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Whole genome sequencing and imputation in
isolated populations identify genetic associations
with medically-relevant complex traits
Lorraine Southam1,2,*, Arthur Gilly1,*, Dániel Süveges1, Aliki-Eleni Farmaki3, Jeremy Schwartzentruber1,

Ioanna Tachmazidou1, Angela Matchan1, Nigel W. Rayner1,2,4, Emmanouil Tsafantakis5, Maria Karaleftheri6,

Yali Xue1, George Dedoussis3 & Eleftheria Zeggini1

Next-generation association studies can be empowered by sequence-based imputation and

by studying founder populations. Here we report B9.5 million variants from whole-genome

sequencing (WGS) of a Cretan-isolated population, and show enrichment of rare and

low-frequency variants with predicted functional consequences. We use a WGS-based

imputation approach utilizing 10,422 reference haplotypes to perform genome-wide

association analyses and observe 17 genome-wide significant, independent signals, including

replicating evidence for association at eight novel low-frequency variant signals. Two novel

cardiometabolic associations are at lead variants unique to the founder population sequences:

chr16:70790626 (high-density lipoprotein levels beta � 1.71 (SE 0.25), P¼ 1.57� 10� 11,

effect allele frequency (EAF) 0.006); and rs145556679 (triglycerides levels beta � 1.13

(SE 0.17), P¼ 2.53� 10� 11, EAF 0.013). Our findings add empirical support to the

contribution of low-frequency variants in complex traits, demonstrate the advantage of

including population-specific sequences in imputation panels and exemplify the power gains

afforded by population isolates.
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G
enome-wide association studies (GWAS) for complex
medical traits have to date been designed and powered for
the discovery of common-frequency variants with small to

modest effect sizes. It is becoming increasingly clear that rare and
low-frequency variants also play an important role1. Utilizing a
large reference panel can greatly improve GWAS imputation
accuracy2, capturing a slice of the previously unattainable allelic
architecture. Isolated populations can additionally help expedite
the identification of low-frequency variants affecting complex
traits. The founding event can lead to an increase in allele
frequency due to genetic drift, thereby boosting power for GWAS.
Here, we use GWAS and exome chip data from the Mylopotamos
(MANOLIS) and Pomak villages cohorts as a scaffold (Fig. 1),
and impute up to a large reference panel of 5,122 individuals,
including 249 MANOLIS samples sequenced at 4� depth. This is
the first time WGS data have been generated in this population.
We examine 13,541,454 and 15,514,754 single nucleotide variants
(SNVs) with minor allele count (MAC)Z2 in the Pomak and
MANOLIS cohorts, respectively, and test for association with
traits of cardiometabolic relevance. To enable meta-analysis
across potentially related individuals, we implement a method
that accounts for non-independence across strata and
demonstrate its robustness. We identify eight novel signals for
traits of medical relevance.

Results
Genetic architecture of Cretan population. We generated
whole-genome sequence data at 4� depth in 249 MANOLIS
individuals selected on the basis of genome-wide genotype data to

maximize haplotype diversity in the population. To characterize
the variation landscape in this isolated population, we
aggregated the proportion of SNVs captured across the
genome (total n¼ 9,554,503 with MACZ2) by functional class
(Fig. 2a and Supplementary Table 1) and found that variant
densities are inversely correlated with ascribed functional
importance. Highest densities are observed in intergenic regions,
while coding and splice regions, where disrupting variants
may have more severe consequences, are sparsest, in line with
observations in other populations1,3–5. As expected, we also find
that variants with more severe consequences are present in
a higher proportion at the lower end of the minor allele
frequency (MAF) spectrum compared to the genomic average
(Supplementary Fig. 1 and Supplementary Table 2).

Of all autosomal SNVs found in the MANOLIS 4� WGS data
0.52 million (5.81%) were unique compared to the UK10K and
1000 Genomes Project reference panels (Fig. 2b and
Supplementary Table 3). Most variants unique to MANOLIS
were low-frequency and rare, in fact, the rarer a variant was,
the more likely it was to be unique to MANOLIS, with 32%
of doubletons being unique. To explore the functionality of
these variants, we compared, for each MAF bin, the proportion
of unique and shared variants belonging to any given functional
consequence in that class, and found that rare variants are
more likely to be unique to MANOLIS if they belong
to a severe functional class. In particular, we find significant
(Po1.00� 10� 10) enrichment of rare and low-frequency
(MAFr5%) coding and regulatory region variants (Fig. 3 and
Supplementary Table 4), which is expected when comparing
shared, older variants with newer, cohort-specific ones which

OmniExome

Prephase Prephase

Core Exome

Impute Impute

249 4×WGS HELIC
MANOLIS

9,554,503 variants

3-way merged
reference panel

haplotypes

38,810,554 variants

3781 UK10K
25,109,897 variants

1092 1000 Genomes
project

27,449,245 variants

Phenotype
preparation

&
association

analysis
(GEMMA)

OmniExome

Prephase Prephase

Core exome

Impute Impute

HELIC MANOLIS HELIC Pomak

Phenotype
preparation

&
association

analysis
(GEMMA)

Phenotype
preparation

&
association

analysis
(GEMMA)

Samples
Variants

734
286,699

211
279,630

1,003
612,403

1,265
621,908

38,810,772 38,812,566 38,814,812 38,811,423

13,681,604 13,170,71316,426,018 Variants12,814,399

QC
Impute info <0.4
& HWE P<1E-4

Variants

Phenotype
preparation

&
association

analysis
(GEMMA)

Reference

Signal prioritisation (P < 5.00 × 10–8 , 500 kb window)

Validation
(Sequenom)

Variants MAC ≥ 213,541,45415,514,754

QC
Impute info <0.4
& HWE P<1E-4

MANOLIS POMAK MANOLIS-Pomak

QC
Impute info <0.4
& HWEP<1E-4

QC
Impute info <0.4
& HWE P<1E-4

Meta-analysis METACARPA
Within-cohort Across cohorts

Figure 1 | Flowchart of study design. The HELIC cohorts were prephased, imputed and analysed separately by cohort and array, and finally meta-analysed.

The variant numbers reported here are total regardless of MAF. Imputed variants are for chromosomes 1–22.
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haven’t yet fully undergone purifying selection. We also find a
significant but modest depletion (Po1.00� 10� 5) of variants
annotated as intergenic and upstream/downstream.

Meta-analysis using METACARPA. The MANOLIS (n¼ 1,476)
and Pomak (n¼ 1,737) cohorts were each genotyped in two
tranches (Fig. 1), leading to a requirement for within-cohort
meta-analysis. Existing methods to correct for sample relatedness
(which is a distinct possibility when meta-analysing within an
isolated population) or overlap are based on Pearson’s correlation
of the z-scores6, but this can lead to overcorrection in the presence
of a large polygenic burden7. On the other hand, a meta-analysis
method that uses tetrachoric correlation7 and combines P with
effect-size based methods8 can account for non-independence
of samples across strata. We implemented the method in openly-
available new software, METACARPA (https://github.com/wtsi-
team144/metacarpa and http://www.sanger.ac.uk/science/tools/
metacarpa). Using simulation, we show that under typical levels
of sample overlap (up to 10%) METACARPA reduces false-positive
rate inflation by 8%, while conserving power (Fig. 4a and 4b, and
Methods). We infer a tetrachoric correlation of 1.96% between P
values in the two MANOLIS datasets, and a correlation of 1.84%
between the two Pomak datasets. Those values reflect an average
within-cohort, cross-dataset kinship of 0.43 and 0.33%, respectively,
as measured by pi-hat.

We also compared METACARPA to a genotype-level
mega-analysis (Fig. 4a and b, Supplementary Fig. 2). When
individual level data are available, a global analysis that
takes dataset provenance into account and where overlapping
samples are removed maintains the type-I error rate at nominal
significance. The power of such a global mega-analysis drops

markedly as sample overlap increases, although it is more
powerful than summary-statistic level meta-analyses when no or
little overlap is present. When only summary-level statistics
are available, METACARPA provides the advantage of a lower
false-positive rate than a naı̈ve meta-analysis under typical
levels of overlap (0–10%), although it does not control type-I
error to nominal levels. Meanwhile, power is conserved compared
to the naı̈ve meta-analysis, and is higher than for a sample-level
global analysis. As expected, the tetrachoric estimate of overlap is
more robust than Pearson’s correlation to an excess of signal in
the meta-analysed studies (Fig. 4c).

Furthermore, for the HELIC MANOLIS data, we compared the
results produced by METACARPA to a mega-analysis of
the genotype-level data, as well as a summary-level meta-analysis
not accounting for relatedness using the GWAMA software, and
found similar median statistics (l¼ 0.985±0.015) for association
with high-density lipoprotein (HDL) (Supplementary Fig. 3).
We conclude that all three meta-analysis methods were robust to
the moderate levels of relatedness observed between the datasets
of the HELIC study.

Signals associated with traits of medical importance. We
investigated 13 cardiometabolic, 9 anthropometric and 9
haematological traits of medical relevance, and report here
genome-wide significant signals (Pr5.00� 10� 8) that replicate
within (nominal significance and the same direction of effect
for each array in a cohort) or across the isolates studied
(nominal significance and the same direction of effect in
MANOLIS and Pomak). We identify 9 previously-reported
GWAS signals (Table 1 and Supplementary Note 1) and 8 novel,
internally replicating associations (Table 2, Fig. 5 and Supplemen-
tary Fig. 4), which all validate when directly genotyped in the
same samples using a different genotyping assay (Supplementary
Table 5). None of these novel variants are present in the HapMap
haplotypes (http://hapmap.ncbi.nlm.nih.gov), 5 do not have
HapMap proxies (r240.8), and 3 are not present in the 1000
Genomes Project reference panel haplotypes. Three signals were
identified in MANOLIS, four in Pomak and one across both
isolated populations. Five signals fall just above our Bonferroni-
adjusted genome-wide significance threshold (Po3.33� 10� 9)
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Figure 2 | Variant sharing and functional annotation. (a) SNP density per

kbp and percentage of total per functional class, based on 9,554,503

variants identified in the HELIC MANOLIS 4� WGS data of 249 samples

(MACZ2). Error bars indicate standard error of the mean; the dashed red

line indicates average density genome-wide. (b) Variant overlap between

498 HELIC MANOLIS, 7,582 UK10K and 2,184 1000 Genomes Project

reference panel haplotypes, by MAF category. Numerical values are given in

Supplementary Tables 1 and 2.
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for the effective number of traits tested and are therefore con-
sidered tentative. When assessing the fine-mapping potential of
these data (Supplementary Methods), we find that the median
number of variants in the 95% credible sets is 6.5 and that the
median interval length is 546 kbp. This is in line with the
expectation of extended LD in founder populations.

We identify a new association with HDL cholesterol at
chr16:70790626 (beta � 1.71 (SE 0.25), P¼ 1.57� 10� 11, effect
allele frequency (EAF) 0.006) (Table 2 and Fig. 5). This variant is
present in the MANOLIS sequences only. When MANOLIS
sequences are not included in the reference panel a reduced signal
is observed at a different variant (Fig. 5c,d). This is the strongest
new signal for HDL in MANOLIS and explains 3.24% of
the phenotypic variance. Chr16:70790626 resides in intron 11 of
the VAC14 gene. The encoded protein is involved in the
regulation of phosphatidylinositol 3,5-bisphosphate levels and
the biogenesis of endosome carrier vesicles9,10. In animal models,
knocking out Vac14 causes death within 2 days of birth caused by
the disruption of phosphatidylinositol metabolism11. Seventy per
cent of chr16:70790626 carriers are from the Anogia village. The
average relatedness (pairwise p̂) is significantly higher in carriers
(empirical P¼ 0.006 from 100,000 permutations), who are on
average 11 years younger than non-carriers, P¼ 6.00� 10� 3

(Supplementary Table 6).
We identify a cardioprotective signal (rs145556679, EAF

0.013), which is associated with decreased triglycerides (TG)
(beta � 1.13 (SE 0.17), P¼ 2.53� 10� 11) and with very
low-density lipoprotein cholesterol (VLDL) levels (beta � 1.13

(SE 0.17), P¼ 2.90� 10� 11) (Table 2 and Fig. 5). This variant is
not seen in any other worldwide cohort in the 1000 Genomes
Project except for a single heterozygote reported in Toscani in
Italia (TSI) samples (n¼ 107, MAF¼ 0.005) (Supplementary
Table 7). However, as singletons were filtered out of the reference
WGS data prior to phasing, rs145556679 is only represented in
the MANOLIS sequences in the reference panel. Variants in
LD with rs145556679 are present in haplotypes from other
reference panel populations and a reduced signal for a different
variant is detected when MANOLIS sequences are not included in
the reference panel (Fig. 5e,f). This variant is the strongest
new signal for TG/VLDL in MANOLIS and explains 3.21% and
3.20% of TG and VLDL variance, respectively. rs145556679
is located 942 kbp downstream of rs76353203 (APOC3 R19X,
previously associated with lipid traits12,13, r2¼0.001). Conditional
analysis confirms that rs145556679 is independent of
R19X (TG, Pcond¼1.09� 10� 12; VLDL, Pcond¼1.22� 10� 12)
(Supplementary Table 8). rs145556679 resides within an intron of
the Down syndrome cell adhesion molecule like 1 (DSCAML1)
gene, which is involved in cell adhesion in neuronal processes and
is expressed in heart, liver, pancreas, skeletal muscle, kidney and
brain14,15. An independent variant in this gene (rs10892151,
112 kbp away from rs145556679, r2¼0.0005 in MANOLIS)
has previously been implicated with TG levels in the Amish
founder population13.

In MANOLIS we also observe an association between
waist-to-hip ratio (WHR) and rs140087759 (beta 1.19 (SE 0.21),
P¼ 1.35� 10� 8, EAF 0.010) (Table 2), located 5 kbp upstream
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Figure 4 | False-positive rate and meta-analysis power in the presence of sample overlap using METACARPA. (a) Empirical false-positive rate as

a function of sample overlap in 1,000 repeats of a meta-analysis of two studies including 2,000 samples each, at a significance threshold of 5� 10�8.

(b) Empirical power of the four tests implemented in METACARPA as a function of sample overlap in the same simulation setting. Power is calculated as

the discovery rate of a SNP explaining 1% of a standard normal phenotype under the same simulation scenario (for example, a MAF of 1% and an effect size

of 0.705, or a MAF of 20% and an effect size of 0.176). (c) Compared accuracy of Digby’s estimate of tetrachoric correlation and Pearson’s correlation

for a true (dashed line) 25% overlap under a polygenic burden, with 10,000 SNPs affecting a quantitative trait with 20% heritability. Estimates of

correlation for both methods are calculated over 300 genome-wide simulations. The black line indicates the median, shaded rectangles represent the

interquintile ranges.
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of the long non-coding RNA gene CTD-2061E9.1. The signal is
not associated with WHR in the Pomak population (P¼ 0.39),
and has a higher frequency in the Pomak (MAF 0.038) and
1000 Genomes Project EUR populations (MAF 0.014) compared
to MANOLIS (MAF 0.01). rs140087759 has no proxies with
r240.8 in MANOLIS and is not present in the WHR GWAS
summary statistics from the Genetic Investigation of ANthropo-
metric Traits (GIANT) study (https://www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files)16.

In the Pomak population, we identify an association between
diastolic blood pressure (DBP) and rs13382259 (beta 0.55
(SE 0.1), P¼ 3.18� 10� 8, EAF 0.043) (Table 2), which resides
in a predicted promoter (ENSR00000596922)17 in an intron of
PSD4. It is located 1 kbp upstream of novel transcript
AC016683.5. rs13382259 is associated with the expression of
PAX8 in tibial nerve (GTEx Portal, http://www.gtexportal.org).
The allele frequency of rs13382259 is lower in the MANOLIS
(MAF 0.024) compared with the 1000 Genomes Project EUR
populations (MAF 0.05) and the Pomak population (MAF 0.05).
The signal is not associated in MANOLIS (P¼ 0.53) and is not
present in the genome-wide summary statistics for the
International Consortium for Blood Pressure (ICBP)18. Proxies
for rs13382259 (r240.8) are present in the International HapMap
Project data (http://hapmap.ncbi.nlm.nih.gov) and three are
present in ICBP summary statistics but none were significantly
associated with DBP.

We also identify an association between fasting glucose levels
adjusted for BMI (FGBMIadj) and rs6131100 (beta � 0.79
(SE 0.14), P¼ 1.21� 10� 8, EAF 0.037) (Table 2). rs6131100 is
situated in the intron of SLX4IPA and 20 kbp upstream of
MKKS, which is associated with Bardet–Biedl syndrome 6
(OMIM: 605552). The allele frequency of rs6131100 is
higher in the MANOLIS (MAF 0.083) and 1000 Genomes
Project EUR populations (MAF 0.053) compared to the
Pomak population (MAF 0.039). rs6131100 is not associated
with FGBMIadj in MANOLIS (P¼ 0.91), and is not present
in genome-wide summary data available from the Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC)
study (www.magicinvestigators.org)19–21. One proxy for
rs6131100 was present in the International HapMap Project
but this did not show evidence of association in the MAGIC
genome-wide summary data for FGBMIadj.

In the Pomak cohort, we also observe an association with white
blood cell count (WBC) and rs79748197 (beta � 1.16 (SE 0.21),
P¼ 3.00� 10� 8, EAF 0.008) (Table 2), which resides in the
intron of a non-coding transcript (AC092594.1). The closest
protein-coding gene is OSR1, 121 kbp away, a widely-expressed
transcription factor implicated in embryonic heart, kidney and
urogenital development22. rs79748197 has a similar frequency in
MANOLIS and is not associated with WBC (P¼ 0.19). It has a
higher allele frequency in the 1000 Genomes Project EUR
population (MAF 0.014). No proxies are present for rs79748197

Table 1 | Summary statistics at established loci.
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APOE
22286219 NA

TC p.Arg176Cys 0.079 �0.27 (0.047) 1.05� 10�8 3170

rs7553007
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CRP 1:159698549
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Intergenic 0.327 �0.202 (0.029) 6.80� 10� 12 2689 rs7553007 CRP 19567438 NA

rs964184
MANOLIS &
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11:116648917

(G/C)
30 UTR

0.163 0.242 (0.035) 3.68� 10� 12 3170
rs964184 APOA1 24097068 NA

TG 0.163 0.236 (0.035) 1.52� 10� 11 3164

rs76353203
MANOLIS

TG 11:116701353
(T/C)

Stop-gain 0.022 � 1.073 (0.129) 6.88� 10� 17 1461 rs76353203 APOC3 24343240 NA
HDL p.Arg19Ter 0.022 0.919 (0.13) 1.78� 10� 12 1465
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(T/TGACA)
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rs10401969 CILP2 24097068
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TC 0.074 �0.322 (0.046) 8.29� 10� 11 3170 8.71� 10� 1

TG 0.074 �0.278 (0.05) 2.49� 10�8 3164 3.94� 10� 1

VLDL 0.075 �0.282 (0.05) 1.48� 10�8 3170 3.51� 10� 1
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MCHC 0.054 0.894 (0.075) 8.46� 10� 33 1669 1.46� 10�4

MCV 0.052 � 1.071 (0.076) 1.57� 10�45 1658 2.71� 10� 5

RBC 0.054 0.473 (0.077) 8.58� 10� 10 1718 3.56� 10� 2

Lead variants for validated, previously-reported association signals reaching Po5.00� 10�8. Cohorts, cohorts from which the signal arose; Chr:pos, represents the chromosome & position in GRCh37/
hg19 coordinates; Variant consequence, taken from Ensembl (http://www.ensembl.org) the Human Genome Variation Society variant nomenclature (http://www.HGVS.org/varnomen) are provided for
exonic variants. The other abbreviations are: EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; P, the Wald test P-value from the association analysis using METACARPA;
N, sample size; Reported variant, RS-id of the reported signal; Reported genes, the gene(s) in which the signal was reported; reported PMID, PubMed ID for the reported GWAS signal; Conditional P, Wald
test P from the association analysis using METACARPA of the variant after conditioning on the reported variant, confirming the signals are conditionally dependent; NA, indicates that conditional analysis
is not applicable since the variant is the same as the reported variant; LDL, low-density lipoprotein cholesterol; TC, total cholesterol; CRP, C-reactive protein; VLDL, very low-density lipoprotein
cholesterol; TG, triglycerides; HDL, high-density lipoprotein cholesterol; MCH, mean corpuscular haemoglobin; WBC, white blood cells; MCHC, mean corpuscular haemoglobin concentration;
MCV, mean corpuscular volume; RBC, red blood cells.
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in the Pomak population and this trait was not examined in the
Haemgen RBC study23.

Lastly, rs557129696 is associated with haemoglobin levels (HGB)
(beta � 2.03 (SE 0.31), P¼ 4.83� 10� 11, EAF 0.004) (Table 2).
The variant resides in an extended LD region spanning 1.4 Mb. The
signal is conditionally independent (Supplementary Table 8) of
previously-reported blood trait GWAS signals in this region in the
same population24. rs557129696 resides in the intronic regions of
two haemoglobin-coding genes (MBE1 and MBG1) and a non-
coding RNA gene (AC104389.28). The G-allele of rs557129696 is
not seen in the 1000 Genomes EUR population. Numerous
associations with red blood cell traits, anaemia and thalassemias
have been linked to this chromosome 11 region25–28. We have
previously observed an independent signal associated with blood
traits in this chromosomal region of extended LD24. Notably,
associations between variants in this region and foetal haemoglobin
levels29 have been reported in the Sardinian founder population.

Weight was associated with rs112037309 (beta 0.29 (SE 0.05),
P¼ 2.70� 10� 8, EAF 0.075) in both isolated populations
(Table 2). rs112037309 is situated in the intronic regions of
ARHGEF38 and INTS12. The protein product of ARHGEF38 is
involved in signal transduction, and immunohistochemistry
shows strong staining in pancreatic islets, skeletal and smooth
muscle (Protein atlas, http://www.proteinatlas.org). rs112037309
has a higher frequency in the 1000 Genomes Project EUR
population (MAF 0.096) compared with the Pomak (MAF 0.073)

and MANOLIS (MAF 0.074) populations. We were unable to
look up this variant in large GWAS studies as weight is not one of
the traits included as part of the Genetic Investigation of
Anthropometric Traits (GIANT)16 study.

Discussion
We provide here a first characterization of the genetic
architecture of the MANOLIS isolated population and report
9.5M SNVs, of which 6% are absent from previous sequenced
panels and are enriched for predicted functional consequences.
Our complex trait association findings highlight the advantages of
whole genome sequencing in founder populations: two lipid traits
and the HGB signals we identify are driven by variants unique
to the MANOLIS cohort or extremely rare in other worldwide
populations. The remaining five novel associations are present
in European populations (1000 Genomes Project EUR MAF
ranging from 0.014 to 0.096) but are not significantly associated
in GWAS meta-analyses of cosmopolitan populations. This can
be due to a number of reasons in addition to winner’s curse, that
is, larger effect sizes in the discovery isolate cohort. For two of
these signals, the variant and its proxies are not present in the
HapMap reference panel and therefore these variants are not
represented in GWAS conducted to date. Three of the associated
variants are represented in HapMap and show no evidence
of association outside the isolate; this can indicate that the

Table 2 | Summary of novel association signals.

Variant and
cohorts

Trait Chr:pos
(EA/NEA)

Nearest
gene

Internal replication EAF Beta (SE) P-value Overall
MAC (N)

Replication
cohorts

EAF Beta (SE) P-value MAC (N)

chr16:70790626
MANOLIS

HDL 16:70790626
(T/C) VAC14-AS1

VAC14

MANOLIS
CoreExome

0.003 � 1.885 (0.994) 5.76� 10� 2 1.26 (210)

0.006 � 1.713 (0.254) 1.57� 10� 11 20 (1476)
MANOLIS
OmniExome

0.007 � 1.702 (0.263) 1.81� 10� 10 17.6 (1255)

rs145556679
MANOLIS

TG

11:117643264
(C/G) DSCAML1

MANOLIS
CoreExome

0.005 � 1.293 (0.729) 7.85� 10� 2 2.09 (209)
0.013 � 1.134 (0.17) 2.53� 10� 11

49 (1476)

MANOLIS
OmniExome

0.014 � 1.125 (0.175) 1.70� 10� 10 35.1 (1252)

VLDL MANOLIS
CoreExome

0.005 � 1.365 (0.727) 6.21� 10� 2 2.1 (210)
0.013 � 1.131 (0.17) 2.90� 10� 11

MANOLIS
OmniExome

0.014 � 1.118 (0.175) 2.29� 10� 10 35.1 (1253)

rs140087759
MANOLIS

WHR 5:28292892
(T/C) CTD-

2061E9.1

MANOLIS
CoreExome

0.015 1.676 (0.411) 5.92� 10� 5 6.12 (204)
0.01 1.189 (0.209) 1.35� 10�8 31 (1476)

MANOLIS
OmniExome

0.009 1.02 (0.243) 2.90� 10� 5 18.8 (1047)

rs13382259*
Pomak

DBP 2:113934176
(T/A) PSD4

Pomak
CoreExome

0.047 0.509 (0.126) 6.98� 10� 5 60.3 (641)
0.043 0.554 (0.1) 3.18� 10�8 172 (1737)

Pomak
OmniExome

0.039 0.629 (0.164) 1.36� 10�4 43 (551)

rs6131100*
Pomak

FGBMIadj 20:10434530
(A/T) SLX4IP

Pomak
CoreExome

0.038 �0.573 (0.16) 3.62� 10�4 43.2 (569)
0.037 �0.79 (0.139) 1.21� 10� 8 135 (1737)

Pomak
OmniExome

0.035 � 1.454 (0.279) 7.12� 10� 7 12.2 (174)

rs79748197
Pomak

WBC 2:19430105
(G/A) AC092594.1

Pomak
CoreExome

0.004 � 1.242 (0.403) 2.12� 10� 3 5.8 (725)
0.008 � 1.156 (0.209) 3.00� 10�8 31 (1737)

Pomak
OmniExome

0.004 � 1.125 (0.243) 4.14� 10�6 20.9 (948)

rs557129696
Pomak

HGB 11:5328683
(G/T) HBG2 HBE1

AC104389.28

Pomak
CoreExome

0.002 � 1.95 (0.606) 1.36� 10� 3 2.87 (717)
0.004 � 2.027 (0.308) 4.83� 10� 11 13 (1737)

Pomak
OmniExome

0.005 � 2.054 (0.358) 1.30� 10�8 9.45 (945)

rs112037309*
MANOLIS &
Pomak

Weight 4:106617136
(A/G) ARHGEF38

INTS12

MANOLIS 0.075 0.295 (0.078) 1.43� 10� 4 189.8 (1258)
0.075 0.287 (0.052) 2.70� 10� 8 485 (3213)

Pomak 0.075 0.28 (0.07) 5.96� 10� 5 250.8 (1672)

All variants are intronic with the exception of rs140087759 which is intergenic, variant consequences are taken from Ensembl (http://www.ensembl.org). For the internal replication the software used
was GEMMA with the exception of rs112037309 in which METACARPA was used. Cohorts, cohorts from which the signal arose. Chr:pos, represents the chromosome and position in GRCh37/hg19
coordinates; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; P-value, the likelihood ratio test P-value from GEMMA or Wald test P-value from METACARPA; MAC, minor allele count
for samples in the analysis; Overall MAC, minor allele count for all samples in the cohorts from which the signal arose, established using the rounded imputed allele dosages from SNPTEST
(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html); N, sample size; HDL, high-density lipoprotein cholesterol; DBP, diastolic blood pressure; TG, triglycerides; VLDL, very
low-density lipoprotein cholesterol; FGBMIadjusted, fasting glucose adjusted for body mass index; HGB, haemoglobin; WBC, white blood cells; WHR, waist-to-hip ratio.
*At least one proxy is present in the International HapMap project data (http://hapmap.ncbi.nlm.nih.gov). Proxies were determined using LD (r240.8 in the cohorts used for the meta-analysis) for each
novel variant. If a proxy was in HapMap it also had high LD (r240.9) with the variant in the 1000 Genomes Project CEU population3. LocusZoom was used to create the regional plots (http://
csg.sph.umich.edu/locuszoom/).
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index variant is in LD with the causal variant in the isolate but
not in the cosmopolitan population. Furthermore, the effect and
therefore the power to detect associations can be increased in
isolates due to the environmental and phenotypic homogeneity

when compared to other worldwide populations, in addition to
extended LD.

Our study demonstrates the power benefits of using a large,
sequence-based imputation reference panel. Six of the eight new
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Figure 5 | Association results for chr16:70790626 and rs145556679 and lipid levels. (a) Heterozygotes for chr16:70790626 exhibit significantly lower

HDL levels than homozygotes (Wald test METACARPA P¼ 1.57� 10� 11). (b) Heterozygotes for rs145556679 exhibit significantly lower TG (Wald test

METACARPA P¼ 2.53� 10� 11) and VLDL (Wald test METACARPA P¼ 2.90� 10� 11) levels than homozygotes. (c) Regional association plot for

chr16:70790626. (d) To determine if the signals are detected without MANOLIS sequences in the reference panel, we conducted imputation using a

combined UK10Kþ 1000 Genomes reference panel; the regional plot shows that the chr16:70790626 signal is captured with a different lead variant and

a decrease in significance. (e) Regional association plot for rs145556679. (f) Regional association plot for rs145556679 using a combined UK10Kþ 1000

Genomes reference panel; the same signal is captured with a different lead variant and a decrease in association strength. LocusZoom was used to create

the regional plots (http://csg.sph.umich.edu/locuszoom/).
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associations reported here have been detected for the first time as a
consequence of improved imputation accuracy. The cost-effective
hybrid WGS and imputation approach in founder populations
serves as a good model for further low-frequency variant discovery,
which can enhance our understanding of the biological processes
underpinning complex traits of medical relevance.

Methods
Cohort descriptives. The HELIC (Hellenic Isolated Cohorts; www.helic.org)
MANOLIS (Minoan Isolates) collection focuses on Anogia and surrounding
Mylopotamos villages on the Greek island of Crete. All individuals had to have at
least one parent from the Mylopotamos area. The HELIC Pomak collection focuses
on the Pomak villages, a set of isolated mountainous villages in the North of
Greece. Recruitment of both population-based samples was primarily carried out at
the village medical centres. The study includes biological sample collection for
DNA extraction and lab-based blood measurements, and interview-based ques-
tionnaire filling. The phenotypes collected include anthropometric and biometric
measurements, clinical evaluation data, biochemical and haematological profiles,
self-reported medical history, demographic, socioeconomic and lifestyle informa-
tion. The study was approved by the Harokopio University Bioethics Committee
and informed consent was obtained from every participant.

HELIC MANOLIS sequencing data. Sample selection. Overall, 250 HELIC
MANOLIS samples were whole-genome sequenced at 4� depth to provide
reference haplotypes for imputation. To maximize haplotype diversity, the
250 most unrelated samples were selected from a set of 1,118 samples genotyped on
the Illumina OmniExpress chip. Common (MAF45%) variants were used to
calculate the pairwise identity by descent; there were 624,403 such pairs for 1,118
individuals. Samples were selected based on a maximal p̂ of 0.15 across all samples.

Sequencing and variant calling. Sequencing was performed at 4� average depth
using Illumina HiSeq 2000 sequencers. The data was aligned to the 1000 Genomes
Project phase 1 reference assembly using BWA30. Optical and PCR duplicates were
removed using Picard MarkDuplicates (http://broadinstitute.github.io/picard).
Variants were called using samtools31 mpileup, and quality score recalibration was
performed using the variant quality score recalibration (VQSR) tool from the
GATK32 v.2.1.13 suite. After recalibration, one sample was found to be an ethnic
outlier and was removed. No samples were excluded based on concordance checks
with genotype data, sex checks, mean depth per sample, heterozygous or singleton
rate per sample or non-reference allele (NREF) discordance.

Variant QC and Haplotype creation. Post-VQSR, variants were filtered so as to
yield a sensitivity threshold of 90% for INDELS (VQSLODo3.1159) and a
threshold of 94% for SNPs (VQSLODo5.4079).Variants were excluded if they
were multi-allelic, monomorphic, singletons, indels, had a missingness 43% or a
HWE Po1.00� 10� 4. Any variant from the HELIC MANOLIS data for which the
alleles differed from the 1000 Genomes Project and UK10K datasets at the same
position was excluded. Phasing was performed using SHAPEIT v2.r727 (ref. 33).
Following imputation, variants with IMPUTEv2 (ref. 34) info score o0.7 were
filtered out. The final imputed variant set shows excellent genotype and minor
allele concordance across the MAF spectrum compared to the array data
(Supplementary Fig. 5). Average minor allele concordance was 94.6% for rare
(MAFo1%) variants, 96.7% for low-frequency (1%oMAFo5%) variants and
99.6% for common variants (MAF45%). SNP density inside low-complexity
regions (LCR) in the hg19 build was 6.5 times lower than in the accessible genome
(Supplementary Note 2 and Supplementary Table 9).

Merged reference panel creation. A large reference panel was constructed by
combining the WGS haplotypes from HELIC MANOLIS (9,554,503 variants and
249 samples), 1000 Genomes Project35 (27,449,245 variants and 1092 samples),
and UK10K1 (25,109,897 variants and 3781 samples). For 1000 Genomes Project
we used 1,000 Genomes Project haplotypes Phase I integrated variant set release
(SHAPEIT2) in NCBI build 37 (hg19) coordinates. All ethnicities with singletons
excluded (ALL.integrated_phase1_SHAPEIT_16-06-14.nosing) downloaded from
the IMPUTEv2 (refs 33,34) website (http://mathgen.stats.ox.ac.uk/impute/
impute_v2.1.0.html). For UK10K the haplotypes were prepared and described
previously1,2.

IMPUTEv2 (refs 33,34) was used to merge the haplotypes in a two-step process;
firstly merging the 1000 Genomes Project with the UK10K datasets and secondly
merging the HELIC MANOLIS with the UK10K-1000 Genomes Project reference
haplotypes. The merged reference panel contained 5,211 samples and 38,810,554
variants.

HELIC MANOLIS WGS SNV frequencies and functional annotation. The
human genome was split to functional regions as follows: coding and UTR
sequences were extracted from GENCODE annotations (Release 19, mapped to
GRCh37 build36), upstream/downstream regions, introns and splice regions were
derived from GENCODE data following Sequence Ontology definitions37.
Intergenic regions were defined as regions where no GENCODE genes were

overlapping the ungapped human genome (Ensembl release 75, build GRCh37).
Bedtools38 was used to find overlapping variants with each genomic regions then
the average frequency was calculated (Fig. 2a).

Using Ensembl variant effect predictor (VEP) (http://www.ensembl.org, version
75, on build GRCH37)39, the most severe consequence term was assigned to each
autosomal SNV in the phased and imputed dataset (the same dataset is used in all
subsequent analyses). Consequences were pooled into eight consequence categories:
30/50 UTR, coding sequence variant, intergenic variant, intron variant, splice-region
variant, non-coding transcript variant, upstream/downstream variant and regulatory
variant (Supplementary Table 10). Variants were grouped into the following bins:
MAC¼ 2, MAC42 and MAFr1%, 1%oMAFr2%, 2%oMAFr5%, MAF45%.
The percentage of variants with a given consequence term in each MAF bin was
calculated (Supplementary Table 2 and Supplementary Fig. 1).

HELIC MANOLIS 4� WGS reference panel comparisons. The autosomal SNVs
in the 249 HELIC MANOLIS 4� WGS reference haplotype dataset were binned
according to the observed MAF. Each variant was checked to establish if it was
present in the UK10K (n¼ 3718) and/or the 1000 Genomes Project (n¼ 1092)
reference haplotype dataset (Fig. 2).

Functional enrichment of variants private to HELIC MANOLIS. Variants
discovered in the 4� WGS were separated into two groups, those variants shared
with UK10K or the 1000 Genomes reference dataset (9,030,004 variants) or those
unique to HELIC MANOLIS (524,499 variants). To compare the distributions of
consequence terms in the shared and the unique datasets a two-sided proportion
test was used for each MAF bin, using the consequence and MAF bins described
above. Fold enrichment was calculated with the following equation:

EM;c ¼
CM;c

u
�
tM
u

CM;c
s
�
tM
s

:

Where EM,c is the fold enrichment of consequence c in M MAF bin; CM;c
u and

CM;c
s are the number of variants in M MAF bin with consequence c in the unique

and the shared dataset respectively; tM
u and tM

s are the total number of variants in
the M MAF bin in the unique dataset and the shared dataset respectively.
Bonferroni correction of the P was applied to account for multiple testing
(Fig. 3 and Supplementary Table 4).

Array genotyping and quality control. The MANOLIS and Pomak cohorts
were each genotyped in two tranches: one on the Illumina HumanOmniExpress
BeadChip and Illumina HumanExome BeadChip, and one on the Illumina
HumanCoreExome beadchip (Illumina, San Diego, CA, USA) at the Wellcome
Trust Sanger Institute, Hinxton, UK. The two datasets for each cohort were phased,
imputed and analysed separately (Fig. 1).

Quality control (QC) for the samples genotyped using the OmniExpress
genotypes has been previously described24. The same samples were genotyped
using the HumanExome BeadChipv1.1 at the Wellcome Trust Sanger Institute,
Hinxton, UK and called with Illumina Genome Studio Gencall, and zCall40. The
calling and QC were undertaken separately for the Pomak and MANOLIS cohorts
using a step-wise QC approach which consisted of GenCall sample QC followed by
zCall sample and variant QC (Supplementary Methods). The genotypes from the
OmniExpress and HumanExome chips were merged into a single dataset. For
variants present in OmniExpress and HumanExome the genotypes for those with
MAFZ5% were taken from the OmniExpress while those with MAFo5% were
taken from the HumanExome. This merged genotype, referred to as the
‘OmniExome’ dataset, contained 1265 samples and 621,908 variants for the
MANOLIS and 1003 samples and 612,403 variants for Pomak.

Additional HELIC MANOLIS and Pomak samples were genotyped on the
Illumina HumanCoreExome-12-v1.1 (Illumina) at the Wellcome Trust Sanger
Institute, Hinxton, UK. Genotypes were called with GenCall and zCall
(Supplementary Methods). In MANOLIS 211 samples and 529,604 variants, and in
Pomak 734 samples and 529,086 variants passed QC.

Phasing and imputation. Each cohort and array was phased and imputed sepa-
rately (Fig. 1). Before phasing, variants were excluded that were duplicates,
monomorphics, singleton variants, had poor intensity clustering, or had allelic
differences between the array and reference panel. Samples not genotyped on both
the OmniExpress and Exome chip arrays were excluded, as well as variants with
MAF o5% genotyped on the OmniExpress. Samples were phased using SHAPEIT
v2.r778 (ref. 33) and imputed using IMPUTE v2.3.1 (refs 33,34). Following
imputation, any variant with HWE Po1.00� 10� 4 or imputation information
score o0.4 was excluded. There was good genotype concordance between the 249
overlapping samples in the imputed and WGS (Supplementary Note 3).

Phenotype preparation. Thirty-one phenotypes encompassing cardiometabolic,
anthropomorphic and haematological traits were prepared separately for each cohort
and array (Supplementary Table 11). If gender differences were significant (Wilcoxon
rank sum, Po0.05), the phenotype was stratified accordingly. Following trait-specific
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exclusions and adjustments, outliers were filtered out based on 3, 4 or 5 SD away
from the mean. Traits not normally distributed were transformed to normality using
either an inverse normal or log transformation. For all traits age and age2 were added
as covariates as necessary and standardised residuals were used. Some traits are
adjusted for body mass index (BMI). If male and female phenotypes were prepared
separately these were standardised before combining the residuals. Summary statistics
for all of the traits are provided in Supplementary Table 12.

Association analysis. GEMMA. Association analysis was performed separately for
each cohort and array using the imputed genotypes. GEMMA41 was used for the
analysis. This software allows accounting for relatedness at the array level by using
a linear mixed model. A centred kinship matrix was generated using only the
directly typed array genotypes. P values from the likelihood ratio test (p_lrt) are
reported. For meta-analysis within and across cohorts we developed and used
METACARPA.

METACARPA. When meta-analysing GWAS, both the P values and effect sizes can
be meta-analysed on a per-variant basis. Both meta-statistics are weighted sums., for
example, for effect sizes:

Ẑ ¼
XK

k¼1

wk bZk;

where Ẑ is the estimator of a common effect Z across all studies, k 2 1:::Kf g identifies
the study among the K that should be meta-analysed, bZk is the effect in study k and wk

is a study-specific weight. For P values, we transform to z-scores using
zk ¼ F� 1 pk=2

� �
� sgnðZkÞ, where F is the cumulative distribution of the standard

normal. Then:

ẑ ¼
XK

k¼1

wkzk:

Then, z-scores are transformed back to P with the complement of the previous
transformation: pmeta ¼ 2F0;sð�ĵzjÞ. In both cases, the variance s 6¼ 1 needs to be
derived. For both ẑ and Ẑ it has the typical form of a variance of weighted sums:

Var Ẑð Þ ¼
XK

k¼1

w2
k VarðẐkÞþ 2

XK

k¼1

XK

l¼kþ 1

wkwlCov bZk; bZlð Þ;

Var ẑð Þ ¼
XK

k¼1

w2
kVarðzkÞþ 2

XK

k¼1

XK

l¼kþ 1

wkwlCov zk; zlð Þ:

Var(zk)¼ 1 by construction and VarðẐkÞ is taken from the input files. The previous
equations require the covariances of the individual study statistics across all pairs of
studies. We build a K�K variance-covariance matrix describing this ‘inter-study
relatedness’. Lin and Sullivan8 propose the following for estimating study correlation in
quantitative trait GWAS:

Corr Ẑk; Ẑlð Þ � nklffiffiffiffiffiffiffiffiffi
nknl
p ;

which is the number of overlapping individuals nkl in relation to the studies sample
sizes nk and nl . However, in many cases nkl is unknown, or the relatedness is subtler
than a simple overlap. Province and Borecki7 propose the following:

Corr zk; zlð Þ � rtetrachoricðzk0 j 1 ; zl0 j 1 Þ;

where zk0 j 1 ¼
1 if zk � 0
0 if zko0

�
; and rtetrachoric is the tetrachoric correlation coefficient.

We obtain covariances using Cov x; yð Þ ¼ sxy ¼ sxsyrxy , since sx and sy the variances
of the statistic in each study, are known. It is assumed that for every (k,l),
rk;l ¼ Corr zk; zlð Þ ¼ Corr Ẑk; Ẑlð Þ, that is, the general term for the variance-covariance
matrix Oz for the P meta-analysis is oz k;l

¼ rk;l , and the general term for the variance-
covariance matrix OZ for the effect-size meta-analysis is oZk; l ¼ rk;lsksl .

For weights, it is shown8 that in the case of overlapping samples, the wk are of
the form:

w ¼ 1

1TO� 1
Z 1
�1TO� 1

Z ;

where 1 is the unity vector of size K and OZ is the estimated covariance matrix of
the effect sizes between studies with general term oZ

k;l
.

For the P meta-analysis, the general term of Oz does not contain a factor
accounting for unequal sample size. The following weight vector does:

w ¼ 1

1T s
�s;

where s is a vector containing the sample sizes of all studies. The general term of
the weight vector is wi ¼ siP

k
sk

, the relative sample size of study i.

We implemented this method in Cþþ using the Boost libraries. For
tetrachoric correlation, we use the approximation of Digby42, which has been
shown to be valid when analysing equilibrated 2� 2 tables of large sample sizes,
which is the case when binary-transforming GWAS P values. This result was

confirmed by comparing the approximated value with an iterative maximum
likelihood estimator.

Simulation and benchmark. This implementation was tested by repeatedly
drawing two random sets of 2,000 samples each from the UKHLS GWAS dataset
(EGA accession EGAD00010000890), with increasing sample overlap. Phenotypes
were drawn from a standard normal. The two studies were associated separately
using GEMMA41, then meta-analysed using METACARPA, and the whole process
was repeated 1,000 times for each level of overlap. An uncorrected fixed-effects,
sample size-weighted P value-based meta-analysis43 was implemented in the
software for comparison, as well as an uncorrected inverse-variance weighted,
effect size-based meta-analysis. We used degrees of overlap ranging from 0.5 to
75% of the total sample size (Fig. 4 and Supplementary Fig. 2). We assessed the
false-positive rate calculated at a genome-wide significance threshold of
5.00� 10� 8, and the power to detect a single associated SNP. Effect SNPs were
chosen randomly for each simulation, MAF and effect sizes were constrained so
that the effect SNP explained 1% of phenotype variance.

For typical to substantial levels of overlap (0.5–10%), false-positive rate grows
linearly for both the two uncorrected and the two corrected methods (Fig. 4a).
However, for the latter, the growth rate is reduced from 6� 10� 5%/sample to
5.5� 10� 5%/sample (8.3%). While for typical (0.5–5%) levels of overlap, power to
detect a single SNP is conserved, for substantial levels of overlap (5–10%) it drops
at an approximate rate of 0.05%/sample. For extensive levels of overlap (10–75%),
the increase in false-positive rate slows further and stabilizes around 9% for
overlaps greater than 50% for both corrected methods (Supplementary Fig. 2),
whereas uncorrected methods keep growing at an unchanged rate. Owing to the
reduction in effective sample size, power decreases to below 60% for very
high levels of overlaps. At the levels of overlap inferred in the HELIC datasets
(1.96 and 1.84%), power is decreased by 0.1% and false-positive rate is decreased
by 0.2% between the corrected and uncorrected effect-size based meta-analyses.

We evaluated the accuracy of tetrachoric correlation in estimating the true
simulated sample overlap (Supplementary Fig. 6) compared to Pearson’s
correlation of z-scores. Although both methods systematically underestimated
sample overlap, tetrachoric correlation performed poorly compared to Pearson’s
when all SNPs were under the null (Supplementary Fig. 6). Tetrachoric
correlation’s main advantage is to ignore outliers, hence it may be overconservative
under the null. Under a simulated polygenic burden across 10,000 SNPs for a trait
that is 20% heritable under 25% sample overlap, both methods overestimated
correlation but tetrachoric correlation was more accurate than Pearson’s (Fig. 4c).
This suggests that tetrachoric correlation is able to correct for the presence of a
relatively high number of truly associated, correlated SNPs, a scenario which is
expected to arise when analysing highly polygenic traits.

Implementation. This method is implemented in the METACARPA software
(META-analysis in Cþþ Accounting for Relatedness using arbitrary Precision
Arithmetic). Binary and sources are freely available (https://github.com/wtsi-
team144/metacarpa, http://www.sanger.ac.uk/science/tools/metacarpa).

Prioritization and validation. Variants were prioritized for validation by direct
genotyping from the meta-analysis across cohorts, keeping only the most
significant SNV with Pr5.00� 10� 8 in a 500 kbp window around any given
signal. Variants that were genome-wide significant in the within-cohort
meta-analysis and not within 500 kbp of the across cohort meta-analysis
signal were also considered. Replication is demonstrated in the within-cohort
meta-analysis by nominal significance (two-sided Pr0.05) in the same direction
in both datasets (we relaxed this to Pr0.08 for MANOLIS CoreExome for
2 variants due to small sample size). For the across cohort meta-analysis both
within-cohort meta-analysis have Pr0.05. To determine the Bonferroni corrected
genome-wide significance level, for each cohort array we used the eigenvalues
of the correlation matrix of the 31 traits tested44 to calculate the effective number
of independent phenotypes. Then, the genome-wide P threshold to control
FWER at 5%, using a Bonferroni correction, is 5.00� 10� 8/effective number
of independent phenotypes. We selected the cohort array with the
maximum number of independent phenotypes for the calculation, which was
5.00� 10� 8/14.99¼ 3.33� 10� 9.

Prioritized variants were independently genotyped in as many of the imputed
samples as possible using the Sequenom iPLEX Assay and the Sequenom
MassARRAY System (Agena Bioscience) (Supplementary Methods).

Sixty two variants were directly genotyped in a maximum of 2,778 samples.
Concordances of the major and minor alleles were calculated separately. The minor
allele concordance and the positive predictive value (PPV), which is the fraction of
true positives for the minor allele calls, were used to assess the imputed genotype
quality. Phenotypes were prepared again only for the samples with directly typed
genotypes and the association and meta-analysis were repeated.

Concordance and PPV were calculated as follows:

r ¼ 1
n

Xn

k¼1

No: concordant minor alleles
No:minor alleles in reference GWAS data

;

PPV ¼ 1
n

Xn

k¼1

No: concordant minor alleles
No:minor alleles in sequencing

:

The proportion of variants that had both concordance and PPV490% were:
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MANOLIS CoreExome 54.8%; MANOLIS OmniExome 53.2%; Pomak CoreExome
50%; Pomak OmniExome 54.8%. All variants reported here pass validation
(Supplementary Table 5).

For the weight signal with rs112037309 we validated a proxy rs17262443 which
has r2¼ 1 with rs112037309 (rs17262443, P¼ 3.69� 10� 8). Conditional analysis
confirmed these represent the same signal.

Data availability. The following HELIC genotype and WGS datasets have been
deposited to the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/
home): EGAD00010000518; EGAD00010000522; EGAD00010000610;
EGAD00001001636. We have also contributed the 249 HELIC MANOLIS whole-
genome sequences to the Haplotype Reference Consortium (http://www.haplotype-
reference-consortium.org).
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