (%) 52 (30) 

CTA to IADSA, Days, median (IQR) 2 (1 to 11) 

Abnormal CTA, n (%) 71 (41) 

Confluent leukoaraiosis on CT, n (%)  41 (24) 

Lacunar infarcts on CT, n (%) 13 (8) 

Any SVD on CT, n (%) 47 (27) 

Location of ICH: Cerebellar, n (%) 21 (12) 

Location of ICH: Deep perforator territory, n 

(%)* 

60 (35) 

Location of ICH: Pure intraventricular, n 

(%) 

9 (5) 

Location of ICH: Lobar, n (%) 83 (48) 
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CTA identified 85 cases with a definite or possible macrovascular cause. 67/67 cases 

identified as “definite” vascular abnormalities on CTA were identified as true 

macrovascular causes on IADSA. 11/18 cases identified as “possible” macrovascular 

causes on CTA were identified as true macrovascular causes on IADSA. In 17 instances 

there was discordance between the trained vascular neuroradiology fellow and the 

clinical report; 11 of these were judged to have a possible macrovascular cause by 

consensus adjudication with the professor of vascular neuroradiology (HRJ). 

In univariable analysis a positive CTA (“definite” or “possible” suspicion for a 

macrovascular cause) has the highest odds ratio for detecting a macrovascular cause 

(and the greatest area under the curve), followed by: non-deep perforator ICH location; 

the absence of SVD; the absence of pre-ICH hypertension; and age less than 45 years. 

(Table 12) (Figure 18).  
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Figure 18 Imaging examples of patients with and without high grade leukoaraiosis 

on plain CT 

 
A) Left frontal lobar intracerebral haemorrhage. No evidence of leukoaraiosis. An 

arterio-venous malformation is shown on CTA source data (AVM nidus white 

arrow). 
B) Right fronto-parietal lobar intracerebral haemorrhage extending down to the 

corpus callusum. Evidence of confluent leukoaraiosis in the peritrigonal white 

matter bilaterally (arrow heads). The CTA a source data show displacement of 

the anterior cerebral arteries across the midline. There area of haemorrhage is 

hypovascular and there is no evidence of a vascular malformation 
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Table 12 Univariable Odds ratio and area under the curve for selected variables 

sued in identifying a macrovascular cause 

 

Predictor variable 

 

OR (95% CI) 

 

ROC AUC (95% 

CI) 

CTA positive* for vascular malformation 

57.5 (21.9 to 

150.5) 

0.87 (0.82 to 0.92) 

ICH location   0.66 (0.59 to 0.74) 

 deep perforator territory  1 (ref)  

 cerebellar 4.4 (1.5 to 12.5)  

 pure intraventricular 6.6 (1.5 to 29.7)  

 lobar 4.1 (2.0 to 8.5)  

Absence of confluent SVD on CT 3.2 (1.5 to 6.7) 0.61 (0.54 to 0.67) 

No pre-ICH hypertension 2.4 (1.2 to 4.7) 0.59 (0.52 to 0.65) 

Age <45 years  1.3 (0.7 to 2.4) 0.53 (0.46 to 0.61) 
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We fitted a logistic regression model to the five predictors (with ICH location simplified 

to non-deep perforator ICH location vs. deep perforator ICH location) to develop a 

model to predict the risk of a macrovascular cause. Abnormal CTA was the most 

important predictive factor of the presence of a macrovascular cause in the model (OR 

67.4; 95% CI 21.3 to 213.1 p<0.001), followed by absence of SVD (OR 5.0; 95% CI 1.3 

to 19.6 p=0.019); and absence of pre-ICH hypertension (OR 3.4; 95% CI 1.0 to 11.4 

p=0.05). The two weakest predictors -ICH location (OR 2.8; 95% CI 0.96 to 8.5 

p=0.060) and age <45y (OR 1.1; 95% CI 0.4 to 3.1 p=0.90) - were then omitted, which 

had little impact on the model fit. This simplified model contains just 3 binary 

predictors (regression coefficients and model intercept: CTA positive 4.7, No SVD 1.5, 

No pre- stroke hypertension 1.3, intercept -4.0), and thus can make 8 unique 

predictions. which showed excellent agreement with the actual patient IADSA findings 

(Hosmer-Lemeshow goodness of fit p=0.99; no evidence of lack of fit) (Table 13). 

Bootstrap validation reveals that the ‘optimism-adjusted’ (235) ROC area for the 

simplified model is 0.919 (Figure 19) and that the Cox-Miller calibration (235) slope is 

0.949 which suggests that the risk model is well calibrated. 
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Figure 19 ROC curve for our model with only 3 predictors used to identify a 

macrovascular cause in ICH 

 
 

The final model allowed us to estimate the risk of a macrovascular cause for any patient 

based on the combination of CTA result, pre-ICH hypertension and SVD on CT. (Table 

13). The predicted yield of a macrovascular cause for each combination of predictors is 

also presented in an algorithm (Figure 20).  

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

S
e

n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.9292



Part 3: Intracerebral haemorrhage populations 

109 

  

Table 13 Yield of intracranial macrovascular causes from the optimised model 

compared to the actual yield 

 

Predictors Observed proportion of 

patients with a 

macrovascular cause for 

each combination of 

predictors in our dataset, % 

(95% CI) [raw numbers] 

Model predicted 

proportion of 

patients with a 

macrovascular cause 

for each combination 

of predictors, % 

CTA 

result 

SVD on 

CT  

HTN  

Positive No No 95.3% (84.2 to 99.4) [41/43] 95.8% 

Positive No Yes 

85.7% (57.2 to 98.2) 

[12/14] 

86.4% 

Positive Yes No 80.0% (44.4 to 97.4) [8/10] 83.7% 

Positive Yes Yes 75.0% (19.4 to 99.4) [3/4] 59.0% 

Negative No No 

23.1% (12.5 to 36.8) 

[12/52] 

22.1% 

Negative No Yes 

5.9%(0.1 to 28.7) 

[1/17] 

7.3% 

Negative Yes No 

6.3 % (0.2 to 30.2) 

[1/16] 

6.1% 

Negative Yes Yes 

0%  

[0/17] 

1.8% 

Footnote: SVD. Small vessel disease. “Positive” includes CTA showing a “definite” or 

“possible” macrovascular cause; “negative” denotes CTA showing no suspicion of a 

vascular malformation. 
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Figure 20 Suggested diagnostic algorithm 
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6.4 Discussion 

In a population of acute ICH patients at risk of an underlying macrovascular cause (having 

had IADSA based on age, ICH location and vascular risk factors), the presence of small 

vessel disease (confluent leukoaraiosis and/or one or more lacunes) on non-contrast CT is a 

useful predictor of the likelihood of finding an underlying macrovascular cause. In our 

internally validated model, an abnormal CTA, or the combination of a normal CTA with no 

evidence of SVD (confluent leukoaraiosis on CT) indicate an intermediate to high yield of 

an underlying macrovascular cause, which might justify undertaking IADSA. 

If externally validated on a prospective cohort, the use of our algorithm in clinical practice 

could lead to more macrovascular causes being detected (higher sensitivity) with an 

acceptable level of non-diagnostic IADSAs. For instance, if we used our algorithm on our 

own sample, choosing a predicted yield for a macrovascular cause of >5% as an indication 

for IADSA, our algorithm would yield 12 more macrovascular causes compared to using 

CTA alone, at the expense of 85 more negative IADSAs (i.e. an extra 7 patients 

undertaking an IADSA per additional macrovascular cause identified). In practice, 

clinicians must balance the expected yield of the IADSA against the procedural risk. 

The sensitivity of acutely performed CTA for identifying a macrovascular cause in our 

study (82%) is lower than reported in a recent meta-analysis of 95% (CI 90-97%) (236), 

likely due to our use of repeat or delayed IADSA, which revealed a macrovascular cause 

not seen on the acute IADSA in 3 instances. Delayed IADSAs were not undertaken in 

studies involved in the above meta-analysis. Previous studies compared only acute CTA to 

acute IADSA. However, a recent multicentre prospective study also found a lower 

sensitivity of acute CTA, in line with our findings (237).  The difference is consistent with 

an additional yield of macrovascular causes from delayed IADSA, a well-recognized 

observation in clinical practice, which could be in part related to acute haemorrhage and 

perihaematomal oedema obscuring small macrovascular lesions. Our study was not able to 

investigate whether delayed CTA has similar diagnostic accuracy to delayed IADSA, which 

is a topic for further research.  

Although a small case series has previously shown the added diagnostic value of MRI 

when IADSA is inconclusive (238), we are only aware of one other study that specifically 

tests direct visualization of small vessel disease to improve the prediction of the likelihood 

of an underlying vascular malformation (237). In keeping with this study (237), our data 
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suggests the presence of SVD on acute CT (when CTA is not suspicious for a 

macrovascular cause) is a useful predictor of a low yield of an underlying macrovascular 

cause in the investigation of younger patients with spontaneous ICH  (mean ages 53 years 

in the previous study (237) and 49 years in the current study).  

Importantly, in our study 3 patients with an underlying macrovascular cause were older 

than 45 years with known hypertension and a cerebellar ICH. This combination of variables 

has previously been associated with a 0% yield of macrovascular causes (15), but our data 

indicate that further investigation looking for a macrovascular cause should be considered 

in this clinical situation. 

Our study has important strengths. All patients identified with a suspected macrovascular 

cause for ICH at our centre undergo IADSA, so our initial search captured all patients 

diagnosed with a known macrovascular cause over the study period. Most patients had 

acute CTA on admission using a standardised care pathway, reducing the potential for 

selection bias. Our centre has a low threshold for requesting IADSA in suspected 

macrovascular causes and we were therefore able to include a large cohort of patients with 

CTA, CT and IADSA (n=173), which compares favourably in size to previous studies (233, 

239-242). The time interval between CTA and the initial DSA was very short, and we 

included independent blinded CTA ratings by vascular neuroradiologists. Furthermore, we 

performed delayed and multiple IADSAs in selected patients, which increased the detection 

of macrovascular causes. 

Nevertheless, our study also has limitations. The retrospective nature of the study is likely 

to cause selection and partial verification bias. Although 63% of our cohort had a normal 

initial CTA (suggesting that there is little partial verification or “work up” bias), our sample 

is younger than an unselected ICH cohort (median age 49, IQR 40-59), suggesting selection 

bias, likely because IADSA was an inclusion criterion. This reflects current clinical practice 

with an inherent hesitancy for requesting IADSA in older individuals (e.g. > 70 years) in 

whom that the yield of a macrovascular cause is perceived to be very low (15).  This 

selection bias toward younger individuals also explains why our proportion of vascular 

malformations is much higher than one would expect from an unselected population. Our 

results can thus only be generalized to younger patients with ICH. This is a difficult bias to 

overcome in any study, because undertaking IADSA in all unselected consecutive patients 
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with ICH is unlikely to be considered ethical because of the procedural risk, which may be 

as high as 3% in ICH (12). Nevertheless, this acknowledged selection bias is unlikely to 

weaken our main finding that SVD is predictive of a low yield of a macrovascular 

abnormality. 

We did not capture ICH volume in our cohort, which would have been useful to better 

characterise our population. The proportion of patients with larger ICH might be relevant, 

because such patients are less likely to undergo acute IADSA, and can be difficult to 

classify according to anatomical ICH location. We did not include any patients with 

multiple acute haemorrhages, presumably because they were considered unlikely to have 

multiple macrovascular causes and thus did not undergo an IADSA at our centre. Despite 

these limitations, the demographic features of our study suggest that it is likely to be 

generalizable to the ICH population that in clinical practice is considered for investigation 

for an underlying macrovascular cause. A further limitation is that we did not routinely 

undertake MRI in all included patients, and were therefore unable to investigate additional 

markers of cerebral SVD underlying ICH, such as cerebral microbleeds, dilated 

perivascular spaces or cerebral atrophy (89, 93). The use of standardised MRI prior to 

IADSA would have strengthened our study as it is better able to differentiate between the 

type of SVD (i.e. cerebral amyloid angiopathy or hypertensive arteriopathy), and is superior 

for the detection of other underlying causes for ICH (e.g. cavernomas or mass lesions). 

However, the lack of MRI is unlikely to have compromised our ability to detect 

leukoaraiosis, the main SVD feature analysed in our study: a previous study (243) 

demonstrated that although MRI is more sensitive than CT in detecting subtle (Fazekas 

grade 1) white matter lesions, MRI and CT have a high concordance in detecting clinically 

more relevant Fazekas grade 2 and 3 lesions, which we used as predictor in our analysis. 

Our choice of CT (which was available in all patients acutely at the time of haemorrhage) 

for assessment of white matter lesions is therefore very unlikely to have led to a significant 

underestimation of moderate- severe (Fazekas grade ≥2) small vessel disease. Furthermore, 

our (unpublished) internal inter-rater reliability is moderate to good for the identification of 

Fazekas 2/3 in ICH populations (Kappa = 0.60), and we were careful to exclude 

perihaematomal oedema as a potential mimic of small vessel disease by assessing 

hemisphere contralateral to the ICH. We did not encounter any cases of transependymal 



 

114 

  

oedema due to acute hydrocephalus, likely due to the selection bias of our patients where 

we only included those with IADSA, an intervention unlikely to be undertaken in such 

patients. By contrast, the poor sensitivity and specificity (especially with regards to 

differentiating enlarged perivascular spaces) of identifying lacunar infarction on CT 

remains a limitation.  

In summary, we show, in a younger acute ICH population (median age 49 years) at risk of 

having an underlying macrovascular cause, the identification of SVD (moderately severe 

leukoaraiosis or lacunar infarction on CT), in combination with CTA and pre-ICH 

hypertension ICH, can predict which ICH patients have a low yield of an intracranial 

macrovascular cause. If externally validated, our algorithm has potential to more effectively 

target invasive IADSA towards patients with the highest potential diagnostic yield, 

avoiding unnecessary invasive tests and improving the diagnostic pathway for patients with 

spontaneous ICH. 
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7.0 Risk of recurrent intracerebral haemorrhage and ischaemic stroke 

after intracerebral haemorrhage: multicentre prospective cohort study 

 

Introduction Survivors of intracerebral haemorrhage (ICH) are at risk of both recurrent 

ICH and ischæmic stroke (IS), leading to uncertainty concerning the benefits and risks of 

treatment with antithrombotic drugs. ICH location (lobar vs deep) might influence the risk 

for recurrent ICH and IS, but data are limited.  

Methods We included data from participants with ICH in a prospective multicentre 

observational study and investigated the incidence of IS and recurrent ICH, according to 

index ICH location (lobar vs. non-lobar (basal ganglia, thalamic, or brainstem, but not 

cerebellar). 

Results We included 1094 patients, mean age 73 years (SD 12 years); 447 (43%) ICH were 

lobar, and 581 (57%) were non-lobar. 60 patients had 35 ICH events over 1648 patient-

years of follow up and 27 IS events over 1608 patient-years of follow-up. Lobar ICH 

location was independently associated with a higher rate and risk of recurrent ICH 

compared to non-lobar ICH (3.6%/year vs. 1.1% per year; adjusted HR 3.25, 95% CI 1.49 

to 7.06, respectively). Lobar ICH location was associated with a lower rate of IS compared 

to non-lobar ICH (0.9%/year vs 2.0%/year) but the adjusted risk was not statistically 

significant (adjusted HR 0.40, 95% CI 0.16 to 1.01). 

Conclusions Lobar ICH survivors have a higher rate and risk of recurrent ICH than non-

lobar ICH survivors. Whilst they also have a lower rate of new IS, the risk was not 

significantly different in adjusted analyses. Further studies are needed to define whether 

treatment effects (e.g. antithrombotic drugs for IS prevention) differ according to ICH 

location. 
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7.1 Rationale for study 

Intracerebral haemorrhage (ICH) is a devastating condition with mortality over 50% at 1 

year(3). A difficult clinical dilemma in ICH survivors is whether to recommend 

antithrombotic treatments that could reduce future vaso-occlusive ischaemic events, 

including acute ischaemic stroke (IS), but might increase their future risk of ICH. This is a 

pertinent question for patients with an indication for preventive treatments including 

antiplatelet agents (e.g. in patients with ischaemic heart disease), anticoagulants (e.g. in 

patients with atrial fibrillation (AF))(244), or statins (245-248), all of which might increase 

recurrent ICH risk. Identifying clinical and imaging risk factors associated with IS and 

recurrent ICH could help clinicians with these decisions. Whilst there is some data on the 

risk of recurrent ICH (estimated between 1.3% and 7.4% annually(3)), which might be 

highest for patients with lobar ICH(3), there is less data on the risk of subsequent IS and 

associated risk factors(3, 124-126). Further data on the risks of IS and recurrent ICH, as 

well as their clinical and imaging associations, should help guide clinical decision-making 

after ICH, especially regarding antithrombotic (antiplatelet and anticoagulant) drugs.  

 

This study, therefore, investigated the incidence and the demographic, clinical and 

neuroimaging associations of stroke events (both IS and recurrent ICH) in ICH survivors, 

using data from a prospective multicentre UK cohort study of adults with neuroimaging 

confirmed spontaneous primary ICH. We hypothesized that participants with lobar ICH 

would have a higher risk of recurrent ICH and a lower risk of IS than those with non-lobar 

ICH.  
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7.2 Methods 

7.2.1 Clinical data 

All data were collected as part of CROMIS-2 ICH (NCT02513316), a prospective 

multicentre observational study of adult ICH survivors; full details of the study protocol 

have been published elsewhere (208). Variables of interest for all univariable analyses were 

pre-specified for both IS and recurrent ICH.  

 

7.2.2 Clinical outcomes during follow-up 

Our outcome events of interest were recurrent ICH or IS. Follow up was collected from 

patients and GPs via a questionnaire, nominally at 6 months. National Health Service 

information centre data was reviewed to ensure there were no patient admissions not 

captured by the patient or GP questionnaire. Primary events were not adjudicated centrally. 

Primary events (recurrent ICH or new IS) were diagnosed if the patient was hospitalized, 

underwent brain imaging and given a diagnosis of either ischaemic stroke or recurrent ICH 

by the local investigators 

 

7.2.3 Imaging data  

Baseline brain imaging (acute CT scans or acute MRI) were acquired as part of standard 

care, mainly at hospital admission. Scans were rated for leukoaraiosis by a trained research 

fellow (DW) using a validated scale(249). Leukoaraiosis was then dichotomised into 

none/mild or moderate/severe based upon whether the score added to a value of >3. 

Lacunar infarction was rated according to STRIVE guidelines(11). A scan was “positive” 

for small vessel disease in the presence of either lacunar infarction or moderate/severe 

leukoaraiosis. Haematoma location was defined using a published scale, then subdivided 

into lobar or non-lobar(250). 

 

 

7.2.4 Statistical analysis 

All analysis was undertaken on Stata version 14.0 (StataCorp LP, TX). Baseline variables 

were presented as means and SD if normally distributed, median and IQR if not normally 

distributed and n with percentage if categorical. Cox regression analysis was undertaken 
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due to variable follow up. In all Cox models’ patients with cerebellar ICH were excluded 

from analysis as it is unclear whether these patients share similar causes and prognosis with 

lobar or deep ICH. Univariable Cox regression was used to compare the pre-specified 

variables of interest. Multivariable Cox regression was then performed, due to the low 

number of events we adjusted for variables identified as significant (p<0.05) in the 

univariable analyses. In a sensitivity analysis, we additionally included variables significant 

at the 20% level one by one in turn. We assessed the assumption of proportional hazards by 

visual inspection of each log-log plot of survival. 
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7.3 Results 

CROMIS-2 ICH recruited 1094 patients. (Figure 21). The mean age was 73 years (SD 12 

years) and 463 (43%) were female. 372 (35%) had atrial fibrillation. 440 (41%) patients 

were on anticoagulation at the time of their ICH, 274 (25%) on antiplatelets and 444 (43%) 

on statins at the time of their ICH. When considering ICH location, 447 (41%) were lobar 

and 581 (53%) were deep or located in the brainstem and 65 (6%) were in the cerebellum. 1 

patient’s ICH location could not be determined (Table 14) 
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Figure 21 Study flow chart 
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Table 14 Baseline characteristics of the study population (n=1094). 

 
Demographic and clinical features 
Age, median (SD) 73 (12) 

Sex, female n (%) 463 (43) 

Hypertension, n (%) 713 (67) 

Diabetes mellitus, n (%) 201 (19) 

Hyperlipidaemia, n (%) 465 (44) 

Atrial fibrillation, n (%) 372 (35) 

Previous IE, n (%) 267 (25) 

Previous ICH, n (%) 44 (4) 

Vascular disease #, n (%) 193 (18) 

Total cholesterol mmol/l†, median (IQR) 

*available in 512 

4.5 (3.7 to 5.5) 

  

Medication at time of study entry with index ICH 

Antiplatelet use, n (%) 274 (25) 

Anticoagulation use, n (%) 440 (41) 

Statin use, n (%) 444 (43) 

  

Imaging features  

SVD presence n (%) 373 (35) 

ICH location, deep, n (%) 581 (53) 

ICH location, lobar, n (%) 447 (41) 

ICH location, cerebellar, n (%) 65 (6) 

  

Discharge medication following index ICH  

Statin 323 (30) 

 

Footnote 

# Vascular disease includes ischaemic heart disease and peripheral vascular disease  
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1058 (97%) patients had follow up during which 60 patients had 62 stroke events: 35 

recurrent ICH events over 1648 patient-years (2.1%/year) and 27 IS events over 1608 

patient-years (1.7%/year). Two patients had recurrent IS events whilst one patient had an IS 

followed later by a recurrent ICH.  

 

7.3.1 Recurrent ICH rate by ICH location and risk 

24 patients with lobar ICH had a recurrent ICH over 665 patient-years (3.6%/year) vs. 11 

patients with non-lobar ICH over 982 patient-years, a rate of (1.1%/year)  

In univariable analyses (Table 15), previous ICH, antiplatelet use at the time of index ICH, 

and lobar ICH were associated with recurrent ICH. In multivariable analysis (adjusting for 

antiplatelet use and previous ICH), lobar ICH location (HR 3.25, 95% CI 1.49 to 7.07) and 

previous antiplatelet use (HR 2.22, 95% CI 1.09 to 4.54) remained significantly associated 

with recurrent ICH risk (Table 16). The addition of further variables in a sensitivity 

analysis did not significantly change the result (data not shown). Kaplan-Meier curves 

stratified by ICH location are presented for both recurrent ICH and IS (figure 22) 

  



 

123 

  

Table 15: Univariable analyses for risk of a recurrent ICH following ICH 

 HR 95% CI p value 

Demographics 

Age (per year increase) 1.02 0.99 to 1.05 0.120 

Sex (female) 1.36 0.69 to 2.66 0.371 

Hypertension (presence) 1.43 0.67 to 3.06 0.360 

Diabetes mellitus(presence) 1.50 0.70 to 3.21 0.291 

Hyperlipidaemia (presence) 0.99 0.49 to 1.99 0.972 

Atrial fibrillation (presence) 0.85 0.41 to 1.77 0.659 

Previous stroke or TIA (presence) 1.66 0.82 to 3.33 0.157 

Previous ICH (presence) 3.46 1.22 to 9.86 0.020 

    

Medications at admission 

Antiplatelet use at the time of baseline ICH 2.16 1.12 to 4.27 0.022 

Anticoagulation use at the time of baseline ICH 0.93  0.47 to 1.85 0.836 

Statin use at the time of baseline ICH 1.22 0.62 to 2.40 0.561 

    

Imaging findings 

SVD presence 1.62 0.83 to 3.15 0.155 

ICH location, lobar (vs. non-lobar ICH location 

excluding cerebellar ICH) 

3.57 1.66 to 7.68 0.001 

    

Medications at discharge 

Statin 1.33 0.67 to 2.66 0.420 

 

Key: ischaemic stroke-ischaemic stroke, TIA-transient ischaemic attack, ICH intracerebral 

haemorrhage, SVD-small vessel disease. 

* Vascular disease incorporates ischaemic heart disease and peripheral vascular disease 
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Table 16 Multivariable analysis for risk of a recurrent ICH following ICH 

 
Covariate HR 95% CI p value 

Lobar ICH location 

(vs. non-lobar ICH 

location excluding 

cerebellar ICH) 

 

3.25 1.49 to 7.06 0.003 

Previous ICH 

 
2.66 0.80 to 8.80 0.109 

Antiplatelet at time of 

baseline ICH 
2.22 1.09 to 4.54 0.029 

 

Key: ICH: Intracerebral haemorrhage, TIA –transient ischaemic attack 

 

 

7.3.2 New IS rate by ICH location and risk 

6 patients with lobar ICH location had a new IS over 654 patient-years of follow-up, (0.9% 

per year) vs. 19 patients with non-lobar ICH over 953 patient-years of follow-up (2.0% per 

year).  

 

Univariable analyses of baseline associations with the risk of IS following ICH are shown 

in Table 17. Only the presence of atrial fibrillation and anticoagulant use at baseline ICH 

had a significant association with new IS. In multivariable analysis adjusting for AF at the 

time of index ICH and previous IS or TIA, only atrial fibrillation presence at time of 

baseline ICH remained significantly associated with IS occurrence (HR 2.59; 95% CI 1.13 

to 5.92 p=0.025). Lobar ICH location remained inversely associated with IS occurrence but 

this was not statistically significant (HR 0.40; 95% CI 0.16 to 1.02 p=0.055). (Table 18). 

Anticoagulation at time of ICH was not entered into the model due to collinearity with AF. 

Sensitivity analysis did not significantly change the result (not shown). 
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Table 17 Univariable analyses for risk of new ischaemic stroke 

 HR 95% CI p value 

Demographics 

Age (per year increase) 1.02 0.98 to 1.05 0.289 

Sex (female) 0.90 0.40 to 2.00 0.798 

Hypertension (presence) 0.73 0.33 to 1.65 0.457 

Diabetes mellitus(presence) 1.19 0.44 to 3.19 0.728 

Hyperlipidaemia (presence) 1.31 0.59 to 2.93 0.503 

Atrial fibrillation (presence) 2.78 1.26 to 6.12 0.011 

Vascular disease *(presence) 1.24 0.46 to 3.30 0.670 

Previous stroke or TIA (presence) 2.21 0.99 to 4.93 0.052 

Previous ICH (presence) 1.07 0.15 to 7.95 0.943 

    

Medication at admission 

Antiplatelet use 0.74 0.30 to 1.98 0.554 

Anticoagulation use 3.43 1.48 to 7.95 0.004 

Statin use 1.54 0.70 to 3.38 0.279 

    

Imaging findings 

SVD presence 2.13 0.97 to 4.67 0.059 

ICH location lobar (vs. non-lobar ICH location 

excluding cerebellar ICH) 

0.44 0.18 to 1.12 0.084 

    

Medications at discharge 

Statin  0.69 0.28 to 1.73 0.427 

 

Table footnote 

TIA-transient ischaemic attack, ICH intracerebral haemorrhage, SVD-small vessel disease.  
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Table 18 Multivariable analysis for risk of an ischaemic event following ICH 

 
Covariate HR 95% CI p value 

Lobar location of ICH 

(vs. non-lobar ICH 

location excluding 

cerebellar ICH) 

 

0.40 0.16 to 1.01 0.055 

Previous stroke or TIA 

 
1.65 0.70 to 3.87 0.248 

Atrial fibrillation 

 
2.59 1.13 to 5.92 0.025 
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Figure 22 Kaplan Meier failure estimates based upon ICH location for recurrent ICH and incident IS. 
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Given the low numbers of patients who started or restarted antiplatelet and anticoagulant 

medications at discharge and lack of data on whether these medications were continued or 

restarted during follow up, we could not explore their impact on recurrent ICH or new 

ischaemic stroke. Statin use at hospital discharge was not associated with incident IS or 

recurrent ICH during follow-up (Univariable HR 1.33; 95% CI 0.67 to 2.66 and univariable 

HR 0.68; 95% CI 0.28 to 1.73 respectively). 
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7.4 Discussion 

We show that, in ICH survivors overall, the rates of recurrent ICH and new IS are similar, 

at 2.1% per year and 1.7% per year, respectively. However, patients with baseline lobar 

ICH have approximately three times the rate risk of recurrent ICH compared to those with 

non-lobar ICH. Taking an antiplatelet agent at the time of ICH and having a previous ICH 

were independent risks for recurrent ICH, while AF at the time of ICH was the only 

independent risk for new IS. 

 

In keeping with previous studies we confirm that in ICH survivors overall, the risk of 

ischaemic stroke is similar to that of recurrent ICH(251, 252) while lobar ICH location is a 

risk factor for recurrent ICH(252, 253). However, our study also suggests that lobar ICH is 

associated not only with a higher risk of recurrent ICH, but also a lower risk of IS.  

Our findings have potential clinical implications regarding antithrombotic decisions in ICH 

survivors. Although registry data suggests in patients with AF, restarting anticoagulation is 

safe, most of the published studies could not account for the effect of ICH location(254, 

255). Moreover, randomised trial data are lacking for the use of both anticoagulants and 

antiplatelets after ICH. Our data suggest that the effects of antithrombotics in ICH survivors 

might differ according to the location of the index ICH and that ICH location should be 

considered in ongoing trials (APACHE-AF (NCT02565693), SoSTART (NCT03153150), 

PRESTIGE AF) on this question. 

 

We could not explore the association between antithrombotic use at hospital discharge and 

outcome events as the prevalence of antithrombotic use at discharge was very low and we 

do not have information on whether these medications were started or discontinued during 

follow up. 

 

Statin use on discharge was not associated with either recurrent ICH or new IS. Statin use 

after ICH has been a topic of discussion since the SPARCL trial where patients with ICH as 

an entry into the trial who started on statins had over 5 times risk of recurrent ICH than 

those who were not (256). This was, however, only based on 93 patients and 9 events, 7 of 

which were in the statin arm. Following this result, single centre registries (257) and case-
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control studies (258, 259) with much larger numbers of patients with ICH have failed to 

replicate this finding. 

 

Recurrent ICH was associated with antiplatelet use but not anticoagulation use at admission 

with ICH. However, this association could be due to confounding by the indication for 

taking an antiplatelet drug: antiplatelet use was over-represented in those with previous 

stroke or TIA, those with vascular disease, and in those with hypertension (results not 

shown). Thus, it is possible that antiplatelet use is an indication of ‘vascular disease’ 

(including small vessel disease), which might increase the risk of recurrent ICH rather than 

the antiplatelet medication itself. Due to the small number of events we were unable to 

explore this further by adjusting for potential indications for antiplatelet drug use.  

 

Our study has strengths; we included a large multi-centre cohort of ICH survivors from 

around the UK, increasing the generalizability of our findings. Where possible we 

undertook multivariable regression to account for differences in patient demographics and 

risk factors. This study also benefits from the detailed clinical and neuroimaging 

phenotyping undertaken at baseline. 

 

We also acknowledge limitations: our observational study is biased toward ICH survivors, 

although this is the patient group in which treatment decisions to prevent future events is 

most important. There were limited ICH and IS events during follow up, which limits our 

ability to run a robust multivariable analysis. We only have information with regard 

anticoagulation at discharge or at an event, but did not collect this information at routine 

six-month follow up. Therefore, we were not able to explore how restarting antithrombotics 

in those with an indication modulated the outcome events. A further limitation is only a 

small subset underwent MRI to evaluate other relevant markers of small vessel disease that 

are not visible on CT (for example cerebral microbleeds). 

 

Our findings of different risks of recurrent ICH and IS according to ICH location suggest 

that for secondary prevention strategies after ICH (including the use of antithrombotic 

drugs), the location of the ICH should be considered. Our findings are also relevant for 
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randomised controlled trials in ICH survivors with an indication for anticoagulation and 

antiplatelets are awaited. 
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8.0 Validating CHA2DS2-VASc in patients with intracerebral 

haemorrhage and atrial fibrillation 

 

Introduction: The CHA2DS2-VASc score (Congestive heart failure, Hypertension, Age, 

Diabetes, Stroke, Vascular disease, Sex) has been validated in different atrial fibrillation 

(AF) patient populations, but not in patients who have had intracerebral haemorrhage 

(ICH). This study aims to validate the CHA2DS2-VASc risk prediction system in patients 

with ICH.  

Methods: We included data from a prospective observational multicentre study of patients 

with imaging-confirmed ICH and documented AF. CHA2DS2-VASc scores were generated 

for each patient. ROC curves, Hosmer-Lemeshow tests and corresponding risk estimates 

comparing subsequent ischaemic stroke events against the CHA2DS2-VASc risk estimates 

were then derived. The observed and predicted risks were then plotted against each other 

for a visual approximation of fit. We tested the calibration of the CHA2DS2-VASc score by 

fitting a logistic regression model with ischaemic stroke as the outcome and the predicted 

log-odds of ischaemic stroke (from CHA2DS2-VASc) as the only predictor. 

Results: 322 patients were included in the final analysis. There were 17 ischaemic strokes 

and 7 major bleeding events (all recurrent ICH) within a median follow up period of 228 

days (IQR 186 to 420). The median CHA2DS2-VASc score was 4 (IQR 3 to 5). Compared 

to the risk predictions adapted from CHADSVASC.org our findings showed excellent 

agreement (Hosmer-Lemeshow goodness of fit: p=0.85). The calibration was also 

satisfactory (slope 1.02 and intercept 0.21, p=0.80), with no evidence of a difference. The C 

statistic was 0.64. 

Conclusion: The CHA2DS2-VASc scoring system has similar predictive value in ICH 

survivors with AF compared to other AF populations, so might be useful in estimating the 

risk of ischaemic stroke in this population.  
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8.1 Rationale for study 

The CHA2DS2-VASc score is a commonly used and validated risk prediction system that 

helps clinicians with anticoagulant decisions regarding ischaemic stroke risk in patients 

with atrial fibrillation (AF) (260-262). It has been validated in population-based samples 

(261, 263, 264),  patients with ischaemic stroke(265), renal failure(266) or post-myocardial 

infarction(267) as well as in populations of different ethnicity(263, 268). However, 

CHA2DS2-VASc  has not been validated in patients with intracerebral haemorrhage (ICH) 

and AF; the Euro Heart Survey on AF (260) from which CHA2DS2-VASc was devised 

included only 62 patients with a history of major bleeding, whilst the validation cohort 

excluded patients with ICH(264).  

 

AF is common in patients with ICH(244), and leads to challenging antithrombotic decisions 

because of concerns about the risk of recurrent ICH as well that of ischaemic stroke(3); 

moreover, anticoagulants result in poorer outcomes should ICH occur(251, 252). Data from 

recent large observational trials suggest that restarting anticoagulation is associated with 

decreased risks of ischaemic stroke mortality, without an increase in ICH events(129, 244, 

254). However, these studies could not investigate risks at an individual patient level. If the 

CHA2DS2-VASc score can help predict the risk of ischaemic stroke in ICH patients with 

AF, this could help clinicians judge the potential benefits and risks of anticoagulation in 

individual patients. 

This study, therefore, aimed to validate the CHA2DS2-VASc risk prediction system using 

data from a prospective multicentre study of patients with imaging confirmed ICH. 
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8.2 Methods 

8.2.1 Clinical data 

All data has been taken from the CROMIS-2 ICH study, a prospective multicentre 

observational study of ICH survivors; full details of the study protocol have been published 

previously (208). Clinical data used in the prediction models were collected at baseline. 

Hypertension was defined by a documented history of hypertension or if the patient was 

taking antihypertensive medication at the time of study entry. Vascular disease was defined 

as having either ischaemic heart disease or peripheral vascular disease. The end point in 

this sub-study was the development of ischaemic stroke, death or reaching the final study 

follow up (defined as 6 months following study enrolment). 

We only included patients with ICH and AF who were not started on anticoagulation, 

because this will alter the future risk of ischaemic stroke. CHA2DS2-VASc scores were 

generated for each patient. ROC curves, Hosmer-Lemeshow tests and corresponding risk 

estimates comparing subsequent ischaemic stroke events against the CHA2DS2-VASc risk 

estimates(264) were then derived.  The observed and predicted risks were then plotted 

against each other for a visual approximation of fit. We tested the calibration of the 

CHA2DS2-VASc score by fitting a logistic regression model with ischaemic stroke as the 

outcome and the predicted log-odds of ischaemic stroke (from CHA2DS2-VASc) as the 

only predictor. An intercept and a slope close to 0 and 1 respectively suggested good 

calibration. Lastly, we used generalized linear models with offset terms to investigate 

whether we could add additional variables to the CHA2DS2-VASc score while keeping the 

existing variables and their original weightings. 

 

8.2.2 Imaging data  

Acute CT scans were rated for leukoaraiosis by a trained research fellow (DW) using a 

validated scale(249). Leukoaraiosis was then dichotomised into none/mild or 

moderate/severe based upon whether the score added to a value of ≥3. Lacunar infarction 

was rated according to STRIVE guidelines(11). A scan was considered “positive” for small 

vessel disease in the presence of either lacunar infarction or moderate/severe leukoaraiosis. 

Haematoma location was defined using a published scale (250) and then classified as either 
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lobar or non-lobar (non-lobar including deep white matter, basal ganglia structures, 

thalamus, caudate, brainstem and cerebellar). 
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8.3 Results 

Of the 1094 patients in CROMIS-2 ICH, there were 365 patients with concurrent AF. Of 

these, 22 patients were anticoagulated at discharge and 21 patients lacked the information 

required to generate a CHA2DS2-VASc score; thus, 322 patients were included in the final 

analysis (Figure 23). There were 17 ischaemic strokes, 7 major bleeding events (all 

recurrent ICH) and 148 deaths within the follow-up period. Median follow up was 228 days 

(IQR 186 to 420). 
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Figure 23 Flowchart of patient entry into the study 
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Baseline variables are presented in Table 19. When compared with patients included in 

CROMIS-2 ICH, the CHA2DS2-VASc validation cohort was similar, although slightly 

older and had a higher prevalence of hypertension, hyperlipidaemia, congestive heart 

failure and previous ischaemic stroke or TIA, they were also less likely to be on 

antiplatelets at their admission. The median CHA2DS2-VASc score was 4 (IQR 3 to 5, 

range 0 to 7). 

 

Table 19 Baseline characteristics of patients included in validation cohort compared 

to those not included 

 

Baseline Variable 
CHA2DS2-VASc validation 

cohort(n=322) 

CROMIS -2 Patients 

excluded from validation 

cohort (n=752) 

Age median (SD) 79 (9.2) 71 (13.0) 

Sex n (% female) 148 (42) 307 (43) 

HTN n (%) 266 (76) 437 (62) 

DM n (%) 80 (23) 118 (17) 

Hyperlipidaemia n (%) 179 (52) 444 (44) 

Congestive heart failure n 

(%) 
33 (10) 16 (2) 

Antiplatelets at time of 

ICH n (%) 
59 (17) 212 (30) 

Previous ischaemic stroke 

or TIA n (%) 
126 (36) 139 (20) 

Previous ICH n (%) 8 (2) 35 (5) 

SVD 132 (38) 341 (33) 

Lobar location of ICH n 

(%) 
181 (51) 316 (44) 
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For the observed vs. predicted plots, we dropped CHA2DS2-VASc scores where there were 

less than 10 patients in each category (scores 0, 7 and 8). When compared with the original 

CHA2DS2-VASc development cohort(260) our cohort is older (mean age 78 years vs. 66 

years), has a higher prevalence of hypertension (76% vs. 67%), had a greater prevalence of 

previous ischaemic stroke or TIA (36% vs.9%), whilst having a lower prevalence of 

congestive heart failure (10% vs. 24%) and vascular disease (27% vs.38%). Comparing the 

risk predictions adapted from Lip et al(260) (Table 20; Figure 24), our findings showed 

excellent agreement (Hosmer-Lemeshow goodness of fit p=0.85; no evidence of lack of 

fit). The calibration was also satisfactory (slope 1.02 and intercept 0.21, p=0.80), with no 

evidence of a difference. The C statistic was 0.64. 

Neither the addition of ICH location (OR 2.01, 95% CI 0.72 to 5.61, p=0.181) nor SVD 

presence (OR 0.82, 95% CI 0.29 to 2.29, p=0.703) to the existing CHA2DS2-VASc 

improved the predictive power for ischaemic stroke in this population.  
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Table 20 Actual observations vs. predicted observations in ICH cohort with AF 

 

CHA2DS2-VASc score Actual risk of stroke % 

(n/N) [95% CI] 

Predicted risk of stroke % 

2 2.9 (1/35) [0.1 to 14.9] 2.2 

3 2.2 (2/92) [0.2 to 7.6] 3.2 

4 6.5 (6/93) [2.4 to 13.5] 3.8 

5 8.3 (6/72) [3.1 to 17.3] 6.7 

6 10.5 (2/19) [1.3 to 33.1] 9.8 

 

Key. Predicted observations adapted from Lip et al 2010, available at chadsvasc.org 

 

 

Figure 24 Observed vs Predicted plot of ICH recurrence 

 
Footnote: Predicted observations adapted from Lip et al 2010, available at chadsvasc.org  
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8.4 Discussion 

We have validated the CHA2DS2-VASc scoring system in a population of ICH survivors 

with AF by showing firstly that on average the predicted risks are similar to the observed 

risks, and secondly that the score has a similar predictive value (as judged by the C-

statistic) in an ICH population as has been reported in other AF populations. Interestingly, 

we found that the risk of ischaemic stroke is higher in ICH patients with AF than that of a 

population-based AF cohort  

To the best of our knowledge, this is the first study to validate the CHA2DS2-VASc score in 

an ICH population. Whilst we observed slightly higher ischaemic stroke risks by 

CHA2DS2-VASc score than those reported in a population-based cohort, the increase in risk 

with each point increase in CHA2DS2-VASc was similar. Although our C-statistic showed 

moderate discrimination (0.64), this is comparable with other validation cohorts for 

CHA2DS2-VASc including ischaemic stroke populations(264). The higher event rate of 

ischaemic stroke in our population may be explained by an increased risk of lacunar 

infarction due to the expected high prevalence of cerebral small vessel disease. Unlike 

population-based AF cohorts, patients with primary ICH are likely to have underlying small 

vessel disease and therefore are at higher risk of lacunar infarction. Indeed, of the 17 

ischaemic strokes, only 11 were cardioembolic, three were small vessel occlusion and three 

were unknown. Furthermore, our patient group was also older and had a higher prevalence 

of hypertension and previous ischaemic stroke or TIA. 

 

Our study has strengths. CROMIS-2 is a large prospectively recruited multicentre study of 

ICH survivors which should be representative of a Western ICH survivor population, and 

we were able to include many ICH patients with AF. Although there were some differences 

in demographics and risk factor profiles between our validation cohort and the total study 

population, the differences are expected given AF is associated with age and vascular risk 

factors (269). Furthermore, very few of our patients with ICH and AF were restarted on 

anticoagulation, suggesting there is little selection bias. Despite these strengths, our study 

does have some limitations. We do not have information on anticoagulation after discharge, 

which might affect the risk of ischaemic stroke. We used CT rather than MRI measures of 

small vessel disease as only a subset of patients had MRI imaging; MRI would have 
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allowed more detailed analysis of the structural neuroimaging markers of small vessel 

disease (for example, quantification of cerebral microbleeds and MRI-visible perivascular 

spaces). We could not explore major bleeding risk scores (i.e. HAS-BLED) within our 

cohort as we only had 7 recurrent ICH events, and our cohort included only patients not 

known to be taking anticoagulation after ICH. 
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9.0 Discussion and Conclusions 

Our understanding of ICH has progressed immensely over the past decade. We have moved 

away from the label ‘primary’ ICH reflecting our greater understanding of the mechanism 

underlying most cases of spontaneous ICH: cerebral small vessel disease (11). 

Epidemiological studies of ICH have identified key risk factors of which hypertension 

along with alcohol intake and psychosocial factors are the most important (270, 271). 

Clinical risk scores have been developed to help clinicians with difficult anticoagulant 

decisions (213, 272, 273), albeit with modest ability to predict ICH (274). The increasing 

role of neuroimaging in patients with CAA help push our understanding of this devastating 

condition further: pathological validation studies using neuroimaging biomarkers to 

diagnose CAA have been published (111, 275), including a CT based diagnostic criteria 

(276). In addition to CMBs and cSS, high grade centrum semiovale perivascular spaces 

(107, 174, 277, 278), cortical atrophy (279), blood-oxygen level-dependent (BOLD) 

response on functional MRI (280-282) and amyloid PET (using various ligands) (282-284) 

have all shown promise as useful biomarkers in identifying patients with CAA. Despite 

these advancements, the incident of ICH has remained stable, or even increasing in some 

populations (4, 7), what’s more, some of these advancements have led to clinical 

uncertainty; for example, the clinical implications of CMBs, or cortical superficial siderosis 

in patients without intracerebral haemorrhage, especially regarding antithrombotic 

treatment. 

 

In chapter one and two, I outline our current understanding of the mechanisms underlying 

spontaneous intracerebral haemorrhage: namely, small vessel disease. I review selected 

neuroimaging markers of small vessel disease and their relationship to intracerebral 

haemorrhage. In the third chapter, I identify current gaps in our knowledge, which the work 

in my thesis aimed to fill. 

 

In this chapter, I briefly summarise the main findings described in chapters 4-8 and, 

together with the other available published literature, attempt to fill the gaps in knowledge 

identified in chapter three. Finally, in chapter 10, I highlight some remaining gaps in 

knowledge relevant to ICH and suggest directions for future research.  
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9.1 Summary of our main findings 

ICH and ischaemic stroke risk associated with CMBs in patients with ischaemic stroke 

The identification of CMBs as a marker of a ‘bleeding prone arteriopathy’ was originally 

based on their strong association with ICH populations (124, 125). Few data existed from 

ischaemic stroke populations, though small single centre studies in mainly Western 

populations suggested that CMBs are also associated with ischaemic stroke recurrence 

(189-192, 195).  

 

In chapter four I describe an aggregate-level meta-analysis including published and 

unpublished data to obtain more accurate estimates of the rate and risks of ICH and IS in 

patients with ischæmic stroke who have CMBs. We stratified CMB by burden and 

distribution and explore how these interact with ICH and ischaemic stroke risk. We showed 

that CMBs are associated with both ICH and ischaemic stroke, but that a clear dose 

relationship only exists for ICH risk. Indeed, patients with five or more CMBs (compared 

to those with none), have a 4 times higher risk for ICH than ischaemic stroke. However, the 

absolute rates of ischaemic stroke were higher than the rates of ICH in all categories of 

CMB burden. Regarding CMB distribution; those with strictly lobar and mixed CMBs had 

the highest risk of ICH (compared to those with none) however, we could not account for 

differences in CMB burden within these patients. A recent observational study including 

two large western and eastern populations investigated the time course of risks of ischaemic 

stroke and haemorrhage events in people exposed to antiplatelets after ischaemic stroke or 

TIA (285). They show IS risk is substantially higher than ICH risk within the first one year, 

even in patients with a high burden (≥5) of CMBs, but after this time the risk of ICH 

matches that of IS. Taken together these studies provides clinicians with some reassurance 

regarding prescribing antiplatelet medications in stroke, even in patients with high CMBs 

burdens. However, as antiplatelets are most effective very early after stroke or TIA with a 

diminishing benefit over long-term use (286), whether antiplatelets provide a net benefit in 

patients with high CMB burdens after the first one year post-TIA or stroke is unknown. In 

the absence of randomized controlled trials, patients with high CMB burden should 

continue to be treated by best medical practice but perhaps counselled regarding higher 

risks of ICH with a more aggressive management of modifiable risk factors such as alcohol 
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intake and hypertension. Our results are not generalizable to patients taking oral 

anticoagulants, however, as most patients in our meta-analysis were taking antiplatelet 

drugs. 

 

In chapter five we review the association of CMBs with ICH and ischaemic stroke risk in 

patients with ischaemic stroke secondary to AF. CROMIS-2 is the first study adequately 

powered to evaluate whether CMBs are associated with an increased risk of ICH in patients 

with ischaemic stroke who require anticoagulation. We provide new evidence in patients 

with ischaemic stroke or TIA and atrial fibrillation, that CMB presence is an independent 

risk factor for intracranial haemorrhage (adjusted HR 3·67 (95% CI 1·27 to 10·60)). 

Combining our data with previously published studies confirms our findings and provides a 

more precise estimate of the association of CMBs with intracranial (or intracerebral) 

haemorrhage (Figure 25). We also show the risk of intracranial haemorrhage increases as 

CMB burden increases, but that the absolute event rate for ischaemic stroke remains higher 

than that for intracranial haemorrhage, even in patients with multiple CMBs. We developed 

and internally validated a simple risk prediction model for intracranial haemorrhage, 

showing for the first time that the inclusion of CMB presence as a neuroimaging biomarker 

improves the predictive value of a commonly used bleeding risk score based on clinical 

data alone (HASBLED). Our study firmly establishes that CMBs are an independent risk 

factor for subsequent intracranial haemorrhage in a Western population of patients with 

ischaemic stroke or TIA associated with AF and treated with anticoagulants. Furthermore, 

our study provides proof of concept that the addition of a neuroimaging biomarker (CMBs) 

improves the predictive ability of clinical risk scores for intracranial haemorrhage, a deadly 

complication of oral anticoagulation. This could help clinicians and patients make better-

informed anticoagulation decisions. Our findings support further pooled individual 

participant data meta-analyses of data from large prospective cohorts to increase the 

precision of our risk estimates and determine whether high CMB counts might be 

associated with a sufficiently high risk of intracranial haemorrhage to identify patients who 

will suffer net harm from oral anticoagulation. Additionally, pooled data should be used to 

refine and validate an intracranial haemorrhage risk score incorporating clinical factors and 

CMBs.  
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Figure 25 Forest plot of all prospective studies in patients on anticoagulation 

evaluating ICH relative risk with compared to without CMBs 
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Additional value of small vessel disease markers in identifying a macrovascular cause for 

ICH 

In chapter six we show markers of small vessel disease are a clinically useful predictor for 

identifying the absence of an underlying macrovascular cause for an ICH. Indeed, 

combining the presence/absence of small vessel disease markers with the results of a CT 

angiogram and history of whether the patient has hypertension, allows better risk 

categorization to help identify patients who should undergo invasive imaging to search for 

an underlying macrovascular cause. Due to selection bias, our results are only generalizable 

to a young population of patients with ICH, but this is likely to be the group in whom 

macrovascular causes are most common. Our score needs to be externally validated before 

clinical use. A similar score based on a prospective study was undertaken in the 

Netherlands (287). Our patient population served as the validation cohort for their model. 

After validation, their model incorporating CTA findings, CT SVD markers, age and ICH 

location achieved a C statistic of 0.88 (95% CI 0.83 to 0.94) for predicting an underlying 

macrovascular lesion as the cause for ICH. The model is displayed in figure 26 and shows 

the added value of identifying SVD in this patient population. 
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Figure 26 Prediction charts with absolute probabilities (%) of an underlying 

macrovascular cause in individual patients with ICH. CTA, CT angiography 
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Risk of recurrent ICH and new ischaemic stroke after ICH. 

Restarting antithrombotics in patients with an indication for antithrombotics after they 

suffer from ICH is a longstanding clinical conundrum (128, 288, 289). Clinical practice 

varies widely by country (290) and up until recently expert opinion was to avoid restarting 

anticoagulation in patients with ICH, especially if their ICH was in the lobar regions (128, 

288, 289). In the past three years there have been many observational studies investigating 

anticoagulant resumption after ICH: a meta-analysis of 8 such studies shows resumption of 

anticoagulation was associated with a lower risk of thromboembolic complications (pooled 

relative risk, 0.34; 95% confidence interval, 0.25-0.45) without an increased risk of 

recurrent ICH (pooled relative risk, 1.01; 95% confidence interval, 0.58-1.77) (291), 

unfortunately ICH location was not considered. A meta-analysis of three studies (n=1012) 

which included ICH location as a variable, showed that even in lobar ICH (n=379) (292), 

resumption of OACs is associated with decreased mortality (HR 0.29, 95% CI 0.17-0.45) 

and improved functional outcome (HR 4.08, 95% CI 2.48-6.72). In chapter seven I show 

that ICH location is an important determinant in that lobar ICH location is associated with 

recurrent ICH but inversely associated with new ischaemic stroke (albeit not reaching 

conventional statistical significance). Whilst history of a previous ischaemic stroke or atrial 

fibrillation were independent risk factors for new IS. Unfortunately, we did not collect 

information on antithrombotic medication at follow up so could not investigate the 

interaction between antithrombotic (re)start and ICH location. Nonetheless, our study 

further validates the importance that ICH location should be considered when considering 

recurrent event risk. We await randomised control trials (RESTART (ISRCTN71907627), 

SoSTART (NCT03153150), RESTART-FR (NCT02966119), STATICH (NCT03186729), 

NASPAF-ICH (NCT02998905), A3-ICH (NCT03243175), ASPIRE, APACHE-AF 

(NCT02565693)) to conclusively answer this clinical conundrum. 

 

In chapter eight I explore whether the widely used ischaemic stroke risk prediction score 

CHA2DS2VASC can be used in patients with ICH. Validating such a risk score can help 

clinicians weigh up antithrombotic decisions in patients with ICH, whilst we await 

conclusive guidance from the results of ongoing RCTs. We show the CHA2DS2VASC 

score has similar risk predictions for subsequent IS in an ICH cohort to the risk derived 

from an AF cohort largely without ICH. There was no statistical improvement in prediction 
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for CHA2DS2VASC with the addition of CT positive markers of small vessel disease, nor 

ICH location. 

 

These two studies, taken together with the available literature, can help clinicians risk 

stratify patients who suffer ICH and have an ongoing indication for anticoagulants. 

Observational data suggest resumption of anticoagulants seems to lead to a net benefit and 

may be preferred, especially in those patients with high CHA2DS2VASC scores. Patients 

with lobar ICH should be monitored closely with aggressive treatment of their modifiable 

risk factors for recurrent ICH. Until the results of RCTs of antithrombotic therapy after ICH 

(RESTART, SoSTART, RESTART-FR, STATICH-antiplatelets/anticoagulants, NASPAF-

ICH, A3-ICH, ASPIRE, APACHE-AF) become available, conclusive answers to this 

important clinical question remain unanswered.  
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10. Future directions 

10.1 Markers of small vessel disease in ischaemic stroke populations: Individual 

patient data meta-analysis 

The rarity of ICH in ischaemic stroke populations coupled with the need for long-term 

follow up make RCTs a challenging method to further explore how markers of small vessel 

disease relate to future ICH risk associated with different antithrombotic treatment 

strategies in high-risk populations. Nevertheless, a recent trial of 1534 patients with non-

cardioembolic stroke or TIA who were thought to be at high risk of ICH (history of or 

neuroimaging findings of intracerebral haemorrhage or two or more microbleeds) shows in 

these patients, cilostazol was non-inferior to aspirin in preventing a composite of vascular 

events and non-superior in preventing adverse (bleeding) events (293). They did not 

explore whether these risks change with increasing CMB burden. In the absence of very 

large randomised controlled trials, larger scale observational individual patient meta-

analyses should help to answer this question. Only through large numbers can we have 

access to sufficient ICH and IS events to validate scoring systems and to explore whether 

there is a burden of CMBs that might tip the balance away from antithrombotic treatment to 

avoid net harm. Our team is currently leading on one such effort with over 35 centres and 

18000 individual patients, including over 7000 on anticoagulation contributing data (294). 

 

Alternative treatment options would include: avoidance of antithrombotics, short-term 

rather than long-term use of antithrombotics (in the case of antiplatelet therapy for non-

cardioembolic stroke), use of antithrombotics which are less likely to cause ICH (e.g. 

NOACs rather than VKA), left atrial appendage occlusion (295) (in patients with AF) or 

continuation of antithrombotics with closer follow up and aggressive management of 

modifiable risk factors (e.g. hypertension). 

 

It is important to recognize that the use of observational data, even from large-scale 

collaborations does have important potential limitations: 

• All patients have had an ischaemic stroke and therefore have an ongoing indication 

for antithrombotics (either antiplatelets or anticoagulation). The absolute incidence 

of ICH would, therefore, have to far outweigh the absolute incidence of IS if we are 
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to find a burden of CMBs where the balance tips away from antithrombotics. 

• The observational nature of the data means any recommendations relating to 

antithrombotic decisions will not be founded on the highest level of evidence.  

• Variables in potential risk scores for ICH and IS are likely to have considerable 

overlap: HASBLED and CHA2DS2VASC share 3 variables, and in chapter 3 we 

show CMBs are both a risk factor of ICH and IS, which makes finding a risk score 

which discriminately targets ICH challenging. 

 

 

10.2 Identification of ICH specific biomarkers 

SVD underlies most cases of spontaneous ICH (77-88% (296)) and many cases of IS (up to 

50% (297)). Identifying which patients with SVD will go on to have haemorrhagic 

complications and which patients go on to have ischaemic complications remains a key 

research and clinical goal. Biomarkers of SVD (both imaging and non-imaging) may 

provide a framework for this. Indeed, cSS and APOE ε4 have shown some promise (275). 

A biomarker (biological marker) can be defined in numerous ways. The national institute of 

health defined a biomarker as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention” (298). The World Health Organisation has an even 

broader definition “any substance, structure, or process that can be measured in the body or 

its products and influence or predict the incidence of outcome or disease” (see 

http://www.inchem.org/documents/ehc/ehc/ehc222.htm).  

 

An ideal biomarker should be involved in the causal pathway of the disease in question. 

Ideally fulfilling the ‘trait, state and rate criteria’, where trait indicates the patient is likely 

to develop the disease if the biomarker is present, state indicates the biomarker itself can be 

part of a diagnostic criteria for the disease, and rate suggests the biomarker can be used to 

monitor the rate of disease progression. 

 

The difficulty in stroke medicine is many of the biomarkers which fulfill the trait, state and 

rate criteria for ICH, perform equally well for ischaemic stroke, for example, CMBs and 

WMHs, so their presence cannot inform antithrombotic decisions. A fourth biomarker 

criterion is desirable: ‘discrimination’, where the biomarker is unique to one aspect of a 
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heterogeneous disease (in the case of stroke medicine, a key aim is to discriminate between 

future ischaemic stroke and ICH risks).  

 

One potentially interesting biomarker of small vessel disease fulfilling all four of these 

criteria is cSS. Patients with cSS have a high risk of subsequent ICH (145), its presence is 

used in the modified Boston criteria of CAA (137) and there is a clear dose-dependent 

relationship between the degree of cSS and likelihood of developing an ICH (147). 

Moreover, cSS seems to be unique to CAA and does not increase the risk of IS. 

Unfortunately, it is likely that the low prevalence and specificity in patients at risk of ICH 

are too low for cSS to have widespread clinical application. GDF-15, a biomarker 

associated with cellular ageing, cellular growth, oxidative stress and inflammation has been 

shown to predict major bleeding in patients with AF, so is also promising (299). 

Unfortunately, this same biomarker was not tested in its predictive capabilities for IS. This 

is an opportunity for further research. 

 

The relative rarity of ICH when compared with IS, coupled with the fact they both share 

many risk factors ultimately means that one single biomarker is unlikely to be sufficient to 

guide antithrombotic treatments. Instead, a risk score could be developed incorporating 

many biomarkers: clinical (for example age and a history of hypertension and previous 

ICH), neuroimaging (for example CMBs and cSS), circulating biomarkers (such as GDF-

15) and genetic biomarkers (such as APOE). If validated in large observational registries 

one could envisage a randomized control trial where the risk scores for ICH and ischaemic 

stroke  could be used to guide antithrombotic decisions and compared with usual care to see 

if their use improves patient outcomes and quality of life. 

 

10.3 CAA pathological-radiological validation studies in non-ICH cohorts 

Much of the pathological validation studies undertaken in validating MRI markers of small 

vessel disease have been in ICH and memory clinic cohorts. The use of the Boston criteria 

to diagnose CAA in patients without ICH or cognitive decline is unfounded and potentially 

misleading. Indeed, a pathological validation study in patients without ICH shows the 

Boston criteria has a positive predictive value of only 25% in diagnosing CAA in healthy 

community patients (111). Furthermore, the sensitivity of the Boston criteria was only 4.5% 
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in this cohort. Another cohort without ICH, but in a hospital for various reasons had a 

higher positive predictive value for diagnosing CAA (87.5%). These two cohorts differed 

dramatically in CMB burden, the former having a median CMB count of 2 (range 1-7), the 

latter a median lobar MB count of 20 (range 1-129). The authors suggest, in patients 

without ICH, the Boston criteria should only be applied to patients with symptoms 

attributable to CAA. I suggest it is CMB burden rather than clinical context which is 

important. Great caution should be undertaken when using the Boston criteria in patients 

without ICH who have low CMB burden, regardless of clinical context (112).  

 

Vascular brain banks should be established and further histopathological-radiology 

validation patients without ICH undertaken. Neuroimaging biomarkers which show some 

promise with diagnosing CAA in ICH patients (centrum semiovale PVS, cortical atrophy, 

BOLD response on functional MRI and amyloid PET ligands) should also be investigated 

in patients without ICH. Until such time, researchers should not attribute certain MRI 

patterns of SVD to a small vessel disease subtype in patients without ICH. The risk 

associated with these MRI markers should remain just that, and not be considered the risk 

associated with a putative diagnosis of CAA. Lastly, in ICH and non-ICH cohorts, CMB 

distribution should be revisited. It seems unlikely a patient with multiple lobar CMBs and 

one deep CMB would not have CAA, a lobar/deep ratio should be validated using 

histopathologically confirmed CAA and non-CAA patients. 

 

10.4 Identifying predictors of a macrovascular cause in ICH patients 

The prevalence of macrovascular causes of ICH may still be underestimated: There are 

only two studies which are free from selection bias in which IADSA was undertaken in 

patients with ICH: One small single centre study (n=102) in which all patients with ICH 

who were well enough to undergo IADSA were enrolled (16) and another small single 

centre study (n=206) where consecutive patients with ICH underwent IADSA (15). The 

former study reported rates of structural lesions underlying basal ganglia and cerebellar 

ICHs in 31% and 18% of patients respectively. Furthermore, a structural lesion accounted 

for 11% of ICH in older hypertensive patients; the authors concluded IADSA should be 

undertaken if the patient is well enough rather than being driven by variables such as age, 

hypertension and ICH location. These findings have been overshadowed by the latter study, 
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where the authors reported 0/29 (0%) of patients older than 45, with hypertension and an 

ICH location in the basal ganglia, thalamic region or posterior fossa had an underlying 

macrovascular cause. This finding is often quoted in subsequent studies as a reason for 

excluding patients with these characteristics from undergoing IADSA. Indeed, in our own 

cohort, we found three macrovascular causes in patients over 45 years old, with deep ICH 

location and a history of hypertension. 

 

I suggest prospective studies which include consecutive patients with ICH who are well 

enough to undergo MRI be undertaken. All patients should have CT and CTA, followed by 

acute (within 7 days) MRI with paramagnetic sequences (allowing for more sensitive 

analysis of small vessel disease (CMBs, cSS) and arterial spin labeling (ASL). A small 

study in Japan shows ASL can detect pooled blood in diseased veins in patients with dural 

fistulas and successfully identified 12/13 patients with ICH who had a dural fistula (300). 

Patients with suspicious lesions on any of these modalities should undergo acute IADSA. 

In those who do not have suspicious lesions, a delayed MRI and ASL should be undertaken 

three months following the ICH 

 

10.5 Cryptogenic ICH 

Patients who have an ICH where, despite intensive investigation (CTA, IADSA, MRI), we 

are unable to find a cause are termed to have ‘cryptogenic ICH’. The likely differential for 

these patients is either: a) an acute focal region of small vessel disease too small to 

visualize on MRI, or b) a macrovascular lesion which was obliterated in the ICH. This 

patient group needs more attention. We do not know the natural history of these patients 

and require more detail regarding their underlying histopathology. Patient registries should 

be established to examine the rate of ICH recurrence in these patients and whether it differs 

from patients with a known cause for their ICH. Where possible, tissue should be taken, 

either pre-mortem or post-mortem looking for any signs of a macrovascular lesion or small 

vessel disease not detected on neuroimaging. The more widespread use of ASL in patients 

without ICH may also lead to the detection of incidental AV shunts, the natural history of 

which (if patients do not undergo treatment) may also help resolve whether obliterated 

macrovascular lesions are responsible for many cryptogenic ICH cases. 
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10.6 Automated neuroimaging ratings 

Manual detection of the various markers of small vessel disease is time consuming and 

arduous. Future studies in ICH will require large-scale collaborations where manual rating 

is likely to be a rate-limiting step. Identification and quantification of neuroimaging 

markers of small vessel disease need to become fully automated to allow rapid 

identification and quantification and reduce inter-rater variability.  

 

Of the current neuroimaging markers of small vessel disease, automated white matter 

hyperintensities lesion mapping and volume assessment are the most advanced. Many 

different algorithms have been developed, mostly in MRI(301) (302) but more recently in 

CT (303). Indeed, the CT based algorithm correlated with gold standard MRI volumes 

reliably with higher burdens of white matter disease (Fazekas 2 and 3) but performed 

poorly with mild burdens of white matter disease. Automated detection of cerebral 

microbleeds has also been pursued. These algorithms consistently show excellent reliability 

(303, 304) both at baseline and in longitudinal measures. One consistent problem with 

automated CMB ratings are the high rates of false negative CMBs when compared to a 

‘gold standard’ human rater. The false detection rates can be as high as 27 CMBs per 

subject (304). Despite this false detection rate, the use of one algorithm with very little 

variability over large multicentre datasets remains an attractive proposal. Whilst previous 

risks attributed to CMBs clearly cannot be applied in these situations, the same is probably 

true for manual CMB rating as improving MRI technology with stronger magnet strengths 

can now identify a greater number of CMBs when compared with T2* GRE in which the 

risk scores were originally modelled upon. Automated lesion mapping and volume of ICH 

also needs to be undertaken. Manual or semi-automated lesion and ICH volume rating are 

cumbersome and time-consuming, furthermore, there is marked variability in the semi-

automated approach depending on the software (305). One such method has been published 

(306) and we currently plan to undertake similar analyses using data from CROMIS-2 ICH. 

 

10.8 Imaging with 7 Tesla MRI and ‘vascular reserve’ 

In addition to the improved imaging of the consequences of small vessel disease, recent 

advancements with high resolution 7 Tesla MRIs now allow for assessment of the smaller 

vessels themselves and their vessel walls. Furthermore, BOLD imaging on MRI and CO2 
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challenges on transcranial doppler allow us to explore ‘vascular reserve’ in blood vessels - 

the blood vessels adaptive ability to respond to changes in blood flow. These advancements 

offer further opportunity to understand the pathogenesis of SVD and how it may relate to 

ICH. 

 

Studies in 7 Tesla MRI show improved resolution and sensitivity for neuroimaging 

biomarkers of SVD: Perivascular spaces are seen in greater detail and the internal structure 

of lacunes are better visualized (307). CMBs and CMIs are also seen in greater numbers on 

7 Tesla vs. 1.5 Tesla (308) or 3 Tesla (309). Vessel wall imaging at 7 Tesla can visualize 

basal intracranial wall disease and can visualize single perforators off associated with 

lacunar infarction(310). Such work may give insights into which imaging characteristics 

give rise to occlusion and which give rise to ICH. Finally, studies in vascular reserve and 

vascular reactivity also offer promise in SVD: BOLD response to visual stimulus is 

decreased in patients with CAA (280) and continues to decrease over time, independent of 

CMB and WMH burden (282) highlighting studies in vascular reserve are important in 

monitoring disease progression.  
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10.9 Main conclusions 

Neuroimaging biomarkers of small vessel disease provide a framework to help diagnose 

and stratify risk in patients at risk of ICH. The use of these neuroimaging biomarkers is 

likely to be a key step toward ‘personalized and precision medicine’. 

 

‘Personalised medicine’(311) is an important departure from the ‘one size fits all’ approach 

previously used in stroke medicine. Using biomarkers and genetic data we hope to better 

tailor treatments to the individual rather than the diagnosis of ‘stroke’. Through 

personalised medicine, we also hope to identify people at risk of diseases before they have 

symptoms, with the aim of preventing them all together through personalised treatments. 

Precision medicine is a similar concept where treatments are tailored to individual patient 

characteristics with investigations targeted towards those who will most benefit. 

 

In stroke medicine, the concepts of ‘personalized medicine’ and ‘precision medicine’ can 

have particular value. Stroke is simply a syndrome where the same clinical presentation 

(usually a sudden-onset focal neurological syndrome) can be caused by ischaemic stroke or 

ICH, each with a range of vastly differing aetiologies. Furthermore, the underlying cause of 

the majority of ICH and a substantial proportion of IS, is the same pathological process: 

SVD. Identifying which patients with SVD will go on to have ICH and which patients will 

have IS remains a key research aim.  

 

The data I have presented provide evidence that CMBs might be a promising neuroimaging 

biomarker in ischaemic stroke to facilitate personalised medicine. The addition of CMBs to 

clinical risk scores improves the predictive power to identify patients at risk of ICH with 

potential relevance for clinical practice and trials. However, it remains unclear whether 

there is a burden of CMBs which may tip the balance away from antithrombotic medication 

because of the risk of net harm. Large international collaborations may help identify 

burdens and distributions of CMBs, which, along with other neuroimaging biomarkers (cSS 

for example), vascular risk factors, and genetic data may allow us to tailor treatments. 

 

Identifying small vessel disease in patients with ICH helps tailor further investigation. We 

show together with CTA findings and a clinical history of pre- ICH hypertension, 
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identification of SVD can accurately risk-stratify patients into likelihoods of having an 

underlying macrovascular cause: patients with SVD, a ‘negative CTA’ and a history of 

hypertension should not undergo invasive IASDSA, an idea that reflects a key concept of 

precision medicine. 

 

Lastly, we show the location of ICH is positively associated with recurrent ICH risk and 

negatively associated with new ischaemic stroke risk (albeit the latter not statistically 

significant), although CT based identification of small vessel disease did not seem to 

provide any predictive power for either recurrent ICH or new ischaemic stroke. Whilst we 

await the results of trials for restarting antithrombotics in patients with ICH, clinicians 

should be mindful of ICH location. Further studies of individual SVD component markers 

on CT or MRI are needed to assess their prognostic value. Meanwhile, CHA2DS2VASC is 

a reasonable predictor of ischaemic stroke risk in this patient population and can be used to 

help weigh up potentially difficult anticoagulant decisions. 
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