
ORIGINAL ARTICLE

Parametric mapping using spectral analysis for 11C-PBR28 PET reveals
neuroinflammation in mild cognitive impairment subjects
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Abstract
Purpose Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and
Alzheimer’s disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral
analysis (SA) to generate parametricmaps and quantify 11C–PBR28 PET, and compared these with compartmental and other kinetic
models of quantification.
Methods Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11C–PBR28 PET scans with
arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11C–PBR28 parametric
maps. These maps were then compared with regional 11C–PBR28 VT (volume of distribution) using a two-tissue compartment
model and Logan graphic analysis. Amyloid load was also assessed with 18F–Flutemetamol PET.
Results With SA, three component peaks were identified in addition to blood volume. The 11C–PBR28 impulse response
function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated
microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11C–PBR28 uptake revealed
a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical asso-
ciation areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11C–
PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well.
Conclusions This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11C–
PBR28 uptake, and is able to detect microglial activation in amyloid-positiveMCI subjects. IRF parametric maps of 11C–PBR28
uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.
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Introduction

Amnestic mild cognitive impairment (MCI) is a transitional
stage between preclinical Alzheimer’s disease and dementia.
Microglial activation plays a significant role in Alzheimer’s
disease, along with amyloid and tau deposition [1–3]. Recent
PET imaging studies have suggested that microglial activation
correlates closely with the severity of dementia [1, 4, 5].
However, imaging microglia has been challenging. The 18-
kDa translocator protein (TSPO) is a cholesterol-transporter
protein expressed in the outer mitochondrial membrane of
microglial cells and astrocytes in the brain. TSPO expression
in normal brain is very low, but it increases significantly after
trauma and inflammation [6–8]. The PET tracer 11C–R-
PK11195 PET has been used for over 20 years to assess the
level of TSPO expression and microglial activation [9–11].
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However, 11C–R-PK11195 has a poor signal-to-noise ratio [6,
12]. In an attempt to improve the signal-to-noise ratio, several
second-generation TSPO radioligands have been developed.
The new-generation TSPO tracers are affected by genetic var-
iability of TSPO binding site induced by the rs6971 single-
nucleotide polymorphism [13], and recent studies have dem-
onstrated that tracer signal in the high-affinity binders (HAB)
is 25–35% higher than in the mixed affinity binders (MAB)
[14, 15]. However, our group has previously demonstrated
that results gathered from a TSPO subgroup (HAB or MAB)
can be translated to the entire AD and MCI population [16].

11C–PBR28 is a second-generation TSPO PET tracer, and
can be used to quantify microglial activation in neurodegen-
erative disease; however, recent studies have demonstrated
discordant results in neuroinflammation in AD or MCI sub-
jects using 11C–PBR28 PET imaging [5, 17–19]. In fact, the
quantification of TSPO is challenging; the tracer binds not
only to microglia (and to a lesser extent to astrocytes) in the
parenchyma but also to the endothelium and smooth muscle
cells [20–22]. Since endothelial TSPO is physically in contact
with plasma, its apparent affinity for radioligands is higher
than parenchymal TSPO.

Spectral analysis (SA) is a powerful kinetic tool for gener-
ating parametric maps of ligand volumes of distribution from
brain TACs with a plasma input function. As a spectral tech-
nique, it makes no assumptions about kinetic compartments,
but identifies heterogeneous kinetic components which repre-
sent tracer delivery, vascular binding, and later parenchymal
tracer-binding components [22, 23].

In this study, for the first time, we performed spectral anal-
ysis on 11C–PBR28 PET dynamic images to generate para-
metric maps of ligand uptake reflected by area under impulse
response function (IRF). We compared the SA parametric
mapping to the compartmental models and the parametric
mapping using Logan graphic analysis. Finally, we evaluated
microglial activation between two cohorts (MCI vs HC) using
11C–PBR28 SA parametric mapping, LoganVTand two tissue
compartment models, with a view to identify the most appro-
priate quantification approach for 11C–PBR28 PET in neuro-
degenerative diseases.

Materials and methods

Demographics

Thirteen MCI patients and nine age-matched healthy controls
(all genetically high binders for TSPO ligands— HAB) were
recruited from memory clinics and the Join Dementia
Research website. This study was approved by the local and
regional regulatory ethics committee (London Riverside
Research Ethics Committee - National Health Research
Services, Health Research Authority, UK), and the approval

for administration of radioactivity was given by ARSAC
(Administration of Radioactive Substances Advisory
Committee).

Image acquisition

MRI scans were acquired for all subjects with a 3 Tesla
SIEMENS 32-channel Verio MRI scanner (MPRAGE; time
repetition = 2400 ms, time echo = 3.06 ms, flip angle of 9,
inversion time = 900 ms, matrix = 256 × 246). The T1 images
were used for co-registration of the PET for ROI analysis,
while T2-weighted images were used to exclude any signifi-
cant white matter microvascular disease.

All subjects underwent 11C–PBR28 PET scans with a
SIEMENS Biograph TruePoint PET/CT scanner (axial field =
21.8 cm, transaxial planes =111, and spatial resolution =
2.056 mm × 2.056 mm × 2 mm) at Imanova, London. A
low-dose CT scan was performed for attenuation correction,
followed by injection of a mean activity of 300 MBq 11C–
PBR28 intravenously. A continuous 3D dynamic acquisition
was performed in list mode for 90 min. The dynamic 11C–
PBR28 PET data were reconstructed using scatter correction,
attenuation correction and random correction. Then the data
were corrected for decay and rebinned as 26 time frames.

Twenty-one subjects (12 MCI and 9 HC) also had 18F–
Flutemetamol PET scans using a Siemens Biograph 6 PET/CT
scanner. A mean activity of 182 (±2.5) MBq 18F–
Flutemetamol was injected intravenously. PET data were ac-
quired 90–120 min after the injection to generate a static 3D
18F–Flutemetamol PET image. The cerebellum was used as
the reference region to create the 18F–Flutemetamol RATIO
image as previously described [24].

Blood data

All patients had continuous online blood sampling for the first
15 min after the 11C–PBR28 PET scan started, and 12 discrete
blood samples were taken at 5, 10, 15, 20, 25, 30, 40, 50, 60,
70, 80, and 90 min, allowing blood and plasma radiotracer
activity to be measured. The time course of 11C–PBR28 ac-
tivity in the plasma was calculated with a linear model fit
using plasma-to-blood ratio model in the first 15 min of online
whole-blood data. Parent tracer and metabolite levels were
measured using HPLC analysis for discrete blood samples.
A sigmoid model was applied to describe the parent fraction
of 11C–PBR28, which was then used to generate the parent
fraction of plasma input function.

Quantification of 11C–PBR28 PET using spectral
analysis

Spectral analysis applies a positively constrained general lin-
ear model to fit the tissue kinetics with a large matrix of
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exponential functions with a range of decaying factors convo-
luted with the plasma input function [25]. The solution to each
fit is a vector of linear coefficients αi (peak height), each
corresponding to a decay βi (peak position), and is obtained
using non-negative least squares (NNLS) [23, 26]. In the so-
lution vector, the non-zero coefficients for the high-frequency
components (e.g., large βi) usually reflect the dynamics of the
tracer in the blood; the ones with slower βi reflect the kinetics
of reversible parenchymal perfusion between plasma or tissue
compartments, while the slowest components represent irre-
versible trapping. The beta-min was used as the decay con-
stant of the 11C (0.00056629) for 11C–PBR28. The tissue
11C–PBR28 ligand-binding response could be measured as
portion of impulse response function (IRF), which was
reflected by the sum of the intermediate and low frequency
components of the spectrum. In this study, we generated
IRF(t) parametric maps with different epochs of observation-
time: 30 min, 45 min, 60 min, 75 min, and 90 min for 11C–
PBR28 using the formula:

IRF tð Þ ¼ ∑
n

i¼1
αi*e− βi−λð Þ*t

where t represents the selected observation time, n denotes
number of PET time frames, αi and βi are the peak height
and peak position for time frame i.We used a decay constant λ
of 0.00056629 for 11C–PBR28. In order to provide a high
quality IRF(t) parametric maps, the coefficient of variation
(CV) (standard deviation/mean) of 11C–PBR28 binding in
major cortices (frontal, temporal, parietal, and occipital lobe)
and thalamuswere calculated at different observation time; the
lower CV indicated a higher precision and lower noise level
for that IRF(t) parametric map. (Online Resource 1A).

Quantification of 11C–PBR28 PET using
compartmental modelling

Compartmental modelling of TACs was performed to deter-
mine the volumes of distribution of the 11C–PBR28 tracer
using the parent plasma input function and dynamic PET ac-
quisition. In this study, we fitted kinetic data to two compart-
mental models for 11C–PBR28 [21, 27]: the two-tissue com-
partmental model (2TCM4k), and the two-tissue compart-
mental model with an extra vascular component (2TCM4k-
1 K), which accounts for the extra binding compartment for
the endothelial cells of blood vessels [21, 28]. We calculated
the Akaike information criterion (AIC) to evaluate the model
performance [29, 30]. The model with lower AIC was chosen
as the preferred model for a predefined ROI. Total volume of
distribution (VT), rate constant (k), and binding potential
(BPND) were the parameters derived from the kinetic models
usingMICK software (modelling input function compartmental
kinetics) and MATLAB2014a.

Quantification of 11C–PBR28 PET using Logan graphic
analysis

Logan analysis is a graphical quantification method which
linearises PET uptake data using a plasma or non-specific
tissue reference input function where ligands bind reversibly.
The gradients of fits represent VT and can be used for para-
metric mapping at a voxel level, though measurement noise is
also linearised and a potential confound. Logan graphic anal-
ysis is independent of the number of compartments as long as
they are all in equilibrium after a time t. The 11C–PBR28
Logan VT parametric map was generated, where VT reflects
the slope of the linear section of the Logan graphic plot [31].
Logan graphical analysis was performed using MICK para-
metric mapping software developed in MATLAB2014a. CV
was measured in major cortices and thalamus to assess the
signal variation for the Logan VT.

Region of interest (ROI) analysis in MCI and HC

Regional quantification of mean 11C–PBR28 binding was es-
timated for compartmental model VT, SA parametric map
(IRF) and Logan VT map in MCI and healthy controls. To
evaluate the binding, MRI and brain atlas (83-region
Hammersmith atlas) were spatially transformed into native
PET space using SPM8, and Analyze 11.0 (AnalyzeDirect)
was used to sample the regional mean tracer update in
predefined ROI regions as described in our previous studies.
The ROI regional mean uptake was sampled in the following
regions: posterior cingulate, frontal, temporal, parietal, and
occipital lobes. ROI analysis was also performed for medial
temporal lobe, hippocampus, and thalamus. The regional ROI
value was regarded as significantly raised (positive) for that
region when it is elevated more than 2SD above the mean of
healthy controls. The MCI subjects were considered as 11C–
PBR28 positive when at least one cortical region was positive.

Voxel-level analysis between MCI and HC

The parametric maps generated by SA or Logan graphic anal-
ysis allowed us to perform voxel-wise comparisons between
patients and healthy controls. 1) Parametric maps were co-
registered to their corresponding MRIs, 2) normalization and
smoothing (6 mm× 6 mm× 6 mm) were applied to the co-
registered PET to generate the individual normalized PET in
SPM8, and 3) each patient’s normalized parametric map was
then compared against a group of controls to generate a single-
subject SPM T-map at voxel level, which localised significant
pathological increases in each patient. The significant cluster
threshold was set at p < 0.05 with an extent threshold of 50
voxels. Family-wise error rate (FWE) was corrected for mul-
tiple comparisons. For each subject who had significant clus-
ters of increased 11C–PBR28, those clusters were extracted as
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individual VOI (volume of interest) maps, and the total vol-
ume of VOI was calculated in mm3 in Analyze 11.0.

Brain amyloid status

As the MCI cohorts are heterogeneous, the brain amyloid
status for each subject was evaluated from 18F–flutemetamol
RATIO images. In this study, an amyloid-positive subject was
defined as having uptake in at least one of the large cortices or
two separate cortical regions higher than the mean + 2SD of
healthy controls.

Statistics

Group mean and standard deviation were calculated in
SPSS23 (SPSS, Chicago, IL, USA), for each diagnostic
group, and Student’s t-test was used to interrogate significant
increases in the tracer uptake. The Pearson correlation coeffi-
cient was applied to measure the degree of linear correlation
between two groups of variables using SPSS23, and a p-value
of < 0.05 was regarded as a significant correlation.

Results

Demographics

The demographic details of 13 MCI and 9 control subjects
(aged 54–79 yrs) are detailed in the Online Resource 1B. The
MCI coho r t d emons t r a t ed s i gn i f i c an t l y l owe r
neuropsychometric test scores compared to the age-matched
healthy controls.

Brain amyloid status

18F–Flutemetamol scans were performed for 12 MCI and
9 HC subjects. Seven of the 12 MCI subjects had signifi-
cantly higher amyloid deposition than healthy controls in mul-
tiple brain regions, and were classified as amyloid-positive.

Spectral analysis

We identified three peaks along with fractional blood volume
of 0.065 (± 0.013) in spectra (Fig. 1a). The high-frequency
kinetic spectral component probably corresponded to the vas-
cular TSPO (see Turkheimer et al., 2007 [20]) while the other
two probably represented free and bound tracer in parenchy-
ma. The tissue IRF(t) curve is equivalent to the sum of three
spectral component peaks (Fig. 1b). Given different sets of
observation time for generating IRF parametric map, IRF at
90 min (IRF-90) demonstrated the lowest noise level with
global CV mean of 18% (SD = 4%).

The 11C–PBR28 IRF parametric map (Fig. 2) generated by
spectral analysis provided the opportunity to evaluate each
patient for neuroinflammation at a voxel level. In this study,
the single-subject analysis detected seven MCI patients (five
amyloid-positive and two amyloid-negative) who had signif-
icant clusters of elevated microglial activation in frontal gyrus,
temporal lobe, parietal gyrus, anterior cingulate gyrus, occip-
ital lobe and in thalamus compared to the healthy control
cohort (Fig. 3 and Online Resource 2). Furthermore, VOI
analyses were performed on those seven MCIs who had sig-
nificantly increased 11C–PBR28, which measured volumes of
significantly increased 11C–PBR28 binding ranging from
114,982 to 714,801mm3 (Table 1).

In the ROI analysis, parametric mapping of 11C–PBR28
IRF revealed a group-wise significant increase in neuroin-
flammation in the temporal lobe and multiple other brain

Fig. 1 a Kinetic spectrum for a healthy control subject, which revealed
three different components [at position βi of 7.07e-04 s-1 (blue), 1.58e-
03 s-1 (green) and 5.01e-03 s-1 (red) with amplitude αi of 8.35e-04 s-1,
1.03e-03 s-1, and 1.21e-03 s-1] with fractional blood volume (bv) of
0.065 (cyan). b Predicted curves using spectral analysis IRF (impulse
response function) for tracer activity (dashed line) which was measured
by the sum of three individual components of the spectrum. The blue (KI),
green and red curves corresponded to the three component peaks in the
spectrum
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regions in the amyloid-positive MCI subjects compared to
healthy controls (Table 2). Individually, four amyloid-
positive MCIs and two amyloid-negative MCIs revealed
ROIs with higher binding than mean + 2SD of healthy
controls.

Compartmental modelling

The parent plasma fraction and the plasma:blood ratio of 11C–
PBR28 over 90 min are shown in Fig. 4. The 2TCM4k-1 K
(AIC = −84) compared with the 2TCM4k model (AIC = −76)
provided a marginally better fit of 11C–PBR28 PET uptake
data (Online Resource 3). This is consistent with previous
studies [21, 32]. VT derived from 2TCM4k-1 K and

2TCM4k correlated well with a Pearson correlation coeffi-
cient around 0.7 (p < 0.0001) (Fig. 5).

Compartmental VT demonstrated a group-wise increase in
thalamus (31%, p < 0.037) and left MTL (32%, p < 0.05) in
11C–PBR28 VT in amyloid-positive MCI subjects compared
to the controls. Individually, 4/7 of amyloid-positive MCI
subjects showed increased uptake in 11C–PBR28 VT com-
pared to the controls, while one amyloid-negativeMCI subject
demonstrated an increase in 11C–PBR28 VT. Both compart-
mental models, 2TCM4k-1 K VT and 2TCM4k VTwere pos-
itively correlated with the 11C–PBR28 binding in IRF paramet-
ric maps (Fig. 5). A Pearson correlation was performed to
assess the relationship between 11C–PBR28 IRF-90 and
BPND (k3/k4), and a positive correlation was found in frontal
lobe (r = 0.55, p = 0.01), temporal lobe (r = 0.7, p < 0.0001),

Fig. 2 Individual IRF-90 and
Logan VT parametric maps
demonstrated with corresponding
MR image. Upper panel displays
an MCI patient, middle panel
shows a healthy control (HC), and
lower panel demonstrates the
group-wise average image
(Mean) and standard deviation
image (SD). The colour bar on
the left represents the colour scale
used for IRF-90 images, and the
colour bar on the right represents
the colour scale used for Logan
VT images

Fig. 3 Single-subject VOI analysis of IRF. The colour map represents the
significant clusters of increased 11C–PBR28 binding for eachMCI patient
compared to healthy control cohort. Aβ+ and Aβ- represent amyloid-

positive MCI and amyloid-negative MCI subjects respectively. The
colour bar indicates the significant Z-score which was used for the
colour-coded map
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parietal lobe (r = 0.76, p < 0.0001), and occipital lobe (
r = 0.57, p = 0.007). (Online Resource 4).

Logan graphic analysis

Based on linear fit of the whole brain 11C–PBR28 uptake and
parent plasma input function, dynamic data from 2000 to
5400 s (six data points) were selected to generate Logan plot
(slope = 3.8 ± 0.09 and intercept = −3033 ± 214) to create
Logan VT parametric map. Logan VT resulted in a higher
CV compared to IRF-90 parametric maps in different cortices
(Fig. 2 and Online Resource 1A). With the VOI analysis,
Logan maps localised a volume range of 108,237 to
423,979 mm3 containing increased neuroinflammation in in-
dividuals (Table 1). At a voxel level, single-subject analysis of
11C–PBR28 Logan parametric VT maps revealed three

amyloid-positive MCI subjects and one amyloid-negative
MCI subject who had neuroinflammation in anterior cingu-
late, frontal gyrus, temporal gyrus, parietal lobe, and occipital
lobe compared with healthy controls.

A good correlation was found between IRF-90 and Logan
parametric maps of 11C–PBR28 (Fig. 5). However, Logan
parametric maps failed to localise clusters of significantly
raised mean 11C–PBR28 uptake at the group level.
Individually, ROI analysis revealed two amyloid-positive
and one amyloid-negative MCI subjects with a higher level
of 11C–PBR28 binding compared with mean + 2SD of healthy
controls.

Discussion

For the first time, we have demonstrated that spectral analysis
can be used reliably to quantify 11C–PBR28 PET. 11C–PBR28
PET tracer has 80-fold higher affinity for TSPO compared to
previous tracers developed to evaluate microglial activation;
however, different methodological approaches used in differ-
ent studies have produced varying results [5, 14, 15, 33, 34].
As TSPO distribution has a heterogeneous cellular distribu-
tion with endothelial, smooth muscle, and parenchymal com-
ponents all exhibiting different kinetic behaviour, in this study
we evaluated the feasibility of generating 11C–PBR28 para-
metric map using spectral analysis. IRF-90 parametric map-
ping of 11C–PBR28 correlated well with Logan VT and VT

generated by compartment models. Compared to compart-
mental analysis, the IRF-90 parametric maps provided model
free quantification and enable comparison between subjects or

Table 2 11C–PBR28 ROI group
results of IRF-90 mean and
standard deviation in amyloid
positiveMCI subjects and healthy
controls

Healthy control Amyloid-positive MCIs

Mean SD Mean SD P value %

Frontal lobe 0.00037 0.00008 0.00045 0.00008 0.074 19%

Temporal lobe 0.00039 0.00006 0.00048 0.00008 0.010* 25%

Parietal lobe 0.00035 0.00006 0.00041 0.00010 0.115 16%

Occipital lobe 0.00036 0.00005 0.00041 0.00011 0.136 14%

Post-cingulate 0.00037 0.00008 0.00048 0.00011 0.025* 31%

Thalamus 0.00045 0.00007 0.00057 0.00014 0.024* 29%

Striatum 0.00037 0.00008 0.00040 0.00008 0.220 10%

Brainstem 0.00053 0.00005 0.00062 0.00012 0.060 16%

MTL 0.00042 0.00005 0.00053 0.00008 0.005* 27%

Hippocampus 0.00044 0.00005 0.00054 0.00010 0.019* 22%

Amygdala 0.00044 0.00006 0.00057 0.00008 0.003* 29%

Fusiform 0.00040 0.00006 0.00053 0.00010 0.009 32%

Cerebellum 0.00037 0.00007 0.00047 0.00010 0.023* 27%

Whole brain 0.00037 0.00006 0.00045 0.00009 0.049* 20%

*P< 0.05; MTL=medial temporal lobe; SD= Standard deviation

Table 1 The volume of significant 11C–PBR28 increase in single
subject using 11C–PBR28 parametric mapping of IRF and Logan
graphic analysis

Subject Increased 11C–PBR28 volume (mm3)

IRF Logan

MCI 1 191,073 \

MCI 2 714,801 423,979

MCI 3 114,982 \

MCI 4 260,442 165,193

MCI 5 177,119 \

MCI 6 360,328 289,142

MCI 7 373,282 108,237
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between regions at a voxel level. Compared with Logan VT

maps, 11C–PBR28 IRF-90 parametric maps showed a lower
noise level. IRF parametric mapping of 11C–PBR28 was able
to reveal group-wise significant microglial activation in
amyloid-positive MCI subjects across multiple brain regions.
On an individual basis, IRF-90 parametric maps revealed
microglial activation in individuals who had significant amy-
loid deposition.

As vascular binding can interfere with quantification of
parenchymal binding of TSPO tracers [35], spectral analysis
[22, 23] has the advantage of separating the high-frequency
component which represents tracer binding in the vasculature.
SA identifies two tissue components, and another low fre-
quency component which is suggestive of an additional irre-
versible vascular trapping component to 11C–PBR28 kinetics.
Interestingly this is in agreement with the spectral analysis
application to 11C–PK11195 [20]. The time-course of changes
in 11C–PBR28 IRF is reflected by the sum of low and

intermediate frequency components in the spectrum. In this
study, we have demonstrated that 90 min is optimal for gen-
erating IRF parametric mapping of 11C–PBR28.

It has now been established that TSPO binding is quite
heterogeneous within a given area in brain. It is also sug-
gested that TSPO could be expressed in microglia, endothelial
cells, and there is a debate about the expression in astrocytes.
Some studies have demonstrated that there is irreversible
binding to the vascular endothelium, while there is reversible
binding to the brain tissue. This gives rise to heterogeneous
kinetics of both reversible and irreversible components.
Spectral analysis does not make any a-priori assumptions
about whether a tracer is reversible or irreversible, and pro-
vides optimal parametric map at the pixel level [22, 26]. In the
spectrum, each tissue compartment is displayed as a spectral
component with an amplitude (α) and a frequency (β). The
impulse response function generated by the convolution of
these components for 11C–PBR28 PET indicates the response

Fig. 5 a The correlation between 11C–PBR28 IRF-90 and Logan VT in
frontal lobe and temporal lobe. b The correlation between 11C–PBR28
IRF and 2TCM4k-1 K VT in frontal lobe and temporal lobe. c The

correlation between 11C–PBR28 IRF and 2TCM4k VT in frontal lobe
and temporal lobe. d The correlation between 2TCM4k-1 K VT and
2TCM4k VT in frontal lobe and temporal lobe

Fig. 4 11C–PBR28 blood data. a Parent fraction in arterial plasma. b Plasma over blood ratio
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of the brain tissue in response to the injected TSPO tracer. This
could be quantified using a complex mathematical model as
described below. A spectral analysis allows us to quantify
the tissue response throughout the whole cortex without
any a-priori assumption. Additionally, it allows us to
quantify the tracer uptake in an individual subject. There
is extensive evidence in brain imaging and molecular bi-
ology studies, which have demonstrated that in-vivo brain
amyloid deposition is closely correlated with microglial
activation in AD and MCI subjects [36–38]. Okello
et al. reported that MCI patients with higher amyloid de-
position had significantly higher mean levels of cortical
microglial activation [39]. In our study, seven MCIs have
been classified as amyloid-positive subjects using 18F–
flutemetamol PET. Compared to other modelling
methods, IRF parametric mapping of 11C–PBR28 has re-
vealed a more extensive profile of neuroinflammation in
amyloid-positive MCIs, with a 19–27% group increase
across temporal lobe and multiple cortical regions.
Compartmental analysis only demonstrated group-wise in-
creased 11C–PBR28 in the amyloid-positive group in the
thalamus, while Logan parametric maps failed to localise
any significant increase at the group level.

Considering the heterogeneity of neuroinflammation in
MCIs, it is crucial for researchers to assess the neuroinflam-
mation on an individual basis rather than as a group. In this
study, 11C–PBR28 IRF parametric mapping demonstrated a
larger total volume of significantly increased 11C–PBR28, es-
pecially for MCI subjects who had amyloid plaques, consis-
tent with the neuropathological findings. Interestingly, one
amyloid-positive MCI subject, who revealed a significant
cluster of increased microglial activation when IRF and
Logan parametric maps were interrogated at a voxel level,
was negative with an 11C–PBR28 ROI analysis.

While one of the limitations of the current study is that only
MCI subjects have been assessed, we are aiming to recruit
established AD patients to further validate the IRF parametric
mapping strategy for 11C–PBR28 PET. Despite that, we have
previously demonstrated that results gathered from a TSPO
subgroup (HAB or MAB) can be translated to an entire AD
and MCI population [16]. Another limitation is only HAB
cases have been included; our group is recruiting more partic-
ipants in order to evaluate the performance of 11C–PBR28 IRF
in mixed binding affinity groups. SA is highly sensitive and is
performed using arterial input analysis, which is the most
robust quantitative method of analysis. Small variation could
lead to bias in data estimation; however, the arterial blood
acquisition and modelling in this study were carefully per-
formed. Nevertheless, this preliminary report has revealed
powerful evidence that parametric mapping of 11C–PBR28
using spectral analysis which separates the endothelial com-
ponent provides a high-quality whole-brain map which could
be used to analyze MCI subjects on an individual basis.

Conclusion

In this study, we have demonstrated that spectral analysis can
be used to generate 11C–PBR28 parametric maps. We have
identified a high-frequency blood volume peak and three other
spectral peaks which represent a slow irreversible trapping
component and two tissue components. Results demonstrated
11C–PBR28 parametric maps generated by spectral analysis
had a signal-to-noise ratio large enough to evaluate the
microglial activation at voxel level on an individual basis. In
conclusion, we have demonstrated, for the first time, that IRF
parametric map generated by spectral analysis can reliably be
used in quantifying 11C–PBR28 PET to assess neuroinflam-
mation in prodromal Alzheimer’s disease.

Funding This paper presents independent research funded by MRC and
supported by the NIHR CRF and BRC at Imperial College Healthcare
NHS Trust. The PET scans and MRI scans were funded by the Medical
Research Council, and part of the study was funded by Alzheimer’s
Research UK.

Compliance with ethical standards

Conflict of interest Dr. Edison was funded by the Medical Research
Council and now by Higher Education Funding Council for England
(HEFCE). He has also received grants from Alzheimer’s Research UK,
Alzheimer’s Drug Discovery Foundation, Alzheimer’s Society, UK,
Novo Nordisk, and GE Healthcare. He is also a consultant to Pfizer. Prof.
Brooks has received research grants and non-financial support from the
Medical Research Council, grants fromAlzheimer’s Research Trust, during
the conduct of the study; other from GE Healthcare, personal fees from
AstraZeneca, personal fees from Cytox, personal fees from Shire, personal
fees from Novartis, personal fees from GSK, Holland, personal fees from
Navidea, personal fees from UCB, personal fees from Acadia, grants from
Michael J Fox Foundation, grants from European Commission, outside the
submitted work. Mattia Veronese is supported by the National Institute for
Health Research (NIHR) Biomedical Research Centre at South London and
Maudsley NHS Foundation Trust and by King’s College London.

Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease:
current evidence and future directions. Alzheimers Dement.
2016;12(6):719–32.

Eur J Nucl Med Mol Imaging (2018) 45:1432–1441 1439



2. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F,
Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease.
Lancet Neurol. 2015;14(4):388–405.

3. Higuchi M, Ji B, Maeda J, Sahara N, Suhara T. In vivo imaging of
neuroinflammation in Alzheimer ’s disease. Clin Exp
Neuroimmunol. 2016;7(2):139–44.

4. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K,
et al. Microglia, amyloid, and glucose metabolism in Parkinson’s
disease with and without dementia. Neuropsychopharmacology.
2013;38(6):938–49.

5. Kreisl WC, Lyoo CH, Liow JS, Wei M, Snow J, Page E, et al.
(11)C-PBR28 binding to translocator protein increases with pro-
gression of Alzheimer’s disease. Neurobiol Aging. 2016;44:53–61.

6. Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P,
Rokka J, et al. Detection of microglial activation in an acute model
of neuroinflammation using PET and radiotracers 11C-(R)-
PK11195 and 18F-GE-180. J Nucl Med. 2014;55(3):466–72.

7. Su Z, Herholz K, Gerhard A, Roncaroli F, Du Plessis D, Jackson A,
et al. [(1)(1)C]-(R)PK11195 tracer kinetics in the brain of glioma
patients and a comparison of two referencing approaches. Eur J
Nucl Med Mol Imaging. 2013;40(9):1406–19.

8. Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van
Berckel BN, et al. Imaging of neuroinflammation in Alzheimer’s
disease, multiple sclerosis and stroke: recent developments in pos-
itron emission tomography. Biochim Biophys Acta. 2016;1862(3):
425–41.

9. Ko JH, Koshimori Y, Mizrahi R, Rusjan P, Wilson AA, Lang AE,
et al. Voxel-based imaging of translocator protein 18 kDa (TSPO) in
high-resolution PET. J Cereb Blood Flow Metab. 2013;33(3):348–
50.

10. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K,
Iwata Y, et al. Depiction of microglial activation in aging and de-
mentia: positron emission tomography with [11C]DPA713 versus
[11C]( R)PK11195. J Cereb Blood Flow Metab. 2017;37(3):877–
89.

11. Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in
microglial activation in Alzheimer’s disease trajectory. Brain.
2017;140(3):792–803.

12. Alam MM, Lee J, Lee SY. Recent progress in the development of
TSPO PET ligands for neuroinflammation imaging in neurological
diseases. Nucl Med Mol Imaging. 2017;51(4):283–96.

13. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A,
et al. An 18-kDa translocator protein (TSPO) polymorphism ex-
plains differences in binding affinity of the PET radioligand
PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.

14. Yoder KK, Nho K, Risacher SL, Kim S, Shen L, Saykin AJ.
Influence of TSPO genotype on 11C-PBR28 standardized uptake
values. J Nucl Med. 2013;54(8):1320–2.

15. Park E, Gallezot JD, Delgadillo A, Liu S, Planeta B, Lin SF, et al.
(11)C-PBR28 imaging in multiple sclerosis patients and healthy
controls: test-retest reproducibility and focal visualization of active
white matter areas. Eur J Nucl Med Mol Imaging. 2015;42(7):
1081–92.

16. Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P.
Can studies of neuroinflammation in a TSPO genetic subgroup
(HAB or MAB) be applied to the entire AD cohort? J Nucl Med.
2015;56(5):707–13.

17. Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N,
et al. In vivo radioligand binding to translocator protein correlates
with severity of Alzheimer’s disease. Brain. 2013;136(Pt 7):2228–
38.

18. Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM,
Kloet RW, van der Doef TF, et al. Microglial activation in
Alzheimer’s disease: an (R)-[(1)(1)C]PK11195 positron emission
tomography study. Neurobiol Aging. 2013;34(1):128–36.

19. Nair A, Veronese M, Xu X, Curtis C, Turkheimer F, Howard R,
et al. Test–retest analysis of a non-invasive method of quantifying
[(11)C]-PBR28 binding in Alzheimer’s disease. EJNMMI Res.
2016;6(1):72.

20. Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN,
Hammers A, et al. Reference and target region modeling of [11C]-
(R)-PK11195 brain studies. J Nucl Med. 2007;48(1):158–67.

21. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P,
Turkheimer FE, Bertoldo A. Kinetic modeling without accounting
for the vascular component impairs the quantification of
[C-11]PBR28 brain PET data. J Cereb Blood Flow Metab.
2014;34(6):1060–9.

22. Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analy-
sis of dynamic PET studies: a review of 20 years of method devel-
opments and applications. Comput Math Methods Med.
2016;2016:7187541.

23. Cunningham VJ, Jones T. Spectral analysis of dynamic PET stud-
ies. J Cereb Blood Flow Metab. 1993;13(1):15–23.

24. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D,
Hayakawa H. [18F]Flutemetamol amyloid-beta PET imaging com-
pared with [11C]PIB across the spectrum of Alzheimer’s disease.
Eur J Nucl Med Mol Imaging. 2014;41(2):290–300.

25. Veronese M, Rizzo G, Turkheimer FE, Bertoldo A. SAKE: a new
quantification tool for positron emission tomography studies.
Comput Methods Prog Biomed. 2013;111(1):199–213.

26. Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F,
Schmidt K. The use of spectral-analysis to determine regional ce-
rebral glucose-utilization with positron emission tomography and
[F-18] fluorodeoxyglucose — theory, implementation, and optimi-
zation procedures. J Cereb Blood FlowMetab. 1994;14(3):406–22.

27. Zanotti-Fregonara P, Liow JS, Fujita M, Dusch E, Zoghbi SS,
Luong E, et al. Image-derived input function for human brain using
high resolution PET imaging with [C](R)-rolipram and [C]PBR28.
PLoS One. 2011;6(2):e17056.

28. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN.
Identifying improved TSPO PET imaging probes through biomath-
ematics: the impact of multiple TSPO binding sites in vivo.
NeuroImage. 2012;60(2):902–10.

29. Turkheimer FE, Hinz R, Cunningham VJ. On the undecidability
among kinetic models: from model selection to model averaging.
J Cereb Blood Flow Metab. 2003;23(4):490–8.

30. Akaike H. Maximum likelihood identification of Gaussian
autoregressive moving average models. Biometrika. 1973;60(2):
255–65.

31. Logan J. Graphical analysis of PET data applied to reversible and
irreversible tracers. Nucl Med Biol. 2000;27(7):661–70.

32. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A,
Owen DR, et al. Microglial activity in people at ultra high risk of
psychosis and in schizophrenia: an [C-11]PBR28 PET brain imag-
ing study. Am J Psychiatry. 2016;173(1):44–52.

33. Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW,
et al. Cerebellum can serve as a pseudo-reference region in
Alzheimer disease to detect neuroinflammation measured with
PET Radioligand binding to translocator protein. J Nucl Med.
2015;56(5):701–6.

34. Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. A
graphical method to compare the in vivo binding potential of PET
radioligands in the absence of a reference region: application to
[(1)(1)C]PBR28 and [(1)(8)F]PBR111 for TSPO imaging. J
Cereb Blood Flow Metab. 2014;34(7):1162–8.

35. Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B,
Wimberley C, et al. Generalization of endothelial modelling of
TSPO PET imaging: considerations on tracer affinities. J Cereb
Blood Flow Metab . 2017 . h t tps : / /do i .o rg /10 .1177/
0271678X17742004

1440 Eur J Nucl Med Mol Imaging (2018) 45:1432–1441

https://doi.org/10.1177/0271678X17742004
https://doi.org/10.1177/0271678X17742004


36. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri
K, et al. Influence of microglial activation on neuronal function in
Alzheimer’s and Parkinson’s disease dementia. Alzheimers
Dement. 2015;11(6):608–21.

37. Gold M, El Khoury J. Beta-amyloid, microglia, and the
inflammasome in Alzheimer’s disease. Semin Immunopathol.
2015;37(6):607–11.

38. Cai ZY, Hussain MD, Yan LJ. Microglia, neuroinflammation, and
beta-amyloid protein in Alzheimer’s disease. Int J Neurosci.
2014;124(5):307–21.

39. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J,
Bullock R, et al. Microglial activation and amyloid deposition in
mild cognitive impairment: a PET study. Neurology. 2009;72(1):
56–62.

Eur J Nucl Med Mol Imaging (2018) 45:1432–1441 1441


	Parametric mapping using spectral analysis for 11C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Demographics
	Image acquisition
	Blood data
	Quantification of 11C–PBR28 PET using spectral analysis
	Quantification of 11C–PBR28 PET using compartmental modelling
	Quantification of 11C–PBR28 PET using Logan graphic analysis
	Region of interest (ROI) analysis in MCI and HC
	Voxel-level analysis between MCI and HC
	Brain amyloid status
	Statistics

	Results
	Demographics
	Brain amyloid status
	Spectral analysis
	Compartmental modelling
	Logan graphic analysis


	Discussion
	Conclusion
	References


