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Abstract 
This chapter begins with definitions of geographic information science (GIScience), of 

geocomputation, and of spatial analysis. We then discuss how these research areas have 

been influenced by recent developments in computing and data-intensive analysis, before 

setting out their core organizing principles from a practical perspective. The following 

section reflects on the key characteristics of geographic information, the problems posed 

by large data volumes, the relevance of geographic scale, the remit of geographic 

simulation, and the key achievements of GIScience and geocomputation to date. Our 

subsequent review of changing scientific practices and the changing problems facing 

scientists addresses developments in high-performance computing; heightened awareness 

of the social context of GIS; and the importance of neogeography in providing new data 

sources, in driving the need for new techniques, and in heightening a human-centric 

perspective. 

 

1. INTRODUCTION 

 

Geographic information science (GIScience) addresses fundamental issues associated 

with geographic information and the use of geographic information systems to perform 

spatial analysis, using a scientific approach (for detailed discussions of the nature of 

geographic information science see Duckham, Goodchild, and Worboys 2003). The 

issues may be practical, as in the question of how to address uncertainty in geographic 

information; they may be empirical, as in the observation generally known as Tobler’s 

First Law of Geography3 (Tobler 1970); or they may be theoretical, as in the fundamental 

contribution known as the 9-intersection of topology4 (Egenhofer and Franzosa 1991). To 

some, the term implies the use of geographic information systems (GIS) as a scientific 

tool in research and decision-making, and as such it has been widely applied to the 

solution of virtually any problem that is embedded in geographic space, from global 

warming to crime and water pollution. Much progress has been made in GIScience in the 

two decades since the term was coined (Goodchild 1992), through the efforts of a 

growing scientific community. It is also important to note that other terms convey similar 

meaning, including geomatics, geoinformatics, spatial data science, and spatial 

information science; and that GIScience plays an important role in the practice of 

regional science, as both a technology that can support research, and as an approach to 

problem-solving. 
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Geocomputation is also fundamentally concerned with geographic information, in other 

words information about features and phenomena and their locations on or near the 

Earth’s surface. Coined a little later by Openshaw and Abrahart (1996), the term is often 

used in cross-sectional analysis to describe the repeated analysis and simulation of spatial 

distributions, in order to explore spatial distributions and to draw inferences about the 

processes that created and govern them. More specifically, the term is often taken to 

imply simulation of processes operating in the geographic domain, and thus with 

geographic information that captures evidence of those processes and is thus primarily 

dynamic. The major issues in geocomputation often center on the computational 

problems that arise in simulating complex systems with massive numbers of features, 

data items, or agents. In this sense geocomputation develops an application-led focus 

upon the way the world works, founded upon rich digital representations of the way that 

the world looks, and makes prediction a central goal. The main contribution of 

geocomputation may thus lie in the development of better tools for dealing with complex, 

dynamic systems and for predicting their future states. 

 

From these definitions it is clear that GIScience and geocomputation have much in 

common, that their interests overlap substantially, and that it may even be helpful to think 

of geocomputation as a computationally intensive, application-led component of 

GIScience. Accordingly, the focus of this chapter is on the common ground between 

them, using the terms somewhat interchangeably. The term GIScience is used wherever 

the context seems to demand it, and similarly with the term geocomputation. Both terms 

are fundamentally concerned with spatial analysis (or recently spatial analytics), defined 

as the set of methods whose results change in response to changes in the locations of the 

objects being analyzed, and we sometimes use this umbrella term. The remainder of this 

section elaborates on the basic definition of GIScience and the research conducted under 

its banner. This is followed by a discussion of the basic principles of GIScience; in a nod 

to geocomputation, the discussion emphasizes those areas where GIScience has been 

successful at solving computationally intensive problems. Major methods of analysis are 

reviewed.  

 

The third section of the chapter addresses changing practices in GIScience, focusing on 

the increasing importance of collaboration, on novel and diverse data sources, on the 

availability of massive computational resources, and on the problems of dealing with 

uncertainty. Science generally is changing in response to the need to study complex 

systems and the use of simulation, and this trend is certainly affecting GIScience. The 

concept of data-intensive science, the so-called Fourth Paradigm (Hey, Tansley, and 

Tolle 2009), has a natural fit to geographic problems and their massive volumes of data, 

while the meta-issues of generalisation, documentation and provenance are beginning to 

loom large in a science that is no longer dominated by the individual investigator. The 

very rapid growth of the discipline of data science in recent years is also challenging 

many of the traditional approaches to science, and its relationship to GIScience is 

addressed in this third section. 

 

Finally, the fourth major section speculates on the future, and discusses the co-evolution 

of GIScience and geocomputation. Future developments are likely to be driven, as in the 
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past, by trends in data, in computation, and in the society that forms the context for both 

fields. 

 

While debates about the nature and meaning of science have raged for centuries and will 

probably never end, the core ideas are clear. First, science seeks laws and principles that 

can be shown to be valid in the observable world, and are generalizable in the sense that 

they apply everywhere and at all times. Both of the examples cited earlier – Tobler’s First 

Law and the 9-intersection – are clearly of this nature, and as a theoretical conclusion the 

9-intersection not only applies everywhere at all times, but also applies in any imaginable 

space. Second, science is founded on definitions of terms that are rigorously stated and 

understood by all scientists. Third, scientific experiments and their results are replicable, 

being stated in sufficient detail that someone else could expect to obtain them by carrying 

out an identical experiment. In this context the term black box is pejorative, since 

procedures that are hidden inside a box cannot be described and therefore cannot be 

replicated. Well-understood principles also apply to the details of reporting, as in the rule 

that any measurement or numerical result be stated to a precision (number of significant 

digits) that reflects the accuracy of the measuring device or model. Principles such as 

these help to define GIScience and geocomputation, and to distinguish them from less 

rigorous applications of GIS and related technologies. 

 

A distinction is often drawn between pure science, or science for the sake of curiosity and 

the quest for general discoveries, and applied science, or science that aims to solve 

problems in the observable world using scientific methods. The geo- prefix reminds us 

that the Earth provides a unique laboratory for scientific investigation, and the uniqueness 

of the places on it often limits the scope for the kinds of controlled experiments that 

characterize scientific activity in other disciplines. Geographic space is the space of 

human activity, and most of the problems facing human society are embedded in it, from 

poverty and hunger to health. Indeed, it is hard sometimes to avoid application in 

GIScience because the field is inevitably close to the real world, a fact that perhaps 

accounts for at least some of the passion displayed by its practitioners. Moreover 

curiosity has often provided the motivation to explore, characterize, and map the 

geographic world, though the results of such exploration are rarely generalizable in the 

sense that Newton’s Laws of Motion or the Mendeleev periodic table are generalizable. 

 

This pure/applied distinction explains how progress in spatial analysis is measured. On 

the one hand, the refereed journals in which much successful GIScience research is 

published, and the presentations at conferences such as the biennial International 

Symposia on Geographic Information Science, emphasize the purer forms of science, 

while the emphasis at other conferences, such as the biennial International Conferences 

on Geocomputation, emphasize how the core organizing principles and concepts of 

GIScience can be brought to bear on solving practical problems. A large industry, valued 

according to some estimates at $20 billion annually (Longley et al. 2015), has sprung up 

around the data acquisitions and tools needed in such practical problem-solving. Clearly 

the metrics of success here are much more diverse than in pure science. 

 

2. PRINCIPLES OF GISCIENCE 
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In this section we describe some of the major achievements of GIScience in its first two 

decades. The selection includes advances that closely resemble geocomputation in the 

sense of being concerned with large, complex systems and with large volumes of data. 

We begin with a discussion of the characteristics that distinguish geographic information 

and geographic problem solving from data-driven science in other domains. We then 

discuss the strategies that have been adopted in GIScience for avoiding or successfully 

dealing with the problems of large data volumes, including aggregation, divide-and-

conquer, and compression. We discuss some of the unintended consequences of such 

strategies, in the form of uncertainty, the ecological fallacy, and the modifiable areal unit 

problem. We elaborate on the nature of simulation in geographic space, on some of the 

more successful research conducted in this area, and on some of the issues it raises. 

Finally, we present a brief summary of progress in GIScience in the past 20 years. 

 

2.1 The characteristics of geographic information 

 

One of the first attempts to identify the special characteristics of geographic information, 

or “What is special about spatial?”, was made by Anselin (1989). He argued that two 

characteristics were universal: spatial dependence and spatial heterogeneity. Reference 

has already been made to the first, in the form of Tobler’s First Law of Geography: “All 

things are similar, but nearby things are more similar than distant things.” The statement 

may appear informal and vague, but it is readily formalized in the principles of 

regionalized variables that underlie the science of geostatistics (Chilès and Delfiner 

2012), and in the models widely used in spatial statistics (Cressie 1993). While we can 

argue about whether the statement meets the criteria for a law as that term is normally 

understood by philosophers of science, and whether exceptions should be allowed, it is 

clear that the vast majority of phenomena distributed over the Earth’s surface and near-

surface adhere to it, while differing in precisely how similarity decays with distance. 

Moreover there is no doubt of the law’s efficacy in GIS. 

 

The principle is essentially one of context, since it requires a phenomenon at one point to 

be consistent with the same phenomenon at nearby points. It appears to apply well in 

three-dimensional space and also to apply in four-dimensional space-time. Perhaps the 

easiest way to demonstrate its validity is by a thought experiment in which it is not true, 

where a minute displacement on the Earth’s surface produces a completely independent 

environment – clearly this does not happen and cannot happen, though there are many 

examples where a displacement of at least a finite amount produces an apparently 

independent environment (such a minimal displacement is known in geostatistics as the 

range of the phenomenon, and synonyms exist in many domains of science). 

 

As a cornerstone of GIScience the principle has two major implications. First, similarity 

over short distances allows the Earth’s surface to be divided into regions within which 

phenomena are approximately homogeneous, achieving great economies in data volume 

by expressing attributes as properties of entire areas rather than of individual points. In 

short, the principle enables the assumed-homogeneous polygons that dominate many 

representations in GIS. Similarly, it allows reasonable guesses to be made of the 
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properties of places that have not been visited or measured, in a process known as spatial 

interpolation. The principle thus justifies the techniques that are used, for example, to 

create weather maps from scattered point observations. 

 

Unfortunately the principle of spatial dependence also provides a major headache for 

researchers working with geographic information, since it runs counter to the assumption 

made in many statistical tests that the data were acquired through a process of random 

and independent sampling from a parent population. An analysis of the 58 counties of 

California, for example, cannot make that assumption since the principle implies that 

conditions in neighboring counties will be similar. Moreover there is no larger universe 

of which the set of all counties of California constitute a random sample. 

 

Anselin’s second principle addresses spatial heterogeneity, or the tendency for parts of 

the Earth’s surface to be distinct from one another. This also has profound implications. 

Consider, for example, a local agency seeking to define a taxonomy of local land use. 

The result will inevitably be different depending on the agency’s location and the local 

conditions in its jurisdiction, and every jurisdiction will argue that its scheme is better 

than any global or national standard. In early geodesy, the figure of the Earth (the 

mathematical function used to approximate the Earth’s shape and thus define latitude and 

longitude) was unique to each jurisdiction or region, and it was not until the 1960s that 

pressure for a single standard prevailed, driven by the growing importance of air travel 

and the targeting of intercontinental ballistic missiles. Unfortunately any universal 

standard will inevitably be sub-optimal for any local jurisdiction, whether it be over land-

use classification or the shape of the Earth, so there will always be tension between the 

desire to be locally optimal and the desire to be globally universal. 

 

2.2 Dealing with large data volumes 

 

The previous section was concerned with principles that can be demonstrated to be 

empirically true. We now move to a discussion of some of the principles that guide the 

design of GIS technology, and allow GIS to deal with problems that might otherwise be 

overwhelmingly voluminous, a key issue in geocomputation given its goal of addressing 

large problems. The Earth’s surface has approximately 500 million sq km, and a 

description of it at a resolution of 1 sq m would therefore create 500 trillion data elements 

if no strategy were adopted to reduce the volume. Even allocating a single byte to each 

data element would create half a petabyte of data. 

 

In the previous section we discussed Tobler’s First Law, the basis for aggregating data 

elements into statements about entire polygons5. California’s land area amounts to 

403,800 sq km, and describing each sq m with a two-byte designation CA would produce 

roughly 0.8 terabytes of data. But capturing the coordinates of its boundary and adding a 

single attribute CA to the polygon could clearly compress this to only a few kilobytes, 

even with precise coordinates; and by recording only a single attribute, would avoid the 

                                                 
5 Because the Earth’s surface is curved the shortest path between two points is never a straight line. Thus 

the use of the term “polygon” implies that some method has been used to project the Earth onto a flat 

surface. 
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potential for error in the vast number of identical attributes that would have to be 

recorded in a cell-by-cell approach. Alternatively, a variety of compression techniques 

can also be used to replace cells of individual data elements with a series of <run length, 

value> pairs. Many other methods of compression, generalization, and abstraction have 

been devised to deal with the volume problem, some of them lossy in the sense that the 

result is only approximately identical and the original data cannot be recovered from the 

compressed version, and some of them loss-less. 

 

In a divide-and-conquer strategy a geographic area is partitioned, and analysis or 

modeling proceeds one partition at a time. The term tile is often used for partition, 

especially where the partitions are rectangular6. Instead of solving a problem for the 

whole of California, for example, one might solve it separately for each of its counties. 

Interactions exist between counties in almost every application: in analyzing water 

pollution, for example, the actions of a county will influence the water quality in any 

downstream county, and air pollution will travel to any counties downwind. Thus a 

successful divide-and-conquer strategy must also consider the degree to which counties 

interact, and include this in the model, often by iterating between modeling within-county 

effects and modeling between-county effects. Nevertheless the overall computational 

efficiency of the modeling will probably be improved by adopting this strategy. Many 

GIS algorithms make explicit use of divide-and-conquer, as an approach to handling the 

vast amounts of data provided by satellite-based remote sensing, and implicit divide-and-

conquer has been an intrinsic part of human problem-solving from time immemorial. 

 

Despite these traditional strategies, we note in the next major section that massive 

improvements in computing capacity, along with the increasing availability of fine-

resolution data on both environmental and social phenomena, is opening a host of new 

possibilities. It is increasingly possible to avoid the constraints of divide-and-conquer and 

to study processes at previously unheard-of resolution. 

 

2.3 Scale-related issues 

 

The term scale is often used in GIScience in the sense of spatial resolution, to distinguish 

between fine-scale or detailed data and coarse-scale or generalized data. Some of the 

techniques described in the previous section essentially sacrifice scale in the interests of 

reducing data volume. To a cartographer, reducing a map’s representative fraction, the 

ratio of distance on the map to distance on the Earth7, is similarly a sacrifice of scale, 

often in the interests of visual clarity. To a compiler of social statistics, reporting counts 

of people based on large, aggregated reporting zones may also be a means of reducing 

data volume. 

 

All of these techniques have consequences that are well recognized in GIScience. The 

modifiable areal unit problem refers to the effects that changes in reporting zone 

                                                 
6 As before, note that tiles cannot be rectangular on a curved surface, and that the Earth must first be 

projected to a plane 
7 Note that no flat map can have a precisely constant representative fraction relative to the curved surface of 

the Earth 
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boundaries will have on the results of any geographic analysis. The term was first 

formally characterized by Openshaw (1983), who demonstrated that changing reporting-

zone boundaries could produce dramatic swings in results, even when holding scale 

constant. His solution, which became a fundamental tenet of geocomputation, was to 

recommend exploring the aggregation effect in any specific case, by repeated analysis 

using different zones. Unfortunately in most cases this can only be done by aggregating 

predefined zones, producing different results but at a still coarser level of aggregation, 

since data compiled for different zonal arrangements at the same level of aggregation will 

usually not be available. Many studies have documented the problem, while others have 

argued that it results not from a failure of analytic method but from a failure on the part 

of the investigator to be explicit about the scale at which the hypothesized effects occur. 

For example, in Openshaw’s original case study, the 99 counties of Iowa were used to 

explore the relationship between percent of the population over 65 and percent registered 

Republican voters. Aggregating the counties in various ways did indeed produce different 

results, but at coarser scale. What is missing in this case is a well-defined hypothesis as to 

why this correlation should appear, and at what scale. Perhaps the process works at the 

individual level, and older people are more likely to vote Republican, in which case the 

hypothesis is best tested at the individual level. Or perhaps the process is ecological: a 

neighborhood with a large percent of people over 65 also attracts a large percent of 

Republican voters, whether or not they are over 65. In the latter case the appropriate scale 

of analysis is that of the neighborhood, requiring a formal definition of that concept and 

an aggregation of finer-scale data, such as block-group data, to the neighborhood level. 

The general point is relevant to the definition of spatial analysis in Section 1, and is that 

we should not be looking for statistics that are invariant to the phenomenon that we wish 

to study. As such, the MAUP is not an empirical problem but rather is a theoretical 

requirement to hone statistics to the geographic context in which they are applied.  

 

A closely related problem, also well-recognized in GIScience, is the ecological fallacy, 

the fallacy of reasoning from the aggregate to the individual. The fallacy already 

appeared in the previous paragraph, since it would be wrong to infer from a county-level 

correlation that individuals over 65 tend to vote Republican – in fact, in the extreme, 

Openshaw’s correlations could exist in Iowa at the county level even though no person 

over 65 was a registered Republican. King (1997) reviews the problem in greater detail 

and suggests ways of addressing it. Other approaches to down-scaling, or replacement of 

coarse-scale data by fine-scale data, can be found, such as the work of Boucher and 

Kyriakidis (2006) in the context of remote sensing. 

 

2.4 Simulation in GIScience 

 

Many processes that operate on the Earth’s surface can be abstracted in the form of 

simple rules. One might hypothesize, for example, that consumers always purchase 

groceries from the store that can be reached in minimum time from their homes. Exactly 

how such hypotheses play out in the real world can be difficult to predict, however, 

because of the basic heterogeneity and complexity of the Earth’s surface. Christaller was 

able to show that such simple assumptions about behavior led to simple patterns of 

settlements in areas dominated by agriculture, but only by assuming a perfectly uniform 
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plane. Similarly, Davis was able to theorize about the development of topography 

through the process of erosion, but only by assuming a starting condition of a flat, 

uplifted block. Research in both areas has clearly demonstrated that the perfect 

theoretical patterns predicted never arise in practice. 

 

One strategy for addressing such issues is to assume that in the infinite complexity of the 

real world, all patterns are equally likely to emerge; and that the properties we will 

observe will be those that are most likely. This strategy enabled Wilson (1970) to show 

that the most likely form of distance decay in human interaction was the negative 

exponential; and Shreve (1966) was able to show that the effect of random development 

of stream networks would be the laws previously observed by Horton. Similar 

approaches have been applied to the statistical distribution of city size, or the patterning 

of urban form (Batty and Longley 1994). 

 

Nevertheless, while they yield results that are often strikingly in agreement with reality, 

such approaches lack the practical value that real-world decision-making demands. 

Instead, GIScience and geocomputation are increasingly being used to simulate the 

effects of simple hypotheses about behavior on the complex landscapes presented by the 

geographic world. The generality of such approaches lies in the hypotheses they make 

about behavior; the landscapes they address, and the patterns they produce, are essentially 

unique. 

 

Such approaches fall into two major categories, depending on how the hypotheses about 

behavior are expressed. The approach of cellular automata begins with a representation 

of the landscape as a raster, and implements a set of rules about the conditions in any cell 

of the raster. The approach was originally popularized by Conway in his Game of Life, in 

which he was able to show that distinct patterns emerged through the playing out of 

simple rules on a uniform landscape. Such patterns are known as emergent properties, 

since they would be virtually impossible to predict through mathematical analysis. The 

cellular-automata approach has been used by Clarke (e.g., Clarke and Gaydos 1998) and 

others to simulate urban growth, based on simple rules that govern whether or not a cell 

will change state from undeveloped to developed. Such approaches allow for the testing 

of policy options, expressed in the form of modifications to the rules or to the landscape, 

and have been widely adopted by urban planners. 

 

The alternative approach centers on the concept of agent, an entity that is able to move 

across the geographic landscape and behave according to specified rules. This agent-

based approach is thus somewhat distinct from the cell-based approach of cellular 

automata. Agent-based models have been widely implemented in GIScience and 

geocomputation. For example, Torrens, Li, and Griffin (2011) have studied the behavior 

of crowds using simple rules of individual behavior, with applications in the management 

of large crowds with their potential for panic and mass injury. Evans and Kelley (2004) 

have studied the behavior of decision-makers in their role in the evolution of rural 

landscapes, and examined policies that may lead to less fragmentation of land cover, and 

thus greater sustainability of wildlife. Maguire, Batty, and Goodchild (2005) discuss 
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several other examples of cellular automata and agent-based models in GIScience and 

geocomputation. 

 

Both approaches raise a number of issues (for a general discussion of these issues see, for 

example, Parker et al. 2003). From an epistemological perspective, several authors have 

explored the role of such modeling efforts in advancing scientific knowledge. On the one 

hand, a model is only as good as the rules and hypotheses about behavior on which it is 

based. It is unlikely that the results of simulation will lead directly to a modification of 

the rules, and more likely that rules will be improved through controlled experiments 

outside the context of the modeling. If patterns emerge that were unexpected, one might 

argue that scientific knowledge has advanced, but on the other hand such patterns may be 

due to the specific details of the modeling, and may not replicate anything that actually 

happens in the real world. 

 

Validation and verification of simulation models are always problematic, since the results 

purport to represent a future that is still to come. Hindcasting is a useful technique, in 

which the model is used to predict what is already part of the historic record, usually by 

working forward from some time in the past. But the predictions of the model will never 

replicate reality perfectly, forcing the investigator to ask what level of error in prediction 

is acceptable, and what unacceptable. Moreover it is possible and indeed likely that rules 

and hypotheses about social behavior that drive the model will change in the future. In 

that regard models of physical processes may be more reliable than models of social 

processes. 

 

2.5 Achievements of GIScience 

 

As we noted earlier, the term GIScience was coined in a 1992 paper (Goodchild 1992). In 

some ways the paper was a reaction to comments being made in the literature about the 

significance of GIS: that it was little more than a tool and did not therefore deserve a 

place in the academy. The funding of the US National Center for Geographic Information 

and Analysis (NCGIA) in 1988 by the National Science Foundation seemed to indicate a 

willingness in some quarters to see more in GIS than technique. Nevertheless the 

tool/science debate continued for some time, and is summarized by Wright, Goodchild, 

and Proctor (1997). 

 

Two decades later several efforts were made to look back and assess progress. A meeting 

for that purpose was convened in Santa Barbara in December 2008 

(http://ncgia.ucsb.edu/projects/isgis/), and a paper summarizing its results and offering a 

personal perspective has been published by Goodchild (2010). It draws on the 

assessments of several individuals, and on a bibliographic analysis performed by Skupin. 

While any level of consensus is inevitably difficult to achieve, the following might be 

argued to be the major achievements of two-and-a-half decades of GIScience: 

 

 Clarification and specification of the basic data model, including recognition of 

the fundamental significance of discrete-object and continuous-field 
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conceptualizations, the emergence of object-oriented data modeling,  and the 

specification of spatial relations. 

 The development of place-based techniques of spatial analysis, including local 

indicators of spatial association (Anselin 1995, Ord and Getis 1995), spatial 

regression models (LeSage and Pace 2009), and geographically weighted 

regression (Fotheringham, Brunsdon, and Charlton 2002). 

 The specification of standards for simple features, metadata, real-time interaction 

across the Internet, and many other aspects of GIS practice, led by the Open 

Geospatial Consortium and the US Federal Geographic Data Committee. 

 The development of digital globes such as Google Earth that allow real-time 

interaction with three-dimensional models of the Earth. 

 Recognition of the importance of ontology, as the key to interoperability across 

communities, languages, and cultures. 

 Search and retrieval based on geographic location, through mechanisms such as 

the geoportal (Maguire and Longley 2005). 

 Advances in geovisualization, going far beyond the capabilities of conventional 

cartography to include animation, the third spatial dimension, reduction of high-

dimensional data sets, and many other topics. 

 Achievement of a new level of understanding of uncertainty in geographic 

information, its handling, and its effects, together with a fundamental shift of 

focus from accuracy to uncertainty. 

 Focus on the source and operation of bias in geographic representation, 

particularly where Big Data sources are repurposed for research applications that 

were not anticipated or intended when data were created (Longley, Cheshire, and 

Singleton 2018). This can be seen as retaining focus upon data collection methods 

and their suitability for spatial analysis in the Big Data era.  

 

Perhaps more important are the institutional achievements, which can be seen as the 

indirect result of such advances. GIScience is now widely recognized in the titles of 

journals and the names of departments and programs. In recent years several GIScientists 

have been elected to prestigious institutions such as the US National Academy of 

Sciences and the UK’s Royal Society. GIScience conferences have proliferated, and the 

GIScience bookshelf now contains an impressive array of titles. 

 

 

3. CHANGING PRACTICE AND CHANGING PROBLEMS 

 

In this section we examine the changing nature of GIScience, and speculate on its future. 

GIS has always been driven by competing factors. On the one hand, it has been at the 

mercy of trends and changes within the larger computing industry, including new 

technologies that may or may not offer significant benefits for GIS. For example, the 

relational database management systems of the 1970s led to a major breakthrough in data 

modeling in GIS. GIS has also been driven by the need to solve problems of importance 

to society, from the resource management that provided the initial applications of GIS in 

the 1980s to the military applications that have always been important but half-hidden, 

and new applications in public health that are as yet only partially developed. GIS as a 



 

 11 

tool for science is subject to the winds of change that are currently blowing through the 

scientific community, pushing it towards a more collaborative, multi-disciplinary, and 

data-centric paradigm. Finally, GIS exists in a social context of concerns about privacy, 

about scientific practices, and about the role that a sometimes expensive technology can 

play in empowering the already empowered; and GIS is being influenced by the 

importance of the average citizen as both a consumer and producer of geographic 

information. 

 

This section is structured as follows. We begin with a discussion of high-performance 

computing, and its importance for the kinds of massive simulation models discussed 

previously. We then move to a discussion of the social context of GIS, and the social 

critique that emerged in the 1990s and now drives the research of many GIScientists. 

This is followed by a discussion of the relationship between GIScience and data science. 

Finally, we examine the phenomenon of neogeography and the importance it may hold in 

providing new data sources and in driving the need for new techniques. 

 

3.1 CyberGIS and parallel processing 

 

A major report of the US National Science Foundation (NSF 2003) proposed the term 

cyberinfrastructure to describe the kinds of computing infrastructure that would be 

needed to support science in the future. Instead of the lone investigator and the desktop 

system, the report envisioned a distributed infrastructure that would support widespread 

collaboration across a range of disciplines, following the notion that science in the future 

would address complex problems with complementary teams of scientists of varied 

expertise. The solution of complex, large-scale problems would also require a heavy level 

of investment in high-performance computing (HPC) with its massively parallel 

architectures. Parallel architectures have an inherently good fit to the nature of 

geographic space and its somewhat independent individual and community agents, all of 

which can be seen as semi-independent decision-makers acting in parallel rather than 

serially. 

 

A number of authors have argued that geographic research and problem-solving requires 

a specific form of cyberinfrastructure that addresses several key issues, and have coined 

the term cyberGIS (Wang 2016, Wang and Goodchild 2018). How exactly should the 

geographic world be partitioned across processors? How should one measure 

computational intensity as a geographic variable? How should the user interface of an 

integrated cyberGIS be designed? What types of problems, models, and analyses best 

justify these new approaches? What incentives will persuade the average GIScientist to 

engage with cyberGIS, given the initial impression of complexity and inaccessibility, and 

a high level of personal investment in conventional GIS? 

 

Efforts to parallelize GIS date from the 1990s but were not successful for several reasons. 

First, parallel computing was expensive at the time, and it was difficult for investigators 

to justify the cost. Second, parallel computing was rendered inaccessible by the need to 

reprogram in specialized languages. Third, while it was easy to find examples of 

geographic problems that involved massive volumes of data, it was harder to find ones 
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that involved massive computation. Finally, collaborative technologies had not yet 

advanced to the point where it was possible for widely distributed research teams to work 

together productively. 

 

Many of these arguments are now moot, however. HPC is widely available, and Cloud 

and Grid technologies are making the transition from conventional computing almost 

transparent. The need for collaboration is much stronger, and the kinds of problems that 

used to be solved by individual investigators are now hard to find. Finally, 

geocomputation has opened the doors to the kinds of massive computation that HPC is 

designed to address. Indeed, the most compelling examples of the need for HPC lie in the 

kinds of agent-based and cellular simulations reviewed in the previous section. 

 

In recent years it has also become possible to parallelize processing on the desktop, 

following the addition of graphical processing units (GPUs) to graphics boards in order to 

improve the quality and speed of image rendering. Although an innovation of the 

computer games market, GPU chips were subsequently adapted to more general-purpose 

computing: today, Nvidia (which, along with AMD, is the world's largest graphics-card 

manufacturer) produces chips designed specifically for non-graphics applications, and 

provides a specialized programming-language architecture for use with them. GPUs 

outperform traditional computation on a central processing unit (CPU) because a GPU 

has a higher density of cores and uses a process called streaming to handle a number of 

operations simultaneously. The result is increased processing speed of computationally 

intensive algorithms. General-purpose computing on graphics processing units (GPGPU) 

describes the exploitation of the resources of the GPU for various tasks which might 

previously have been conducted on a CPU. It has particular advantages for real-time 

systems where the speed of return of results is fundamental to usability and interaction. 

Adnan, Longley, and Singleton (2014) describe an application in geocomputational 

geodemographics, in which k-means (a frequently used algorithm in the creation of 

geodemographic classifications) is enhanced to run in parallel over a GPU. This work 

exploits the parallel-computing Computer Unified Device Architecture (CUDA), which 

allows code written in standard C or C++ to be used in GPU processing.  

 

3.2 The social context of GIS 

 

Although the GIS technology that underpins GIScience and geocomputation is an 

established part of the IT mainstream, there is enduring unease in some academic quarters 

about the social implications of this technology. Early statements were contained in 

Pickles’ (1993) edited volume Ground Truth: the Social Implications of Geographic 

Information Systems, which remains an enduring statement of concerns built around four 

principal issues. First, there is the view that GIS technology is used to portray 

homogeneity rather than representing the needs and views of minorities, and that this 

arises in part because systems are created and maintained by vested interests in society. 

The roots to this critique can be traced to a wider debate as to whether the umbrella term 

GIS is best conceived as a tool or as a science, and is something that can be addressed 

through clarifying the ontologies and epistemologies of GIScience and geocomputation. 

Second, there is the view that use of a technological tool such as GIS can never be 
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inherently neutral, and that GIS is used for ethically questionable purposes, such as 

surveillance and the gathering of military and industrial intelligence. Web 2.0, discussed 

below, has begun to address this criticism, since it has gone some way to level the 

playing field in terms of data access, and enabled participation of a wider cross-section of 

society in the use of this technology of problem-solving. Moreover, it is difficult to 

construe the views of the Earth promulgated through services such as Google and Bing as 

intrinsically privileged, not least if they are open to anyone with access to an Internet 

browser. Third, there has been a dearth of applications of GIS in critical research, and a 

preoccupation with the quest for analytical solutions rather than establishing the impacts 

of human agency and social structures upon unique places. The rise of mixed-method 

approaches to GIS (Cope and Elwood 2009) has gone some way towards addressing 

these concerns. Finally, there is still a view in some quarters that GI systems and science 

are inextricably bound to the philosophy and assumptions of the approach to science 

known as logical positivism. This implies that GIScience in particular, and science in 

general, can never be more than a positivist tool and a normative instrument, and cannot 

enrich other more critical perspectives in geography. Although still featured in many 

introductory courses on social science methodologies, this critique is something of a 

caricature of the positivist methods that pervade scientific investigation more generally. 

 

3.3 GIScience and data science 

 

Data science has become an academic growth industry in recent years, fuelled in part by 

massive increases in the volume and variety of data that are now available via the 

Internet, in part by growing practical interest in prediction using the techniques of 

artificial intelligence, and in part by the belief that generic approaches are available to 

many of the issues of data handling, among them data mining, data search, data 

modeling, data curation, data sharing, and data description (Kelleher and Tierney 2018). 

Academic programs have been instituted in response to what is perceived as a rapidly 

growing market for data skills. 

 

Traditionally, information has been regarded as inherently more useful than data, based 

on the understanding that information can be defined as data that are “fit for purpose” 

(Longley et al. 2015). In that sense a geographic information science is implicitly more 

sophisticated than a geographic data science. But such semantic quibbles aside, it is clear 

that data science and geographic information science have much in common and much to 

learn from each other. 

 

A quick review of the syllabi of courses in data science will reveal that few give much 

attention to geographic information or to techniques of spatial analysis. In part this 

appears to be a consequence of the belief that there is nothing “special about spatial”, 

despite the arguments put forth in Section 2. 

 

More fundamentally, however, there are strong arguments for adopting the approach of 

data science, and specifically in adopting the mantra “let the data speak for themselves” 

in addressing problems framed in space and time. It is impossible to measure location 

perfectly, and many of the attributes commonly processed in GIScience and 
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geocomputation, such as soil class or vegetation cover type, have an inherent degree of 

subjectivity and are thus non-replicable. In short, uncertainty is present in all geographic 

information (Zhang and Goodchild 2002), and few if any geographic data sets give the 

researcher objective knowledge of the differences between the data set and the real world 

(Janelle and Goodchild 2018). Instead the user must rely on indirect measures such as 

map scale to understand the limitations of the data. 

 

Additional data issues arise from the repurposing of data that were never collected with 

the interests and concerns of researchers and analysts in mind. This is perhaps most 

evident in the analysis of consumer data, which arise essentially as a by-product of an 

interaction between a consumer and a consumer-facing organization in the course of 

supply of goods or services, such as social media. Such data account for a large and 

increasing real share of all of the data collected about citizens today, yet the absence of 

monopoly providers of most goods and services means that issues of self-selection and 

bias plague re-use of such data for research purposes (Longley, Cheshire, and Singleton 

2018). Triangulation of such sources to existing framework data sources such as censuses 

presents one route beyond this impasse – such sources may be less rich, granular, or 

frequently collected, but may suggest ways in which bias can be accommodated or 

research refocused.  

 

Prediction has been a major driving force in the growth of data science, and the 

investments being made in this area by major corporations. Tools of machine learning, 

including artificial neural nets and deep learning, have been shown to be very effective in 

making successful predictions from highly voluminous and diverse data sets. Yet despite 

its practical value, prediction has always taken a back seat in science to explanation and 

understanding. A trained neural network is difficult to interpret within the kinds of 

hypothesis testing and theory confirmation that have characterized much of science to 

date. Moreover it is difficult to see how successful these techniques can be in achieving 

generalizability across study areas, a key requirement of GIScience and geocomputation. 

 

3.4 Neogeography, wikification, open data, and consumer data 

 

Recent years have seen the re-use of the term neogeography to describe the developments 

in Web mapping technology and spatial data infrastructures that have greatly enhanced 

our abilities to assemble, share, and interact with geographic information on-line. Allied 

to this is the increased crowd-sourcing by online communities of volunteered geographic 

information (VGI: Goodchild 2007) and user generated content (UGC). As such, 

neogeography is founded upon the two-way, many-to-many interactions between users 

and websites that have emerged under Web 2.0, as embodied in projects such as 

Wikimapia (www.wikimapia.org) and OpenStreetMap (www.openstreetmap.org). Today, 

Wikimapia contains user-generated entries for more places than are available in any 

official list of place names, and the term vernacular region is used to describe regions 

which emerge from geocomputational analysis of feeds from social networking sites. 

OpenStreetMap remains well on the way to creating a free-to-use global map database 

through assimilation of digitized satellite photographs with GPS tracks supplied by 

volunteers.  
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This has converted many new users to the benefits of creating, sharing, and using 

geographic information, often through ad hoc collectives and interest groups. Such sites 

go some way to alleviating concerns about the social implications of GIS, insofar as 

participation in the creation and use of GIS databases is not restricted, and the contested 

nature of place names and other characteristics can be tagged in publicly editable 

databases. As such, Web 2.0 simultaneously facilitates crowd-sourcing of VGI while 

making basic GIS functions increasingly accessible to an ever-broader community of 

users. This creation, maintenance, and distribution of databases has been described as a 

“wikification of GIS” (Sui 2008).  

 

Geographers have long recognized the importance of place in humans’ understanding of 

geography. The average person is familiar with thousands or even tens of thousands of 

named places and their associations. Yet GIS technology requires named places to be 

represented either as precisely located points, polylines, or polygons. It is a rare 

individual who knows even roughly the latitude and longitude of his or her home, yet 

everyone knows their home’s street address and postal code. Recently there has been 

much interest in a platial approach to geographic knowledge, as a more human-centric 

alternative to the familiar spatial approach. New data sources, including social media, 

provide a rich basis for exploring associations of place. 

 

Official data are also becoming available through renewed pressures for government 

accountability, and the broader realization that wide availability of data collected by 

government and pertaining to citizens can lubricate economic growth. The result has been 

a plethora of open-data initiatives in many developed countries, leading to Web-based 

dissemination of data relating to many areas of public concern, such as personal health, 

transport, property prices, and even the weather. The previous section described the 

increasing re-use of consumer data for research purposes, arising out of initiatives that 

develop common ground in spatial analysis from shared problems of commerce, 

government, and academia. Conventional official sources such as censuses of population 

today account for a very much smaller proportion of the data that are collected about 

citizens, and there is a sense in which open and consumer data initiatives are playing 

catch-up – providing researchers and analysts with some facility with which to 

understand the increasingly diverse and complex social, economic, and demographic 

milieu that characterizes advanced societies. Despite the hubris that has been generated 

around open and consumer data initiatives, however, most of the data sources that have 

been released present extremely partial and disconnected representations of the world. 

For reasons set out in the discussion of modifiable areal unit effects above, the much 

more holistic concerns with issues of choice and service delivery, or the localism agenda 

in general, require linked characteristics at the level of the individual citizen, or at the 

very least small neighbourhood units. These initiatives bring new analytical focus to 

anonymisation and data disclosure prevention procedures, which in principle may lead to 

release of data pertaining to individuals rather than geographic aggregations. 

 

All of this requires clear thinking of issues of spatial resolution (level of detail) and 

disclosure control that are central to the wider spatial literacy agenda (Janelle and 
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Goodchild 2011). One consideration that is likely to reignite aspects of the social critique 

of GIS is that it is unlikely that privacy strictures can ever be absolute. Open and 

consumer data initiatives are creating the need for a broader policy framework for data 

that responds to concerns of citizen privacy and confidentiality, while remaining 

cognizant of the benefits that can accrue though opening up, integrating, and using the 

contents of government data silos. What level of data degradation is an informed public 

likely to be happy with, if it can be shown to bring benefits in terms of efficient and 

effective provision of public and private goods?  

 

A related issue is that empowerment of the many to perform basic (and even advanced) 

GIS operations brings new challenges to ensure  that tools are used efficiently, 

effectively, and safely. Whether using official statistics or VGI, Web 2.0 can never be 

more than a partial and technological substitute for understanding of the core organizing 

principles and concepts of GIScience. These highlight the need to know and specify the 

basis of inference from the partial representations that are used in GIS to the world at 

large; yet such information is conspicuous by its absence from many VGI sources. 

 

 

4. CONCLUSION 

 

In undertaking a wide-ranging review of the achievements of GIScience and 

geocomputation, this chapter has also set out the principal issues and challenges that face 

these fields today. Improved computation and the facility to create, concatenate and 

conflate large datasets will undoubtedly guide the future trajectories of the fields in the 

short to medium term. Ultimately, though, our focus in this chapter has been upon 

changes in scientific practice that may appear mundane but are nonetheless profound and 

far-reaching. Good science is relative to what we have now, and improved understanding 

of data and their provenance is a necessary precursor to better analysis of spatial 

distributions in today’s data- and computation-rich world.  

 

Ultimately, GIScience and geocomputation are applied sciences of the real world, and in 

large part will be judged upon the success of their applications. Improved methods and 

techniques can certainly help, as can ever-greater processing power. Yet the experience 

of the last 20 years suggests that there are rather few purely technical solutions to 

substantial real-world problems. The broader challenge is to address the ontologies that 

govern our conception of real-world phenomena, and to undertake robust appraisal of the 

provenance of data that are used to represent the world using GIS.  

 

This argues that the practice of GIScience and geocomputation poses fundamental 

empirical questions that require place or context to be understood as much more than 

location. Scientific approaches to representing places will undoubtedly benefit from the 

availability of new data sources and novel applications of existing ones, as well as citizen 

participation in their creation and maintenance. Yet a further quest for GIScience is to 

develop explicitly geographical representations of the accumulated effects of historical 

and cultural processes upon unique places.  
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