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Highlights 

- Visual perception is dependent on intentions, expectations and actions 

- Recent work has uncovered novel circuits influencing visual processing 

- Understanding these circuits gives insights into cortical function and flexibility 

 

 

Abstract 

Vision is an active process. What we perceive strongly depends on our actions, intentions and 
expectations. During visual processing, these internal signals therefore need to be integrated 
with the visual information from the retina. The mechanisms of how this is achieved by the 
visual system are still poorly understood. Advances in recording and manipulating neuronal 
activity in specific cell types and axonal projections together with tools for circuit tracing are 
beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals 
shape sensory representations. Here we review recent work, primarily in mice, that has 
advanced our understanding of these processes, focusing on contextual signals related to 
locomotion, behavioural relevance and predictions.   
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Introduction 1 

The classical model of information processing in the brain is based on a hierarchical 2 
organization of feedforward connections from one brain region to the next. In the visual system, 3 
information from the retina is relayed via the dorsolateral geniculate nucleus (dLGN) in the 4 
thalamus to the primary visual cortex (V1), and from there through a hierarchy of increasingly 5 
higher-order cortical areas [1]. In this hierarchical model, visual cortex neurons are mainly seen 6 
as feature detectors that signal the presence of a specific visual stimulus in the environment, 7 
while feedback connections have a minor, modulatory influence. This view remains a 8 
cornerstone of our understanding of visual processing.  9 

However, we understand only a small fraction of activity even in V1 [2], and many aspects of 10 
visual responses cannot be predicted by feedforward models [3]. This is not surprising given 11 
that less than 10 % of synapses received by cortical neurons stem from feedforward projections 12 
[4]. It is now well established that in behaving animals, visual responses can be strongly 13 
influenced by contextual cues, such as visual scene context, attention, self-movement, task 14 
requirements, spatial location and expectations [5–11]. Visual processing therefore is likely to 15 
be an active process, involving internal models of the world and dependent on the behavioural 16 
and perceptual needs of the animal.  17 

At the circuit level, contextual influences are thought to be conveyed via top-down projections 18 
from higher brain areas, intra-areal horizontal connections or neuromodulatory inputs. 19 
However, circuit mechanisms of contextual modulation have often been difficult to identify, 20 
and hence our understanding of the sources of specific contextual signals and how they are 21 
integrated with feedforward sensory information is still very limited. Advances in genetic tools 22 
for labelling specific cell types and circuits, and monitoring or manipulating their activity in 23 
behaving rodents are beginning to advance our understanding of how contextual and visual 24 
signals are combined during active vision. This review focuses on a few specific areas which 25 
have witnessed particularly interesting developments in recent years: contextual signals related 26 
to locomotion, behavioural relevance and predictions. 27 

Effects of locomotion on visual cortex activity 28 

Behavioural state has a strong influence on cortical processing [12,13]. For instance, visual 29 
responses in V1 are stronger, more reliable, and less correlated when mice walk or run 30 
compared to when they are quietly resting [14–16]. These effects show similarities to 31 
modulation of responses by arousal or attention [17–20,9]. Locomotion-related response 32 
modulation in visual cortex is thought to be at least partly conveyed by cholinergic input from 33 
the basal forebrain, which is activated by projections from the mesencephalic locomotor region 34 
during running [21,22] (Figure 1). The cholinergic signals have been shown to strongly act on 35 
vasoactive intestinal peptide (VIP) expressing inhibitory interneurons [21]. These inhibit 36 
somatostatin (SOM) expressing interneurons, which can lead to disinhibition and thus 37 
increased activity of excitatory pyramidal neurons. This disinhibitory motif involving VIP and 38 
SOM cells was also found in other cortical areas [23–25] and could provide a more general 39 
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mechanism for state-dependent gain modulation [26]. However, other studies found that SOM 40 
cells were activated rather than suppressed by locomotion when animals were exposed to light 41 
or visual stimuli [27–29]. These seemingly disparate findings recently could be reconciled by 42 
a cortical circuit model that included interactions between multiple inhibitory cell types [30]. 43 
The opposite sign of SOM cell responses during locomotion in different visual contexts 44 
emerges from the dynamics of the model due to the change in input drive in the presence or 45 
absence of visual input. 46 

Neuromodulation by cholinergic and noradrenergic signalling [19,21,27] likely contributes to 47 
locomotion-related activity changes in cortex, probably due to increased arousal during 48 
locomotion [22] (but see [31]). However, some locomotion-related signals in visual cortex are 49 
inconsistent with unspecific gain modulation, but instead provide specific information about 50 
self-motion. Pyramidal cells in V1 are active during running in the dark and their firing is 51 
modulated by running speed [16,29,32,33]. These motor signals could be inherited from the 52 
visual thalamus where locomotor-related activity has been observed both in the dLGN as well 53 
as in the higher-order pulvinar complex [16,34]. In addition, anterior cingulate and 54 
neighbouring secondary motor cortex (ACC/M2) convey strong motor signals to V1. These 55 
projections specifically activate running-modulated V1 cells and silencing ACC/M2 decreases 56 
locomotion-triggered V1 responses [35]. Such motor signals could represent an efference copy 57 
that informs visual processing of the animal’s self-motion (see below). 58 

Locomotion has further effects on visual responses in V1, including decreased surround 59 
suppression and increased spatial sensitivity [16,36,37]. Together, the described changes might 60 
adapt visual processing to the needs of an animal moving through its environment. 61 

Learning the behavioural relevance of visual stimuli 62 

When a sensory stimulus becomes behaviourally relevant, its representation in sensory cortical 63 
networks is enhanced, including expanded cortical representations, increased or more reliable 64 
and selective responses, changes in stimulus tuning and decreased response correlations. Many 65 
of these changes are already visible at the earliest stages of cortical processing. Repetitive 66 
practice in a perceptual task can further improve sensory responses. These can facilitate the 67 
read-out and interpretation of sensory signals relevant to the task to better inform behavioural 68 
decisions, and may even directly couple to behavioural output through projections to the 69 
striatum [38]. Previous reviews have comprehensively covered the effects of behavioural 70 
stimulus relevance and learning on visual cortical areas, focusing on various contributing 71 
factors, including perceptual learning, different forms of attention, reward expectation, and 72 
flexible circuit adaptations to the requirements of a task [8,9,39–41]. Here we focus on recent 73 
studies that have started to elucidate the circuit mechanisms of learning-related changes in 74 
visual circuits as well as the role of top-town signals from higher brain areas. 75 

Two-photon imaging of genetically-encoded calcium indicators enables tracking the neuronal 76 
responses of identified neurons over the time-course of learning [42]. Using this method, Poort 77 
et al found that when mice learned a visual discrimination task, V1 population responses 78 
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become increasingly better at discriminating the task-relevant stimuli. This improvement in 79 
stimulus encoding resulted from an increase in the number of selective neurons and greater 80 
day-to-day stability of selective responses [43]. Visual response selectivity decreased when 81 
trained mice engaged in a non-visual task, but was still higher than before learning, even under 82 
anaesthesia. This suggests that learning the behavioural relevance of sensory stimuli engages 83 
task-dependent top-down influences which act in concert with more permanent circuit 84 
modifications in V1 [43,44]. Local circuit changes in V1 are associated with increased stimulus 85 
selectivity of parvalbumin-expressing interneurons [45], which thereby provide more selective 86 
inhibition during processing of behaviourally relevant stimuli. 87 

Top-down inputs potentially contribute to learning-induced neural response changes in several 88 
ways. Learning can change the strength and/or nature of signals conveyed to visual cortex from 89 
specific higher brain areas. For instance, axonal projections in V1 from retrosplenial cortex 90 
increase their activity as mice learn to react to a visual input in order to escape an aversive 91 
stimulus, thereby altering visual responses of layer 2/3 cells [46]. Anterior cingulate cortex 92 
(ACC) is another major source of long-range input to V1 [47], and has been shown to convey 93 
task-dependent, contextual signals during visually-guided behaviour [10,35]. Moreover, 94 
optogenetic activation of ACC enhances V1 responses and improves behavioural performance 95 
in a visual discrimination task [47]. Changes in top-down influences also likely underlie the 96 
emergence of stimulus anticipation and behavioural-choice related signals in subsets of V1 97 
neurons during visual discrimination learning [43]. Interestingly, these signals develop 98 
preferentially in cells with stronger responses to the rewarded compared to the non-rewarded 99 
stimulus, suggesting that during learning top-down signals selectively target subsets of 100 
functionally defined cells. Intriguingly, cortical top-down signals may not always exert their 101 
effects directly, but might also act through the thalamus: a recent study indicates that prefrontal 102 
cortex projections to the thalamic reticular nucleus modulate the gain of visual cortex responses 103 
during cross-modal attention [48]. 104 

Top-down signals may also enable or gate learning-related plasticity in visual circuits. Top-105 
down projections often densely innervate layer 1, where they can depolarize apical dendrites 106 
of pyramidal neurons, potentially facilitating the association of other long-range or local inputs 107 
with bottom-up information (Figure 2). This has been shown to be the case in mouse 108 
somatosensory cortex (S1), where higher order thalamic inputs evoke dendritic plateau 109 
potentials which are crucial for whisker-evoked LTP [49]. Lesions of the pulvinar (the higher-110 
order visual thalamic nucleus) also lead to visual learning impairments [50] suggesting that 111 
similar mechanisms may exist in the visual system. Enabling plasticity in the dendrites of 112 
pyramidal cells might involve the release of inhibition from SOM interneurons, which have 113 
been suggested to regulate learning-related changes in V1 and S1 [46,51,45]. The notion that 114 
learning can be gated by top-down signals has been formalized in a biologically plausible 115 
model of reinforcement learning [52,41]. In this model, synaptic tagging mediated by top-down 116 
signals is followed by a global reinforcement signal which results in subsequent strengthening 117 
of the tagged synapses. A likely candidate for the reinforcement signal is the neuromodulator 118 
acetylcholine, which signals behavioural outcome or salience [53], modifies top-down 119 
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processing [54] and induces reward-related changes in V1 activity [55,56]. In addition, after 120 
learning, general effects of task engagement or arousal on neuronal responses might also be 121 
caused by cholinergic or noradrenergic neuromodulation [19,27,57,58]. 122 

Predictive coding 123 

Through experience and learning, the brain builds internal models of the world around us. 124 
These models continuously generate predictions about our environment which help to 125 
interpret sensory information and thus shape perception, as apparent in various optical 126 
illusions which play with our expectations about a visual stimulus [59] (Figure 3a,b). Hence, 127 
visual processing is strongly influenced by internal models and expectations. The theoretical 128 
framework of predictive coding [60–62] postulates that stimulus representation in sensory 129 
cortical areas is mainly constructed from top-down prediction signals conveyed by higher-130 
order brain regions, while feed-forward information carries a so-called prediction error, the 131 
difference between what is predicted and the actual sensory input (Figure 3c). This error or 132 
mismatch signal is then used to update the model prediction. According to this theory, in a 133 
sensory cortical area, one subset of neurons encodes the current ‘best guess’ of the stimulus 134 
while another subset is dedicated to encoding how the actual sensory input deviates from 135 
the predictions. The relative balance of top-down predictions and external drive may be 136 
flexible, for instance, depending on the fidelity of sensory input, certainty of a prior 137 
expectation, or other behavioural demands.  138 

However, until recently direct neurophysiological evidence for this framework in cortical 139 
processing has been very scarce (but see e.g.[63–67]). A series of recent studies have provided 140 
strong evidence for predictive coding in neocortical circuits, including top-down prediction 141 
signals, a circuit for cancelling out predictable sensory input, and prediction error signals in an 142 
early sensory region. These studies mostly utilized locomotion of head-fixed mice on a 143 
spherical treadmill in a virtual reality (VR) environment. Self-motion causes highly predictable 144 
optic flow, and in a VR environment this visual feedback signal can be manipulated and 145 
uncoupled from the locomotion of the animal to create visual input that deviates from what 146 
would be expected from the animal’s movement. Keller and colleagues found that a subset of 147 
neurons in V1 selectively responded to such mismatches between the predicted and actual optic 148 
flow [68]. These error signals were specific to particular locations in visual space, resulting in 149 
mismatch receptive fields [69]. Importantly, these mismatch responses only developed with 150 
normal visuo-motor experience [70] and were therefore consistent with prediction error signals, 151 
which require top-down predictions from learnt, internal models. A local circuit mechanism in 152 
V1 may underlie such error signals resulting from optic flow that is absent or slower than 153 
expected when animals are running: subsets of V1 neurons receive excitatory drive from an 154 
efference copy input carrying information about the animal’s running speed, and are suppressed 155 
by optic flow via SOM cell-mediated inhibition [70] (Figure 3c). In the absence of optic flow, 156 
SOM cells are less active, inhibition is released, and the continuing optic flow prediction signal 157 
therefore induces pyramidal cell firing giving rise to mismatch responses [70].  158 

Where does the prediction signal arise? In a recent study, Leinweber et al. characterized motor-159 
related input to mouse V1 from area ACC/M2 that can provide the prediction of self-generated 160 
visual feedback. As expected from the predictive coding framework, suppressing ACC/M2 161 
input decreased visuomotor mismatch responses in V1 [35]. Moreover, inputs from ACC/M2 162 
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to V1 - as assessed by calcium imaging in axonal boutons - differed depending on the nature 163 
of visuo-motor coupling: motor-related responses changed when mice were trained to navigate 164 
through a 2D VR environment with left-right inverted optic flow: ACC/M2 signals now 165 
reflected the newly learnt consequences of self-motion. Interestingly, this change occurred 166 
despite the fact that mice experienced this reversed world for only an hour each day, and 167 
responses reverted when trained mice ran without optic flow feedback or with optic flow 168 
uncoupled from their movements. This top-down signal is thus highly dependent on visuomotor 169 
experience, and presumably is able to flexibly update predictions about incoming sensory 170 
information depending on the context and learned internal models of visuomotor coupling. 171 

Visuomotor mismatch signals have also been found in the pulvinar, a higher-order visual area 172 
in the thalamus which is thought to be important for visual attention and coordination of 173 
information flow between cortical areas [71,34]. Pulvinar is highly interconnected with all 174 
levels of the cortical visual processing hierarchy, and is well situated to balance top-down and 175 
bottom-up influences. For instance, error-related signals from pulvinar to visual cortex could 176 
control the gain of cortical error responses, thus increasing the saliency of novel or unexpected 177 
visual signals [34,72].  178 

Evidence that stimulus expectation strongly influences visual processing is not restricted to 179 
sensorimotor interactions. As mice learn to navigate a VR corridor, some neurons in visual 180 
cortex develop predictive responses to upcoming visual stimuli based on their spatial location 181 
[43,10], and omission of expected visual stimuli or landmarks evokes strong activity in V1, 182 
potentially reflecting prediction errors [10,73].  183 

Conclusions and Outlook 184 

It remains to be shown to what degree top-down predictions and other contextual signals 185 
influence or even dominate visual cortex responses and sensory representations in general. 186 
However, the reviewed studies, together with extensive previous literature, emphasize that 187 
sensory processing is highly dynamic, allowing animals to flexibly access and process sensory 188 
information according to their current perceptual and behavioural demands. The strong 189 
influence of contextual information on sensory representations, even at the early stages of 190 
sensory cortical processing, is not specific to rodents, but has also been demonstrated in 191 
primates and humans [66,8,74–76,41]. However, contextual influences may vary substantially 192 
across species depending on ethological relevance. For instance, eye-movement related signals 193 
in visual cortex of the afoveate mouse [77] are only partially reminiscent of those observed in 194 
primates [78]. 195 

This brief review highlights research that has begun dissecting the circuit mechanisms of how 196 
specific top-down signals are integrated in visual cortex. However, under natural conditions in 197 
the behaving animal, individual contextual signals will rarely occur in isolation, but instead 198 
contribute to a rich barrage of contextual inputs from various sources. Future work will have 199 
to elucidate how these diverse contexts are combined to inform sensory processing and 200 
perception. This will require the refinement of existing theories (such as predictive coding) 201 
along with further identification of the underlying circuit mechanisms, which likely involve 202 
complex interactions between long-range projections with different inhibitory and excitatory 203 
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cell types. To complicate matters further, the role of a given cell class may itself be flexible: 204 
VIP cells have been shown to both disinhibit or inhibit principal pyramidal neurons in different 205 
contexts [21,26,47,79]. Moreover, different cortical layers might play distinct, complementary 206 
roles for the integration of top down and bottom up information [61,80]. 207 

Finally, our knowledge of the sources of different contextual signals is still very limited. Top-208 
down signals are typically attributed to projections from higher cortical areas [81,8,82]. 209 
However, recent work has provided intriguing evidence for the importance of non-cortical 210 
structures such as the superior colliculus, the cerebellum, and the basal ganglia in providing 211 
contextual information about sensorimotor and internal variables [83–85]. Signals from 212 
subcortical structures converge on diverse thalamic nuclei, which, rather than just relaying 213 
information, likely integrate subcortical signals and dynamically interact with cortical 214 
pathways [48,34,86,87]. We suggest that visual perception, rather than relying on the simple 215 
summation of feedforward and top-down signals from different brain areas, might arise from 216 
complex, reverberating cortio-cortical and cortico-subcortical loops. Future studies will be able 217 
to prove or disprove this idea and shed further light on the mechanism of visual perception. 218 
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Figure 1 

Schematic depicting the pathways conveying locomotion-related signals to V1. ACC/M2, anterior 
cingulate cortex and secondary motor cortex; dLGN, dorsolateral geniculate nucleus of the thalamus; 
MLR, mesencephalic locomotor region of the brainstem.  
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Figure 2 

Schematic of a model in which input from higher-order thalamus gates plasticity in pyramidal neurons. 
Depolarization of pyramidal cell apical dendrites via this gating signal may enable either the 
association of top-down contextual and bottom-up sensory input, or allow potentiation of bottom-up 
or local connections. This potentially involves dendritic calcium spikes, facilitated by VIP-SOM 
interneuron-mediated disinhibition.   
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Figure 3 

a, b) Visual illusions illustrating the powerful influence of expectation and internal models on visual 
perception. a) The yellow lines are the same length, but appear to be different, because of the image 
perspective and our expectation that objects that are further away appear smaller. b) The squares 
labeled A and B are of identical color, but appear different, because we take into account the 
darkening effect of the shadow when judging their brightness. c) Left, schematic depicting how 
internal models and predictions can inform sensorimotor processing. When a motor command is sent 
to the motor system, an efference copy of this command is used by a forward model to predict the 
sensory feedback that will result from the movement. This prediction and the true sensory input are 
compared, and if they do not match, a prediction error or mismatch signal can be fed back to the 
model to improve its predictions. Right, the circuit proposed by Keller and colleagues to compute a 
prediction error in layer 2/3 of V1, specifically for slower than expected or absent optic flow during 
locomotion. Top-down excitatory projections from ACC/M2 carry the running-related sensory 
predictions. Running-induced optical flow stimuli activate SOM interneurons which in turn inhibit L2/3 
pyramidal cells, cancelling the excitation from the top-down predictions. If optical flow is absent 
during locomotion, SOM cell inhibition is removed evoking a mismatch response in a subset of 
pyramidal cells. Image in b), Wikimedia Commons. 

 


