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Abstract—Dementia is characterised by its progressive
degeneration of cognitive abilities. In research cohorts,
detailed neuropsychological test batteries are often ad-
ministered to better understand how cognition changes
over time. Understanding cognitive changes in dementia
is of great importance, particularly in determining how
structural changes in the brain may affect cognition and
in facilitating earlier detection of symptomatic changes.
Disease progression models are often applied to these data
to understand how a disease changes over time from cross-
sectional data or to disease trajectories from large numbers
of individuals. Previous disease progression models used to
build longitudinal models from cross-sectional data have
focused on brain imaging data; however, these models
are not directly applicable to cognitive data. Here we
use the novel, non-parametric, Kernel Density Estimation
Mixture Modelling (KDEMM) approach and demonstrate
accurate modelling of the progression of cognitive test data.
We found that using KDEMM resulted in more accurate
models of disease progression in simulated data compared
to Gaussian Mixture Models (GMMs) for the majority of
parameters used to simulate the data. When comparing
KDEMM and GMM to cognitive data collected in different
Alzheimers Disease subtypes, we found the KDEMM re-
sulted in a model much more in line with clinical phenotype.
We anticipate that the KDEMM will be used to integrate
cognitive test data, and other non-normally distributed
datasets into complex disease progression models.

I. INTRODUCTION

Currently over half a million people in the UK have a
diagnosis of dementia, this is projected to grow to one
million by 2025 and two million by 2050 (Diagnoses
in the UK). As there is currently no disease modifying
therapeutic in most dementias, there is urgent need to
gain better understanding of neurodegenerative disease
to prevent eventually mitigate personal, societal and
economic costs. It is estimated that measurable changes
occur up to twenty years before a diagnosis of typical
(memory led) Alzheimer’s disease (tAD) is given
(Villemagne et al. 2013). This makes dementia

particularly challenging to study because by the time of
diagnosis it is difficult to discern early physiological or
cognitive changes, here termed biomarkers, from more
recent changes. Currently a large array of biomarkers
are used to identify and characterise disease
progression in the study of dementia. Examples include
brain imaging (Slattery et al. 2017), cognitive (Pavisic
et al. 2017), demographic (Singh-Manoux et al. 2017),
genetic (Premi et al. 2017) and fluidic (Weston et al.
2015). A better understanding of the dynamics of these
biomarkers will aid identification of which biological
processes can be interrupted, ultimately to prevent
further neurodegeneration and cognitive decline.
Studying the dynamics of biomarkers in vivo is
challenging given the prohibitive cost of preclinical
studies, requiring enrolment of because it is
prohibitively expensive to enrol large numbers of
participants into studies which follow people forover
long periods of time in order to observe
pre-symptomatic changes. As such, disease progression
models, which can reconstruct long-term pictures of
disease from relatively short-term longitudinal, or even
entirely cross-sectional, data sets. are used to infer
biomarker dynamics in populations. Common varieties
of model include: hypothetical (Jack et al. 2010),
machine learning-based (Young et al. 2013),
regression-based (Bilgel et al. 2016), Event-Based
Model (Fonteijn et al. 2011), continuous trajectory
(Villemagne et al. 2013; Donohue et al. 2014) and
spatiotemporal (Lorenzi et al. 2015). With the
exception of hypothetical models, these methods offer
the potential to understand long-term biomarker
dynamics on a common time frame from realistic data
sets. The development of these methods was motivated
in large part by the availability of large imaging data
sets and their application to date has focussed mostly
on imaging data.
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In contrast to brain imaging, assessments of complex
cognitive datasets have for the most part relied on
traditional statistical approaches rather than data-driven
methods. Optimising measures of detecting cognitive
change is important not only for improving disease
characterisation and prognosis in affected individuals,
but also detecting and predicting change in
asymptomatic at risk (sporadic) and presymptomatic
(genetic) individuals (Dubois et al. 2016). Further
optimising these assessments is important as
neuropsychological differences between cognitively
healthy subjects who will develop a dementia and those
who will not can be observed 10 to 17 years before the
diagnosis of dementia (Amieva et al. 2014). The
evaluation of longitudinal change within and across
different cognitive domains presents a number of
specific challenges. First, performance across cognitive
tasks is not independent. General factors (e.g. disease
severity) and collateral deficits (e.g. visuoperceptual
problems limiting performance on a face-based
memory test) can influence testing across many
cognitive domains. Second, in many cases, cognitive
profiles across tasks, both cross-sectionally and
longitudinally, are described qualitatively, because test
properties and normative samples differ across tasks.
Third, the psychometric shape of tests differs markedly.
Some tests yield relatively linear score distributions
among healthy control participants because they
contain graded difficulty items; other tests yield skewed
score distributions owing to an excess of very easy or
very difficult items. These psychometric properties
influence the likelihood of clinical populations showing
ceiling or floor effects at any given point in their
disease progression. Fourth, practice effects mask
longitudinal change. Practice effects across serial
assessments (e.g. test familiarity, reduced anxiety) may
conceal evidence of cognitive instability or decline
(Machulda et al. 2017).

The key challenge faced in disease progression
modelling is aligning multiple participants to an
average model. It is not trivial to align participants
temporally because: onset occurs at different ages;
disease progression occurs at different rates (Buckley
et al. 2016); and it is not practical to monitor large
cohorts of presymptomatic participants to observe
conversion, in particular when studying rarer forms of
dementia. Two approaches to modelling these data can
therefore be used; either some common time-frame can
be inferred by aligning participants using a model
(Donohue et al. 2014; Lorenzi et al. 2017), or temporal
data can be disregarded and data can be aligned using
some measure of disease severity. For a full review of
different disease progression models see Oxtoby, et al

2017. The key challenge to overcome when aligning
participants with a binary diagnosis is that some
biomarkers only become noticeably affected late in the
disease time course, where as others may be so
sensitive that participants presumed to be healthy
controls have impaired performance relative to
normative samples in these measurements.

Here we develop a new kind of Event-Based Model
(EBM) designed specifically to work with cognitive
data. The key innovation is to use Kernel Density
Estimation (KDE) to provide a non-parametric model
of the cognitive score distribution models that underpin
the EBM. We compare the new KDE method with a
ubiquitous parametric mixture modelling technique,
Gaussian Mixture Models (GMM). GMMs and KDE
mixture models are compared using a goodness of fit
metric and by their ability to recreate event-sequences
and disease stages from synthetic data. We also show a
use case of our non-parametric EBM, which yields the
first comparison of cognitive deterioration in Posterior
Cortical Atrophy (PCA) and typical Alzheimers disease
(tAD). PCA is a clinico-radiological syndrome
characterized by progressive decline in visual
processing and other posterior cognitive functions,
relatively intact memory and language in the early
stages, and atrophy of posterior brain regions (Benson,
Davis, and Snyder 1988; Crutch et al. 2017). PCA is
most commonly caused by Alzheimers disease, with
greater amyloid plaque and/or neurofibrillary tangle
distribution in the posterior cortices than individuals
with an amnestic presentation (Tang-Wai et al. 2004;
Hof et al. 1997). Detailed longitudinal studies of
cognitive change in PCA are currently lacking.

II. METHODS

In this section, we will describe the EBM and how
mixture modelling is a major component of the model
fitting. We will then discuss mixture modelling in
detail, firstly the current methods used and then we
will detail the novel method, Kernel Density
Estimation Mixture Modelling (KDEMM). Finally, the
two datasets used in this work are described, the
synthetic data with known ground truth, used to
compare models, and cognitive test data collected from
the Dementia Research Centre (DRC), London, to
derive the first event-based models of cognitive
deterioration in PCA and tAD.

A. Event-Based Model

The Event-Based Model (EBM) (Fonteijn et al. 2011)
is used to estimate the ordering of biomarkers which

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/297978doi: bioRxiv preprint first posted online Apr. 10, 2018; 

http://dx.doi.org/10.1101/297978
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

move outside of a normal healthy range in a population
as a result of a disease. Previous formulations of the
EBM have been used to estimate the order of brain
region volume loss in sporadic Alzheimers (Young
et al. 2014), familial Alzheimers and Huntingtons
disease (Fonteijn et al. 2012). In these versions of the
EBM, parametric mixture modelling is used to predict
the probability of an event having occurred, which the
term given to a measurement transitioning from a
healthy biomarker range to one associated with a
disease.

In the EBM two component univariate mixture models
are fit for each individual biomarker. The probability of
belonging to each component of a mixture model is
then used to as the probability of an event having
occurred, P (xij |Ei), and an event not having occurred,
P (xij |¬Ei). These probabilities are used to give the
likelihood of an ordering of biomarkers, S,
using

P (X|S) =
J∏

i=1

[
J∑

k=0

(
k∏

i=1

P (xij |Ei)
k∏

i=k+1

P (xij |¬Ei)

)]
(1)

where P (xij |Ei) and P (xij |¬Ei) are the probability of
a measurement x ∈ X given an event having occurred
and not occurred respectively, i ∈ I is the biomarker
index and j ∈ J is the participant number.

When only a small number of biomarkers are used, all
possible orderings can be enumerated and the
characteristic ordering, Ŝ, is the sequence which
maximises P (X|S) (Equation (1)). As the number of
possible orderings grows factorially as the number of
biomarkers increases, Markov chain Monte Carlo
(MCMC) sampling is used to find Ŝ when the number
of sequences to sample is too large.

Once we have Ŝ , it can be used to estimate a disease
stage for individuals given their biomarker
measurements. The disease stage, k, is defined as, the
stage, i.e. the number of events that have occurred, that
has the highest probability given the data and our
sequence, this is calculated using Equation (2).

argmaxkP (Xi|S, k)
k∏

i=1

P (xij |Ei)
J∏

i=k+1

P (xij |¬Ei).

(2)

B. Mixture Modelling

The steps detailed in Section II-A require models for
P (xij |Ei) and P (xij |¬Ei). Similarly to previous work
using the EBM, here we will use two component
Gaussian Mixture Models as our GMM models.

Initial parameters and constraints for each GMM
component were derived from labelled data by taking
the mean and standard deviation of each subpopulation,
the mixture coefficient was initialised to 0.5 and
constrained to the range [0.1, 0.9]. Parameters were
then optimised to minimise the negative log-likelihood
of the data given the model, using the Sequential Least
SQuares Programming (SLSQP) algorithm. Constraints,
initial parameters and the SLSQP algorithm were
chosen similarly to previous implementations of
GMM’s in disease progression modeling (Young et al.
2014; Fonteijn et al. 2011; Fonteijn et al. 2012).

C. Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric
method of probability density estimation, that is useful
for data smoothing. The KDE estimation, f̂(x), of a
function, f(x), with a independent and identically
distributed sample, (x1, x2, . . . , xn), drawn from a
distribution with an unknown density, is given
by

f̂(x) =
1

nh

∑
i

K
(x− xi

h

)
, (3)

where K is non-negative function which integrates to
one and has mean zero, and h is a positive smoothing
factor called a bandwidth. With an appropriate choice
of K, KDE naturally extends to multivariate density
estimation.

In this work we use the scikit-learn (Pedregosa et al.
2011) implementation of KDE, using default
parameters, including Gaussian kernel, for all values
except the bandwidth, which was estimated using
Scotts normal reference rule (Scott 1979).

D. Kernel Density Estimation Mixture
Modelling

To allow accurate fitting of mixture models with
unknown underlying distributions we have
implemented a novel algorithms for non-parametric
mixture modelling. Let xi ∈ Rm be a set of
observations, and S(1)

1 , S
(1)
2 , . . . S

(1)
k be known subsets

of the data. The bandwidth h of these data is then
estimated by applying Scotts rule to all the
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observations. Mixture weights m(1)
1 ,m

(1)
2 , . . . ,m

(1)
k are

initiated as 1/k for all subsets. Similarly to the
k-means algorithm, the KDEMM algorithm then
iterates over alternating assignment and update steps to
optimise parameters (Figure 1).

Update Step

For each subset of the data, S(t)
j , a KDE mixture

component, f̂
S

(t)
j
(xi), is fit using

f̂
S

(t)
j
(xi) =

m
(t)
j

nh

∑
xj∈Sj

K
(xi − xj

h

)
. (4)

Assignment Step

Each observation is then assigned to a new subset,
S
(t+1)
j , to which it has the maximum likelihood of

belonging, i.e. f̂
S

(t)
j
(xi). Mixture weights are then

updated to be the proportion of observations in each
subset i.e. m(t+1)

j = |S(t+1)
j |/

∑k
i=1 |S

(t+1)
i |.

The update and assignment steps are then iterated until
subset assignment is no longer updated, i.e
S
(t)
j = S

(t+1)
j ∀j. In this work an additional

constraint, 0.1 < mj < 0.9 ∀j, is placed on the
mixture weights to ensure that subsets do not vanish,
similarly to the GMM.

E. Simulated Data

Since the ground truth is not known for most
real-world problems, we chose to synthesise biomarker
data to test the effect of using different mixture
modelling techniques in the EBM framework. Two
subpopulations were created: CN (n = 100) and AD
(n = 100), corresponding to healthy controls and
individuals with a disease, respectively. For each
individual three synthetic biomarker measurements
were generated, with each biomarker having two
possible distributions corresponding an event having
occurred and not occurred respectively (Figure 2). For
each dataset a randomly generated event-sequence was
generated, and the progression of biomarkers from
normal to abnormal followed this event-sequence. For
the CN subpopulation 55% were assigned to stage zero
(no biomarker events occurred), 25% at stage one (the
first biomarker event has occurred and others have not),
15% at stage two (first two biomarker events have
occurred) and 5% at stage three (all biomarker event
have occurred). For the AD subpopulation, this trend is
reversed with 55% at stage three, 25% at stage two,
15% at stage one and 5% at stage zero.

In this work we used Gamma distributions with
varying parameters to synthesise biomarker data. The
Gamma distribution was chosen because the shape
parameter can be adjusted to yield distributions with
different shape profiles. Using the scipy library (Jones
et al. 2001), two sets of Gamma-distributed random
numbers were generated, using default scale and
location parameters. Both sets were mean-centred and
one was mirrored by multiplying by negative one. The
factor f = 2× φ× σk is the ratio of standard deviation
that separate the two components, where φ is a variable
altered in each experiment and σk is the standard
deviation of a Gamma distribution with the shape
parameter k. The sets were then separated by adding f
to one of the sets. This separation factor was used to
simulate varying levels of separation between groups
that is observed in cognitive test results. For each
shape parameter and separation factor n = 25 different
datasets were generated (Figure 2).

To compare models using simulated data we used three
measures: likelihood of the data given the mixture
model; correlation of predicted sequence with the
ground truth; and correlation of EBM stage to the
ground truth stage. Likelihood is used as a goodness of
fit model, to test which of the mixture models explains
the data better. To compare predicted sequences with
the ground truth we use the Kendall-Tau rank
correlation coefficient, which is a non-parametric test
of how similar two sequences are, with τ = −1 implies
that one sequence is the mirror opposite of the other
and τ = 1 implies that the two sequences are identical.
Finally we use the Spearman’s rank correlation
coefficient to compare the accuracy of the
maximum-likelihood stage (Section II-A) with the
ground truth stage used to generate the data.

F. Patient Data

Individuals with a clinical diagnosis of PCA and tAD
were recruited between October 2005 and June 2016 at
the Dementia Research Centre, London. 81 participants
with PCA, 61 participants with tAD and 23 controls
from the Young Onset Alzheimer’s Disease (YOAD)
study (Table I). Patients attended the Cognitive
Disorder clinic at the National Hospital of Neurology
and Neurology, or were recruited by individual referral
from other neurologists to whom they expressed
interest for taking part in observational research. All
PCA patients met both Tang-Wei (Tang-Wai et al.
2004) and Mendez (Mendez, Ghajarania, and Perryman
2002) criteria based on available information at baseline
and expert retrospective clinical review. Participants
were excluded if they also met criteria for another
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(a) Update step for first iteration (b) Iteration two (c) Converged model (seventh iter-
ation)

Fig. 1: Example fitting process for a KDEMM.

(a) (b)

(c) (d)

Fig. 2: Histograms of exemplar synthetic data. Each dataset is comprised of 5000 subjects, each with three biomarker
measurements, with disease sequence 1, 2, 3. a) and b) have a shape parameter k = 1.5 and c) and d) have k = 10.
a) has a separation factor of sf = 1, b) sf = 2, c) sf = 0.5, d) sf = 1.5.

neurodegenerative syndrome, thus fulfilling consensus
criteria for PCA-pure (Crutch et al. 2017). Patients
with PCA and patients with typical Alzheimer’s disease
fulfilled research criteria for probable Alzheimer’s
disease (Dubois et al. 2010; Dubois et al. 2007).

To compare the performance of the GMM and
KDEMM on this cognitive dataset, both models were

used to fit EBMs for the baseline visits from both the
PCA and tAD subgroups, resulting in Maximum
Likelihood (ML) sequences of events for both. To
measure the confidence in these ML sequences, 100
models were fit on bootstrap resampled datasets, for
both models and PCA and tAD datasets. Bootstrapping
was performed by randomly sampling, with
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TABLE I: Demographics of participants.

PCA
(n=81)

tAD
(n=61)

Controls
(n=23)

Age 64.2 (7.9) 65.8 (7.7) 60.2 (5.7)
Gender 35:59 38:23 11:12
MMSE 21.4 (5.1) 19.6 (4.9) 29.5 (0.7)

replacement, dataset of the same size as the original
samples,(PCA= 81, tAD= 61) and both mixture
models and maximum likelihood sequences were fit for
each of these 100 random samples. We chose to use
the same fitting procedure as previous EBM literature
(Oxtoby et al. 2017; Young et al. 2014) to isolate the
contribution of the KDEMM.

III. RESULTS

In this section GMMs and KDEMM are compared,
firstly by examining the likelihood of the data given
each mixture model. This comparison shows which
technique is most suitable for modelling the data as a
two-component mixture. Secondly, these models are
compared in the context of the EBM in two ways:
ability to recreate the event sequence of simulated data
and also the ability to accurately stage simulated data.
These two comparisons are used to test the hypothesis
that the KDEMM is more appropriate in the EBM for
non-Gaussian data.

A. Mixture model comparison

For each parameter combination (Section II-E), φ
(n = 8) and k (n = 9) , 25 datasets consisting of three
biomarkers were synthesised as described. For each of
the 5,400 (8× 9× 25× 3) biomarkers, both a GMM
and KDEMM were fit, and the likelihood of the data
under the models was calculated. Figure 3 shows that
the GMM has a higher likelihood than the KDE for
most parameter combinations, particularly when the
shape parameter of the Gamma distribution is small,
i.e. the distribution more skewed. This likely is a result
of the standard deviation of these datasets being very
small, resulting in very high outputs from the
probability density functions from the fit Gaussian
distributions. The negative log likelihood of the data
given the model was significantly lower for the GMM
model (355.69) compared to the KDE (370.40,
p < 1e− 14) model across all the trials.

As the intended use for these mixture models is to
predict probability of an event having occurred in the
EBM, the performance of both the GMM and

Fig. 3: Heat map showing difference in likelihood of
data between a KDEMM and GMM. Red indicates that
KDEMM fits the data better and blue indicates that the
GMM fits the data better.

KDEMM are compared in the EBM. Synthetic datasets
were generated with random event sequences, and for
each model the characteristic event sequence was
generated by enumerating all possible sequences.
Figure 4 shows the difference between the GMM and
KDEMM EBMs in Kendall-Tau correlation coefficient
with ground truth. It can be seen that the EBM using
the KDEMM has a significantly higher correlation
(τ = 0.89) with the ground truth order of events
compared to EBM using GMM (τ = 0.50, p < 1e−90).
This trend is seen across the majority of parameters
used to create the synthetic datasets. However the
GMM performs equally well when there is a
sufficiently large separation between components and
large enough shape parameter (thus reducing the
skewness, i.e. more similar to Gaussian). The GMM
performs better in only three parameter combinations,
and in only one of these, φ = 10 and k = 10, does the
corresponding EBM perform significantly better.

As well as using the EBM for generating an event
sequence, it has also been used to give a disease stage
for study participants. Figure 5 shows a comparison
between modelled stages from GMM- and
KDEMM-EBMs built using the ground truth stage. It
can be seen that the EBM stages using the KDEMM
model, correlated with the ground truth stages
(ρ = 0.88) significantly better than the EBM stages
using the GMM model (ρ = 0.83, 1e−18). Similarly to
the event sequence the GMM staging performs equally
well when the data was generated with a sufficiently
large separation factor and shape parameter. This likely
is due to the staging reliance on an accurate event
order as well as well-fit mixture models.
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Fig. 4: Heat map showing difference between the
Kentall-Tau correlation with a randomly geneated se-
quence and the sequence derived from GMM and
KDEMM. Red indicates that the KDEMM derived se-
quence correlates better and blue indicates that the GMM
derived sequence correlates better.

Fig. 5: Heat map showing difference between the Spear-
man ρ correlation with a synthetic patients stage and the
stage predicted by EBMs and NPEBMs. Red indicates
that the NPEBM sequence correlates better and blue
indicates that the EBM sequence correlates better.

B. Application to cognition in Alzheimer’s

Using both the GMM and KDEMM models within the
EBM for cognitive data, we see different distinct event
orderings from each model. In the PCA Maximum
Likelihood (ML) sequence fit using GMM models the
Digit Span (F) and Digit Span (F Max.) are separated
by 13 positions in the event sequence (Figure 6a); this
is contrary to previous results (Lehmann et al. 2012),
which would suggest that these subscores of the same
test would occur at very similar positions in the event
sequence. The ordering of cognitive tasks also does not
fit with clinical expectations, with PCA patients

showing earlier memory change (mean 33.2± 2.6
positions earlier) compared to tAD and no difference in
visual change (mean 0.4± 5.9 positions earlier)
compared to tAD patients. By comparison, ML
sequences fit for both tAD and PCA using the
KDEMM model yielded successive positions for the
highly related Digit Span (F) and Digit Span (F Max)
scores. As well as being clustered next to each other in
the sequences, high uncertainty about the relative
position of these tests can be observed, in both the
direct fit (Figures 7a and 7c) and bootstrapped samples
(Figures 7b and 7d), as the model is unable to
accurately predict which comes first. The order of
cognitive events using the KDEMM model (Fig 7) align
much better than those using the GMM model with
clinical definitions of these two conditions. Change on
the five principle visual tests (A cancellation time,
fragmented letters, dot counting, shape discrimination,
object decision) was observed earlier in PCA than tAD
in all cases (mean 5.6± 4.2 positions earlier), whilst
position values for the three principle episodic memory
tasks (short Recognition Memory Test [sRMT] for
words and faces, Paired Associate Learning test [PAL])
were equivalent or earlier in tAD than PCA (mean
4.3± 5.9 positions earlier). In both the GMM- and
KDEMM-EBMs there is a notable amount of
uncertainty in the bootstrapped sequences, however in
the GMM-EBM this appears to be distributed away
from the ML sequence, as observed by the spread
away from the diagonal (Figures 6b and 6d), whereas
in the KDEMM-EBM the uncertainty is more focused
on the diagonal (Figures 7b and 7d), suggesting that
the sequence is more robust to bootstrapping. The
broad uncertainty in the bootstrapped GMM-EBMs is
likely due to the distributions being sampled during
bootstrapping not being suitable for GMMs.

Assigning the ML stage for each participant’s baseline
visit, the EBM is able to estimate the stage of the
disease that each participant is at. Figure 8 shows the
stages assigned by the tAD and PCA sequences in both
GMM- and KDEMM-EBMs. It can be seen in across
all the staged data that controls are generally assigned
a low stage, and tAD and PCA participants are
assigned higher stages, with the majority at the later
stages of the disease (Figure 8). Notable exceptions are
a small number of controls assigned to later stages in
both GMM-EBMs (Figures 8a and 8c) and a small
number of tAD participants who have been assigned
early stages in the KDEMM model (Figure 8d). To
analyse the consistency of the fitted models for PCA
and tAD we staged each of the subsequent visits for all
of the participants. These data were not used to fit the
EBM, so provide a suitable test set. The PCA sequence

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/297978doi: bioRxiv preprint first posted online Apr. 10, 2018; 

http://dx.doi.org/10.1101/297978
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

(a) PCA (b) PCA, 100 bootstraps

(c) tAD (d) tAD, 100 bootstraps

Fig. 6: Positional variance diagram for EBM, showing uncertainity in the maximum likelihood sequence.
Uncertaintity is measure by boostrapped resampling of the data 100 times, fitting an EBM on these bootstraps and
plotting the positional variance of the Markov Chain Monte Carlo (MCMC) samples. Each entry in the positional
variance diagram represents the proportion of the bootstrapped MCMC samples in which events appear at a particular
position in the ML sequence (x-axis). This proportion ranges from 0 in white to 1 in black. The y-axis orders events
by the maximum likelihood sequence.

from the GMM-EBM staged 106 of the 118 follow ups
higher or the same as the baseline visit and 186 follow
up visits staged higher or the same as a previous visit
(201 comparisons made). For the KDEMM-EBM these
numbers were 113 and 187 respectively. For the tAD
EBM fit using GMMs 31 of the 32 follow ups were
staged higher or the same as baseline visit and 36
visits staged higher or the same as a previous visit (37
comparisons made), for the EBM fit using KDEMMs
these numbers were 26 and 31 respectively.

IV. DISCUSSION AND CONCLUSION

In this work we have introduced Kernel Density
Estimation Mixture Models (KDEMM), a novel
semi-supervised clustering algorithm, which we have
used to adapt the Event-Based Model (EBM) to handle
non-Gaussian-distributed data, in particular focusing on

cognitive test data. We compared the KDEMM with
the current state of the art mixture model technique
used in the EBM. We compared mixture modelling
techniques using both synthetic data and also cognitive
test data in tAD and PCA. To understand isolated
model performance we calculated the likelihood of the
data for both GMM and KDEMMs across all datasets.
These likelihoods suggested that the GMM is better at
modelling the data, however this particular metric may
not be suitable for an unbiased comparison of these
models. As the GMM parameters were estimated by
minimising the negative log likelihood of the data, and
the KDEMMs were optimised to have stable clusters, it
is unsurprising that the GMMs have a higher
likelihood. Perhaps a more robust comparison of the
two models would be to compare the ability to model
underlying parameters used to generate data, however
this is outside the scope of the current study as the
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(a) PCA (b) PCA, 100 bootstraps

(c) tAD (d) tAD, 100 bootstraps

Fig. 7: Positional variance diagram for NPEBM showing uncertainity in the maximum likelihood sequence.
Uncertaintity is measure by boostrapped resampling of the data 100 times, fitting an NPEBM on these bootstraps and
plotting the positional variance of the Markov Chain Monte Carlo (MCMC) samples. Each entry in the positional
variance diagram represents the proportion of the bootstrapped MCMC samples in which events appear at a particular
position in the ML sequence (x-axis). This proportion ranges from 0 in white to 1 in black. The y-axis orders events
by the maximum likelihood sequence.

EBM does not require this information.

Results show that the using the KDEMM in the EBM
yielded either more or equally accurate event sequences
compared to the GMM, for the majority of parameters
tested. The KDEMM performed particularly well on
distributions that are more skewed and less separated,
suggesting that, as intended, the KDEMM is better at
modelling non-Gaussian data compared to the GMM.
This result is in contrast with the previous result that
showed that GMM models resulted in better fit models
as measured by the data likelihood. As well as
performing better on more skewed data the KDEMM
also performed no worse than the GMM on almost all
of the datasets tested, suggesting that it might be a
more suitable choice for all data types. Using the event
sequences to stage all synthetic data showed that the
KDEMM model was significantly better than the

GMM, however the magnitude of difference is quite
small and as the staging is reliant on the event-order
this result is not surprising.

We applied both mixture modelling techniques in an
EBM to a dataset of neuropsychological test results in
PCA and tAD, different AD phenotypes that are
predominantly led by visual cognitive impairment or
memory respectively. The KDEMM provided an event
ordering which was more in line with clinical
experience in both PCA and tAD compared to the
GMM, with impairment on visual tasks seen earlier in
PCA and impairment on episodic memory tasks seen
earlier in tAD. The KDEMM also demonstrated more
certainty in the maximum likelihood sequences, as
estimated by bootstrapping, which is itself prone to
over estimating error. Using the fitted models to
estimate disease stages of follow up data for people
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(a) PCA stages for GMM (b) PCA stages for KDEMM

(c) tAD stages for GMM (d) tAD stages for KDEMM

Fig. 8: Histogram of the maximum likelihood stages assigned to controls.

with PCA and tAD, showed that the KDEMMM-EBM
provided a more monotonically progressive model in
PCA compared to the GMM-EBM, however this trend
was reversed when looking at the tAD population.
Closer inspection of the four tAD participants with
decreasing disease stages showed that learning effects
were seen in nine of the 17 tests, making the results of
this comparison difficult to interpret. A larger number
of tAD follow ups would be required to reach a more
definitive conclusion about the disease staging.

As with most previous descriptions of the EBM the
key limitation to the model is that it assumes a single
event sequence, whereas clinical data would suggest
that both tAD and PCA are heterogeneous diseases
which have many possible patterns of evolution.
Though recent work in this area has adapted the EBM
framework to enable multiple event sequences (Young
et al. 2017). A limitation of the KDEMM compared to
the GMM it its reliance on data, as Kernel Density
Estimation utilises all data to make a prediction,
compared to the two parameters in the Gaussian
distribution. Though both methods would perform

worse with less data, it is possible in incorporate prior
knowledge to parametrise a GMM, for example
normative data from cognitive tests, whereas this is not
possible using a KDEMM. Another limitation of the
KDEMM is the computational complexity to both fit
and apply the models on large datasets; it requires
considerably more time to fit than the GMM.

The KDEMM extends to a number of potential
applications outside of the EBM framework. Future
work will include the use of KDEMM outside of this
framework in applications such as disease subtype
clustering and feature normalisation for supervised
learning. Though already used in two studies (Oxtoby
et al. 2017; Firth et al. 2018), future work includes
applying the KDEMM EBM to other multimodal
datasets and comparing it to results from the GMM.
Finally, as well as using the classic EBM approach,
future work will also include integrating the KDEMM
into the recently proposed Discriminative EBM
(Venkatraghavan et al. 2017), to test whether our
approach makes improvements to this method.
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