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SUMMARY

Modeling macromolecular assemblies with re-
straints from crosslinking mass spectrometry
(XL-MS) tends to focus solely on distance violation.
Recently, we identified three different modeling
features inherent in crosslink data: (1) expected dis-
tance between crosslinked residues; (2) violation of
the crosslinker’s maximum bound; and (3) solvent
accessibility of crosslinked residues. Here, we
implement these features in a scoring function.
cMNXL, and demonstrate that it outperforms the
commonlyused crosslink distance violation. We
compare the different methods of calculating the
distance between crosslinked residues, which
shows no significant change in performance when
using Euclidean distance compared with the sol-
vent-accessible surface distance. Finally, we create
a combined score that incorporates information
from 3D electron microscopy maps as well as cross-
linking. This achieves, on average, better results
than either information type alone and demonstrates
the potential of integrative modeling with XL-MS and
low-resolution cryoelectron microscopy.

INTRODUCTION

Protein complexes play a critical role in the cell, either through

transient cell signaling complexes or via the specialized func-

tions of macromolecular machines. Determining the structures

of protein complexes is therefore essential for a mechanistic un-

derstanding of the cell. Unfortunately, protein complexes can be

problematic to study with traditional structural techniques, such

as X-ray crystallography, nuclear magnetic resonance (NMR), or

cryo electron microscopy (EM), due to their size, heterogeneity,

or resistance to crystallization (Leitner et al., 2016; Thalassinos

et al., 2013). A recently established paradigm, integrative

modeling, sidesteps issues arising from individual structural

techniques by integrating orthogonal information from a range

of experimental sources (Ward et al., 2013). This information is

combined into a scoring function that determines how well a

given model satisfies the input information.The sources of infor-
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mation can range from traditional structural methods such as

X-ray crystallography, NMR, and 3D-EM (Lasker et al., 2012;

Russel et al., 2012; Simon et al., 2010) to methods that generate

sparse structural information, such as small-angle X-ray scat-

tering (Michie et al., 2016), fluorescence resonance energy trans-

fer (Bonomi et al., 2014), native mass spectrometry (MS) (Politis

et al., 2014), ion-mobility MS (Politis et al., 2010), and Crosslink-

ing MS (XL-MS) (Chen et al., 2010; Erzberger et al., 2014; Leitner

et al., 2012).

XL-MS is a technique typically used to generate distance re-

straints, which can be used for protein modeling. The concept

of protein crosslinking has been around a long time, although it

is not until recently that its popularity has increased, due to tech-

nical advances in detector design (Hu et al., 2005), crosslink

spectra identification software (Leitner et al., 2014a; Yang

et al., 2012), crosslinking reagents (Ihling et al., 2006; Leitner

et al., 2014b; Rivera-Santiago et al., 2015), and modeling meth-

odologies (Ferber et al., 2016; Russel et al., 2012). XL-MS re-

straints can be used exclusively to generate models, or validate

models fitted into medium-resolution cryo-EM maps (Wang

et al., 2017) or low-resolution subvolume averages from cryo

electron tomography (cryo-ET) (Dodonova et al., 2015).

A typical crosslinking experiment consists of first reacting the

protein complexwith crosslinker, which covalently binds specific

amino acids (either lysine, aspartic or glutamic acid, or cysteine)

within a given distance (from 0 to 50 Å) depending on the length

of the crosslinker. The crosslinked complex is then digested by

proteases and the crosslinked peptides are analyzed and identi-

fied via MS (Rappsilber, 2011). From this, one can establish

which two amino acids are within the crosslinker maximum

bound in the native structure, which can be encoded into dis-

tance restraints used for modeling.

Another aspect of crosslinking that is commonly overlooked is

that crosslinks can only form on residues that are solvent acces-

sible; therefore, crosslinks can act as a proxy for solvent acces-

sibility. We previously made use of this solvent accessibility

information by defining a non-accessible crosslink, i.e., a cross-

link that has been experimentally observed but where one or

both of the crosslinked residues are non-solvent accessible in

the model. Incorporating this solvent accessibility information

was shown to be very beneficial to the modeling of protein

monomers (Bullock et al., 2016).

The distance between two crosslinked residues is usually

calculated in one of two ways. The most common method is

the Euclidean distance (ED), i.e., a direct line between the two
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crosslinked residues. By virtue of its simplicity, it is a very quick

calculation to perform; however, as this does not take into ac-

count the fact that a crosslinker cannot travel through protein

mass, it can be inaccurate. This is in contrast to the solvent-

accessible surface distance (SASD), defined as the shortest

path between two residues across the surface of the protein

(Kahraman et al., 2011), which can be calculated using the soft-

ware Jwalk (Bullock et al., 2016). Additional accuracy can be ob-

tained by considering the flexibility of crosslinked residues’ side

chains (Degiacomi et al., 2017).

Previously, when crosslinking restraints have been used for

scoring models of protein monomers and complexes the most

common approach has been to use only violation of the

maximum bound of the crosslinker (number of violations

[NoV]). This scoring can be done either via a step function, i.e.,

a crosslink is either violating or not (Leitner et al., 2012; Politis

et al., 2014; Thalassinos et al., 2013), a smoothed scoring func-

tion (Belsom et al., 2015; Hofmann et al., 2015) or a probabilistic

Bayesian approach (Russel et al., 2012). In all these cases, the

only crosslink information used pertains to the crosslinker

maximum bound. The expected distance between crosslinked

residues (taken from an experimentally observed distribution)

can also be used to sample and score models, again imple-

mented in a Bayesian framework in the software XL-MOD

(Ferber et al., 2016). It is also possible to use crosslinking data

as a proxy for solvent accessibility, which has been previously

used in a ROSETTA-based docking protocol (Kahraman

et al., 2013).

To improve upon existing crosslink scoring regimes, here we

combine the three potential types of modeling restraint encoded

in crosslinking information: (1) the maximum bound of cross-

linker; (2) the expected distance between crosslinked residues;

and (3) the solvent accessibility information of crosslinked resi-

dues. Previously, we incorporated these three sources into the

scoring function Matched and Non-accessible Crosslink

(MNXL) score, and showed it to outperform the NoV method

when modeling protein monomers (Bullock et al., 2016). Here

we extended the MNXL scoring function to score protein com-

plexes (cMNXL) by incorporating all of the previous information

as well as handling intra-subunit and inter-subunit crosslinks

differently, in order to maximize modeling performance. We

then tested our new scoring function on a simulated benchmark

of 68 protein dimers and a separate benchmark of 9 protein com-

plexes, with associated experimental crosslinks taken from

XLinkDB2.0 (Schweppe et al., 2016), and compared it with the

performance of using either the maximum bound or expected

distance alone. We were also able to compare the effects on

modeling performance when using SASD or ED to measure the

distance between crosslinked residues. Finally, to investigate

how crosslinking can be integrated with other structural tech-

niques such as cryo-EM or -ET, we combined cMNXL with 3D-

EM density information to generate a combined score, which

adds mutual complementary modeling information.

RESULTS

Theory
We updated our previous scoring function to create cMNXL.

cMNXL is made up of the number of non-accessible (NoNA)
1016 Structure 26, 1015–1024, July 3, 2018
feature of both intra- and inter-subunit crosslinks and the num-

ber of violations and expected SASD of inter-subunit crosslinks

(NoV and ExSASD, respectively).

The cMNXL score is defined as follows:

cMNXL=ExSASD+NoV + 3 3 ðNoNAinter +NoNAintraÞ;

where ExSASD is the expected SASD between inter-subunit

crosslinked residues, NoV is the number of inter-subunit cross-

links that violate the theoretical maximum bound of the

crosslinker, NoNA is the number of crosslinks that are non-

accessible (i.e., one or both of the crosslinked residues is not

solvent accessible), and the subscripts inter and intra refer to in-

ter-subunit and intra-subunit crosslinks, respectively. During the

study, the score from each of these terms was calculated sepa-

rately and a systematic investigation into the different weighting

was performed in order to return the best results (see STAR

Methods). The optimum scoring regime for each crosslink

feature is described below.

ExSASD: if it is possible to calculate the SASD in the model

and the SASD is below the maximum bound, it is scored for in-

ter-subunit crosslinks as follows:

ExSASD½SASD�=
�
Nð21:92; 4:87Þ SASD% 32 �A

0 else
;

Where N is a normal distribution fitted to the distribution of

SASDs for inter-subunit crosslinks under 32 Å taken from the

XLdb (Bullock et al., 2016).

In the comparison between SASD and ED, ExED is substituted

for ExSASD. ExED is scored as follows:

ExED½ED�=
�
Nð18:35; 4:11Þ ED % 30 �A

0 else
;

where N is a normal distribution fitted to the distribution EDs for

inter-subunit crosslinks under 30 Å taken from the XLdb (Bullock

et al., 2016; Leitner et al., 2012).

NoV: if it is possible to calculate the SASD in the model but the

SASD exceeds the crosslinker maximum bound, it is scored as

follows:

NoV ½SASD�= �0:1 SASD > 32 �A
0 else

;

�

or in the case of ED,

NoV ½ED�= �0:1 ED > 30 �A
0 else

:

�

NoNA: if no SASD for a pair of either inter- or intra-crosslinked

residues can be calculated, because one or both of the cross-

linked residues are no longer solvent accessible, this crosslink

is defined as non-accessible, respectively, and is scored a flat

penalty of �0.1. cMNXL score belongs to the set fcMNXL˛Rg.
cMNXL Scoring Workflow
To score models of protein complexes using crosslink data it is

necessary to generate a test dataset, i.e., the calculation of

SASDs between all solvent exposed lysine residues. The test
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Figure 1. Flowchart Detailing the Scoring Workflow of cMNXL
cMNXL is the total of the scores for each individual experimental crosslink.
dataset is then compared against either the experimental MS da-

taset (crosslinks taken from the XLinkDB2.0 [Schweppe et al.,

2016]) or a theoretical MS dataset (i.e., all the SASDs calculated

with Jwalk [Bullock et al., 2016] under the maximum bound of

32 Å). Each crosslinked pair of residues, in either the experi-

mental or theoretical MS datasets, is then compared against

the test dataset based on which the crosslinks are scored. The

score for each crosslink is then totaled into a final score for

each model (Figure 1).

Performance of cMNXL
Theoretical Benchmark

To statistically evaluate this scoring function, we tested cMNXL

on a theoretical benchmark of 68 protein dimers, each with

100 models at a range of qualities. The models were scored us-

ing theoretical crosslinks. To replicate a more realistic scenario,

we bootstrapped crosslinks at 15% recovery with a minimum of

2 inter-subunit crosslinks (see STAR Methods).

Overall, cMNXL achieves an average precision of 0.560 and

average area under the curve (AUC) of 0.901 (Figure 2 and

Table S1). This is a significant improvement over the more

commonly used NoV score, which has an average precision of

0.438 and AUC of 0.875 (p values 4.11e�12 and 2.835e�06,

respectively). cMNXL also has a significantly lower false-positive

rate (FPR) than NoV (0.050 versus 0.207) making cMNXL a more

reliable score (p < 2.2e�16).

There is a range of performance across the benchmark. Cases

that can be modeled successfully tend to have high frequency of

lysine residues on the surface, for example PDB: 1QA9 or 1FQJ,
which contain 27 and 38 lysines across the complex, respec-

tively (Figure 3 and Table S1). Cases that perform badly include

PDB: 1FFW, in which one subunit has only two lysines and there-

fore one subunit position cannot be triangulated against the

other (Figure 3). If the complex is too small for the length of re-

straint used, the results will also be bad, as in the case of PDB:

2OOB, because significant deviations from the native structure

can be made without violating any of the distance restraints (Fig-

ure 3). Testing cMNXL at different levels of recovery confirms

that an increase in crosslink recovery improves performance,

although this performance starts to plateau at a theoretical re-

covery of �50% (Figure S1).

The best-performing term of cMNXL is the ExSASD score,

which alone achieves an average precision and AUC of 0.529

and 0.897, respectively. This is followed by the NoV term, which

achieves a lower precision and AUC of 0.428 and 0.875,

respectively. The non-accessible crosslink terms (NoNAintra and

NoNAinter) perform the least, with low precisions when used on

their own (0.128 and 0.161 for NoNAintra and NoNAinter, respec-

tively) (Figure 2 and Table S1). However, when combined with

the other scoring terms there is a small but significant improve-

ment in precision (from0.557 to 0.560, p= 0.0329) but not inAUC.

Experimental Benchmark

To discover how cMNXL performed with experimental crosslink-

ing data, we then tested cMNXL on a second benchmark of 9

protein complexes, each with 100 models at a range of quality,

using experimental crosslinks taken from the XLinkDB2.0.

cMNXL achieves a higher average precision of 0.644 and

AUC of 0.908. Although overall on this small benchmark the
Structure 26, 1015–1024, July 3, 2018 1017



Figure 2. Performance of cMNXL Terms

Bar plots showing the performance of each individual member of the experimental benchmark as well as the average performance of both the experimental (Exp)

and theoretical (Theo) benchmarks, when scored with each constituent scoring term of cMNXL, in terms of (A) precision, (B) AUC, and (C) false-positive rate (FPR).

The error bars represent the standard deviation.
NoV score performs similarly to cMNXL, with non-significant

increase in precision and a non-significant decrease in

AUC (0.656 and 0.907 for precision and AUC, respectively),

the FPR is significantly worse (from 0.138 to 0.040,

p = 0.018). In the 3 out of 9 individual cases where NoV out-

performs cMNXL, NoV has a much higher FPR (Figure 2 and

Table S2).

Generally across the benchmark, the higher the number of

crosslinks, the more successful the modeling, as is the case

for PDB: 1U8F, which has 162 crosslinks (42 inter- and 120

intra-subunit) (Figure 4). However, PDB: 1JEQ also performs

very well, which is surprising given the lower count of crosslinks

(4 inter- and 5 intra-subunit crosslinks). Here, the inter-subunit

crosslinks are located in three discrete regions across the pro-

tein interface, which triangulates the protein orientation and

optimizes the scoring.

When there are not enough inter-subunit crosslinks to trian-

gulate the protein orientation, modeling performance (with
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either cNMXL or NoV alone) is severely affected. With PDB:

1F05 (Figure 2) there are only 2 inter- and 10 intra-subunit

crosslinks. Without a third inter-subunit crosslink to triangulate

the orientation, many bad models do not violate any crosslinks

at all. The top scoring model is mostly correct in terms of orien-

tation; however, the subunits are rotated so that the two inter-

subunit crosslinks are closer together than in the native

structure, as this maximizes the ExSASD scoring aspect.

PDB: 3Q6M is the worst performing in the benchmark because

there are only three inter-crosslinks between three subunits and

as a result, large deviations in orientation are tolerated (Fig-

ure 4). In this case, the NoV appears to outperform cMNXL;

however, this is an artifact of the way precision and AUC are

calculated in NoV (see STAR Methods), given that 49 models

across a range of mean root-mean-square deviations (RMSDs)

(0.00–29.41 Å) only violate one crosslink and as a result all are

ranked second. The poor FPR of NoV (0.427) reflects this (Fig-

ures 2 and S2).



Figure 3. Specific Cases from the Theoret-

ical Benchmark, PDB: 1QA9, 1FFW, and

2OOB

(A) Protein structures with all lysine side-chain

atoms are shown in gray.

(B) Protein structures with a representative theo-

retical crosslink benchmark (sampled at 15% of all

possible crosslink combinations under 32 Å) are

shown in green.
Comparison of SASD and ED
Next, we compared the effect on modeling performance when

using either SASD or ED to calculate the distance between

crosslinked residues. While SASD is theoretically more correct,

using Jwalk to calculate SASD is around 5 orders of magnitude

slower than ED (despite significant speed improvements due to

parallelization). This can become prohibitive when dealing with

large numbers of models and crosslinks.

We substituted ED for SASD in cMNXL (cMNXLED) to make a

direct comparison between the distance types and retain the

solvent accessibility information that would otherwise be lost

when solely using ED. Upon use of ED, there is no significant

change in precision (from 0.560 to 0.542 for cMNXL to

cMNXLED, respectively) or AUC (from 0.901 to 0.906 for

cMNXL to cMNXLED, respectively) (Figure 5 and Table S1).

Looking specifically at ExSASD and substituting in the ED

(ExED) also gave only a small non-significant decrease in

both precision and AUC. Surprisingly, substituting ED into

NoV (NoVED) and comparing with NoV does result in a signifi-

cant decrease in performance, in both precision and AUC

(p values 1.141e�09 and 2.321e�12 for precision and AUC,

respectively).

This trend is generally also observed in the experimental

benchmark, where there are non-significant decreases in

precision and AUC when switching from cMNXL to cMNXLED
(Figure 5 and Table S2). The performance difference between

NoV and NoVED is larger but also remains insignificant.

Surprisingly, the comparison between ExSASD and ExED

shows a much larger drop in performance, where the decrease

in AUC is significant (0.882–0.844, p = 0.0281). This can be

attributed to two benchmark cases, PDB: 1UJZ and 2PSN,

whose performances decrease more dramatically (Figure 6).

The poor performance of 1UJZ is a result of the protein

complex being very small (9.9 and 14.5 kDa each), and

therefore the crosslink restraints tolerate a large range of

non-native models. When the ED is used the tolerance is

increased further, therefore accepting an even greater range

of non-native models (Figure 6A). In the case of 2PSN, the

precision drops from 0.800 to 0.400 because 14/18 inter-

subunit crosslinks lie very close to the dimer interface, all
S

stemming from either K53 and K59

(Figure 6B). The ExSASD performs

well because a large number of the

inter-subunit crosslinks have native

SASDs very close to the mean SASD

value (m = 21.92 Å). However, this

performance halves when using the

ExED because the ED distribution does
not accurately reflect the distances between crosslinked

lysines.

Combination with 3D-EM Data
To explore the power of combining crosslinking and 3D-EM infor-

mation, we combined cMNXLwith the fitness score (F score) from

g-TEMPy(Panduranganetal., 2015), ageneticalgorithmforgener-

ating models of protein complexes using 3D-EM density. To this

end, we simulated 3D-EM density maps at 10-, 15-, and 20-Å res-

olution from both the theoretical and experimental benchmarks

(see STAR Methods, note that for the experimental benchmark

only the crosslinks are ‘‘experimental,’’ not the density maps).

Scoring the theoretical benchmark with each scoring function

(F score and cMNXL) separately reveals that on average the

F score performs significantly better than cMNXL at each resolu-

tion in terms of both AUC (p values 4.288e�4, 1.628e�3, and

9.451e�3 for 10, 15, and 20 Å, respectively) and precision

(p values 2.2e�16, 3.197e�15, and 4.706e�15 for 10, 15, and

20 Å, respectively). However, the combination of F score with

cMNXL significantly improves the average performance at every

resolution comparedwith F score alone in terms of AUC (p values

2.942e�10, 2.976e�11, and 9.747e�13 for 10, 15, and 20 Å,

respectively) and precision (p values 1.22e�05, 5.663e�05,

and 5.458e�06 for 10, 15, and 20 Å, respectively) (Figure 7

and Table S3).

Crosslinks are especially useful in cases such as PDB: 1XD3

from the theoretical benchmark,whereglobular subunits arediffi-

cult to orientate accurately (Figure 8A). Here, the F score ranks

many models with completely incorrect interfaces (fnat of 0) in

the top 10, resulting in a precision of 0.40. The combination of

crosslinking and 3D-EM, even when the crosslinking alone is un-

able to successfully model the protein complex, improves the

orientation of the subunits, increasing the precision to 0.90.

In the experimental benchmark this trend is repeated, with the

combined score significantly outperforming the F score at every

resolution in terms of average AUC (p values 0.0140, 0.0160, and

0.0161 for 10, 15, and 20 Å, respectively). In terms of precision,

the F score alone already performs excellently so there is little

room for additional improvement (Figure 7 and Table S4). In

benchmark case PDB: 1F05, cMNXL alone performs badly
tructure 26, 1015–1024, July 3, 2018 1019



Figure 4. Performance of cMNXL and Its Components Demonstrated on Three Benchmark Cases, PDB: 1U8F, 1JEQ, and 3Q6M

(A) Respective crystal structures of with experimental crosslink SASDs mapped on the surface using Jwalk. Green SASDs pertain to inter-subunit crosslinks.

(B) Respective receiver-operating characteristic (ROC) plots showing the different components of cMNXL: expected SASD (ExSASD), violations (NoV), intra-

subunit non-accessible crosslinks (NoNAintra), and inter-subunit non-accessible crosslinks (NoNAinter). P denotes the number of positive models in the bench-

mark, and Top denotes the cMNXL rank of the best model based on meanRMSD.
because it has only 2 inter-subunit crosslinks (see above) (Fig-

ure 8B). Again, the combined score is able to improve the perfor-

mance of F score despite the crosslinking alone being insuffi-

cient, as one of the models ranked in the top10 by the F score

violates a crosslink restraint, which results in a precision increase

from 0.600 to 0.700 (F score to combined score, respectively).

DISCUSSION

General Approach to Crosslinking Data
Our previous investigation into modeling monomeric proteins

(Bullock et al., 2016) and our current investigation into protein

complexes highlights three separate, but complementary,

scoring properties of crosslinks: (1) the expected SASD between

two crosslinked residues (ExSASD); (2) the number of violations

of the crosslinker maximum bound between two crosslinked

residues (NoV); (3) the solvent accessibility of the crosslinked

residues (NoNA). By making use of all three of these aspects,

we were able to create a scoring function that improves upon

the commonly used inter-subunit NoV or the expected distance

between inter-subunit ExSASD.

We tested our score on both an experimental and a theoretical

benchmark. The theoretical benchmark was scored at a 15% re-
1020 Structure 26, 1015–1024, July 3, 2018
covery rate in order to more accurately replicate an experimental

scenario (the average experimental recovery rate of the experi-

mental benchmark was 13.7%). Scanning of the recovery rates

shows us, however, that at �50% recovery the modeling preci-

sion begins to plateau. Future technical improvements in the

collection of crosslinks should therefore increase the perfor-

mance of XL-MS modeling.

Lysine crosslinkers are also able to crosslink serine and thre-

onine residues, albeit at much lower frequencies (Sinz et al.,

2015). As of yet, no serine or threonine crosslinks are listed in

the XLinkDB2.0. However, cMNXL is applicable to any cross-

linked residue that is crosslinked using a crosslinker of 11.4 Å

length.

Previously we showed that non-accessible crosslinks play an

important role in modeling the structure of monomeric proteins

(Bullock et al., 2016). In a benchmark containing only protein

monomers, NoNA contributed the most performance to the

scoring function, whereas NoV and ExSASD contributed only

smaller gains. Interestingly, this has not been the case with our

current results on protein complexes, where out of all the scoring

aspects, NoNA contributes the least (and the inter-subunit ones

less than the intra-subunit), while both NoV and ExSASD deliver

similar high performance.



Figure 5. Performance of Scores Using ED versus SASD

Bar plots showing the performance of both the experimental (Exp) and theo-

retical (Theo) benchmarks, when scored with either NoV, ExSASD, or cMNXL

using either ED or SASD, in terms of (A) precision and (B) AUC. The error bars

represent the standard deviation.
These results highlight the differences between the require-

ments of the data for the two types of modeling: proteins versus

protein complexes. In modeling complexes using proteins as

rigid bodies, distance information from crosslinks can effectively

constrain the conformational space as opposed to solvent

accessibility (if two rigid bodies are far enough removed, their

surfaces would be fully exposed and all solvent accessibility re-

straints would be satisfied). However, solvent accessibility can in

theory guide subunit orientation once rigid bodies reach close

proximity (both inter- and intra-), which may explain the small

but significant increase in performance seen when incorporating

non-accessible crosslinks into cMNXL. This is in contrast to

modeling different conformations of proteinmonomers, whereby

the distance between crosslinked residues is unlikely to differ

dramatically between models, and backbone flexibility opens

up the possibility of burying or exposing different residues. In
this instance, non-accessible crosslinks markedly increase the

performance while NoV and ExSASD contribute less (Bullock

et al., 2016).
Estimation of the Distance between Crosslinked
Residues: SASD versus ED
In our previous study on monomers, the effect of using SASD

over ED was pronounced, especially in the comparison between

MNXL and NoVED, where the latter’s performance collapsed

completely (precision of 0.06). However, in this benchmark on

protein complexes, the difference in performance is much less

marked. This is likely because in protein monomers, physically

the crosslink must curve around the protein surface, which cre-

ates a larger discrepancy between the ED and SASD. In the case

of complexes, there is a higher chance of the crosslink to be

more ‘‘linear’’ when connecting two residues, thereby making

the ED a reasonable approximation for inter-subunit crosslinker

paths in protein complexes. This would be even more so when

using crosslinkers shorter than BS3 (e.g., BS2) or zero-length

crosslinkers (e.g., EDC). These results again highlight how

rigid-body modeling of protein complexes has information re-

quirements different from those of the flexible modeling of pro-

tein monomers.

In our theoretical benchmark, the performance between SASD

and ED only differs significantly when using the NoV term

(i.e., NoVSASD and NoVED). This is similar to the observation

made by Kahraman et al. (2013) whereby they found the

numbers of models satisfying a threshold of crosslinking re-

straints to decrease dramatically when switching from NoVED

to NoVSASD. This observation contrasts with what is seen in our

experimental benchmark, where the performance is significantly

different only in the expected distance term (ExED performing

worse than ExSASD). However, as shwon, this result is due to

two specific cases (PDB: 1UJZ and 2PSN) that perform badly,

and is therefore not indicative of a more general trend.

Another consideration when deciding which distance calcula-

tion to use is the computational expense of calculating SASD,

which is too high to implement in a sampling-based methodol-

ogy. Possible alternatives include calculating the ED between

the Nz atoms of lysines after considering their flexibility (Degia-

comi et al., 2017).
Figure 6. Comparison of Performance be-

tween SASD and ED

(A) Crystal structure of benchmark case PDB:

1UJZ placed inside a 30-Å radius sphere centered

on the center of mass, demonstrating how ED

loses its ability to score small protein complexes.

(B) Left: crystal structure of benchmark case PDB:

2PSN with experimental inter-subunit crosslink

SASDs mapped on the surface in green. Inter-sub-

unit crosslinks are clustered in two regions close to

the dimer interface. Right: distributions of expected

SASD and ED in blue and orange, respectively.

Histograms of SASD (blue) and ED (orange) of

inter-subunit crosslinks for benchmark case 2PSN

overlaid. More SASDs score at the maximum of

the expected SASD distribution than EDs score on

the expected ED distribution, which results in better

modeling performance for ExSASD.
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Figure 7. Performance of cMNXL, F Score, and the Combined Score

Bar plots showing the performance of each individual member of the experimental benchmark as well as the average performance of both the experimental (Exp)

and theoretical (Theo) benchmarks, when scored with cMNXL, F score, and the combined score using 3D-EMmaps at 10, 15, and 20 Å resolution, in terms of (A)

precision and (B) AUC. The error bars represent the standard deviation.
Considering the above, if the NoV is the scoring method being

used, we recommend using SASD (Kahraman et al., 2013). This

is because NoVED remains the worst crosslink scoring proced-

ure, performing significantly worse than cMNXLSASD and also

NoVSASD. If using other types of scoring functions (e.g., cMNXL

or expected distance [Ferber et al., 2016]) are used, as the

non-significant gain generated from modeling with SASD is

offset by its computational expense, we recommend using ED
Figure 8. Performance of cMNXL, F Score, and Combined Score

The top-rankedmodel from the F score, cMNXL, and the combined score, along w

(B) experimental benchmark case PDB: 1F05. The native structure and top-ranke

simulated at 15- and 10-Å resolution for 1XD3 and 1F05, respectively. The top-ran

in green (representative dataset bootstrapped at 15% for 1XD3). The precision sh

of positive models in the benchmark, and Top denotes the cMNXL rank of the b
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(especially when considering using sampling methods with

crosslink information [Erzberger et al., 2014; Ferber et al., 2016]).

Conflicting Crosslinks and False Positives
As the crosslinking experiment happens in solution at room tem-

perature, it is possible that crosslinking datasets are capturing

more than one conformation of the complex. This could be a

result of the protein complex adopting multiple native
ith corresponding ROC plots of (A) theoretical benchmark case PDB: 1XD3 and

d F score and combined score models are shown with the native 3D-EM map

kedmodel from cMNXL and the combined score show the inter-subunit SASDs

own is the bootstrapped average. Inside the ROC plots, P denotes the number

est model based on mean RMSD.



conformations, but it could also be due to crosslinks capturing a

partly dissociated complex. Consequently, this might lead to

conflicting sets of crosslinks that correspond to (in terms of dis-

tance restraints and solvent accessibility information) two or

more structural states. Modeling procedures that use crosslink-

ing in the sampling stage are more likely to identify these events,

either by specifically processing these events during sampling

(Ferber et al., 2016) or by clustering the output to see whether

multiple scoring minima are observed (Erzberger et al., 2014).

In this study, we used cMNXL only to validate models and, as

such, we were unable to deal with conflicting crosslink datasets.

Nevertheless, the use of crosslinks to validate models generated

by 3D-EM fitting is commonly seen in the literature (Dodonova

et al., 2015; Wang et al., 2017).

Additionally, during the crosslink identification process it is likely

thatasmall percentageof the identifiedcrosslinkswill be falsepos-

itives.Experimentalmethods forassessing thequalityofcrosslinks

are becomingmore rigorous (Iacobucci and Sinz, 2017); however,

currently themosteffectiveway to incorporate this information is to

use the crosslink identification score (e.g., Xquest ID score [Rinner

et al., 2008]). Unfortunately, these data are not available in the

XLinkDB2.0 or XLDB, sowewere unable to include this in cMNXL.

However, we plan to explore this in future studies.

Combining Crosslinking and 3D-EM Information
Finally, we wanted to demonstrate that crosslinking and 3D-EM

information at resolution range of 10–20 Å are complementary to

each other in the modeling process. By combining cMNXL with

the fitness score (F score) from g-TEMPy, we created a com-

bined score that performed better overall on the benchmark

than each score alone. Even though the 3D-EMmapswere simu-

lated, which gave the F score an advantage over the crosslinking

data (which was either experimental or was bootstrapped at

15% for the theoretical benchmark, i.e., more realistic than the

noise-free EM data), the results confirmed that the combination

of crosslinking and 3D-EM information is complementary at all

resolutions and can capture subunit orientation better than 3D-

EM alone. This is most notable in certain cases such as PDB:

1XD3, where models ranked in the top 10 by the F score have

completely incorrect interfaces. Even in cases where the cross-

linking information is insufficient to successfully model protein

complexes on its own (experimental benchmark case PDB:

1F05), the combination of crosslinking with 3D-EM information

still generates an improvement.

Using a combination of crosslinks and 3D-EM data could be

especially relevant to applications in cryo-ET where the maps

resulting from subtomogram averaging are still often in the

intermediate- to low-resolution range (Thalassinos et al., 2013).

Combining both in-cell crosslinking and cryo-ET should improve

the structural characterization of macromolecular complexes

within the native environment.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Experimental cross-linking data this paper Table S6

Theoretical benchmark cMNXL Theoretical benchmark http://topf-group.ismb.lon.ac.uk/Software.html

Experimental benchmark cMNXL Experimental benchmark http://topf-group.ismb.lon.ac.uk/Software.html

Software and Algorithms

cMNXL cMNXL version 1.0 http://topf-group.ismb.lon.ac.uk/Software.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Maya Topf (m.topf@cryst.

bbk.ac.uk)

METHOD DETAILS

cMNXL Score
The theory behind the cMNXL score is described in the main text. cMNXL is freely available as a python package from

http://topf-group.ismb.lon.ac.uk/Software.html and in the TEMPy software (http://tempy.lon.ismb.ac.uk)

cMNXL Weighting
The weighting of each scoring aspect in the final cMNXL scoring function was reached via a systematic scan of weights for each

aspect from 0 to 1 (in steps of 0.1), simultaneously. This scan was performed on the larger theoretical benchmark (see below) and

the weights that gave the highest precision were chosen.

Protein Complex Benchmarks
There are two benchmarks in this study. One theoretical, which consists of 68 protein dimers, taken from rigid body dataset created

by Vreven et al. (Vreven et al., 2015) and a second experimental, consisting of 9 complexes (2-mers to 4-mers) containing proteins

only (i.e. not including complexes consisting of DNA/RNA) taken from the XLinkdb2.0 (Schweppe et al., 2016).

The dimer dataset was created in order to have a dataset large enough to generate statistically significant conclusions. The cross-

links for the dimers were generated theoretically, taking a 15% recovery, i.e. 15% of all possible theoretical cross-links (see below).

The minimum criteria for selecting a set of theoretical cross-links was for it to have at least 2 inter-subunit cross-links. The choice of

15% recovery reflects the typical recovery from an XL-MS experiment (the average recovery of the experimental benchmark is

13.7%). This process was repeated 1000 times and the average precision and AUC taken. The performance of cMNXL on this bench-

mark was also tested at 1/5/10/20/30/40/50/60/70/80/90 and 100% recovery (Figure S1).

The experimental benchmark, taken specifically from XLinkDB2.0 based on the in-cell cross-linking datasets (Herzog et al., 2012)

and (Chavez et al., 2016), was used to test the scoring functions on genuine experimental cross-linking data. These datasets were

chosen as they are the only datasets that have corresponding PDB structures, solved using X-ray crystallography. The minimum

criteria for selecting a protein complex from the databases was for it to have at least 2 inter-subunit cross-links and at least 5

cross-links in total. The number of subunits in each complex range from 2 to 4.

Using TEMPy (Farabella et al., 2015), for each protein complex, subunits were iteratively translated and rotated a random distance

and angle between �5 and 5 Å and 0 to 180�, respectively. Models were then filtered for clashes, allowing a maximum of 20 main-

chain atom clashes. 100models were selected to be as close to uniform distribution of meanRMSD (seeMeasuring Model Accuracy)

as possible. In order to generate near-native models for some of the complexes, loop regions had to be cleaved (Table S5).

For the purposes of this study, all homo-complexes in the benchmark have been treated like hetero-complexes, i.e. all identical

subunits and associated cross-links were treated as unique subunits, with individual cross-links specified to each subunit (this is

currently not possible experimentally). In order to determine if a homo-complex cross-link should be intra- or inter-subunit, the

SASDs of all the possible combinations were calculated and the lowest SASD was chosen (if no SASD under 32 Å was present in

the native the lowest SASD was still taken). All reciprocal crosslink combinations were reproduced.
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Experimental and Theoretical Cross-Links
All the cross-links in the experimental datasets (Table S6) were either BS3 or DSS – both with a linker arm of 11.4 Å. SASDs and

Euclidean distances (EDs) between cross-linked residues were calculated using Jwalk (Bullock et al., 2016). Theoretical cross-links

are defined as all the lysine residue pairs that have an SASD below the maximum bound of the cross-linker (32 Å). The maximum

bound of 32 Å was reached by scanning the experimental benchmark performance using NoV at different maximum bounds. The

precision peaks at 32 Å (Figure S3). Models and cross-links were visualised using the molecular graphics program Chimera

(Pettersen et al., 2004).

3D-EM Data
The function we used to score the models based on their fit to simulated 3D-EM density was taken from g-TEMPy – a genetic algo-

rithm for the simultaneous fitting of components in 3D-EM maps. We used the fitness function from that algorithm (F-score) which

combines a mutual information (MI) score and a clash penalty score (PS):

F = ðn3MIÞ � PS

where n refers to the number of subunits. TheMI score calculates howwell a simulatedmap fits the experimental data (Vasishtan and

Topf, 2011). The PS is a term to penalize for clashes. Further details can be found in the original paper (Pandurangan et al., 2015). The

combination of cMNXL and F-score is as follows:

Combined =F + ð0:53 cMNXLÞ
The weighting of cMNXL was chosen as a result of a systematic scan of weightings between 0 and 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Measuring Model Accuracy
Models are assessed viameanCa-RMSD (meanRMSD) calculated using an in-house script andMODELLER-v9.18 (�Sali andBlundell,

1993). Iteratively, the wholemodel is superposed onto the native structure, one subunit at a time, and theCa-RMSD is calculated. The

meanRMSD is themean value of all of these Ca-RMSD values.Models are also evaluated using the fnat criterion, i.e. the proportion of

native inter-subunit residue interactions maintained in the model (Lensink and Wodak, 2013). Residues are considered to be inter-

acting if any of their atoms are within 5 Å of each other. The fnat score was calculated using an in-house script.

Score Assessment
We assessed the effectiveness of our scoring function using Precision and Area-Under-Curve (AUC) taken from the Receiver-Oper-

ating-Characteristic (ROC) curve. Precision is calculated as TP/(TP + FP), where TP (True Positive) is defined as amodel that is scored

in the top 10 by the scoring function and has ameanRMSD of% 4 Å and an fnat score ofR 0.3, and FP (False Positive) is defined as a

model that is scored in the top 10 by the scoring function but has a meanRMSD > 4 Å or fnat% 0.3. The False Positive Rate (FPR) is

calculated as FP/(FP+TN) where TN (True Negative) is defined as a model that is not scored in the top 10 by the scoring function and

has a meanRMSD > 4 Å or fnat% 0.3. The fnat criteria matches the criteria for a mediummodel in CAPRI (Lensink andWodak, 2010).

In the case where there are more than 10 models with the same top score, 10 models are randomly sampled from those models and

the precision is calculated. This process is then repeated 1000 times to bootstrap an average precision.

ROC curves were calculated with a model being defined as Positive if the meanRMSD is% 4 Å and fnatR 0.3. ROC systematically

lowers the scoring threshold to assess whether a model is a true positive, instead of the top 10 ranked models. ROC and AUC cal-

culations were calculated using the ROCR package in R (https://www.r-project.org/).

Calculating Statistical Significance

The statistical significance between the precision and AUC of different scoring methods was calculated using a one-sided paired

t-test, as implemented in R (www.r-project.org/). For example, the precision values of each benchmark case for the NoV score

were compared directly to the precision values for each benchmark case for cMNXL (i.e. each case was paired together instead

of simply combining them into one distribution). The alternative hypothesis was that the mean of the precision of cMNXL was greater

than the mean of the precision of the NoV score (i.e. one-sided). In all cases, a significance threshold p-value of 0.05 was used, how-

ever p-values were often much smaller. Relevant p-values have been included in the main text.

DATA AND SOFTWARE AVAILABILITY

The experimental cross-links used to score the experimental benchmark can be found in the Supplemental Information. cMNXL is

freely available to download from http://topf-group.ismb.lon.ac.uk/Software.html. The two benchmarks (theoretical and experi-

mental) can be found in the Supplemental Information and in http://topf-group.ismb.lon.ac.uk.
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